mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
* complex.c (nucomp_div): now behaves as quo.
* complex.c (nucomp_s_generic_p): has been removed. * complex.c (nucomp_to_s): adopts new form. * complex.c (nucomp_inspect): ditto. * complex.c (string_to_c_internal): ditto and supports polar form. * complex.c (rb_complex_polar): new. * rational.c (nurat_to_s): did not canonicalize. * rational.c (nurat_inspect): adopts new form. * rational.c (string_to_r_internal): ditto. * include/ruby/intern.h: added a declaration. * lib/complex.rb: added an obsolate class method. * lib/cmath.rb: use scalar? instead of generic?. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@18778 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
parent
2d302dfd40
commit
8f40b26581
8 changed files with 327 additions and 309 deletions
26
ChangeLog
26
ChangeLog
|
@ -1,3 +1,29 @@
|
|||
Fri Aug 22 21:18:40 2008 Tadayoshi Funaba <tadf@dotrb.org>
|
||||
|
||||
* complex.c (nucomp_div): now behaves as quo.
|
||||
|
||||
* complex.c (nucomp_s_generic_p): has been removed.
|
||||
|
||||
* complex.c (nucomp_to_s): adopts new form.
|
||||
|
||||
* complex.c (nucomp_inspect): ditto.
|
||||
|
||||
* complex.c (string_to_c_internal): ditto and supports polar form.
|
||||
|
||||
* complex.c (rb_complex_polar): new.
|
||||
|
||||
* rational.c (nurat_to_s): did not canonicalize.
|
||||
|
||||
* rational.c (nurat_inspect): adopts new form.
|
||||
|
||||
* rational.c (string_to_r_internal): ditto.
|
||||
|
||||
* include/ruby/intern.h: added a declaration.
|
||||
|
||||
* lib/complex.rb: added an obsolate class method.
|
||||
|
||||
* lib/cmath.rb: use scalar? instead of generic?.
|
||||
|
||||
Fri Aug 22 20:06:46 2008 Kazuhiro NISHIYAMA <zn@mbf.nifty.com>
|
||||
|
||||
* lib/webrick/server.rb (WEBrick::GenericServer#shutdown):
|
||||
|
|
312
complex.c
312
complex.c
|
@ -250,26 +250,6 @@ k_complex_p(VALUE x)
|
|||
return f_kind_of_p(x, rb_cComplex);
|
||||
}
|
||||
|
||||
inline static VALUE
|
||||
f_generic_p(VALUE x)
|
||||
{
|
||||
switch (TYPE(x)) {
|
||||
case T_FIXNUM:
|
||||
case T_BIGNUM:
|
||||
case T_FLOAT:
|
||||
case T_RATIONAL:
|
||||
return Qtrue;
|
||||
default:
|
||||
return Qfalse;
|
||||
}
|
||||
}
|
||||
|
||||
static VALUE
|
||||
nucomp_s_generic_p(VALUE klass, VALUE x)
|
||||
{
|
||||
return f_generic_p(x);
|
||||
}
|
||||
|
||||
#define get_dat1(x) \
|
||||
struct RComplex *dat;\
|
||||
dat = ((struct RComplex *)(x))
|
||||
|
@ -322,12 +302,15 @@ nucomp_s_new_bang(int argc, VALUE *argv, VALUE klass)
|
|||
inline static VALUE
|
||||
f_complex_new_bang1(VALUE klass, VALUE x)
|
||||
{
|
||||
assert(!k_complex_p(x));
|
||||
return nucomp_s_new_internal(klass, x, ZERO);
|
||||
}
|
||||
|
||||
inline static VALUE
|
||||
f_complex_new_bang2(VALUE klass, VALUE x, VALUE y)
|
||||
{
|
||||
assert(!k_complex_p(x));
|
||||
assert(!k_complex_p(y));
|
||||
return nucomp_s_new_internal(klass, x, y);
|
||||
}
|
||||
|
||||
|
@ -343,6 +326,7 @@ nucomp_real_check(VALUE num)
|
|||
case T_RATIONAL:
|
||||
break;
|
||||
default:
|
||||
if (!k_numeric_p(num) || !f_scalar_p(num))
|
||||
rb_raise(rb_eArgError, "not a real");
|
||||
}
|
||||
}
|
||||
|
@ -471,7 +455,7 @@ m_cos(VALUE x)
|
|||
{
|
||||
get_dat1(x);
|
||||
|
||||
if (f_generic_p(x))
|
||||
if (f_scalar_p(x))
|
||||
return m_cos_bang(x);
|
||||
return f_complex_new2(rb_cComplex,
|
||||
f_mul(m_cos_bang(dat->real),
|
||||
|
@ -485,7 +469,7 @@ m_sin(VALUE x)
|
|||
{
|
||||
get_dat1(x);
|
||||
|
||||
if (f_generic_p(x))
|
||||
if (f_scalar_p(x))
|
||||
return m_sin_bang(x);
|
||||
return f_complex_new2(rb_cComplex,
|
||||
f_mul(m_sin_bang(dat->real),
|
||||
|
@ -497,7 +481,7 @@ m_sin(VALUE x)
|
|||
static VALUE
|
||||
m_sqrt(VALUE x)
|
||||
{
|
||||
if (f_generic_p(x)) {
|
||||
if (f_scalar_p(x)) {
|
||||
if (!f_negative_p(x))
|
||||
return m_sqrt_bang(x);
|
||||
return f_complex_new2(rb_cComplex, ZERO, m_sqrt_bang(f_negate(x)));
|
||||
|
@ -516,12 +500,20 @@ m_sqrt(VALUE x)
|
|||
}
|
||||
}
|
||||
|
||||
inline static VALUE
|
||||
f_complex_polar(VALUE klass, VALUE x, VALUE y)
|
||||
{
|
||||
assert(!k_complex_p(x));
|
||||
assert(!k_complex_p(y));
|
||||
return nucomp_s_canonicalize_internal(klass,
|
||||
f_mul(x, m_cos(y)),
|
||||
f_mul(x, m_sin(y)));
|
||||
}
|
||||
|
||||
static VALUE
|
||||
nucomp_s_polar(VALUE klass, VALUE abs, VALUE arg)
|
||||
{
|
||||
return f_complex_new2(klass,
|
||||
f_mul(abs, m_cos(arg)),
|
||||
f_mul(abs, m_sin(arg)));
|
||||
return f_complex_polar(klass, abs, arg);
|
||||
}
|
||||
|
||||
static VALUE
|
||||
|
@ -541,19 +533,7 @@ nucomp_image(VALUE self)
|
|||
static VALUE
|
||||
nucomp_add(VALUE self, VALUE other)
|
||||
{
|
||||
switch (TYPE(other)) {
|
||||
case T_FIXNUM:
|
||||
case T_BIGNUM:
|
||||
case T_FLOAT:
|
||||
case T_RATIONAL:
|
||||
{
|
||||
get_dat1(self);
|
||||
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
f_add(dat->real, other), dat->image);
|
||||
}
|
||||
case T_COMPLEX:
|
||||
{
|
||||
if (k_complex_p(other)) {
