1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

* bignum.c (dump_bignum, bigmul1_balance, big_split, biglsh_bang,

bigrsh_bang, big_split3, bigmul1_toom3, bigmul0): implement Toom3 (Toom-Cook)
  multiplication.
* include/ruby/defines.h: add format prefixes for BDIGIT and BDIGIT_DBL.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@31695 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
mrkn 2011-05-22 15:37:00 +00:00
parent fbeca091ed
commit 4eb3654178
3 changed files with 316 additions and 21 deletions

View file

@ -1,3 +1,11 @@
Mon May 23 00:35:00 2001 Kenta Murata <mrkn@mrkn.jp>
* bignum.c (dump_bignum, bigmul1_balance, big_split, biglsh_bang,
bigrsh_bang, big_split3, bigmul1_toom3, bigmul0): implement Toom3 (Toom-Cook)
multiplication.
* include/ruby/defines.h: add format prefixes for BDIGIT and BDIGIT_DBL.
Sun May 22 23:24:02 2011 Martin Bosslet <Martin.Bosslet@googlemail.com>
* ext/openssl/ossl_asn1.c: Instead of rb_intern use static symbols to

307
bignum.c
View file

@ -22,6 +22,8 @@
VALUE rb_cBignum;
static VALUE big_three = Qnil;
#if defined __MINGW32__
#define USHORT _USHORT
#endif
@ -29,6 +31,7 @@ VALUE rb_cBignum;
#define BDIGITS(x) (RBIGNUM_DIGITS(x))
#define BITSPERDIG (SIZEOF_BDIGITS*CHAR_BIT)
#define BIGRAD ((BDIGIT_DBL)1 << BITSPERDIG)
#define BIGRAD_HALF ((BDIGIT)(BIGRAD >> 1))
#define DIGSPERLONG (SIZEOF_LONG/SIZEOF_BDIGITS)
#if HAVE_LONG_LONG
# define DIGSPERLL (SIZEOF_LONG_LONG/SIZEOF_BDIGITS)
@ -42,6 +45,31 @@ VALUE rb_cBignum;
(BDIGITS(x)[0] == 0 && \
(RBIGNUM_LEN(x) == 1 || bigzero_p(x))))
#define BIGNUM_DEBUG 0
#if BIGNUM_DEBUG
#define ON_DEBUG(x) do { x; } while (0)
static void
dump_bignum(VALUE x)
{
long i;
printf("%c0x0", RBIGNUM_SIGN(x) ? '+' : '-');
for (i = RBIGNUM_LEN(x); i--; ) {
printf("_%08"PRIxBDIGIT, BDIGITS(x)[i]);
}
printf(", len=%lu", RBIGNUM_LEN(x));
puts("");
}
static VALUE
rb_big_dump(VALUE x)
{
dump_bignum(x);
return x;
}
#else
#define ON_DEBUG(x)
#endif
static int
bigzero_p(VALUE x)
{
@ -1688,7 +1716,7 @@ bigsub(VALUE x, VALUE y)
long i = RBIGNUM_LEN(x);
BDIGIT *xds, *yds;
/* if x is larger than y, swap */
/* if x is smaller than y, swap */
if (RBIGNUM_LEN(x) < RBIGNUM_LEN(y)) {
z = x; x = y; y = z; /* swap x y */
}
@ -2024,7 +2052,7 @@ bigmul1_balance(VALUE x, VALUE y)
xn = RBIGNUM_LEN(x);
yn = RBIGNUM_LEN(y);
assert(2 * xn <= yn);
assert(2 * xn <= yn || 3 * xn <= 2*(yn+2));
z = bignew(xn + yn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
t1 = bignew(xn, 1);
@ -2064,10 +2092,15 @@ big_split(VALUE v, long n, volatile VALUE *ph, volatile VALUE *pl)
ln = n;
}
while (--hn && !vds[hn + ln]);
h = bignew(hn += 2, 1);
MEMCPY(BDIGITS(h), vds + ln, BDIGIT, hn - 1);
BDIGITS(h)[hn - 1] = 0; /* margin for carry */
if (!hn) {
h = rb_uint2big(0);
}
else {
while (--hn && !vds[hn + ln]);
h = bignew(hn += 2, 1);
MEMCPY(BDIGITS(h), vds + ln, BDIGIT, hn - 1);
BDIGITS(h)[hn - 1] = 0; /* margin for carry */
}
while (--ln && !vds[ln]);
l = bignew(ln += 2, 1);
@ -2174,6 +2207,241 @@ bigmul1_karatsuba(VALUE x, VALUE y)
return z;
}
static void
biglsh_bang(BDIGIT *xds, long xn, unsigned long shift)
{
long const s1 = shift/BITSPERDIG;
int const s2 = (int)(shift%BITSPERDIG);
int const s3 = BITSPERDIG-s2;
BDIGIT* zds;
BDIGIT num;
long i;
if (s1 >= xn) {
MEMZERO(xds, BDIGIT, xn);
return;
}
zds = xds + xn - 1;
xn -= s1 + 1;
num = xds[xn]<<s2;
do {
*zds-- = num | xds[--xn]>>s3;
