1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

Renamed fib to fiber

This commit is contained in:
Nobuyoshi Nakada 2019-07-08 14:59:28 +09:00
parent 612cad5d20
commit a8c54932ba
No known key found for this signature in database
GPG key ID: 4BC7D6DF58D8DF60

488
cont.c
View file

@ -147,11 +147,11 @@ enum fiber_status {
FIBER_TERMINATED FIBER_TERMINATED
}; };
#define FIBER_CREATED_P(fib) ((fib)->status == FIBER_CREATED) #define FIBER_CREATED_P(fiber) ((fiber)->status == FIBER_CREATED)
#define FIBER_RESUMED_P(fib) ((fib)->status == FIBER_RESUMED) #define FIBER_RESUMED_P(fiber) ((fiber)->status == FIBER_RESUMED)
#define FIBER_SUSPENDED_P(fib) ((fib)->status == FIBER_SUSPENDED) #define FIBER_SUSPENDED_P(fiber) ((fiber)->status == FIBER_SUSPENDED)
#define FIBER_TERMINATED_P(fib) ((fib)->status == FIBER_TERMINATED) #define FIBER_TERMINATED_P(fiber) ((fiber)->status == FIBER_TERMINATED)
#define FIBER_RUNNABLE_P(fib) (FIBER_CREATED_P(fib) || FIBER_SUSPENDED_P(fib)) #define FIBER_RUNNABLE_P(fiber) (FIBER_CREATED_P(fiber) || FIBER_SUSPENDED_P(fiber))
#if FIBER_USE_NATIVE && !defined(FIBER_USE_COROUTINE) && !defined(_WIN32) #if FIBER_USE_NATIVE && !defined(FIBER_USE_COROUTINE) && !defined(_WIN32)
static inline int static inline int
@ -190,7 +190,7 @@ struct rb_fiber_struct {
void *ss_sp; void *ss_sp;
size_t ss_size; size_t ss_size;
#elif defined(_WIN32) #elif defined(_WIN32)
void *fib_handle; void *fiber_handle;
#else #else
#define FIBER_ALLOCATE_STACK #define FIBER_ALLOCATE_STACK
ucontext_t context; ucontext_t context;
@ -229,17 +229,17 @@ fiber_status_name(enum fiber_status s)
} }
static void static void
fiber_verify(const rb_fiber_t *fib) fiber_verify(const rb_fiber_t *fiber)
{ {
#if VM_CHECK_MODE > 0 #if VM_CHECK_MODE > 0
VM_ASSERT(fib->cont.saved_ec.fiber_ptr == fib); VM_ASSERT(fiber->cont.saved_ec.fiber_ptr == fiber);
switch (fib->status) { switch (fiber->status) {
case FIBER_RESUMED: case FIBER_RESUMED:
VM_ASSERT(fib->cont.saved_ec.vm_stack != NULL); VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
break; break;
case FIBER_SUSPENDED: case FIBER_SUSPENDED:
VM_ASSERT(fib->cont.saved_ec.vm_stack != NULL); VM_ASSERT(fiber->cont.saved_ec.vm_stack != NULL);
break; break;
case FIBER_CREATED: case FIBER_CREATED:
case FIBER_TERMINATED: case FIBER_TERMINATED:
@ -260,19 +260,19 @@ rb_ec_verify(const rb_execution_context_t *ec)
#endif #endif
static void static void
fiber_status_set(rb_fiber_t *fib, enum fiber_status s) fiber_status_set(rb_fiber_t *fiber, enum fiber_status s)
{ {
if (0) fprintf(stderr, "fib: %p, status: %s -> %s\n", (void *)fib, fiber_status_name(fib->status), fiber_status_name(s)); if (0) fprintf(stderr, "fiber: %p, status: %s -> %s\n", (void *)fiber, fiber_status_name(fiber->status), fiber_status_name(s));
VM_ASSERT(!FIBER_TERMINATED_P(fib)); VM_ASSERT(!FIBER_TERMINATED_P(fiber));
VM_ASSERT(fib->status != s); VM_ASSERT(fiber->status != s);
fiber_verify(fib); fiber_verify(fiber);
fib->status = s; fiber->status = s;
} }
static inline void static inline void
ec_switch(rb_thread_t *th, rb_fiber_t *fib) ec_switch(rb_thread_t *th, rb_fiber_t *fiber)
{ {
rb_execution_context_t *ec = &fib->cont.saved_ec; rb_execution_context_t *ec = &fiber->cont.saved_ec;
