1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

improvements.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@15812 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
tadf 2008-03-20 12:26:58 +00:00
parent 890b0352dd
commit 5723a8eeb5
4 changed files with 2175 additions and 122 deletions

View file

@ -1,3 +1,12 @@
Thu Mar 20 21:20:19 2008 Tadayoshi Funaba <tadf@dotrb.org>
* rational.c: some improvements (include Shin-ichiro HARA's
effort).
* complex.c: some improvemtns.
* test/ruby/test_rational2.rb: new.
Thu Mar 20 00:21:12 2008 Nobuyoshi Nakada <nobu@ruby-lang.org>
* io.c (argf_initialize_copy): get rid of segfault.

311
complex.c
View file

@ -28,62 +28,265 @@ static ID id_Unify, id_abs, id_abs2, id_arg, id_atan2_bang, id_cmp,
id_numerator, id_polar, id_quo, id_scalar_p, id_sin, id_sqrt, id_to_f,
id_to_i, id_to_r, id_to_s, id_truncate;
#define f_add(x,y) rb_funcall(x, '+', 1, y)
#define f_div(x,y) rb_funcall(x, '/', 1, y)
#define f_gt_p(x,y) rb_funcall(x, '>', 1, y)
#define f_lt_p(x,y) rb_funcall(x, '<', 1, y)
#define f_mod(x,y) rb_funcall(x, '%', 1, y)
#define f_mul(x,y) rb_funcall(x, '*', 1, y)
#define f_sub(x,y) rb_funcall(x, '-', 1, y)
#define f_xor(x,y) rb_funcall(x, '^', 1, y)
#define f_abs(x) rb_funcall(x, id_abs, 0)
#define f_abs2(x) rb_funcall(x, id_abs2, 0)
#define f_arg(x) rb_funcall(x, id_arg, 0)
#define f_conjugate(x) rb_funcall(x, id_conjugate, 0)
#define f_denominator(x) rb_funcall(x, id_denominator, 0)
#define f_exact_p(x) rb_funcall(x, id_exact_p, 0)
#define f_floor(x) rb_funcall(x, id_floor, 0)
#define f_negate(x) rb_funcall(x, id_negate, 0)
#define f_numerator(x) rb_funcall(x, id_numerator, 0)
#define f_polar(x) rb_funcall(x, id_polar, 0)
#define f_scalar_p(x) rb_funcall(x, id_scalar_p, 0)
#define f_to_f(x) rb_funcall(x, id_to_f, 0)
#define f_to_i(x) rb_funcall(x, id_to_i, 0)
#define f_to_r(x) rb_funcall(x, id_to_r, 0)
#define f_to_s(x) rb_funcall(x, id_to_s, 0)
#define f_truncate(x) rb_funcall(x, id_truncate, 0)
#define f_cmp(x,y) rb_funcall(x, id_cmp, 1, y)
#define f_coerce(x,y) rb_funcall(x, id_coerce, 1, y)
#define f_divmod(x,y) rb_funcall(x, id_divmod, 1, y)
#define f_equal_p(x,y) rb_funcall(x, id_equal_p, 1, y)
#define f_expt(x,y) rb_funcall(x, id_expt, 1, y)
#define f_idiv(x,y) rb_funcall(x, id_idiv, 1, y)
#define f_inspect(x) rb_funcall(x, id_inspect, 0)
#define f_quo(x,y) rb_funcall(x, id_quo, 1, y)
#if 0
#define m_cos(x) rb_funcall(rb_mMath, id_cos, 1, x)
#define m_exp_bang(x) rb_funcall(rb_mMath, id_exp_bang, 1, x)
#define m_log_bang(x) rb_funcall(rb_mMath, id_log_bang, 1, x)
#define m_sin(x) rb_funcall(rb_mMath, id_sin, 1, x)
#define m_sqrt(x) rb_funcall(rb_mMath, id_sqrt, 1, x)
#define m_atan2_bang(x,y) rb_funcall(rb_mMath, id_atan2_bang, 2, x, y)
#define m_hypot(x,y) rb_funcall(rb_mMath, id_hypot, 2, x, y)
#endif
#define f_negative_p(x) f_lt_p(x, ZERO)
#define f_zero_p(x) f_equal_p(x, ZERO)
#define f_one_p(x) f_equal_p(x, ONE)
#define f_kind_of_p(x,c) rb_obj_is_kind_of(x, c)