num = xds[xn]<<s2;
}
while (xn > 0);
*zds = num;
for (i = s1; i > 0; --i)
*zds-- = 0;
}
static void
bigrsh_bang(BDIGIT* xds, long xn, unsigned long shift)
{
long s1 = shift/BITSPERDIG;
int s2 = (int)(shift%BITSPERDIG);
int s3 = BITSPERDIG - s2;
int i;
BDIGIT num;
BDIGIT* zds;
if (s1 >= xn) {
MEMZERO(xds, BDIGIT, xn);
return;
}
i = 0;
zds = xds + s1;
num = *zds++>>s2;
do {
xds[i++] = (BDIGIT)(*zds<<s3) | num;
num = *zds++>>s2;
}
while (i < xn - s1 - 1);
xds[i] = num;
MEMZERO(xds + xn - s1, BDIGIT, s1);
}
static void
big_split3(VALUE v, long n, volatile VALUE* p0, volatile VALUE* p1, volatile VALUE* p2)
{
VALUE v0, v12, v1, v2;
big_split(v, n, &v12, &v0);
big_split(v12, n, &v2, &v1);
*p0 = bigtrunc(v0);
*p1 = bigtrunc(v1);
*p2 = bigtrunc(v2);
}
static VALUE big_lshift(VALUE, unsigned long);
static VALUE big_rshift(VALUE, unsigned long);
static VALUE bigdivrem(VALUE, VALUE, volatile VALUE*, volatile VALUE*);
static VALUE
bigmul1_toom3(VALUE x, VALUE y)
{
long i, n, xn, yn, zn;
VALUE x0, x1, x2, y0, y1, y2;
VALUE u0, u1, u2, u3, u4, v1, v2, v3;
VALUE z0, z1, z2, z3, z4, z, t;
BDIGIT* zds;
xn = RBIGNUM_LEN(x);
yn = RBIGNUM_LEN(y);
assert(xn <= yn); /* assume y >= x */
n = (yn + 2) / 3;
big_split3(x, n, &x0, &x1, &x2);
if (x == y) {
y0 = x0; y1 = x1; y2 = x2;
}
else big_split3(y, n, &y0, &y1, &y2);
/*
* ref. http://en.wikipedia.org/wiki/Toom%E2%80%93Cook_multiplication
*
* x(b) = x0 * b^0 + x1 * b^1 + x2 * b^2
* y(b) = y0 * b^0 + y1 * b^1 + y2 * b^2
*
* z(b) = x(b) * y(b)
* z(b) = z0 * b^0 + z1 * b^1 + z2 * b^2 + z3 * b^3 + z4 * b^4
* where:
* z0 = x0 * y0
* z1 = x0 * y1 + x1 * y0
* z2 = x0 * y2 + x1 * y1 + x2 * y0
* z3 = x1 * y2 + x2 * y1
* z4 = x2 * y2
*
* Toom3 method (a.k.a. Toom-Cook method):
* (Step1) calculating 5 points z(b0), z(b1), z(b2), z(b3), z(b4),
* where:
* b0 = 0, b1 = 1, b2 = -1, b3 = -2, b4 = inf,
* z(0) = x(0) * y(0) = x0 * y0
* z(1) = x(1) * y(1) = (x0 + x1 + x2) * (y0 + y1 + y2)
* z(-1) = x(-1) * y(-1) = (x0 - x1 + x2) * (y0 - y1 + y2)
* z(-2) = x(-2) * y(-2) = (x0 - 2 * (x1 - 2 * x2)) * (y0 - 2 * (y1 - 2 * y2))
* z(inf) = x(inf) * y(inf) = x2 * y2
*
* (Step2) interpolating z0, z1, z2, z3, z4, and z5.
*
* (Step3) Substituting base value into b of the polynomial z(b),
*/
/*
* [Step1] calculating 5 points z(b0), z(b1), z(b2), z(b3), z(b4)
*/
/* u1 <- x0 + x2 */
u1 = bigtrunc(bigadd(x0, x2, 1));
/* x(-1) : u2 <- u1 - x1 = x0 - x1 + x2 */
u2 = bigtrunc(bigsub(u1, x1));
/* x(1) : u1 <- u1 + x1 = x0 + x1 + x2 */
u1 = bigtrunc(bigadd(u1, x1, 1));
/* x(-2) : u3 <- 2 * (u2 + x2) - x0 = x0 - 2 * (x1 - 2 * x2) */
u3 = bigadd(u2, x2, 1);
if (BDIGITS(u3)[RBIGNUM_LEN(u3)-1] & BIGRAD_HALF) {
rb_big_resize(u3, RBIGNUM_LEN(u3) + 1);
BDIGITS(u3)[RBIGNUM_LEN(u3)-1] = 0;
}
biglsh_bang(BDIGITS(u3), RBIGNUM_LEN(u3), 1);
u3 = bigtrunc(bigadd(bigtrunc(u3), x0, 0));
if (x == y) {
v1 = u1; v2 = u2; v3 = u3;
}
else {
/* v1 <- y0 + y2 */
v1 = bigtrunc(bigadd(y0, y2, 1));
/* y(-1) : v2 <- v1 - y1 = y0 - y1 + y2 */
v2 = bigtrunc(bigsub(v1, y1));
/* y(1) : v1 <- v1 + y1 = y0 + y1 + y2 */
v1 = bigtrunc(bigadd(v1, y1, 1));
/* y(-2) : v3 <- 2 * (v2 + y2) - y0 = y0 - 2 * (y1 - 2 * y2) */
v3 = bigadd(v2, y2, 1);
if (BDIGITS(v3)[RBIGNUM_LEN(v3)-1] & BIGRAD_HALF) {
rb_big_resize(v3, RBIGNUM_LEN(v3) + 1);
BDIGITS(v3)[RBIGNUM_LEN(v3)-1] = 0;
}
biglsh_bang(BDIGITS(v3), RBIGNUM_LEN(v3), 1);
v3 = bigtrunc(bigadd(bigtrunc(v3), y0, 0));