|
||||
VALUE real, image;
|
||||
|
||||
get_dat2(self, other);
|
||||
|
@ -563,27 +543,19 @@ nucomp_add(VALUE self, VALUE other)
|
|||
|
||||
return f_complex_new2(CLASS_OF(self), real, image);
|
||||
}
|
||||
default:
|
||||
return rb_num_coerce_bin(self, other, '+');
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
get_dat1(self);
|
||||
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
f_add(dat->real, other), dat->image);
|
||||
}
|
||||
return rb_num_coerce_bin(self, other, '+');
|
||||
}
|
||||
|
||||
static VALUE
|
||||
nucomp_sub(VALUE self, VALUE other)
|
||||
{
|
||||
switch (TYPE(other)) {
|
||||
case T_FIXNUM:
|
||||
case T_BIGNUM:
|
||||
case T_FLOAT:
|
||||
case T_RATIONAL:
|
||||
{
|
||||
get_dat1(self);
|
||||
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
f_sub(dat->real, other), dat->image);
|
||||
}
|
||||
case T_COMPLEX:
|
||||
{
|
||||
if (k_complex_p(other)) {
|
||||
VALUE real, image;
|
||||
|
||||
get_dat2(self, other);
|
||||
|
@ -593,28 +565,19 @@ nucomp_sub(VALUE self, VALUE other)
|
|||
|
||||
return f_complex_new2(CLASS_OF(self), real, image);
|
||||
}
|
||||
default:
|
||||
return rb_num_coerce_bin(self, other, '-');
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
get_dat1(self);
|
||||
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
f_sub(dat->real, other), dat->image);
|
||||
}
|
||||
return rb_num_coerce_bin(self, other, '-');
|
||||
}
|
||||
|
||||
static VALUE
|
||||
nucomp_mul(VALUE self, VALUE other)
|
||||
{
|
||||
switch (TYPE(other)) {
|
||||
case T_FIXNUM:
|
||||
case T_BIGNUM:
|
||||
case T_FLOAT:
|
||||
case T_RATIONAL:
|
||||
{
|
||||
get_dat1(self);
|
||||
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
f_mul(dat->real, other),
|
||||
f_mul(dat->image, other));
|
||||
}
|
||||
case T_COMPLEX:
|
||||
{
|
||||
if (k_complex_p(other)) {
|
||||
VALUE real, image;
|
||||
|
||||
get_dat2(self, other);
|
||||
|
@ -626,28 +589,22 @@ nucomp_mul(VALUE self, VALUE other)
|
|||
|
||||
return f_complex_new2(CLASS_OF(self), real, image);
|
||||
}
|
||||
default:
|
||||
return rb_num_coerce_bin(self, other, '*');
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
get_dat1(self);
|
||||
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
f_mul(dat->real, other),
|
||||
f_mul(dat->image, other));
|
||||
}
|
||||
return rb_num_coerce_bin(self, other, '*');
|
||||
}
|
||||
|
||||
#define f_div f_quo
|
||||
|
||||
static VALUE
|
||||
nucomp_div(VALUE self, VALUE other)
|
||||
{
|
||||
switch (TYPE(other)) {
|
||||
case T_FIXNUM:
|
||||
case T_BIGNUM:
|
||||
case T_FLOAT:
|
||||
case T_RATIONAL:
|
||||
{
|
||||
get_dat1(self);
|
||||
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
f_div(dat->real, other),
|
||||
f_div(dat->image, other));
|
||||
}
|
||||
case T_COMPLEX:
|
||||
{
|
||||
if (k_complex_p(other)) {
|
||||
get_dat2(self, other);
|
||||
|
||||
if (TYPE(adat->real) == T_FLOAT ||
|
||||
|
@ -662,21 +619,19 @@ nucomp_div(VALUE self, VALUE other)
|
|||
}
|
||||
return f_div(f_mul(self, f_conjugate(other)), f_abs2(other));
|
||||
}
|
||||
default:
|
||||
return rb_num_coerce_bin(self, other, '/');
|
||||
}
|
||||
}
|
||||
|
||||
static VALUE
|
||||
nucomp_quo(VALUE self, VALUE other)
|
||||
{
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
get_dat1(self);
|
||||
|
||||
return f_div(f_complex_new2(CLASS_OF(self),
|
||||
f_quo(dat->real, ONE),
|
||||
f_quo(dat->image, ONE)), other);
|
||||
return f_complex_new2(CLASS_OF(self),
|
||||
f_div(dat->real, other),
|
||||
f_div(dat->image, other));
|
||||
}
|
||||
return rb_num_coerce_bin(self, other, '/');
|
||||
}
|
||||
|
||||
#undef f_div
|
||||
#define nucomp_quo nucomp_div
|
||||
|
||||
static VALUE
|
||||
nucomp_fdiv(VALUE self, VALUE other)
|
||||
{
|
||||
|
@ -696,9 +651,23 @@ nucomp_expt(VALUE self, VALUE other)
|
|||
if (k_rational_p(other) && f_one_p(f_denominator(other)))
|
||||
other = f_numerator(other); /* good? */
|
||||
|
||||
switch (TYPE(other)) {
|
||||
case T_FIXNUM:
|
||||
case T_BIGNUM:
|
||||
if (k_complex_p(other)) {
|
||||
VALUE a, r, theta, ore, oim, nr, ntheta;
|
||||
|
||||
get_dat1(other);
|
||||
|
||||
a = f_polar(self);
|
||||
r = RARRAY_PTR(a)[0];
|
||||
theta = RARRAY_PTR(a)[1];
|
||||
|
||||
ore = dat->real;
|
||||
oim = dat->image;
|
||||
nr = m_exp_bang(f_sub(f_mul(ore, m_log_bang(r)),
|
||||
f_mul(oim, theta)));
|
||||
ntheta = f_add(f_mul(theta, ore), f_mul(oim, m_log_bang(r)));
|
||||
return f_complex_polar(CLASS_OF(self), nr, ntheta);
|
||||
}
|
||||
if (k_integer_p(other)) {
|
||||
if (f_gt_p(other, ZERO)) {
|
||||
VALUE x, z, n;
|
||||
|
||||
|
@ -725,74 +694,41 @@ nucomp_expt(VALUE self, VALUE other)
|
|||
return z;
|
||||
}
|
||||
return f_expt(f_div(f_to_r(ONE), self), f_negate(other));
|
||||
case T_FLOAT:
|
||||
case T_RATIONAL:
|
||||
{
|
||||
}
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
VALUE a, r, theta;
|
||||
|
||||
a = f_polar(self);
|
||||
r = RARRAY_PTR(a)[0];
|
||||
theta = RARRAY_PTR(a)[1];
|
||||