#define k_numeric_p(x) f_kind_of_p(x, rb_cNumeric)
#define k_integer_p(x) f_kind_of_p(x, rb_cInteger)
#define k_float_p(x) f_kind_of_p(x, rb_cFloat)
#define k_rational_p(x) f_kind_of_p(x, rb_cRational)
#define k_complex_p(x) f_kind_of_p(x, rb_cComplex)
#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
#define binop(n,op) \
inline static VALUE \
f_##n(VALUE x, VALUE y)\
{\
return rb_funcall(x, op, 1, y);\
}
#define fun1(n) \
inline static VALUE \
f_##n(VALUE x)\
{\
return rb_funcall(x, id_##n, 0);\
}
#define fun2(n) \
inline static VALUE \
f_##n(VALUE x, VALUE y)\
{\
return rb_funcall(x, id_##n, 1, y);\
}
#define math1(n) \
inline static VALUE \
m_##n(VALUE x)\
{\
return rb_funcall(rb_mMath, id_##n, 1, x);\
}
#define math2(n) \
inline static VALUE \
m_##n(VALUE x, VALUE y)\
{\
return rb_funcall(rb_mMath, id_##n, 2, x, y);\
}
inline static VALUE
f_add(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(y)) {
if (FIX2INT(y) == 0)
_r = x;
else
_r = rb_funcall(x, '+', 1, y);
} else if (FIXNUM_P(x)) {
if (FIX2INT(x) == 0)
_r = y;
else
_r = rb_funcall(x, '+', 1, y);
} else
_r = rb_funcall(x, '+', 1, y);
return _r;
}
inline static VALUE
f_div(x, y)
{
VALUE _r;
if (FIXNUM_P(y) && FIX2INT(y) == 1)
_r = x;
else
_r = rb_funcall(x, '/', 1, y);
return _r;
}
inline static VALUE
f_gt_p(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(x) && FIXNUM_P(y))
_r = f_boolcast(FIX2INT(x) > FIX2INT(y));
else
_r = rb_funcall(x, '>', 1, y);
return _r;
}
inline static VALUE
f_lt_p(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(x) && FIXNUM_P(y))
_r = f_boolcast(FIX2INT(x) < FIX2INT(y));
else
_r = rb_funcall(x, '<', 1, y);
return _r;
}
binop(mod, '%')
inline static VALUE
f_mul(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(y)) {
int _iy = FIX2INT(y);
if (_iy == 0) {
if (TYPE(x) == T_FLOAT)
_r = rb_float_new(0.0);
else
_r = ZERO;
} else if (_iy == 1)
_r = x;
else
_r = rb_funcall(x, '*', 1, y);
} else if (FIXNUM_P(x)) {
int _ix = FIX2INT(x);
if (_ix == 0) {
if (TYPE(y) == T_FLOAT)
_r = rb_float_new(0.0);
else
_r = ZERO;
} else if (_ix == 1)
_r = y;
else
_r = rb_funcall(x, '*', 1, y);
} else
_r = rb_funcall(x, '*', 1, y);
return _r;
}
inline static VALUE
f_sub(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(y)) {
if (FIX2INT(y) == 0)
_r = x;
else
_r = rb_funcall(x, '-', 1, y);
} else
_r = rb_funcall(x, '-', 1, y);
return _r;
}
binop(xor, '^')
fun1(abs)
fun1(abs2)
fun1(arg)
fun1(conjugate)
fun1(denominator)
fun1(exact_p)
fun1(floor)
fun1(inspect)
fun1(negate)
fun1(numerator)
fun1(polar)
fun1(scalar_p)
fun1(to_f)
fun1(to_i)
fun1(to_r)
fun1(to_s)
fun1(truncate)
inline static VALUE
f_cmp(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(x) && FIXNUM_P(y)) {
int c = FIX2INT(x) - FIX2INT(y);
if (c > 0)
c = 1;
else if (c < 0)
c = -1;
_r = INT2FIX(c);
} else
_r = rb_funcall(x, id_cmp, 1, y);
return _r;
}
fun2(coerce)
fun2(divmod)
inline static VALUE
f_equal_p(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(x) && FIXNUM_P(y))
_r = f_boolcast(FIX2INT(x) == FIX2INT(y));
else
_r = rb_funcall(x, id_equal_p, 1, y);
return _r;
}
fun2(expt)
fun2(idiv)
fun2(quo)
inline static VALUE
f_negative_p(VALUE x)
{
VALUE _r;
if (FIXNUM_P(x))
_r = f_boolcast(FIX2INT(x) < 0);
else
_r = rb_funcall(x, '<', 1, ZERO);
return _r;
}
inline static VALUE
f_zero_p(VALUE x)
{
VALUE _r;
if (FIXNUM_P(x))
_r = f_boolcast(FIX2INT(x) == 0);
else
_r = rb_funcall(x, id_equal_p, 1, ZERO);
return _r;
}
inline static VALUE
f_one_p(VALUE x)
{
VALUE _r;
if (FIXNUM_P(x))
_r = f_boolcast(FIX2INT(x) == 1);
else
_r = rb_funcall(x, id_equal_p, 1, ONE);
return _r;
}
inline static VALUE
f_kind_of_p(VALUE x, VALUE c)
{
return rb_obj_is_kind_of(x, c);
}
inline static VALUE
k_numeric_p(VALUE x)
{
return f_kind_of_p(x, rb_cNumeric);
}
inline static VALUE
k_integer_p(VALUE x)
{
return f_kind_of_p(x, rb_cInteger);
}
inline static VALUE
k_float_p(VALUE x)
{
return f_kind_of_p(x, rb_cFloat);
}
inline static VALUE
k_rational_p(VALUE x)
{
return f_kind_of_p(x, rb_cRational);
}
inline static VALUE
k_complex_p(VALUE x)
{
return f_kind_of_p(x, rb_cComplex);
}
inline static VALUE
f_generic_p(VALUE x)
{

View file

@ -25,39 +25,237 @@ static ID id_Unify, id_cmp, id_coerce, id_convert, id_equal_p, id_expt,
id_floor, id_format,id_idiv, id_inspect, id_negate, id_new, id_new_bang,
id_to_f, id_to_i, id_to_s, id_truncate;
#define f_add(x,y) rb_funcall(x, '+', 1, y)
#define f_div(x,y) rb_funcall(x, '/', 1, y)
#define f_gt_p(x,y) rb_funcall(x, '>', 1, y)
#define f_lt_p(x,y) rb_funcall(x, '<', 1, y)
#define f_mod(x,y) rb_funcall(x, '%', 1, y)
#define f_mul(x,y) rb_funcall(x, '*', 1, y)
#define f_sub(x,y) rb_funcall(x, '-', 1, y)
#define f_xor(x,y) rb_funcall(x, '^', 1, y)
#define f_floor(x) rb_funcall(x, id_floor, 0)
#define f_inspect(x) rb_funcall(x, id_inspect, 0)
#define f_to_f(x) rb_funcall(x, id_to_f, 0)
#define f_to_i(x) rb_funcall(x, id_to_i, 0)
#define f_to_s(x) rb_funcall(x, id_to_s, 0)
#define f_truncate(x) rb_funcall(x, id_truncate, 0)
#define f_cmp(x,y) rb_funcall(x, id_cmp, 1, y)
#define f_coerce(x,y) rb_funcall(x, id_coerce, 1, y)
#define f_equal_p(x,y) rb_funcall(x, id_equal_p, 1, y)
#define f_expt(x,y) rb_funcall(x, id_expt, 1, y)
#define f_idiv(x,y) rb_funcall(x, id_idiv, 1, y)
#define f_negate(x) rb_funcall(x, id_negate, 0)
#define f_negative_p(x) f_lt_p(x, ZERO)
#define f_zero_p(x) f_equal_p(x, ZERO)
#define f_one_p(x) f_equal_p(x, ONE)
#define f_kind_of_p(x,c) rb_obj_is_kind_of(x, c)
#define k_numeric_p(x) f_kind_of_p(x, rb_cNumeric)
#define k_integer_p(x) f_kind_of_p(x, rb_cInteger)
#define k_float_p(x) f_kind_of_p(x, rb_cFloat)
#define k_rational_p(x) f_kind_of_p(x, rb_cRational)
#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
#define binop(n,op) \
inline static VALUE \
f_##n(VALUE x, VALUE y)\
{\
return rb_funcall(x, op, 1, y);\
}
#define fun1(n) \
inline static VALUE \
f_##n(VALUE x)\
{\
return rb_funcall(x, id_##n, 0);\
}
#define fun2(n) \
inline static VALUE \
f_##n(VALUE x, VALUE y)\
{\
return rb_funcall(x, id_##n, 1, y);\