}
/* z(0) : u0 <- x0 * y0 */
u0 = bigtrunc(bigmul0(x0, y0));
/* z(1) : u1 <- u1 * v1 */
u1 = bigtrunc(bigmul0(u1, v1));
/* z(-1) : u2 <- u2 * v2 */
u2 = bigtrunc(bigmul0(u2, v2));
/* z(-2) : u3 <- u3 * v3 */
u3 = bigtrunc(bigmul0(u3, v3));
/* z(inf) : u4 <- x2 * y2 */
u4 = bigtrunc(bigmul0(x2, y2));
/* for GC */
v1 = v2 = v3 = Qnil;
/*
* [Step2] interpolating z0, z1, z2, z3, z4, and z5.
*/
/* z0 <- z(0) == u0 */
z0 = u0;
/* z4 <- z(inf) == u4 */
z4 = u4;
/* z3 <- (z(-2) - z(1)) / 3 == (u3 - u1) / 3 */
z3 = bigadd(u3, u1, 0);
bigdivrem(z3, big_three, &z3, NULL); /* TODO: optimize */
bigtrunc(z3);
/* z1 <- (z(1) - z(-1)) / 2 == (u1 - u2) / 2 */
z1 = bigtrunc(bigadd(u1, u2, 0));
bigrsh_bang(BDIGITS(z1), RBIGNUM_LEN(z1), 1);
/* z2 <- z(-1) - z(0) == u2 - u0 */
z2 = bigtrunc(bigadd(u2, u0, 0));
/* z3 <- (z2 - z3) / 2 + 2 * z(inf) == (z2 - z3) / 2 + 2 * u4 */
z3 = bigadd(z2, z3, 0);
bigrsh_bang(BDIGITS(z3), RBIGNUM_LEN(z3), 1);
t = big_lshift(u4, 1); /* TODO: combining with next addition */
z3 = bigtrunc(bigadd(z3, t, 1));
/* z2 <- z2 + z1 - z(inf) == z2 + z1 - u4 */
z2 = bigtrunc(bigadd(z2, z1, 1));
z2 = bigtrunc(bigadd(z2, u4, 0));
/* z1 <- z1 - z3 */
z1 = bigtrunc(bigadd(z1, z3, 0));
/*
* [Step3] Substituting base value into b of the polynomial z(b),
*/
zn = 6*n + 1;
z = bignew(zn, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
zds = BDIGITS(z);
MEMCPY(zds, BDIGITS(z0), BDIGIT, RBIGNUM_LEN(z0));
MEMZERO(zds + RBIGNUM_LEN(z0), BDIGIT, zn - RBIGNUM_LEN(z0));
bigadd_core(zds + n, zn - n, BDIGITS(z1), big_real_len(z1), zds + n, zn - n);
bigadd_core(zds + 2*n, zn - 2*n, BDIGITS(z2), big_real_len(z2), zds + 2*n, zn - 2*n);
bigadd_core(zds + 3*n, zn - 3*n, BDIGITS(z3), big_real_len(z3), zds + 3*n, zn - 3*n);
bigadd_core(zds + 4*n, zn - 4*n, BDIGITS(z4), big_real_len(z4), zds + 4*n, zn - 4*n);
z = bignorm(z);
return bignorm(z);
}
/* efficient squaring (2 times faster than normal multiplication)
* ref: Handbook of Applied Cryptography, Algorithm 14.16
* http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
@ -2212,6 +2480,7 @@ bigsqr_fast(VALUE x)
}
#define KARATSUBA_MUL_DIGITS 70
#define TOOM3_MUL_DIGITS 150
/* determine whether a bignum is sparse or not by random sampling */
@ -2227,19 +2496,6 @@ big_sparse_p(VALUE x)
return (c <= 1) ? Qtrue : Qfalse;
}
#if 0
static void
dump_bignum(VALUE x)
{
long i;
printf("0x0");
for (i = RBIGNUM_LEN(x); i--; ) {
printf("_%08x", BDIGITS(x)[i]);
}
puts("");
}
#endif
static VALUE
bigmul0(VALUE x, VALUE y)
{
@ -2272,8 +2528,13 @@ bigmul0(VALUE x, VALUE y)
/* balance multiplication by slicing y when x is much smaller than y */
if (2 * xn <= yn) return bigmul1_balance(x, y);
/* multiplication by karatsuba method */
return bigmul1_karatsuba(x, y);
if (xn < TOOM3_MUL_DIGITS) {
/* multiplication by karatsuba method */
return bigmul1_karatsuba(x, y);
}
else if (3*xn <= 2*(yn + 2))
return bigmul1_balance(x, y);
return bigmul1_toom3(x, y);
}
/*
@ -2399,6 +2660,7 @@ bigdivrem(VALUE x, VALUE y, volatile VALUE *divp, volatile VALUE *modp)
if (divp) *divp = z;
return Qnil;
}
z = bignew(nx==ny?nx+2:nx+1, RBIGNUM_SIGN(x)==RBIGNUM_SIGN(y));
zds = BDIGITS(z);
if (nx==ny) zds[nx+1] = 0;
@ -3522,4 +3784,7 @@ Init_Bignum(void)
rb_define_method(rb_cBignum, "even?", rb_big_even_p, 0);
power_cache_init();
big_three = rb_uint2big(3);
rb_gc_register_mark_object(big_three);
}

