mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
* lib/cmath.rb: [DOC] Add docs [ci skip][Fix GH-909][Bug #11162]
Patch provided by @davydovanton git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@50793 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
parent
c19d373750
commit
843019f4a0
1 changed files with 56 additions and 13 deletions
69
lib/cmath.rb
69
lib/cmath.rb
|
@ -1,17 +1,30 @@
|
|||
##
|
||||
# = Trigonometric and transcendental functions for complex numbers.
|
||||
#
|
||||
# CMath is a library that provides trigonometric and transcendental
|
||||
# functions for complex numbers.
|
||||
# functions for complex numbers. The functions in this module accept
|
||||
# integers, floating-point numbers or complex numbers as arguments.
|
||||
#
|
||||
# Note that the selection of functions is similar, but not identical,
|
||||
# to that in module math. The reason for having two modules is that
|
||||
# some users aren’t interested in complex numbers, and perhaps don’t
|
||||
# even know what they are. They would rather have Math.sqrt(-1) raise
|
||||
# an exception than return a complex number.
|
||||
#
|
||||
# == Usage
|
||||
#
|
||||
# To start using this library, simply:
|
||||
# To start using this library, simply require cmath library:
|
||||
#
|
||||
# require "cmath"
|
||||
#
|
||||
# Square root of a negative number is a complex number.
|
||||
# And after call any CMath function. For example:
|
||||
#
|
||||
# CMath.sqrt(-9) #=> 0+3.0i
|
||||
# CMath.sqrt(-9) #=> 0+3.0i
|
||||
# CMath.exp(0 + 0i) #=> 1.0+0.0i
|
||||
# CMath.log10(-5.to_c) #=> (0.6989700043360187+1.3643763538418412i)
|
||||
#
|
||||
#
|
||||
# For more information you can see Complec class.
|
||||
|
||||
module CMath
|
||||
|
||||
|
@ -44,9 +57,7 @@ module CMath
|
|||
##
|
||||
# Math::E raised to the +z+ power
|
||||
#
|
||||
# exp(Complex(0,0)) #=> 1.0+0.0i
|
||||
# exp(Complex(0,PI)) #=> -1.0+1.2246467991473532e-16i
|
||||
# exp(Complex(0,PI/2.0)) #=> 6.123233995736766e-17+1.0i
|
||||
# CMath.exp(2i) #=> (-0.4161468365471424+0.9092974268256817i)
|
||||
def exp(z)
|
||||
begin
|
||||
if z.real?
|
||||
|
@ -62,10 +73,11 @@ module CMath
|
|||
end
|
||||
|
||||
##
|
||||
# Returns the natural logarithm of Complex. If a second argument is given,
|
||||
# Returns the natural logarithm of Complex. If a second argument is given,
|
||||
# it will be the base of logarithm.
|
||||
#
|
||||
# log(Complex(0,0)) #=> -Infinity+0.0i
|
||||
# CMath.log(1 + 4i) #=> (1.416606672028108+1.3258176636680326i)
|
||||
# CMath.log(1 + 4i, 10) #=> (0.6152244606891369+0.5757952953408879i)
|
||||
def log(z, b=::Math::E)
|
||||
begin
|
||||
if z.real? && z >= 0 && b >= 0
|
||||
|
@ -80,6 +92,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the base 2 logarithm of +z+
|
||||
#
|
||||
# CMath.log2(-1) => (0.0+4.532360141827194i)
|
||||
def log2(z)
|
||||
begin
|
||||
if z.real? and z >= 0
|
||||
|
@ -94,6 +108,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the base 10 logarithm of +z+
|
||||
#
|
||||
# CMath.log10(-1) #=> (0.0+1.3643763538418412i)
|
||||
def log10(z)
|
||||
begin
|
||||
if z.real? and z >= 0
|
||||
|
@ -108,9 +124,8 @@ module CMath
|
|||
|
||||
##
|
||||
# Returns the non-negative square root of Complex.
|
||||
# sqrt(-1) #=> 0+1.0i
|
||||
# sqrt(Complex(-1,0)) #=> 0.0+1.0i
|
||||
# sqrt(Complex(0,8)) #=> 2.0+2.0i
|
||||
#
|
||||
# CMath.sqrt(-1 + 0i) #=> 0.0+1.0i
|
||||
def sqrt(z)
|
||||
begin
|
||||
if z.real?
|
||||
|
@ -136,12 +151,16 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the principal value of the cube root of +z+
|
||||
#
|
||||
# CMath.cbrt(1 + 4i) #=> (1.449461632813119+0.6858152562177092i)
|
||||
def cbrt(z)
|
||||
z ** (1.0/3)
|
||||
end
|
||||
|
||||
##
|
||||
# returns the sine of +z+, where +z+ is given in radians
|
||||
#
|
||||
# CMath.sin(1 + 1i) #=> (1.2984575814159773+0.6349639147847361i)
|
||||
def sin(z)
|
||||
begin
|
||||
if z.real?
|
||||
|
@ -157,6 +176,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the cosine of +z+, where +z+ is given in radians
|
||||
#
|
||||
# CMath.cos(1 + 1i) #=> (0.8337300251311491-0.9888977057628651i)
|
||||
def cos(z)
|
||||
begin
|
||||
if z.real?
|
||||
|
@ -172,6 +193,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the tangent of +z+, where +z+ is given in radians
|
||||
#
|
||||
# CMath.tan(1 + 1i) #=> (0.27175258531951174+1.0839233273386943i)
|
||||
def tan(z)
|
||||
begin
|
||||
if z.real?
|
||||
|
@ -186,6 +209,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the hyperbolic sine of +z+, where +z+ is given in radians
|
||||
#
|
||||
# CMath.sinh(1 + 1i) #=> (0.6349639147847361+1.2984575814159773i)
|
||||
def sinh(z)
|
||||
begin
|
||||
if z.real?
|
||||
|
@ -201,6 +226,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the hyperbolic cosine of +z+, where +z+ is given in radians
|
||||
#
|
||||
# CMath.cosh(1 + 1i) #=> (0.8337300251311491+0.9888977057628651i)
|
||||
def cosh(z)
|
||||
begin
|
||||
if z.real?
|
||||
|
@ -216,6 +243,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the hyperbolic tangent of +z+, where +z+ is given in radians
|
||||
#
|
||||
# CMath.tanh(1 + 1i) #=> (1.0839233273386943+0.27175258531951174i)
|
||||
def tanh(z)
|
||||
begin
|
||||
if z.real?
|
||||
|
@ -230,6 +259,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the arc sine of +z+
|
||||
#
|
||||
# CMath.asin(1 + 1i) #=> (0.6662394324925153+1.0612750619050355i)
|
||||
def asin(z)
|
||||
begin
|
||||
if z.real? and z >= -1 and z <= 1
|
||||
|
@ -244,6 +275,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the arc cosine of +z+
|
||||
#
|
||||
# CMath.acos(1 + 1i) #=> (0.9045568943023813-1.0612750619050357i)
|
||||
def acos(z)
|
||||
begin
|
||||
if z.real? and z >= -1 and z <= 1
|
||||
|
@ -258,6 +291,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the arc tangent of +z+
|
||||
#
|
||||
# CMath.atan(1 + 1i) #=> (1.0172219678978514+0.4023594781085251i)
|
||||
def atan(z)
|
||||
begin
|
||||
if z.real?
|
||||
|
@ -273,6 +308,8 @@ module CMath
|
|||
##
|
||||
# returns the arc tangent of +y+ divided by +x+ using the signs of +y+ and
|
||||
# +x+ to determine the quadrant
|
||||
#
|
||||
# CMath.atan2(1 + 1i, 0) #=> (1.5707963267948966+0.0i)
|
||||
def atan2(y,x)
|
||||
begin
|
||||
if y.real? and x.real?
|
||||
|
@ -287,6 +324,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the inverse hyperbolic sine of +z+
|
||||
#
|
||||
# CMath.asinh(1 + 1i) #=> (1.0612750619050357+0.6662394324925153i)
|
||||
def asinh(z)
|
||||
begin
|
||||
if z.real?
|
||||
|
@ -301,6 +340,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the inverse hyperbolic cosine of +z+
|
||||
#
|
||||
# CMath.acosh(1 + 1i) #=> (1.0612750619050357+0.9045568943023813i)
|
||||
def acosh(z)
|
||||
begin
|
||||
if z.real? and z >= 1
|
||||
|
@ -315,6 +356,8 @@ module CMath
|
|||
|
||||
##
|
||||
# returns the inverse hyperbolic tangent of +z+
|
||||
#
|
||||
# CMath.atanh(1 + 1i) #=> (0.4023594781085251+1.0172219678978514i)
|
||||
def atanh(z)
|
||||
begin
|
||||
if z.real? and z >= -1 and z <= 1
|
||||
|
@ -388,4 +431,4 @@ module CMath
|
|||
end
|
||||
module_function :handle_no_method_error
|
||||
|
||||
end
|
||||
end
|
Loading…
Reference in a new issue