}
inline static VALUE
f_add(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(y)) {
if (FIX2INT(y) == 0)
_r = x;
else
_r = rb_funcall(x, '+', 1, y);
} else if (FIXNUM_P(x)) {
if (FIX2INT(x) == 0)
_r = y;
else
_r = rb_funcall(x, '+', 1, y);
} else
_r = rb_funcall(x, '+', 1, y);
return _r;
}
inline static VALUE
f_div(x, y)
{
VALUE _r;
if (FIXNUM_P(y) && FIX2INT(y) == 1)
_r = x;
else
_r = rb_funcall(x, '/', 1, y);
return _r;
}
inline static VALUE
f_gt_p(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(x) && FIXNUM_P(y))
_r = f_boolcast(FIX2INT(x) > FIX2INT(y));
else
_r = rb_funcall(x, '>', 1, y);
return _r;
}
inline static VALUE
f_lt_p(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(x) && FIXNUM_P(y))
_r = f_boolcast(FIX2INT(x) < FIX2INT(y));
else
_r = rb_funcall(x, '<', 1, y);
return _r;
}
binop(mod, '%')
inline static VALUE
f_mul(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(y)) {
int _iy = FIX2INT(y);
if (_iy == 0) {
if (TYPE(x) == T_FLOAT)
_r = rb_float_new(0.0);
else
_r = ZERO;
} else if (_iy == 1)
_r = x;
else
_r = rb_funcall(x, '*', 1, y);
} else if (FIXNUM_P(x)) {
int _ix = FIX2INT(x);
if (_ix == 0) {
if (TYPE(y) == T_FLOAT)
_r = rb_float_new(0.0);
else
_r = ZERO;
} else if (_ix == 1)
_r = y;
else
_r = rb_funcall(x, '*', 1, y);
} else
_r = rb_funcall(x, '*', 1, y);
return _r;
}
inline static VALUE
f_sub(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(y)) {
if (FIX2INT(y) == 0)
_r = x;
else
_r = rb_funcall(x, '-', 1, y);
} else
_r = rb_funcall(x, '-', 1, y);
return _r;
}
binop(xor, '^')
fun1(floor)
fun1(inspect)
fun1(negate)
fun1(to_f)
fun1(to_i)
fun1(to_s)
fun1(truncate)
inline static VALUE
f_cmp(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(x) && FIXNUM_P(y)) {
int c = FIX2INT(x) - FIX2INT(y);
if (c > 0)
c = 1;
else if (c < 0)
c = -1;
_r = INT2FIX(c);
} else
_r = rb_funcall(x, id_cmp, 1, y);
return _r;
}
fun2(coerce)
inline static VALUE
f_equal_p(VALUE x, VALUE y)
{
VALUE _r;
if (FIXNUM_P(x) && FIXNUM_P(y))
_r = f_boolcast(FIX2INT(x) == FIX2INT(y));
else
_r = rb_funcall(x, id_equal_p, 1, y);
return _r;
}
fun2(expt)
fun2(idiv)
inline static VALUE
f_negative_p(VALUE x)
{
VALUE _r;
if (FIXNUM_P(x))
_r = f_boolcast(FIX2INT(x) < 0);
else
_r = rb_funcall(x, '<', 1, ZERO);
return _r;
}
inline static VALUE
f_zero_p(VALUE x)
{
VALUE _r;
if (FIXNUM_P(x))
_r = f_boolcast(FIX2INT(x) == 0);
else
_r = rb_funcall(x, id_equal_p, 1, ZERO);
return _r;
}
inline static VALUE
f_one_p(VALUE x)
{
VALUE _r;
if (FIXNUM_P(x))
_r = f_boolcast(FIX2INT(x) == 1);
else
_r = rb_funcall(x, id_equal_p, 1, ONE);
return _r;
}
inline static VALUE
f_kind_of_p(VALUE x, VALUE c)
{
return rb_obj_is_kind_of(x, c);
}
inline static VALUE
k_numeric_p(VALUE x)
{
return f_kind_of_p(x, rb_cNumeric);
}
inline static VALUE
k_integer_p(VALUE x)
{
return f_kind_of_p(x, rb_cInteger);
}
inline static VALUE
k_float_p(VALUE x)
{
return f_kind_of_p(x, rb_cFloat);
}
inline static VALUE
k_rational_p(VALUE x)
{
return f_kind_of_p(x, rb_cRational);
}