return nucomp_s_polar(CLASS_OF(self), f_expt(r, other),
|
||||
return f_complex_polar(CLASS_OF(self), f_expt(r, other),
|
||||
f_mul(theta, other));
|
||||
}
|
||||
case T_COMPLEX:
|
||||
{
|
||||
VALUE a, r, theta, ore, oim, nr, ntheta;
|
||||
|
||||
get_dat1(other);
|
||||
|
||||
a = f_polar(self);
|
||||
r = RARRAY_PTR(a)[0];
|
||||
theta = RARRAY_PTR(a)[1];
|
||||
|
||||
ore = dat->real;
|
||||
oim = dat->image;
|
||||
nr = m_exp_bang(f_sub(f_mul(ore, m_log_bang(r)),
|
||||
f_mul(oim, theta)));
|
||||
ntheta = f_add(f_mul(theta, ore), f_mul(oim, m_log_bang(r)));
|
||||
return nucomp_s_polar(CLASS_OF(self), nr, ntheta);
|
||||
}
|
||||
default:
|
||||
return rb_num_coerce_bin(self, other, id_expt);
|
||||
}
|
||||
}
|
||||
|
||||
static VALUE
|
||||
nucomp_equal_p(VALUE self, VALUE other)
|
||||
{
|
||||
switch (TYPE(other)) {
|
||||
case T_FIXNUM:
|
||||
case T_BIGNUM:
|
||||
case T_FLOAT:
|
||||
case T_RATIONAL:
|
||||
{
|
||||
get_dat1(self);
|
||||
|
||||
return f_boolcast(f_equal_p(dat->real, other) && f_zero_p(dat->image));
|
||||
}
|
||||
case T_COMPLEX:
|
||||
{
|
||||
if (k_complex_p(other)) {
|
||||
get_dat2(self, other);
|
||||
|
||||
return f_boolcast(f_equal_p(adat->real, bdat->real) &&
|
||||
f_equal_p(adat->image, bdat->image));
|
||||
}
|
||||
default:
|
||||
return f_equal_p(other, self);
|
||||
if (k_numeric_p(other) && f_scalar_p(other)) {
|
||||
get_dat1(self);
|
||||
|
||||
return f_boolcast(f_equal_p(dat->real, other) && f_zero_p(dat->image));
|
||||
}
|
||||
return f_equal_p(other, self);
|
||||
}
|
||||
|
||||
static VALUE
|
||||
nucomp_coerce(VALUE self, VALUE other)
|
||||
{
|
||||
switch (TYPE(other)) {
|
||||
case T_FIXNUM:
|
||||
case T_BIGNUM:
|
||||
case T_FLOAT:
|
||||
case T_RATIONAL:
|
||||
if (k_numeric_p(other) && f_scalar_p(other))
|
||||
return rb_assoc_new(f_complex_new_bang1(CLASS_OF(self), other), self);
|
||||
}
|
||||
|
||||
rb_raise(rb_eTypeError, "%s can't be coerced into %s",
|
||||
rb_obj_classname(other), rb_obj_classname(self));
|
||||
|
@ -918,12 +854,6 @@ f_signbit(VALUE x)
|
|||
return f_negative_p(x);
|
||||
}
|
||||
|
||||
inline static VALUE
|
||||
f_tzero_p(VALUE x)
|
||||
{
|
||||
return f_boolcast(f_zero_p(x) && !f_signbit(x));
|
||||
}
|
||||
|
||||
inline static VALUE
|
||||
f_tpositive_p(VALUE x)
|
||||
{
|
||||
|
@ -933,30 +863,17 @@ f_tpositive_p(VALUE x)
|
|||
static VALUE
|
||||
nucomp_to_s(VALUE self)
|
||||
{
|
||||
VALUE s, rezero, impos;
|
||||
VALUE s, impos;
|
||||
|
||||
get_dat1(self);
|
||||
|
||||
rezero = f_tzero_p(dat->real);
|
||||
impos = f_tpositive_p(dat->image);
|
||||
|
||||
if (rezero)
|
||||
s = rb_str_new2("");
|
||||
else {
|
||||
s = f_to_s(dat->real);
|
||||
rb_str_cat2(s, !impos ? "-" : "+");
|
||||
}
|
||||
|
||||
if (k_rational_p(dat->image) &&
|
||||
!f_one_p(f_denominator(dat->image))) {
|
||||
rb_str_cat2(s, "(");
|
||||
rb_str_concat(s, f_to_s(rezero ? dat->image : f_abs(dat->image)));
|
||||
rb_str_cat2(s, ")i");
|
||||
}
|
||||
else {
|
||||
rb_str_concat(s, f_to_s(rezero ? dat->image : f_abs(dat->image)));
|
||||
rb_str_concat(s, f_to_s(f_abs(dat->image)));
|
||||
rb_str_cat2(s, "i");
|
||||
}
|
||||
|
||||
return s;
|
||||
}
|
||||
|
@ -964,15 +881,18 @@ nucomp_to_s(VALUE self)
|
|||
static VALUE
|
||||
nucomp_inspect(VALUE self)
|
||||
{
|
||||
VALUE s;
|
||||
VALUE s, impos;
|
||||
|
||||
get_dat1(self);
|
||||
|
||||
s = rb_str_new2("Complex(");
|
||||
impos = f_tpositive_p(dat->image);
|
||||
|
||||
s = rb_str_new2("(");
|
||||
rb_str_concat(s, f_inspect(dat->real));
|
||||
rb_str_cat2(s, ", ");
|
||||
rb_str_concat(s, f_inspect(dat->image));
|
||||
rb_str_cat2(s, ")");
|
||||
rb_str_cat2(s, !impos ? "-" : "+");
|
||||
|
||||
rb_str_concat(s, f_inspect(f_abs(dat->image)));
|
||||
rb_str_cat2(s, "i)");
|
||||
|
||||
return s;
|
||||
}
|
||||
|
@ -1007,6 +927,12 @@ rb_complex_new(VALUE x, VALUE y)
|
|||
return nucomp_s_canonicalize_internal(rb_cComplex, x, y);
|
||||
}
|
||||
|
||||
VALUE
|
||||
rb_complex_polar(VALUE x, VALUE y)
|
||||
{
|
||||
return nucomp_s_polar(rb_cComplex, x, y);
|
||||
}
|
||||
|
||||
static VALUE nucomp_s_convert(int argc, VALUE *argv, VALUE klass);
|
||||
|
||||
VALUE
|
||||
|
@ -1075,25 +1001,30 @@ numeric_to_c(VALUE self)
|
|||
return rb_complex_new1(self);
|
||||
}
|
||||
|
||||
static VALUE comp_pat1, comp_pat2, a_slash, a_dot_and_an_e,
|
||||
static VALUE comp_pat0, comp_pat1, comp_pat2, a_slash, a_dot_and_an_e,
|
||||
null_string, underscores_pat, an_underscore;
|
||||
|
||||
#define DIGITS "(?:\\d(?:_\\d|\\d)*)"
|
||||
#define NUMERATOR "(?:" DIGITS "?\\.)?" DIGITS "(?:[eE][-+]?" DIGITS ")?"
|
||||
#define DENOMINATOR "[-+]?" DIGITS
|
||||
#define DENOMINATOR DIGITS
|
||||
#define NUMBER "[-+]?" NUMERATOR "(?:\\/" DENOMINATOR ")?"
|
||||
#define NUMBERNOS NUMERATOR "(?:\\/" DENOMINATOR ")?"
|
||||
#define PATTERN1 "\\A((" NUMBER ")|\\((" NUMBER ")\\))?[iIjJ]"
|
||||
#define PATTERN2 "\\A(" NUMBER ")(([-+])(?:(" NUMBERNOS ")|\\((" NUMBER ")\\))?[iIjJ])?"
|
||||
#define PATTERN0 "\\A(" NUMBER ")@(" NUMBER ")"
|
||||
#define PATTERN1 "\\A([-+])?(" NUMBER ")?[iIjJ]"
|
||||
#define PATTERN2 "\\A(" NUMBER ")(([-+])(" NUMBERNOS ")?[iIjJ])?"
|
||||
|
||||
static void
|
||||
make_patterns(void)
|
||||
{
|
||||
static const char comp_pat0_source[] = PATTERN0;
|
||||
static const char comp_pat1_source[] = PATTERN1;
|
||||
static const char comp_pat2_source[] = PATTERN2;
|
||||
static const char underscores_pat_source[] = "_+";
|
||||
|
||||
if (comp_pat1) return;
|
||||
if (comp_pat0) return;
|
||||
|
||||
comp_pat0 = rb_reg_new(comp_pat0_source, sizeof comp_pat0_source - 1, 0);
|
||||
rb_global_variable(&comp_pat0);
|
||||
|
||||
comp_pat1 = rb_reg_new(comp_pat1_source, sizeof comp_pat1_source - 1, 0);
|
||||
rb_global_variable(&comp_pat1);
|
||||
|
@ -1154,19 +1085,33 @@ string_to_c_internal(VALUE self)
|
|||
|
||||
{
|
||||
VALUE m, sr, si, re, r, i;
|
||||
int po;
|
||||
|
||||
m = f_match(comp_pat0, s);
|
||||
if (!NIL_P(m)) {
|
||||
sr = f_aref(m, INT2FIX(1));
|
||||
si = f_aref(m, INT2FIX(2));
|
||||
re = f_post_match(m);
|
||||
po = 1;
|
||||
}
|
||||
if (NIL_P(m)) {
|
||||
m = f_match(comp_pat1, s);
|
||||
if (!NIL_P(m)) {
|
||||
sr = Qnil;
|
||||
si = f_aref(m, INT2FIX(1));
|
||||
if (NIL_P(si))
|
||||
si = rb_str_new2("1");
|
||||
else {
|
||||
si = f_aref(m, INT2FIX(2));
|
||||
if (NIL_P(si))
|
||||
si = f_aref(m, INT2FIX(3));
|
||||
si = rb_str_new2("");
|
||||
{
|
||||
VALUE t;
|
||||
|
||||
t = f_aref(m, INT2FIX(2));
|
||||
if (NIL_P(t))
|
||||
t = rb_str_new2("1");
|
||||
rb_str_concat(si, t);
|
||||
}
|
||||
re = f_post_match(m);
|
||||
po = 0;
|
||||
}
|
||||
}
|
||||
if (NIL_P(m)) {
|
||||
m = f_match(comp_pat2, s);
|
||||
|
@ -1181,13 +1126,12 @@ string_to_c_internal(VALUE self)
|
|||
|
||||
si = f_aref(m, INT2FIX(3));
|
||||
t = f_aref(m, INT2FIX(4));
|
||||
if (NIL_P(t))
|
||||
t = f_aref(m, INT2FIX(5));
|
||||
if (NIL_P(t))
|
||||
t = rb_str_new2("1");
|
||||
rb_str_concat(si, t);
|
||||
}
|
||||
re = f_post_match(m);
|
||||
po = 0;
|
||||
}
|
||||
r = INT2FIX(0);
|
||||
i = INT2FIX(0);
|
||||
|
@ -1207,7 +1151,11 @@ string_to_c_internal(VALUE self)
|
|||
else
|
||||
i = f_to_i(si);
|
||||
}
|
||||
if (po)
|
||||
return rb_assoc_new(rb_complex_polar(r, i), re);
|
||||
else
|
||||
return rb_assoc_new(rb_complex_new2(r, i), re);
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1410,8 +1358,6 @@ Init_Complex(void)
|
|||
rb_funcall(rb_cComplex, rb_intern("private_class_method"), 1,
|
||||
ID2SYM(rb_intern("allocate")));
|
||||
|
||||
rb_define_singleton_method(rb_cComplex, "generic?", nucomp_s_generic_p, 1);
|
||||
|
||||
rb_define_singleton_method(rb_cComplex, "new!", nucomp_s_new_bang, -1);
|
||||
rb_funcall(rb_cComplex, rb_intern("private_class_method"), 1,
|
||||
ID2SYM(rb_intern("new!")));
|
||||
|
|
|
@ -135,6 +135,7 @@ VALUE rb_complex_raw(VALUE, VALUE);
|
|||
VALUE rb_complex_new(VALUE, VALUE);
|
||||
#define rb_complex_new1(x) rb_complex_new(x, INT2FIX(0))
|
||||
#define rb_complex_new2(x,y) rb_complex_new(x, y)
|
||||
VALUE rb_complex_polar(VALUE, VALUE);
|
||||
VALUE rb_Complex(VALUE, VALUE);
|
||||
#define rb_Complex1(x) rb_Complex(x, INT2FIX(0))
|
||||
#define rb_Complex2(x,y) rb_Complex(x, y)
|
||||
|
|
34
lib/cmath.rb
34
lib/cmath.rb
|
@ -25,7 +25,7 @@ module CMath
|
|||
alias atanh! atanh
|
||||
|
||||
def exp(z)
|
||||
if Complex.generic?(z)
|
||||
if z.scalar?
|
||||
exp!(z)
|
||||
else
|
||||
Complex(exp!(z.real) * cos!(z.image),
|
||||
|
@ -35,7 +35,7 @@ module CMath
|
|||
|
||||
def log(*args)
|
||||
z, b = args
|
||||
if Complex.generic?(z) and z >= 0 and (b.nil? or b >= 0)
|
||||
if z.scalar? and z >= 0 and (b.nil? or b >= 0)
|
||||
log!(*args)
|
||||
else
|
||||
r, theta = z.polar
|
||||
|
@ -48,7 +48,7 @@ module CMath
|
|||
end
|
||||
|
||||
def log10(z)
|
||||
if Complex.generic?(z)
|
||||
if z.scalar?
|
||||
log10!(z)
|
||||
else
|
||||
log(z) / log!(10)
|
||||
|
@ -56,7 +56,7 @@ module CMath
|
|||
end
|
||||
|
||||
def sqrt(z)
|
||||
if Complex.generic?(z)
|
||||
if z.scalar?
|
||||
if z >= 0
|
||||
sqrt!(z)
|
||||
else
|
||||
|
@ -74,7 +74,7 @@ module CMath
|
|||
end
|
||||
|
||||
def sin(z)
|
||||
if Complex.generic?(z)
|
||||
if z.scalar?
|
||||
sin!(z)
|
||||
else
|
||||
Complex(sin!(z.real) * cosh!(z.image),
|
||||
|
@ -83,7 +83,7 @@ module CMath
|
|||
end
|
||||
|
||||
def cos(z)
|
||||
if Complex.generic?(z)
|
||||
if z.scalar?
|
||||
cos!(z)
|
||||
else
|
||||
Complex(cos!(z.real) * cosh!(z.image),
|
||||
|
@ -92,7 +92,7 @@ module CMath
|
|||
end
|
||||
|
||||
def tan(z)
|
||||
if Complex.generic?(z)
|
||||
if z.scalar?
|
||||
tan!(z)
|
||||
else
|
||||
sin(z)/cos(z)
|
||||
|
@ -100,7 +100,7 @@ module CMath
|
|||
end
|
||||
|
||||
def sinh(z)
|
||||
if Complex.generic?(z)
|
||||
if z.scalar?
|
||||
sinh!(z)
|
||||
else
|
||||
Complex(sinh!(z.real) * cos!(z.image),
|
||||
|
@ -109,7 +109,7 @@ module CMath
|
|||
end
|
||||
|
||||
def cosh(z)
|
||||
if Complex.generic?(z)
|
||||
if z.scalar?
|
||||
cosh!(z)
|
||||
else
|
||||
Complex(cosh!(z.real) * cos!(z.image),
|
||||
|
@ -118,7 +118,7 @@ module CMath
|
|||
end
|
||||
|
||||
def tanh(z)
|
||||
if Complex.generic?(z)
|
||||
if z.scalar?
|
||||
tanh!(z)
|
||||
else
|
||||
sinh(z) / cosh(z)
|
||||
|
@ -126,7 +126,7 @@ module CMath
|
|||
end
|
||||
|
||||
def asin(z)
|
||||
if Complex.generic?(z) and z >= -1 and z <= 1
|
||||
if z.scalar? and z >= -1 and z <= 1
|
||||
asin!(z)
|
||||
else
|
||||
-1.0.im * log(1.0.im * z + sqrt(1.0 - z * z))
|
||||
|
@ -134,7 +134,7 @@ module CMath
|
|||
end
|
||||
|
||||
def acos(z)
|
||||
if Complex.generic?(z) and z >= -1 and z <= 1
|
||||
if z.scalar? and z >= -1 and z <= 1
|
||||
acos!(z)
|
||||
else
|
||||
-1.0.im * log(z + 1.0.im * sqrt(1.0 - z * z))
|
||||
|
@ -142,7 +142,7 @@ module CMath
|
|||
end
|
||||
|
||||
def atan(z)
|
||||
if Complex.generic?(z)
|
||||
if z.scalar?
|
||||
atan!(z)
|
||||
else
|
||||
1.0.im * log((1.0.im + z) / (1.0.im - z)) / 2.0
|
||||
|
@ -150,7 +150,7 @@ module CMath
|
|||
end
|
||||
|
||||
def atan2(y,x)
|
||||
if Complex.generic?(y) and Complex.generic?(x)
|
||||
if y.scalar? and x.scalar?
|
||||
atan2!(y,x)
|
||||
else
|
||||
-1.0.im * log((x + 1.0.im * y) / sqrt(x * x + y * y))
|
||||
|
@ -158,7 +158,7 @@ module CMath
|
|||
end
|
||||
|
||||
def acosh(z)
|
||||
if Complex.generic?(z) and z >= 1
|
||||
if z.scalar? and z >= 1
|
||||
acosh!(z)
|
||||
else
|
||||
log(z + sqrt(z * z - 1.0))
|
||||
|
@ -166,7 +166,7 @@ module CMath
|
|||
end
|
||||
|
||||
def asinh(z)
|
||||
if Complex.generic?(z)
|
||||
if z.scalar?
|
||||
asinh!(z)
|
||||
else
|
||||
log(z + sqrt(1.0 + z * z))
|
||||
|
@ -174,7 +174,7 @@ module CMath
|
|||
end
|
||||
|
||||
def atanh(z)
|
||||
if Complex.generic?(z) and z >= -1 and z <= 1
|
||||
if z.scalar? and z >= -1 and z <= 1
|
||||
atanh!(z)
|
||||
else
|
||||
log((1.0 + z) / (1.0 - z)) / 2.0
|
||||
|
|
|
@ -2,3 +2,9 @@ require 'cmath'
|
|||
|
||||
Object.instance_eval{remove_const :Math}
|
||||
Math = CMath
|
||||
|
||||
def Complex.generic? (other)
|
||||
other.kind_of?(Integer) ||
|
||||
other.kind_of?(Float) ||
|
||||
other.kind_of?(Rational)
|
||||
end
|
||||
|
|
|
@ -1117,9 +1117,6 @@ static VALUE
|
|||
nurat_to_s(VALUE self)
|
||||
{
|
||||
get_dat1(self);
|
||||
|
||||
if (f_one_p(dat->den))
|
||||
return f_to_s(dat->num);
|
||||
return rb_funcall(rb_mKernel, id_format, 3,
|
||||
rb_str_new2("%d/%d"), dat->num, dat->den);
|
||||
}
|
||||
|
@ -1129,7 +1126,7 @@ nurat_inspect(VALUE self)
|
|||
{
|
||||
get_dat1(self);
|
||||
return rb_funcall(rb_mKernel, id_format, 3,
|
||||
rb_str_new2("Rational(%d, %d)"), dat->num, dat->den);
|
||||
rb_str_new2("(%d/%d)"), dat->num, dat->den);
|
||||
}
|
||||
|
||||
static VALUE
|
||||
|
@ -1234,7 +1231,7 @@ static VALUE rat_pat, an_e_pat, a_dot_pat, underscores_pat, an_underscore;
|
|||
|
||||
#define DIGITS "(?:\\d(?:_\\d|\\d)*)"
|
||||
#define NUMERATOR "(?:" DIGITS "?\\.)?" DIGITS "(?:[eE][-+]?" DIGITS ")?"
|
||||
#define DENOMINATOR "[-+]?" DIGITS
|
||||
#define DENOMINATOR DIGITS
|
||||
#define PATTERN "\\A([-+])?(" NUMERATOR ")(?:\\/(" DENOMINATOR "))?"
