mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
* complex.c: uses f_real_p macro.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@19169 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
parent
7d048a55ee
commit
803aafe7c4
4 changed files with 40 additions and 22 deletions
|
@ -1,3 +1,7 @@
|
|||
Sat Sep 6 07:54:36 2008 Tadayoshi Funaba <tadf@dotrb.org>
|
||||
|
||||
* complex.c: uses f_real_p macro.
|
||||
|
||||
Sat Sep 6 07:27:00 2008 Tanaka Akira <akr@fsij.org>
|
||||
|
||||
* transcode.c (rb_econv_open): fail for ASCII incompatible with
|
||||
|
|
41
complex.c
41
complex.c
|
@ -170,6 +170,9 @@ fun1(negate)
|
|||
fun1(numerator)
|
||||
fun1(polar)
|
||||
fun1(scalar_p)
|
||||
|
||||
#define f_real_p f_scalar_p
|
||||
|
||||
fun1(to_f)
|
||||
fun1(to_i)
|
||||
fun1(to_r)
|
||||
|
@ -326,7 +329,7 @@ nucomp_real_check(VALUE num)
|
|||
case T_RATIONAL:
|
||||
break;
|
||||
default:
|
||||
if (!k_numeric_p(num) || !f_scalar_p(num))
|
||||
if (!k_numeric_p(num) || !f_real_p(num))
|
||||
rb_raise(rb_eArgError, "not a real");
|
||||
}
|
||||
}
|
||||
|
@ -343,16 +346,16 @@ nucomp_s_canonicalize_internal(VALUE klass, VALUE real, VALUE image)
|
|||
if (f_zero_p(image) && f_unify_p(klass))
|
||||
return real;
|
||||
#endif
|
||||
else if (f_scalar_p(real) && f_scalar_p(image))
|
||||
else if (f_real_p(real) && f_real_p(image))
|
||||
return nucomp_s_new_internal(klass, real, image);
|
||||
else if (f_scalar_p(real)) {
|
||||
else if (f_real_p(real)) {
|
||||
get_dat1(image);
|
||||
|
||||
return nucomp_s_new_internal(klass,
|
||||
f_sub(real, dat->image),
|
||||
f_add(ZERO, dat->real));
|
||||
}
|
||||
else if (f_scalar_p(image)) {
|
||||
else if (f_real_p(image)) {
|
||||
get_dat1(real);
|
||||
|
||||
return nucomp_s_new_internal(klass,
|
||||
|
@ -455,7 +458,7 @@ m_cos(VALUE x)
|
|||
{
|
||||
get_dat1(x);
|
||||
|
||||
if (f_scalar_p(x))
|
||||
if (f_real_p(x))
|
||||
return m_cos_bang(x);
|
||||
return f_complex_new2(rb_cComplex,
|
||||
f_mul(m_cos_bang(dat->real),
|
||||
|
@ -469,7 +472,7 @@ m_sin(VALUE x)
|
|||
{
|
||||
get_dat1(x);
|
||||
|
||||
if (f_scalar_p(x))
|
||||
if (f_real_p(x))
|
||||
return m_sin_bang(x);
|
||||
return f_complex_new2(rb_cComplex,
|
||||
f_mul(m_sin_bang(dat->real),
|
||||
|
@ -481,7 +484,7 @@ m_sin(VALUE x)
|
|||
static VALUE
|
||||
m_sqrt(VALUE x)
|
||||
{
|
||||
if (f_scalar_p(x)) {
|
||||
if (f_real_p(x)) {
|
||||
if (!f_negative_p(x))
|
||||
return m_sqrt_bang(x);
|
||||
return f_complex_new2(rb_cComplex, ZERO, m_sqrt_bang(f_negate(x)));
|
||||
|
@ -543,7 +546,7 @@ nucomp_add(VALUE self, VALUE other)
|
|||
|
||||
return f_complex_new2(CLASS_OF(self), real, image);
|
||||
}
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
if (k_numeric_p(other) && f_real_p(other)) {
|
||||
get_dat1(self);
|
||||
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
|
@ -565,7 +568,7 @@ nucomp_sub(VALUE self, VALUE other)
|
|||
|
||||
return f_complex_new2(CLASS_OF(self), real, image);
|
||||
}
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
if (k_numeric_p(other) && f_real_p(other)) {
|
||||
get_dat1(self);
|
||||
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
|
@ -589,7 +592,7 @@ nucomp_mul(VALUE self, VALUE other)
|
|||
|
||||
return f_complex_new2(CLASS_OF(self), real, image);
|
||||
}
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
if (k_numeric_p(other) && f_real_p(other)) {
|
||||
get_dat1(self);
|
||||
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
|
@ -619,7 +622,7 @@ nucomp_div(VALUE self, VALUE other)
|
|||
}
|
||||
return f_div(f_mul(self, f_conjugate(other)), f_abs2(other));
|
||||
}
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
if (k_numeric_p(other) && f_real_p(other)) {
|
||||
get_dat1(self);
|
||||
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
|
@ -695,7 +698,7 @@ nucomp_expt(VALUE self, VALUE other)
|
|||
}
|
||||
return f_expt(f_div(f_to_r(ONE), self), f_negate(other));
|
||||
}
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
if (k_numeric_p(other) && f_real_p(other)) {
|
||||
VALUE a, r, theta;
|
||||
|
||||
a = f_polar(self);
|
||||
|
