1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

* {ext,lib,test}/**/*.rb: removed trailing spaces.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/branches/ruby_1_8@27366 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
nobu 2010-04-16 21:51:01 +00:00
parent c89882197e
commit 75c1cac7f3
442 changed files with 4654 additions and 4654 deletions

View file

@ -1,5 +1,5 @@
#
# complex.rb -
# complex.rb -
# $Release Version: 0.5 $
# $Revision: 1.3 $
# $Date: 1998/07/08 10:05:28 $
@ -14,7 +14,7 @@
# Complex numbers can be created in the following manner:
# - <tt>Complex(a, b)</tt>
# - <tt>Complex.polar(radius, theta)</tt>
#
#
# Additionally, note the following:
# - <tt>Complex::I</tt> (the mathematical constant <i>i</i>)
# - <tt>Numeric#im</tt> (e.g. <tt>5.im -> 0+5i</tt>)
@ -38,14 +38,14 @@ class Numeric
def im
Complex(0, self)
end
#
# The real part of a complex number, i.e. <i>self</i>.
#
def real
self
end
#
# The imaginary part of a complex number, i.e. 0.
#
@ -53,7 +53,7 @@ class Numeric
0
end
alias imag image
#
# See Complex#arg.
#
@ -61,14 +61,14 @@ class Numeric
Math.atan2!(0, self)
end
alias angle arg
#
# See Complex#polar.
#
def polar
return abs, arg
end
#
# See Complex#conjugate (short answer: returns <i>self</i>).
#
@ -145,7 +145,7 @@ class Complex < Numeric
x + y
end
end
#
# Subtraction with real or complex number.
#
@ -161,7 +161,7 @@ class Complex < Numeric
x - y
end
end
#
# Multiplication with real or complex number.
#
@ -177,7 +177,7 @@ class Complex < Numeric
x * y
end
end
#
# Division by real or complex number.
#
@ -191,7 +191,7 @@ class Complex < Numeric
x/y
end
end
def quo(other)
Complex(@real.quo(1), @image.quo(1)) / other
end
@ -240,7 +240,7 @@ class Complex < Numeric
x**y
end
end
#
# Remainder after division by a real or complex number.
#
@ -254,7 +254,7 @@ class Complex < Numeric
x % y
end
end
#--
# def divmod(other)
# if other.kind_of?(Complex)
@ -269,7 +269,7 @@ class Complex < Numeric
# end
# end
#++
#
# Absolute value (aka modulus): distance from the zero point on the complex
# plane.
@ -277,14 +277,14 @@ class Complex < Numeric
def abs
Math.hypot(@real, @image)
end
#
# Square of the absolute value.
#
def abs2
@real*@real + @image*@image
end
#
# Argument (angle from (1,0) on the complex plane).
#
@ -292,14 +292,14 @@ class Complex < Numeric
Math.atan2!(@image, @real)
end
alias angle arg
#
# Returns the absolute value _and_ the argument.
#
def polar
return abs, arg
end
#
# Complex conjugate (<tt>z + z.conjugate = 2 * z.real</tt>).
#
@ -307,14 +307,14 @@ class Complex < Numeric
Complex(@real, -@image)
end
alias conj conjugate
#
# Compares the absolute values of the two numbers.
#
def <=> (other)
self.abs <=> other.abs
end
#
# Test for numerical equality (<tt>a == a + 0<i>i</i></tt>).
#
@ -345,7 +345,7 @@ class Complex < Numeric
def denominator
@real.denominator.lcm(@image.denominator)
end
#
# FIXME
#
@ -354,7 +354,7 @@ class Complex < Numeric
Complex(@real.numerator*(cd/@real.denominator),
@image.numerator*(cd/@image.denominator))
end
#
# Standard string representation of the complex number.
#
@ -381,14 +381,14 @@ class Complex < Numeric
end
end
end
#
# Returns a hash code for the complex number.
#
def hash
@real.hash ^ @image.hash
end
#
# Returns "<tt>Complex(<i>real</i>, <i>image</i>)</tt>".
#
@ -396,19 +396,19 @@ class Complex < Numeric
sprintf("Complex(%s, %s)", @real.inspect, @image.inspect)
end
#
# +I+ is the imaginary number. It exists at point (0,1) on the complex plane.
#
I = Complex(0,1)
# The real part of a complex number.
attr :real
# The imaginary part of a complex number.
attr :image
alias imag image
end
class Integer
@ -457,7 +457,7 @@ module Math
alias atan2! atan2
alias acosh! acosh
alias asinh! asinh
alias atanh! atanh
alias atanh! atanh
# Redefined to handle a Complex argument.
def sqrt(z)
@ -477,7 +477,7 @@ module Math
end
end
end
# Redefined to handle a Complex argument.
def exp(z)
if Complex.generic?(z)
@ -486,7 +486,7 @@ module Math
Complex(exp!(z.real) * cos!(z.image), exp!(z.real) * sin!(z.image))
end
end
# Redefined to handle a Complex argument.
def cos(z)
if Complex.generic?(z)
@ -496,7 +496,7 @@ module Math
-sin!(z.real)*sinh!(z.image))
end
end
# Redefined to handle a Complex argument.
def sin(z)
if Complex.generic?(z)
@ -506,7 +506,7 @@ module Math
cos!(z.real)*sinh!(z.image))
end
end
# Redefined to handle a Complex argument.
def tan(z)
if Complex.generic?(z)
@ -539,7 +539,7 @@ module Math
sinh(z)/cosh(z)
end
end
# Redefined to handle a Complex argument.
def log(z)
if Complex.generic?(z) and z >= 0
@ -549,7 +549,7 @@ module Math
Complex(log!(r.abs), theta)
end
end
# Redefined to handle a Complex argument.
def log10(z)
if Complex.generic?(z)
@ -649,7 +649,7 @@ module Math
module_function :asinh
module_function :atanh!
module_function :atanh
end
# Documentation comments: