1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

can read data from file.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@4818 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
shigek 2003-10-21 03:18:44 +00:00
parent 212d962a3b
commit 87704d6a3c

View file

@ -6,43 +6,66 @@
# Solves linear equation system(A*x = b) by LU decomposition method.
# where A is a coefficient matrix,x is an answer vector,b is a constant vector.
#
# USAGE:
# ruby linear.rb [input file solved]
#
require "bigdecimal"
require "ludcmp"
include LUSolve
#
# NOTE:
# Change following BigDecimal::limit() if needed.
BigDecimal::limit(100)
#
def rd_order
printf("Number of equations ?")
n = gets().chomp.to_i
include LUSolve
def rd_order(na)
printf("Number of equations ?") if(na <= 0)
n = ARGF.gets().to_i
end
BigDecimal::limit(100)
na = ARGV.size
zero = BigDecimal::new("0.0")
one = BigDecimal::new("1.0")
while (n=rd_order())>0
while (n=rd_order(na))>0
a = []
as= []
b = []
printf("\nEnter coefficient matrix element A[i,j]\n");
for i in 0...n do
for j in 0...n do
printf("A[%d,%d]? ",i,j); s = gets
a <<=BigDecimal::new(s);
as<<=BigDecimal::new(s);
end
printf("Contatant vector element b[%d] ? ",i);b<<=BigDecimal::new(gets);
if na <= 0
# Read data from console.
printf("\nEnter coefficient matrix element A[i,j]\n");
for i in 0...n do
for j in 0...n do
printf("A[%d,%d]? ",i,j); s = ARGF.gets
a << BigDecimal::new(s);
as << BigDecimal::new(s);
end
printf("Contatant vector element b[%d] ? ",i); b << BigDecimal::new(ARGF.gets);
end
else
# Read data from specified file.
printf("Coefficient matrix and constant vector.\n");
for i in 0...n do
s = ARGF.gets
printf("%d) %s",i,s)
s = s.split
for j in 0...n do
a << BigDecimal::new(s[j]);
as << BigDecimal::new(s[j]);
end
b << BigDecimal::new(s[n]);
end
end
printf "ANS="
x = lusolve(a,b,ludecomp(a,n,zero,one),zero)
p x
printf "A*x-b\n"
printf("Answer(x[i] & (A*x-b)[i]) follows\n")
for i in 0...n do
s = zero
for j in 0...n do
printf("x[%d]=%s ",i,x[i].to_s)
s = zero
for j in 0...n do
s = s + as[i*n+j]*x[j]
end
p s-b[i]
end
printf(" & %s\n",(s-b[i]).to_s)
end
end