|
||||
|
||||
static void
|
||||
|
|
|
@ -349,10 +349,12 @@ class Complex_Test < Test::Unit::TestCase
|
|||
c = Complex(1,2)
|
||||
c2 = Complex(2,3)
|
||||
|
||||
if defined?(Complex::Unify)
|
||||
if defined?(Rational)
|
||||
assert_equal(Complex(Rational(8,13),Rational(1,13)), c / c2)
|
||||
else
|
||||
assert_equal(Complex(0,0), c / c2)
|
||||
r = c / c2
|
||||
assert_in_delta(0.615, r.real, 0.001)
|
||||
assert_in_delta(0.076, r.image, 0.001)
|
||||
end
|
||||
|
||||
c = Complex(1.0,2.0)
|
||||
|
@ -365,10 +367,10 @@ class Complex_Test < Test::Unit::TestCase
|
|||
c = Complex(1,2)
|
||||
c2 = Complex(2,3)
|
||||
|
||||
if defined?(Complex::Unify)
|
||||
if defined?(Rational)
|
||||
assert_equal(Complex(Rational(1,2),1), c / 2)
|
||||
else
|
||||
assert_equal(Complex(0,1), c / 2)
|
||||
assert_equal(Complex(0.5,1.0), c / 2)
|
||||
end
|
||||
assert_equal(Complex(0.5,1.0), c / 2.0)
|
||||
|
||||
|
@ -533,38 +535,38 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_instance_of(String, c.to_s)
|
||||
assert_equal('1+2i', c.to_s)
|
||||
|
||||
assert_equal('2i', Complex(0,2).to_s)
|
||||
assert_equal('-2i', Complex(0,-2).to_s)
|
||||
assert_equal('0+2i', Complex(0,2).to_s)
|
||||
assert_equal('0-2i', Complex(0,-2).to_s)
|
||||
assert_equal('1+2i', Complex(1,2).to_s)
|
||||
assert_equal('-1+2i', Complex(-1,2).to_s)
|
||||
assert_equal('-1-2i', Complex(-1,-2).to_s)
|
||||
assert_equal('1-2i', Complex(1,-2).to_s)
|
||||
assert_equal('-1-2i', Complex(-1,-2).to_s)
|
||||
|
||||
assert_equal('2.0i', Complex(0,2.0).to_s)
|
||||
assert_equal('-2.0i', Complex(0,-2.0).to_s)
|
||||
assert_equal('0+2.0i', Complex(0,2.0).to_s)
|
||||
assert_equal('0-2.0i', Complex(0,-2.0).to_s)
|
||||
assert_equal('1.0+2.0i', Complex(1.0,2.0).to_s)
|
||||
assert_equal('-1.0+2.0i', Complex(-1.0,2.0).to_s)
|
||||
assert_equal('-1.0-2.0i', Complex(-1.0,-2.0).to_s)
|
||||
assert_equal('1.0-2.0i', Complex(1.0,-2.0).to_s)
|
||||
assert_equal('-1.0-2.0i', Complex(-1.0,-2.0).to_s)
|
||||
|
||||
if defined?(Rational)
|
||||
assert_equal('2i', Complex(0,Rational(2)).to_s)
|
||||
assert_equal('-2i', Complex(0,Rational(-2)).to_s)
|
||||
assert_equal('1+2i', Complex(1,Rational(2)).to_s)
|
||||
assert_equal('-1+2i', Complex(-1,Rational(2)).to_s)
|
||||
assert_equal('-1-2i', Complex(-1,Rational(-2)).to_s)
|
||||
assert_equal('1-2i', Complex(1,Rational(-2)).to_s)
|
||||
assert_equal('-1-2i', Complex(-1,Rational(-2)).to_s)
|
||||
if defined?(Rational) && !defined?(Complex::Unify) && !Rational.instance_variable_get('@RCS_ID')
|
||||
assert_equal('0+2/1i', Complex(0,Rational(2)).to_s)
|
||||
assert_equal('0-2/1i', Complex(0,Rational(-2)).to_s)
|
||||
assert_equal('1+2/1i', Complex(1,Rational(2)).to_s)
|
||||
assert_equal('-1+2/1i', Complex(-1,Rational(2)).to_s)
|
||||
assert_equal('-1-2/1i', Complex(-1,Rational(-2)).to_s)
|
||||
assert_equal('1-2/1i', Complex(1,Rational(-2)).to_s)
|
||||
assert_equal('-1-2/1i', Complex(-1,Rational(-2)).to_s)
|
||||
|
||||
assert_equal('(2/3)i', Complex(0,Rational(2,3)).to_s)
|
||||
assert_equal('(-2/3)i', Complex(0,Rational(-2,3)).to_s)
|
||||
assert_equal('1+(2/3)i', Complex(1,Rational(2,3)).to_s)
|
||||
assert_equal('-1+(2/3)i', Complex(-1,Rational(2,3)).to_s)
|
||||
assert_equal('-1-(2/3)i', Complex(-1,Rational(-2,3)).to_s)
|
||||
assert_equal('1-(2/3)i', Complex(1,Rational(-2,3)).to_s)
|
||||
assert_equal('-1-(2/3)i', Complex(-1,Rational(-2,3)).to_s)
|
||||
assert_equal('0+2/3i', Complex(0,Rational(2,3)).to_s)
|
||||
assert_equal('0-2/3i', Complex(0,Rational(-2,3)).to_s)
|
||||
assert_equal('1+2/3i', Complex(1,Rational(2,3)).to_s)
|
||||
assert_equal('-1+2/3i', Complex(-1,Rational(2,3)).to_s)
|
||||
assert_equal('-1-2/3i', Complex(-1,Rational(-2,3)).to_s)
|
||||
assert_equal('1-2/3i', Complex(1,Rational(-2,3)).to_s)
|
||||
assert_equal('-1-2/3i', Complex(-1,Rational(-2,3)).to_s)
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -572,7 +574,7 @@ class Complex_Test < Test::Unit::TestCase
|
|||
c = Complex(1,2)
|
||||
|
||||
assert_instance_of(String, c.inspect)
|
||||
assert_equal('Complex(1, 2)', c.inspect)
|
||||
assert_equal('(1+2i)', c.inspect)
|
||||
end
|
||||
|
||||
def test_marshal
|
||||
|
@ -604,6 +606,10 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_equal(Complex(-5,-3), '-5-3i'.to_c)
|
||||
assert_equal(Complex(0,3), '3i'.to_c)
|
||||
assert_equal(Complex(0,-3), '-3i'.to_c)
|
||||
assert_equal(Complex(5,1), '5+i'.to_c)
|
||||
assert_equal(Complex(0,1), 'i'.to_c)
|
||||
assert_equal(Complex(0,1), '+i'.to_c)
|
||||
assert_equal(Complex(0,-1), '-i'.to_c)
|
||||
|
||||
assert_equal(Complex(5,3), '5+3I'.to_c)
|
||||
assert_equal(Complex(5,3), '5+3j'.to_c)
|
||||
|
@ -611,6 +617,8 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_equal(Complex(0,3), '3I'.to_c)
|
||||
assert_equal(Complex(0,3), '3j'.to_c)
|
||||
assert_equal(Complex(0,3), '3J'.to_c)
|
||||
assert_equal(Complex(0,1), 'I'.to_c)
|
||||
assert_equal(Complex(0,1), 'J'.to_c)
|
||||
|
||||
assert_equal(Complex(5.0), '5.0'.to_c)
|
||||
assert_equal(Complex(-5.0), '-5.0'.to_c)
|
||||
|
@ -630,6 +638,11 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_equal(Complex(0.0,3.0), '3e0i'.to_c)
|
||||
assert_equal(Complex(0.0,-3.0), '-3e0i'.to_c)