ruby_current_execution_context_ptr = th->ec = ec; ruby_current_execution_context_ptr = th->ec = ec;
@ -305,12 +305,12 @@ cont_ptr(VALUE obj)
static rb_fiber_t * static rb_fiber_t *
fiber_ptr(VALUE obj) fiber_ptr(VALUE obj)
{ {
rb_fiber_t *fib; rb_fiber_t *fiber;
TypedData_Get_Struct(obj, rb_fiber_t, &fiber_data_type, fib); TypedData_Get_Struct(obj, rb_fiber_t, &fiber_data_type, fiber);
if (!fib) rb_raise(rb_eFiberError, "uninitialized fiber"); if (!fiber) rb_raise(rb_eFiberError, "uninitialized fiber");
return fib; return fiber;
} }
NOINLINE(static VALUE cont_capture(volatile int *volatile stat)); NOINLINE(static VALUE cont_capture(volatile int *volatile stat));
@ -363,9 +363,9 @@ cont_mark(void *ptr)
} }
else { else {
/* fiber */ /* fiber */
const rb_fiber_t *fib = (rb_fiber_t*)cont; const rb_fiber_t *fiber = (rb_fiber_t*)cont;
if (!FIBER_TERMINATED_P(fib)) { if (!FIBER_TERMINATED_P(fiber)) {
rb_gc_mark_locations(cont->machine.stack, rb_gc_mark_locations(cont->machine.stack,
cont->machine.stack + cont->machine.stack_size); cont->machine.stack + cont->machine.stack_size);
} }
@ -376,9 +376,9 @@ cont_mark(void *ptr)
} }
static int static int
fiber_is_root_p(const rb_fiber_t *fib) fiber_is_root_p(const rb_fiber_t *fiber)
{ {
return fib == fib->cont.saved_ec.thread_ptr->root_fiber; return fiber == fiber->cont.saved_ec.thread_ptr->root_fiber;
} }
static void static void
@ -400,31 +400,31 @@ cont_free(void *ptr)
} }
else { else {
/* fiber */ /* fiber */
rb_fiber_t *fib = (rb_fiber_t*)cont; rb_fiber_t *fiber = (rb_fiber_t*)cont;
#if defined(FIBER_USE_COROUTINE) #if defined(FIBER_USE_COROUTINE)
coroutine_destroy(&fib->context); coroutine_destroy(&fiber->context);
if (fib->ss_sp != NULL) { if (fiber->ss_sp != NULL) {
if (fiber_is_root_p(fib)) { if (fiber_is_root_p(fiber)) {
rb_bug("Illegal root fiber parameter"); rb_bug("Illegal root fiber parameter");
} }
#ifdef _WIN32 #ifdef _WIN32
VirtualFree((void*)fib->ss_sp, 0, MEM_RELEASE); VirtualFree((void*)fiber->ss_sp, 0, MEM_RELEASE);
#else #else
munmap((void*)fib->ss_sp, fib->ss_size); munmap((void*)fiber->ss_sp, fiber->ss_size);
#endif #endif
fib->ss_sp = NULL; fiber->ss_sp = NULL;
} }
#elif defined(_WIN32) #elif defined(_WIN32)
if (!fiber_is_root_p(fib)) { if (!fiber_is_root_p(fiber)) {
/* don't delete root fiber handle */ /* don't delete root fiber handle */
if (fib->fib_handle) { if (fiber->fiber_handle) {
DeleteFiber(fib->fib_handle); DeleteFiber(fiber->fiber_handle);
} }
} }
#else /* not WIN32 */ #else /* not WIN32 */
/* fib->ss_sp == NULL is possible for root fiber */ /* fiber->ss_sp == NULL is possible for root fiber */
if (fib->ss_sp != NULL) { if (fiber->ss_sp != NULL) {
munmap((void*)fib->ss_sp, fib->ss_size); munmap((void*)fiber->ss_sp, fiber->ss_size);
} }
#endif #endif
} }
@ -466,90 +466,90 @@ cont_memsize(const void *ptr)
} }
void void
rb_fiber_update_self(rb_fiber_t *fib) rb_fiber_update_self(rb_fiber_t *fiber)
{ {
if (fib->cont.self) { if (fiber->cont.self) {
fib->cont.self = rb_gc_location(fib->cont.self); fiber->cont.self = rb_gc_location(fiber->cont.self);
} }
else { else {
rb_execution_context_update(&fib->cont.saved_ec); rb_execution_context_update(&fiber->cont.saved_ec);
} }
} }
void void
rb_fiber_mark_self(const rb_fiber_t *fib) rb_fiber_mark_self(const rb_fiber_t *fiber)
{ {
if (fib->cont.self) { if (fiber->cont.self) {
rb_gc_mark_no_pin(fib->cont.self); rb_gc_mark_no_pin(fiber->cont.self);
} }
else { else {
rb_execution_context_mark(&fib->cont.saved_ec); rb_execution_context_mark(&fiber->cont.saved_ec);
} }
} }
static void static void
fiber_compact(void *ptr) fiber_compact(void *ptr)
{ {
rb_fiber_t *fib = ptr; rb_fiber_t *fiber = ptr;
fib->first_proc = rb_gc_location(fib->first_proc); fiber->first_proc = rb_gc_location(fiber->first_proc);
if (fib->prev) rb_fiber_update_self(fib->prev); if (fiber->prev) rb_fiber_update_self(fiber->prev);
cont_compact(&fib->cont); cont_compact(&fiber->cont);
fiber_verify(fib); fiber_verify(fiber);
} }
static void static void
fiber_mark(void *ptr) fiber_mark(void *ptr)
{ {
rb_fiber_t *fib = ptr; rb_fiber_t *fiber = ptr;
RUBY_MARK_ENTER("cont"); RUBY_MARK_ENTER("cont");
fiber_verify(fib); fiber_verify(fiber);
rb_gc_mark_no_pin(fib->first_proc); rb_gc_mark_no_pin(fiber->first_proc);
if (fib->prev) rb_fiber_mark_self(fib->prev); if (fiber->prev) rb_fiber_mark_self(fiber->prev);
#if !FIBER_USE_NATIVE #if !FIBER_USE_NATIVE
if (fib->status == FIBER_TERMINATED) { if (fiber->status == FIBER_TERMINATED) {
/* FIBER_TERMINATED fiber should not mark machine stack */ /* FIBER_TERMINATED fiber should not mark machine stack */
if (fib->cont.saved_ec.machine.stack_end != NULL) { if (fiber->cont.saved_ec.machine.stack_end != NULL) {
fib->cont.saved_ec.machine.stack_end = NULL; fiber->cont.saved_ec.machine.stack_end = NULL;
} }
} }
#endif #endif
cont_mark(&fib->cont); cont_mark(&fiber->cont);
RUBY_MARK_LEAVE("cont"); RUBY_MARK_LEAVE("cont");
} }
static void static void
fiber_free(void *ptr) fiber_free(void *ptr)
{ {
rb_fiber_t *fib = ptr; rb_fiber_t *fiber = ptr;
RUBY_FREE_ENTER("fiber"); RUBY_FREE_ENTER("fiber");
if (fib->cont.saved_ec.local_storage) { if (fiber->cont.saved_ec.local_storage) {
st_free_table(fib->cont.saved_ec.local_storage); st_free_table(fiber->cont.saved_ec.local_storage);
} }
cont_free(&fib->cont); cont_free(&fiber->cont);
RUBY_FREE_LEAVE("fiber"); RUBY_FREE_LEAVE("fiber");
} }
static size_t static size_t
fiber_memsize(const void *ptr) fiber_memsize(const void *ptr)
{ {
const rb_fiber_t *fib = ptr; const rb_fiber_t *fiber = ptr;
size_t size = sizeof(*fib); size_t size = sizeof(*fiber);
const rb_execution_context_t *saved_ec = &fib->cont.saved_ec; const rb_execution_context_t *saved_ec = &fiber->cont.saved_ec;
const rb_thread_t *th = rb_ec_thread_ptr(saved_ec); const rb_thread_t *th = rb_ec_thread_ptr(saved_ec);
/* /*
* vm.c::thread_memsize already counts th->ec->local_storage * vm.c::thread_memsize already counts th->ec->local_storage
*/ */
if (saved_ec->local_storage && fib != th->root_fiber) { if (saved_ec->local_storage && fiber != th->root_fiber) {
size += st_memsize(saved_ec->local_storage); size += st_memsize(saved_ec->local_storage);
} }
size += cont_memsize(&fib->cont); size += cont_memsize(&fiber->cont);
return size; return size;
} }
@ -736,10 +736,10 @@ cont_capture(volatile int *volatile stat)