#ifndef NDEBUG
#define f_gcd f_gcd_orig
#endif
inline static long
i_gcd(long x, long y)
{
@ -133,6 +331,21 @@ f_gcd(VALUE x, VALUE y)
/* NOTREACHED */
}
#ifndef NDEBUG
#undef f_gcd
inline static VALUE
f_gcd(VALUE x, VALUE y)
{
VALUE r = f_gcd_orig(x, y);
if (!f_zero_p(r)) {
assert(f_zero_p(f_mod(x, r)));
assert(f_zero_p(f_mod(y, r)));
}
return r;
}
#endif
VALUE
rb_gcd(VALUE x, VALUE y)
{
@ -236,6 +449,27 @@ nurat_s_canonicalize_internal(VALUE klass, VALUE num, VALUE den)
return nurat_s_new_internal(klass, num, den);
}
inline static VALUE
nurat_s_canonicalize_internal_no_reduce(VALUE klass, VALUE num, VALUE den)
{
switch (FIX2INT(f_cmp(den, ZERO))) {
case -1:
if (f_negative_p(den)) {
num = f_negate(num);
den = f_negate(den);
}
break;
case 0:
rb_raise(rb_eZeroDivError, "devided by zero");
break;
}
if (f_equal_p(den, ONE) && f_unify_p(klass))
return num;
else
return nurat_s_new_internal(klass, num, den);
}
static VALUE
nurat_s_canonicalize(int argc, VALUE *argv, VALUE klass)
{
@ -311,6 +545,21 @@ f_rational_new2(VALUE klass, VALUE x, VALUE y)
return nurat_s_canonicalize_internal(klass, x, y);
}
inline static VALUE
f_rational_new_no_reduce1(VALUE klass, VALUE x)
{
assert(!k_rational_p(x));
return nurat_s_canonicalize_internal_no_reduce(klass, x, ONE);
}
inline static VALUE
f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y)
{
assert(!k_rational_p(x));
assert(!k_rational_p(y));
return nurat_s_canonicalize_internal_no_reduce(klass, x, y);
}
static VALUE
nurat_f_rational(int argc, VALUE *argv, VALUE klass)
{
@ -331,27 +580,112 @@ nurat_denominator(VALUE self)
return dat->den;
}
#ifndef NDEBUG
#define f_imul f_imul_orig
#endif
inline static VALUE
f_imul(long a, long b)
{
VALUE r;
long c;
if (a == 0 || b == 0)
return ZERO;
else if (a == 1)
return LONG2NUM(b);
else if (b == 1)
return LONG2NUM(a);
c = a * b;
r = LONG2NUM(c);
if (NUM2LONG(r) != c || (c / a) != b)
r = rb_big_mul(rb_int2big(a), rb_int2big(b));
return r;
}
#ifndef NDEBUG
#undef f_imul
inline static VALUE
f_imul(long x, long y)
{
VALUE r = f_imul_orig(x, y);
assert(f_equal_p(r, f_mul(LONG2NUM(x), LONG2NUM(y))));
return r;
}
#endif
inline static VALUE
f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
{
VALUE num, den;
if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
FIXNUM_P(bnum) && FIXNUM_P(bden)) {
long an = FIX2LONG(anum);
long ad = FIX2LONG(aden);
long bn = FIX2LONG(bnum);
long bd = FIX2LONG(bden);
long ig = i_gcd(ad, bd);
VALUE g = LONG2NUM(ig);
VALUE a = f_imul(an, bd / ig);
VALUE b = f_imul(bn, ad / ig);
VALUE c;
if (k == '+')
c = f_add(a, b);
else
c = f_sub(a, b);
b = f_idiv(aden, g);
g = f_gcd(c, g);
num = f_idiv(c, g);
a = f_idiv(bden, g);
den = f_mul(a, b);
} else {
VALUE g = f_gcd(aden, bden);
VALUE a = f_mul(anum, f_idiv(bden, g));
VALUE b = f_mul(bnum, f_idiv(aden, g));
VALUE c;
if (k == '+')
c = f_add(a, b);
else
c = f_sub(a, b);
b = f_idiv(aden, g);
g = f_gcd(c, g);
num = f_idiv(c, g);
a = f_idiv(bden, g);
den = f_mul(a, b);
}
return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