|
||||
|
||||
assert_equal(Complex.polar(10,10), '10@10'.to_c)
|
||||
assert_equal(Complex.polar(-10,-10), '-10@-10'.to_c)
|
||||
assert_equal(Complex.polar(10.5,10.5), '10.5@10.5'.to_c)
|
||||
assert_equal(Complex.polar(-10.5,-10.5), '-10.5@-10.5'.to_c)
|
||||
|
||||
assert_equal(Complex(5), Complex('5'))
|
||||
assert_equal(Complex(-5), Complex('-5'))
|
||||
assert_equal(Complex(5,3), Complex('5+3i'))
|
||||
|
@ -638,6 +651,10 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_equal(Complex(-5,-3), Complex('-5-3i'))
|
||||
assert_equal(Complex(0,3), Complex('3i'))
|
||||
assert_equal(Complex(0,-3), Complex('-3i'))
|
||||
assert_equal(Complex(5,1), Complex('5+i'))
|
||||
assert_equal(Complex(0,1), Complex('i'))
|
||||
assert_equal(Complex(0,1), Complex('+i'))
|
||||
assert_equal(Complex(0,-1), Complex('-i'))
|
||||
|
||||
assert_equal(Complex(5,3), Complex('5+3I'))
|
||||
assert_equal(Complex(5,3), Complex('5+3j'))
|
||||
|
@ -645,6 +662,8 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_equal(Complex(0,3), Complex('3I'))
|
||||
assert_equal(Complex(0,3), Complex('3j'))
|
||||
assert_equal(Complex(0,3), Complex('3J'))
|
||||
assert_equal(Complex(0,1), Complex('I'))
|
||||
assert_equal(Complex(0,1), Complex('J'))
|
||||
|
||||
assert_equal(Complex(5.0), Complex('5.0'))
|
||||
assert_equal(Complex(-5.0), Complex('-5.0'))
|
||||
|
@ -664,6 +683,11 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_equal(Complex(0.0,3.0), Complex('3e0i'))
|
||||
assert_equal(Complex(0.0,-3.0), Complex('-3e0i'))
|
||||
|
||||
assert_equal(Complex.polar(10,10), Complex('10@10'))
|
||||
assert_equal(Complex.polar(-10,-10), Complex('-10@-10'))
|
||||
assert_equal(Complex.polar(10.5,10.5), Complex('10.5@10.5'))
|
||||
assert_equal(Complex.polar(-10.5,-10.5), Complex('-10.5@-10.5'))
|
||||
|
||||
assert_equal(Complex(0), '_'.to_c)
|
||||
assert_equal(Complex(0), '_5'.to_c)
|
||||
assert_equal(Complex(5), '5_'.to_c)
|
||||
|
@ -693,13 +717,14 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_equal(Complex(Rational(1,5),Rational(-3,2)), '1/5-3/2i'.to_c)
|
||||
assert_equal(Complex(Rational(-1,5),Rational(3,2)), '-1/5+3/2i'.to_c)
|
||||
assert_equal(Complex(Rational(-1,5),Rational(-3,2)), '-1/5-3/2i'.to_c)
|
||||
assert_equal(Complex(Rational(1,5),Rational(3,2)), '1/5+(3/2)i'.to_c)
|
||||
assert_equal(Complex(Rational(1,5),Rational(-3,2)), '1/5-(3/2)i'.to_c)
|
||||
assert_equal(Complex(Rational(-1,5),Rational(3,2)), '-1/5+(3/2)i'.to_c)
|
||||
assert_equal(Complex(Rational(-1,5),Rational(-3,2)), '-1/5-(3/2)i'.to_c)
|
||||
assert_equal(Complex(Rational(1,5),Rational(3,2)), '1/5+3/2i'.to_c)
|
||||
assert_equal(Complex(Rational(1,5),Rational(-3,2)), '1/5-3/2i'.to_c)
|
||||
assert_equal(Complex(Rational(-1,5),Rational(3,2)), '-1/5+3/2i'.to_c)
|
||||
assert_equal(Complex(Rational(-1,5),Rational(-3,2)), '-1/5-3/2i'.to_c)
|
||||
assert_equal(Complex.polar(Rational(1,5),Rational(3,2)), Complex('1/5@3/2'))
|
||||
assert_equal(Complex.polar(Rational(-1,5),Rational(-3,2)), Complex('-1/5@-3/2'))
|
||||
end
|
||||
|
||||
assert_equal(Complex(5, 3), Complex('5', '3'))
|
||||
end
|
||||
|
||||
def test_respond
|
||||
|
@ -855,13 +880,15 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_equal(Complex(0.5,1.0), Complex(1,2).quo(2))
|
||||
end
|
||||
|
||||
=begin
|
||||
if defined?(Rational) && !Rational.instance_variable_get('@RCS_ID')
|
||||
assert_equal(Rational(1,2), 1.quo(2))
|
||||
assert_equal(Rational(5000000000), 10000000000.quo(2))
|
||||
assert_equal(Rational(1,2), 1.0.quo(2))
|
||||
assert_equal(Rational(1,4), Rational(1,2).quo(2))
|
||||
assert_equal(Rational(1,2), 1.rdiv(2))
|
||||
assert_equal(Rational(5000000000), 10000000000.rdiv(2))
|
||||
assert_equal(Rational(1,2), 1.0.rdiv(2))
|
||||
assert_equal(Rational(1,4), Rational(1,2).rdiv(2))
|
||||
assert_equal(Complex(Rational(1,2),Rational(1)), Complex(1,2).quo(2))
|
||||
end
|
||||
=end
|
||||
|
||||
assert_equal(0.5, 1.fdiv(2))
|
||||
assert_equal(5000000000.0, 10000000000.fdiv(2))
|
||||
|
@ -981,6 +1008,7 @@ class Complex_Test < Test::Unit::TestCase
|
|||
|
||||
end
|
||||
|
||||
=begin
|
||||
def test_canonicalize
|
||||
f = defined?(Complex::Unify)
|
||||
Complex.const_set(:Unify, true) unless f
|
||||
|
@ -1055,7 +1083,6 @@ class Complex_Test < Test::Unit::TestCase
|
|||
Complex.const_set(:Unify, unify_val) if f
|
||||
end
|
||||
|
||||
=begin
|
||||
def test_abs
|
||||
b = 2**100
|
||||
def b.*(x); self; end rescue nil
|
||||
|
@ -1076,7 +1103,6 @@ class Complex_Test < Test::Unit::TestCase
|
|||
nan = inf/inf
|
||||
assert_raise(Errno::EDOM, Errno::ERANGE) { Complex(1, nan).abs }
|
||||
end
|
||||
=end
|
||||
|
||||
def test_coerce
|
||||
c = Complex(6, 3)
|
||||
|
@ -1106,6 +1132,7 @@ class Complex_Test < Test::Unit::TestCase
|
|||
assert_equal(Complex(0, -1), Complex(0, 1) ** (2**100-1))
|
||||
assert_equal(Complex(1, 0), Complex(1, 0) ** Rational(1, 2**100))
|
||||
end
|
||||
=end
|
||||
|
||||
def test_fixed_bug
|
||||
if defined?(Rational) && !Rational.instance_variable_get('@RCS_ID')
|
||||
|
|
|
@ -83,6 +83,8 @@ class Rational_Test < Test::Unit::TestCase
|
|||
instance_eval{[numerator, denominator]})
|
||||
assert_equal([0,1], Rational.__send__(:new!, nil).