COMPILER_WARNING_POP COMPILER_WARNING_POP
static inline void static inline void
fiber_restore_thread(rb_thread_t *th, rb_fiber_t *fib) fiber_restore_thread(rb_thread_t *th, rb_fiber_t *fiber)
{ {
ec_switch(th, fib); ec_switch(th, fiber);
VM_ASSERT(th->ec->fiber_ptr == fib); VM_ASSERT(th->ec->fiber_ptr == fiber);
} }
static inline void static inline void
@ -751,17 +751,17 @@ cont_restore_thread(rb_context_t *cont)
if (cont->type == CONTINUATION_CONTEXT) { if (cont->type == CONTINUATION_CONTEXT) {
/* continuation */ /* continuation */
rb_execution_context_t *sec = &cont->saved_ec; rb_execution_context_t *sec = &cont->saved_ec;
rb_fiber_t *fib = NULL; rb_fiber_t *fiber = NULL;
if (sec->fiber_ptr != NULL) { if (sec->fiber_ptr != NULL) {
fib = sec->fiber_ptr; fiber = sec->fiber_ptr;
} }
else if (th->root_fiber) { else if (th->root_fiber) {
fib = th->root_fiber; fiber = th->root_fiber;
} }
if (fib && th->ec != &fib->cont.saved_ec) { if (fiber && th->ec != &fiber->cont.saved_ec) {
ec_switch(th, fib); ec_switch(th, fiber);
} }
if (th->ec->trace_arg != sec->trace_arg) { if (th->ec->trace_arg != sec->trace_arg) {
@ -902,18 +902,18 @@ fiber_machine_stack_alloc(size_t size)
#if FIBER_USE_NATIVE #if FIBER_USE_NATIVE
static void static void
fiber_initialize_machine_stack_context(rb_fiber_t *fib, size_t size) fiber_initialize_machine_stack_context(rb_fiber_t *fiber, size_t size)
{ {
rb_execution_context_t *sec = &fib->cont.saved_ec; rb_execution_context_t *sec = &fiber->cont.saved_ec;
#if defined(FIBER_USE_COROUTINE) #if defined(FIBER_USE_COROUTINE)
char *ptr; char *ptr;
STACK_GROW_DIR_DETECTION; STACK_GROW_DIR_DETECTION;
ptr = fiber_machine_stack_alloc(size); ptr = fiber_machine_stack_alloc(size);
fib->ss_sp = ptr; fiber->ss_sp = ptr;
fib->ss_size = size; fiber->ss_size = size;
coroutine_initialize(&fib->context, fiber_entry, ptr, size); coroutine_initialize(&fiber->context, fiber_entry, ptr, size);
sec->machine.stack_start = (VALUE*)(ptr + STACK_DIR_UPPER(0, size)); sec->machine.stack_start = (VALUE*)(ptr + STACK_DIR_UPPER(0, size));
sec->machine.stack_maxsize = size - RB_PAGE_SIZE; sec->machine.stack_maxsize = size - RB_PAGE_SIZE;
#elif defined(_WIN32) #elif defined(_WIN32)
@ -921,12 +921,12 @@ fiber_initialize_machine_stack_context(rb_fiber_t *fib, size_t size)
# define CreateFiberEx(cs, stacksize, flags, entry, param) \ # define CreateFiberEx(cs, stacksize, flags, entry, param) \
CreateFiber((stacksize), (entry), (param)) CreateFiber((stacksize), (entry), (param))
# endif # endif
fib->fib_handle = CreateFiberEx(size - 1, size, 0, fiber_entry, NULL); fiber->fiber_handle = CreateFiberEx(size - 1, size, 0, fiber_entry, NULL);
if (!fib->fib_handle) { if (!fiber->fiber_handle) {
/* try to release unnecessary fibers & retry to create */ /* try to release unnecessary fibers & retry to create */
rb_gc(); rb_gc();
fib->fib_handle = CreateFiberEx(size - 1, size, 0, fiber_entry, NULL); fiber->fiber_handle = CreateFiberEx(size - 1, size, 0, fiber_entry, NULL);
if (!fib->fib_handle) { if (!fiber->fiber_handle) {
rb_raise(rb_eFiberError, "can't create fiber"); rb_raise(rb_eFiberError, "can't create fiber");
} }
} }