@ -716,7 +719,7 @@ nucomp_equal_p(VALUE self, VALUE other)
|
|||
return f_boolcast(f_equal_p(adat->real, bdat->real) &&
|
||||
f_equal_p(adat->image, bdat->image));
|
||||
}
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
if (k_numeric_p(other) && f_real_p(other)) {
|
||||
get_dat1(self);
|
||||
|
||||
return f_boolcast(f_equal_p(dat->real, other) && f_zero_p(dat->image));
|
||||
|
@ -727,7 +730,7 @@ nucomp_equal_p(VALUE self, VALUE other)
|
|||
static VALUE
|
||||
nucomp_coerce(VALUE self, VALUE other)
|
||||
{
|
||||
if (k_numeric_p(other) && f_scalar_p(other))
|
||||
if (k_numeric_p(other) && f_real_p(other))
|
||||
return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
|
||||
|
||||
rb_raise(rb_eTypeError, "%s can't be coerced into %s",
|
||||
|
@ -777,13 +780,13 @@ nucomp_conjugate(VALUE self)
|
|||
return f_complex_new2(CLASS_OF(self), dat->real, f_negate(dat->image));
|
||||
}
|
||||
|
||||
#if 0
|
||||
static VALUE
|
||||
nucomp_real_p(VALUE self)
|
||||
{
|
||||
return Qfalse;
|
||||
}
|
||||
|
||||
#if 0
|
||||
static VALUE
|
||||
nucomp_complex_p(VALUE self)
|
||||
{
|
||||
|
@ -951,12 +954,6 @@ rb_Complex(VALUE x, VALUE y)
|
|||
return nucomp_s_convert(2, a, rb_cComplex);
|
||||
}
|
||||
|
||||
static VALUE
|
||||
nucomp_scalar_p(VALUE self)
|
||||
{
|
||||
return Qfalse;
|
||||
}
|
||||
|
||||
static VALUE
|
||||
nucomp_to_i(VALUE self)
|
||||
{
|
||||
|
@ -1443,6 +1440,7 @@ Init_Complex(void)
|
|||
rb_define_method(rb_cComplex, "exact?", nucomp_exact_p, 0);
|
||||
rb_define_method(rb_cComplex, "inexact?", nucomp_inexact_p, 0);
|
||||
#endif
|
||||
rb_define_method(rb_cComplex, "scalar?", nucomp_real_p, 0);
|
||||
|
||||
rb_define_method(rb_cComplex, "numerator", nucomp_numerator, 0);
|
||||
rb_define_method(rb_cComplex, "denominator", nucomp_denominator, 0);
|
||||
|
@ -1457,7 +1455,6 @@ Init_Complex(void)
|
|||
|
||||
/* --- */
|
||||
|
||||
rb_define_method(rb_cComplex, "scalar?", nucomp_scalar_p, 0);
|
||||
rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
|
||||
rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
|
||||
rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
|
||||
|
|
|
@ -105,6 +105,7 @@ class Complex_Test < Test::Unit::TestCase
|
|||
end
|
||||
|
||||
def test_new
|
||||
assert_instance_of(Complex, Complex.__send__(:new, 2,0.0))
|
||||
if defined?(Complex::Unify)
|
||||
assert_instance_of(Fixnum, Complex.__send__(:new, 2,0))
|
||||
else
|
||||
|
@ -172,6 +173,9 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_equal(Complex.__send__(:new, 1),Complex(1))
|
||||
assert_equal(Complex.__send__(:new, 1),Complex('1'))
|
||||
assert_raise(ArgumentError){Complex(nil)}
|
||||
assert_raise(ArgumentError){Complex(Object.new)}
|
||||
assert_raise(ArgumentError){Complex()}
|
||||
assert_raise(ArgumentError){Complex(1,2,3)}
|
||||
end
|
||||
|
||||
def test_attr
|
||||
|
@ -1033,6 +1037,12 @@ class Complex_Test < Test::Unit::TestCase
|
|||
|
||||
end
|
||||
|
||||
def test_ruby19
|
||||
assert_raise(NoMethodError){ Complex.new(1) }
|
||||
assert_raise(NoMethodError){ Complex.new!(1) }
|
||||
assert_raise(NoMethodError){ Complex.reduce(1) }
|
||||
end
|
||||
|
||||
def test_fixed_bug
|
||||
if defined?(Rational) && !Rational.instance_variable_get('@RCS_ID')
|
||||
assert_equal(Complex(1), 1 ** Complex(1))
|
||||
|
|
|
@ -209,6 +209,8 @@ class Rational_Test < Test::Unit::TestCase
|
|||
assert_raise(ArgumentError){Rational(nil)}
|
||||
assert_raise(ArgumentError){Rational('')}
|
||||
assert_raise(ArgumentError){Rational(Object.new)}
|
||||
assert_raise(ArgumentError){Rational()}
|
||||
assert_raise(ArgumentError){Rational(1,2,3)}
|
||||
end
|
||||
|
||||
def test_attr
|
||||
|
@ -1067,6 +1069,11 @@ class Rational_Test < Test::Unit::TestCase
|
|||
assert_equal(0.25, Rational(1,2).fdiv(2))
|
||||
end
|
||||
|
||||
def test_ruby19
|
||||
assert_raise(NoMethodError){ Rational.new(1) }
|
||||
assert_raise(NoMethodError){ Rational.new!(1) }
|
||||
end
|
||||
|
||||
def test_fixed_bug
|
||||
if defined?(Rational::Unify)
|
||||
assert_instance_of(Fixnum, Rational(1,2) ** 0) # mathn's bug
|
||||
|
|
Loading…
Reference in a new issue