|
||||
instance_eval{[numerator, denominator]})
|
||||
|
||||
assert_raise(ZeroDivisionError){Rational.__send__(:new!, 1, 0)}
|
||||
end
|
||||
|
||||
=begin
|
||||
|
@ -621,6 +623,10 @@ class Rational_Test < Test::Unit::TestCase
|
|||
assert_instance_of(Rational, x)
|
||||
assert_equal(1, x.numerator)
|
||||
assert_equal(4, x.denominator)
|
||||
|
||||
unless defined?(Rational::Unify) # maybe bug mathn
|
||||
assert_raise(ZeroDivisionError){0 ** -1}
|
||||
end
|
||||
end
|
||||
|
||||
def test_cmp
|
||||
|
@ -676,8 +682,6 @@ class Rational_Test < Test::Unit::TestCase
|
|||
assert_equal(true, Rational(2,1) != Rational(1))
|
||||
assert_equal(false, Rational(1) == nil)
|
||||
assert_equal(false, Rational(1) == '')
|
||||
|
||||
assert_equal(false, Rational(1,2**100) == 1)
|
||||
end
|
||||
|
||||
def test_unify
|
||||
|
@ -698,8 +702,13 @@ class Rational_Test < Test::Unit::TestCase
|
|||
assert_instance_of(String, c.to_s)
|
||||
assert_equal('1/2', c.to_s)
|
||||
|
||||
if defined?(Rational::Unify)
|
||||
assert_equal('0', Rational(0,2).to_s)
|
||||
assert_equal('0', Rational(0,-2).to_s)
|
||||
else
|
||||
assert_equal('0/1', Rational(0,2).to_s)
|
||||
assert_equal('0/1', Rational(0,-2).to_s)
|
||||
end
|
||||
assert_equal('1/2', Rational(1,2).to_s)
|
||||
assert_equal('-1/2', Rational(-1,2).to_s)
|
||||
assert_equal('1/2', Rational(-1,-2).to_s)
|
||||
|
@ -711,7 +720,7 @@ class Rational_Test < Test::Unit::TestCase
|
|||
c = Rational(1,2)
|
||||
|
||||
assert_instance_of(String, c.inspect)
|
||||
assert_equal('Rational(1, 2)', c.inspect)
|
||||
assert_equal('(1/2)', c.inspect)
|
||||
end
|
||||
|
||||
def test_marshal
|
||||
|
@ -721,6 +730,10 @@ class Rational_Test < Test::Unit::TestCase
|
|||
c2 = Marshal.load(s)
|
||||
assert_equal(c, c2)
|
||||
assert_instance_of(Rational, c2)
|
||||
|
||||
assert_raise(ZeroDivisionError){
|
||||
Marshal.load("\x04\bU:\rRational[\ai\x06i\x05")
|
||||
}
|
||||
end
|
||||
|
||||
def test_parse
|
||||
|
@ -730,22 +743,22 @@ class Rational_Test < Test::Unit::TestCase
|
|||
assert_equal(Rational(-5), '-5'.to_r)
|
||||
assert_equal(Rational(5,3), '5/3'.to_r)
|
||||
assert_equal(Rational(-5,3), '-5/3'.to_r)
|
||||
assert_equal(Rational(5,-3), '5/-3'.to_r)
|
||||
assert_equal(Rational(-5,-3), '-5/-3'.to_r)
|
||||
# assert_equal(Rational(5,-3), '5/-3'.to_r)
|
||||
# assert_equal(Rational(-5,-3), '-5/-3'.to_r)
|
||||
|
||||
assert_equal(Rational(5), '5.0'.to_r)
|
||||
assert_equal(Rational(-5), '-5.0'.to_r)
|
||||
assert_equal(Rational(5,3), '5.0/3'.to_r)
|
||||
assert_equal(Rational(-5,3), '-5.0/3'.to_r)
|
||||
assert_equal(Rational(5,-3), '5.0/-3'.to_r)
|
||||
assert_equal(Rational(-5,-3), '-5.0/-3'.to_r)
|
||||
# assert_equal(Rational(5,-3), '5.0/-3'.to_r)
|
||||
# assert_equal(Rational(-5,-3), '-5.0/-3'.to_r)
|
||||
|
||||
assert_equal(Rational(5), '5e0'.to_r)
|
||||
assert_equal(Rational(-5), '-5e0'.to_r)
|
||||
assert_equal(Rational(5,3), '5e0/3'.to_r)
|
||||
assert_equal(Rational(-5,3), '-5e0/3'.to_r)
|
||||
assert_equal(Rational(5,-3), '5e0/-3'.to_r)
|
||||
assert_equal(Rational(-5,-3), '-5e0/-3'.to_r)
|
||||
# assert_equal(Rational(5,-3), '5e0/-3'.to_r)
|
||||
# assert_equal(Rational(-5,-3), '-5e0/-3'.to_r)
|
||||
|
||||
assert_equal(Rational(33,100), '0.33'.to_r)
|
||||
assert_equal(Rational(-33,100), '-0.33'.to_r)
|
||||
|
@ -765,8 +778,8 @@ class Rational_Test < Test::Unit::TestCase
|
|||
assert_equal(Rational(-5), Rational('-5'))
|
||||
assert_equal(Rational(5,3), Rational('5/3'))
|
||||
assert_equal(Rational(-5,3), Rational('-5/3'))
|
||||
assert_equal(Rational(5,-3), Rational('5/-3'))
|
||||
assert_equal(Rational(-5,-3), Rational('-5/-3'))
|
||||
# assert_equal(Rational(5,-3), Rational('5/-3'))
|
||||
# assert_equal(Rational(-5,-3), Rational('-5/-3'))
|
||||
|
||||
assert_equal(Rational(33,100), Rational('0.33'))
|
||||
assert_equal(Rational(-33,100), Rational('-0.33'))
|
||||
|
@ -783,8 +796,8 @@ class Rational_Test < Test::Unit::TestCase
|
|||
assert_equal(Rational(-5.0), Rational('-5.0'))
|
||||
assert_equal(Rational(5.0,3), Rational('5.0/3'))
|
||||
assert_equal(Rational(-5.0,3), Rational('-5.0/3'))
|
||||
assert_equal(Rational(5.0,-3), Rational('5.0/-3'))
|
||||
assert_equal(Rational(-5.0,-3), Rational('-5.0/-3'))
|
||||
# assert_equal(Rational(5.0,-3), Rational('5.0/-3'))
|
||||
# assert_equal(Rational(-5.0,-3), Rational('-5.0/-3'))
|
||||
|
||||
assert_equal(Rational(0), '_'.to_r)
|
||||
assert_equal(Rational(0), '_5'.to_r)
|
||||
|
@ -933,7 +946,7 @@ class Rational_Test < Test::Unit::TestCase
|
|||
|
||||
assert_equal(Rational(1,2), 1.quo(2))
|
||||
assert_equal(Rational(5000000000), 10000000000.quo(2))
|
||||
assert_equal(Rational(1,2), 1.0.quo(2))
|
||||
assert_equal(0.5, 1.0.quo(2))
|
||||
assert_equal(Rational(1,4), Rational(1,2).quo(2))
|
||||
|
||||
assert_equal(0.5, 1.fdiv(2))
|
||||
|
@ -942,6 +955,7 @@ class Rational_Test < Test::Unit::TestCase
|
|||
assert_equal(0.25, Rational(1,2).fdiv(2))
|
||||
end
|
||||
|
||||
=begin
|
||||
def test_zero_div
|
||||
assert_raise(ZeroDivisionError) { Rational(1, 0) }
|
||||
assert_raise(ZeroDivisionError) { Rational(1, 1) / 0 }
|
||||
|
@ -1043,6 +1057,7 @@ class Rational_Test < Test::Unit::TestCase
|
|||
assert_equal(1, Rational(2**5000,3).to_f.infinite?)
|
||||
assert_equal(0, Rational(1, 2**5000).to_f)
|
||||
end
|
||||
=end
|
||||
|
||||
def test_fixed_bug
|
||||
if defined?(Rational::Unify)
|
||||
|
|
Loading…
Reference in a new issue