@ -936,9 +936,9 @@ fiber_initialize_machine_stack_context(rb_fiber_t *fib, size_t size)
STACK_GROW_DIR_DETECTION; STACK_GROW_DIR_DETECTION;
ptr = fiber_machine_stack_alloc(size); ptr = fiber_machine_stack_alloc(size);
fib->ss_sp = ptr; fiber->ss_sp = ptr;
fib->ss_size = size; fiber->ss_size = size;
if (fiber_context_create(&fib->context, fiber_entry, NULL, fib->ss_sp, fib->ss_size)) { if (fiber_context_create(&fiber->context, fiber_entry, NULL, fiber->ss_sp, fiber->ss_size)) {
rb_raise(rb_eFiberError, "can't get context for creating fiber: %s", ERRNOMSG); rb_raise(rb_eFiberError, "can't get context for creating fiber: %s", ERRNOMSG);
} }
sec->machine.stack_start = (VALUE*)(ptr + STACK_DIR_UPPER(0, size)); sec->machine.stack_start = (VALUE*)(ptr + STACK_DIR_UPPER(0, size));
@ -946,46 +946,46 @@ fiber_initialize_machine_stack_context(rb_fiber_t *fib, size_t size)
#endif #endif
} }
NOINLINE(static void fiber_setcontext(rb_fiber_t *newfib, rb_fiber_t *oldfib)); NOINLINE(static void fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber));
static void static void
fiber_setcontext(rb_fiber_t *newfib, rb_fiber_t *oldfib) fiber_setcontext(rb_fiber_t *new_fiber, rb_fiber_t *old_fiber)
{ {
rb_thread_t *th = GET_THREAD(); rb_thread_t *th = GET_THREAD();
/* save oldfib's machine stack / TODO: is it needed? */ /* save old_fiber's machine stack / TODO: is it needed? */
if (!FIBER_TERMINATED_P(oldfib)) { if (!FIBER_TERMINATED_P(old_fiber)) {
STACK_GROW_DIR_DETECTION; STACK_GROW_DIR_DETECTION;
SET_MACHINE_STACK_END(&th->ec->machine.stack_end); SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
if (STACK_DIR_UPPER(0, 1)) { if (STACK_DIR_UPPER(0, 1)) {
oldfib->cont.machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end; old_fiber->cont.machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
oldfib->cont.machine.stack = th->ec->machine.stack_end; old_fiber->cont.machine.stack = th->ec->machine.stack_end;
} }
else { else {
oldfib->cont.machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start; old_fiber->cont.machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
oldfib->cont.machine.stack = th->ec->machine.stack_start; old_fiber->cont.machine.stack = th->ec->machine.stack_start;
} }
} }
/* exchange machine_stack_start between oldfib and newfib */ /* exchange machine_stack_start between old_fiber and new_fiber */
oldfib->cont.saved_ec.machine.stack_start = th->ec->machine.stack_start; old_fiber->cont.saved_ec.machine.stack_start = th->ec->machine.stack_start;
/* oldfib->machine.stack_end should be NULL */ /* old_fiber->machine.stack_end should be NULL */
oldfib->cont.saved_ec.machine.stack_end = NULL; old_fiber->cont.saved_ec.machine.stack_end = NULL;
/* restore thread context */ /* restore thread context */
fiber_restore_thread(th, newfib); fiber_restore_thread(th, new_fiber);
/* swap machine context */ /* swap machine context */
#if defined(FIBER_USE_COROUTINE) #if defined(FIBER_USE_COROUTINE)
coroutine_transfer(&oldfib->context, &newfib->context); coroutine_transfer(&old_fiber->context, &new_fiber->context);
#elif defined(_WIN32) #elif defined(_WIN32)
SwitchToFiber(newfib->fib_handle); SwitchToFiber(new_fiber->fiber_handle);
#else #else