}
static VALUE
nurat_add(VALUE self, VALUE other)
{
switch (TYPE(other)) {
case T_FIXNUM:
case T_BIGNUM:
return f_add(self, f_rational_new_bang1(CLASS_OF(self), other));
{
get_dat1(self);
return f_addsub(self,
dat->num, dat->den,
other, ONE, '+');
}
case T_FLOAT:
return f_add(f_to_f(self), other);
case T_RATIONAL:
{
VALUE num1, num2;
get_dat2(self, other);
num1 = f_mul(adat->num, bdat->den);
num2 = f_mul(bdat->num, adat->den);
return f_rational_new2(CLASS_OF(self),
f_add(num1, num2),
f_mul(adat->den, bdat->den));
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '+');
}
default:
{
@ -367,21 +701,22 @@ nurat_sub(VALUE self, VALUE other)
switch (TYPE(other)) {
case T_FIXNUM:
case T_BIGNUM:
return f_sub(self, f_rational_new_bang1(CLASS_OF(self), other));
{
get_dat1(self);
return f_addsub(self,
dat->num, dat->den,
other, ONE, '-');
}
case T_FLOAT:
return f_sub(f_to_f(self), other);
case T_RATIONAL:
{
VALUE num1, num2;
get_dat2(self, other);
num1 = f_mul(adat->num, bdat->den);
num2 = f_mul(bdat->num, adat->den);
return f_rational_new2(CLASS_OF(self),
f_sub(num1, num2),
f_mul(adat->den, bdat->den));
return f_addsub(self,
adat->num, adat->den,
bdat->num, bdat->den, '-');
}
default:
{
@ -391,25 +726,66 @@ nurat_sub(VALUE self, VALUE other)
}
}
inline static VALUE
f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
{
VALUE num, den;
if (k == '/') {
VALUE t;
if (f_negative_p(bnum)) {
anum = f_negate(anum);
bnum = f_negate(bnum);
}
t = bnum;
bnum = bden;
bden = t;
}
if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
FIXNUM_P(bnum) && FIXNUM_P(bden)) {
long an = FIX2LONG(anum);
long ad = FIX2LONG(aden);
long bn = FIX2LONG(bnum);
long bd = FIX2LONG(bden);
long g1 = i_gcd(an, bd);
long g2 = i_gcd(ad, bn);
num = f_imul(an / g1, bn / g2);
den = f_imul(ad / g2, bd / g1);
} else {
VALUE g1 = f_gcd(anum, bden);
VALUE g2 = f_gcd(aden, bnum);
num = f_mul(f_idiv(anum, g1), f_idiv(bnum, g2));
den = f_mul(f_idiv(aden, g2), f_idiv(bden, g1));
}
return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
}
static VALUE
nurat_mul(VALUE self, VALUE other)
{
switch (TYPE(other)) {
case T_FIXNUM:
case T_BIGNUM:
return f_mul(self, f_rational_new_bang1(CLASS_OF(self), other));
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '*');
}
case T_FLOAT:
return f_mul(f_to_f(self), other);
case T_RATIONAL:
{
VALUE num, den;
get_dat2(self, other);
num = f_mul(adat->num, bdat->num);
den = f_mul(adat->den, bdat->den);
return f_rational_new2(CLASS_OF(self), num, den);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '*');
}
default:
{
@ -427,19 +803,24 @@ nurat_div(VALUE self, VALUE other)
case T_BIGNUM:
if (f_zero_p(other))
rb_raise(rb_eZeroDivError, "devided by zero");
return f_div(self, f_rational_new_bang1(CLASS_OF(self), other));
{
get_dat1(self);
return f_muldiv(self,
dat->num, dat->den,
other, ONE, '/');
}
case T_FLOAT:
return f_div(f_to_f(self), other);
case T_RATIONAL:
if (f_zero_p(other))
rb_raise(rb_eZeroDivError, "devided by zero");
{
VALUE num, den;
get_dat2(self, other);
num = f_mul(adat->num, bdat->den);
den = f_mul(adat->den, bdat->num);
return f_rational_new2(CLASS_OF(self), num, den);
return f_muldiv(self,
adat->num, adat->den,
bdat->num, bdat->den, '/');
}
default:
{
@ -513,7 +894,14 @@ nurat_cmp(VALUE self, VALUE other)
switch (TYPE(other)) {
case T_FIXNUM:
case T_BIGNUM:
return f_cmp(self, f_rational_new_bang1(CLASS_OF(self), other));
{
get_dat1(self);
if (FIXNUM_P(dat->den) && FIX2INT(dat->den) == 1)
return f_cmp(dat->num, other);
else
return f_cmp(self, f_rational_new_bang1(CLASS_OF(self), other));
}
case T_FLOAT:
return f_cmp(f_to_f(self), other);
case T_RATIONAL:
@ -522,8 +910,14 @@ nurat_cmp(VALUE self, VALUE other)
get_dat2(self, other);
num1 = f_mul(adat->num, bdat->den);
num2 = f_mul(bdat->num, adat->den);
if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
num1 = f_imul(FIX2INT(adat->num), FIX2INT(bdat->den));
num2 = f_imul(FIX2INT(bdat->num), FIX2INT(adat->den));
} else {
num1 = f_mul(adat->num, bdat->den);
num2 = f_mul(bdat->num, adat->den);
}
return f_cmp(f_sub(num1, num2), ZERO);
}
default:
@ -540,7 +934,18 @@ nurat_equal_p(VALUE self, VALUE other)
switch (TYPE(other)) {
case T_FIXNUM:
case T_BIGNUM:
return f_equal_p(self, f_rational_new_bang1(CLASS_OF(self), other));
{
get_dat1(self);
if (!FIXNUM_P(dat->den))
return Qfalse;
if (FIX2INT(dat->den) != 1)
return Qfalse;
if (f_equal_p(dat->num, other))
return Qtrue;
else
return Qfalse;
}
case T_FLOAT:
return f_equal_p(f_to_f(self), other);
case T_RATIONAL:
@ -666,11 +1071,87 @@ nurat_round(VALUE self)
}
}
#define f_size(x) rb_funcall(x, rb_intern("size"), 0)
#define f_rshift(x,y) rb_funcall(x, rb_intern(">>"), 1, y)
inline static long
i_ilog2(VALUE x)
{
long q, r, fx;
assert(!f_lt_p(x, ONE));
q = (NUM2LONG(f_size(x)) - sizeof(long)) * 8 + 1;
if (q > 0)
x = f_rshift(x, LONG2NUM(q));
fx = NUM2LONG(x);
r = -1;
while (fx) {
fx >>= 1;
r += 1;
}
return q + r;
}
#include <float.h>
static VALUE
nurat_to_f(VALUE self)
{
get_dat1(self);
return f_div(f_to_f(dat->num), dat->den); /* enough? */
VALUE num, den;
int minus = 0;
long nl, dl, ml, ne, de;
int e;
double f;
if (f_zero_p(dat->num))
return rb_float_new(0.0);
num = dat->num;
den = dat->den;
if (f_negative_p(num)) {
num = f_negate(num);
minus = 1;
}
nl = i_ilog2(num);
dl = i_ilog2(den);
ml = (long)(log(DBL_MAX) / log(2) - 1); /* should be a static */
ne = 0;
if (nl > ml) {
ne = nl - ml;
num = f_rshift(num, LONG2NUM(ne));
}
de = 0;
if (dl > ml) {
de = dl - ml;
den = f_rshift(den, LONG2NUM(de));
}
e = (int)(ne - de);
if ((e > DBL_MAX_EXP) || (e < DBL_MIN_EXP)) {
rb_warn("%s out of Float range", rb_obj_classname(self));
return rb_float_new(e > 0 ? HUGE_VAL : 0.0);
}
f = NUM2DBL(num) / NUM2DBL(den);
if (minus)
f = -f;
f = ldexp(f, e);
if (isinf(f) || isnan(f))
rb_warn("%s out of Float range", rb_obj_classname(self));
return rb_float_new(f);
}
static VALUE

1360
test/ruby/test_rational2.rb Normal file

File diff suppressed because it is too large Load diff