View file

@ -94,23 +94,45 @@ void xfree(void*);
# define SIZEOF_BDIGITS SIZEOF_INT
# define BDIGIT_DBL unsigned LONG_LONG
# define BDIGIT_DBL_SIGNED LONG_LONG
# define PRI_BDIGIT_PREFIX ""
# define PRI_BDIGIT_DBL_PREFIX PRI_LL_PREFIX
#elif SIZEOF_INT*2 <= SIZEOF_LONG
# define BDIGIT unsigned int
# define SIZEOF_BDIGITS SIZEOF_INT
# define BDIGIT_DBL unsigned long
# define BDIGIT_DBL_SIGNED long
# define PRI_BDIGIT_PREFIX ""
# define PRI_BDIGIT_DBL_PREFIX "l"
#elif SIZEOF_SHORT*2 <= SIZEOF_LONG
# define BDIGIT unsigned short
# define SIZEOF_BDIGITS SIZEOF_SHORT
# define BDIGIT_DBL unsigned long
# define BDIGIT_DBL_SIGNED long
# define PRI_BDIGIT_PREFIX "h"
# define PRI_BDIGIT_DBL_PREFIX "l"
#else
# define BDIGIT unsigned short
# define SIZEOF_BDIGITS (SIZEOF_LONG/2)
# define BDIGIT_DBL unsigned long
# define BDIGIT_DBL_SIGNED long
# define PRI_BDIGIT_PREFIX "h"
# define PRI_BDIGIT_DBL_PREFIX "l"
#endif
#define PRIdBDIGIT PRI_BDIGIT_PREFIX"d"
#define PRIiBDIGIT PRI_BDIGIT_PREFIX"i"
#define PRIoBDIGIT PRI_BDIGIT_PREFIX"o"
#define PRIuBDIGIT PRI_BDIGIT_PREFIX"u"
#define PRIxBDIGIT PRI_BDIGIT_PREFIX"x"
#define PRIXBDIGIT PRI_BDIGIT_PREFIX"X"
#define PRIdBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"d"
#define PRIiBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"i"
#define PRIoBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"o"
#define PRIuBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"u"
#define PRIxBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"x"
#define PRIXBDIGIT_DBL PRI_BDIGIT_DBL_PREFIX"X"
#ifdef INFINITY
# define HAVE_INFINITY
#else