if (!newfib->context.uc_stack.ss_sp && th->root_fiber != newfib) { if (!new_fiber->context.uc_stack.ss_sp && th->root_fiber != new_fiber) {
rb_bug("non_root_fiber->context.uc_stac.ss_sp should not be NULL"); rb_bug("non_root_fiber->context.uc_stac.ss_sp should not be NULL");
} }
swapcontext(&oldfib->context, &newfib->context); swapcontext(&old_fiber->context, &new_fiber->context);
#endif #endif
} }
#endif /* FIBER_USE_NATIVE */ #endif /* FIBER_USE_NATIVE */
@ -1374,30 +1374,30 @@ fiber_alloc(VALUE klass)
} }
static rb_fiber_t* static rb_fiber_t*
fiber_t_alloc(VALUE fibval) fiber_t_alloc(VALUE fiber_value)
{ {
rb_fiber_t *fib; rb_fiber_t *fiber;
rb_thread_t *th = GET_THREAD(); rb_thread_t *th = GET_THREAD();
if (DATA_PTR(fibval) != 0) { if (DATA_PTR(fiber_value) != 0) {
rb_raise(rb_eRuntimeError, "cannot initialize twice"); rb_raise(rb_eRuntimeError, "cannot initialize twice");
} }
THREAD_MUST_BE_RUNNING(th); THREAD_MUST_BE_RUNNING(th);
fib = ZALLOC(rb_fiber_t); fiber = ZALLOC(rb_fiber_t);
fib->cont.self = fibval; fiber->cont.self = fiber_value;
fib->cont.type = FIBER_CONTEXT; fiber->cont.type = FIBER_CONTEXT;
cont_init(&fib->cont, th); cont_init(&fiber->cont, th);
fib->cont.saved_ec.fiber_ptr = fib; fiber->cont.saved_ec.fiber_ptr = fiber;
fib->prev = NULL; fiber->prev = NULL;
/* fib->status == 0 == CREATED /* fiber->status == 0 == CREATED
* So that we don't need to set status: fiber_status_set(fib, FIBER_CREATED); */ * So that we don't need to set status: fiber_status_set(fiber, FIBER_CREATED); */
VM_ASSERT(FIBER_CREATED_P(fib)); VM_ASSERT(FIBER_CREATED_P(fiber));
DATA_PTR(fibval) = fib; DATA_PTR(fiber_value) = fiber;
return fib; return fiber;
} }
rb_control_frame_t * rb_control_frame_t *
@ -1413,47 +1413,47 @@ rb_vm_push_frame(rb_execution_context_t *sec,
int stack_max); int stack_max);
static VALUE static VALUE
fiber_init(VALUE fibval, VALUE proc) fiber_init(VALUE fiber_value, VALUE proc)
{ {
rb_fiber_t *fib = fiber_t_alloc(fibval); rb_fiber_t *fiber = fiber_t_alloc(fiber_value);
rb_context_t *cont = &fib->cont; rb_context_t *cont = &fiber->cont;
rb_execution_context_t *sec = &cont->saved_ec; rb_execution_context_t *sec = &cont->saved_ec;
rb_thread_t *cth = GET_THREAD(); rb_thread_t *cth = GET_THREAD();
rb_vm_t *vm = cth->vm; rb_vm_t *vm = cth->vm;
size_t fib_stack_bytes = vm->default_params.fiber_vm_stack_size; size_t fiber_stack_bytes = vm->default_params.fiber_vm_stack_size;
size_t thr_stack_bytes = vm->default_params.thread_vm_stack_size; size_t thr_stack_bytes = vm->default_params.thread_vm_stack_size;
VALUE *vm_stack; VALUE *vm_stack;
/* initialize cont */ /* initialize cont */
cont->saved_vm_stack.ptr = NULL; cont->saved_vm_stack.ptr = NULL;
if (fib_stack_bytes == thr_stack_bytes) { if (fiber_stack_bytes == thr_stack_bytes) {
vm_stack = rb_thread_recycle_stack(fib_stack_bytes / sizeof(VALUE)); vm_stack = rb_thread_recycle_stack(fiber_stack_bytes / sizeof(VALUE));
} }
else { else {
vm_stack = ruby_xmalloc(fib_stack_bytes); vm_stack = ruby_xmalloc(fiber_stack_bytes);
} }
cont->free_vm_stack = 1; cont->free_vm_stack = 1;
rb_ec_initialize_vm_stack(sec, vm_stack, fib_stack_bytes / sizeof(VALUE)); rb_ec_initialize_vm_stack(sec, vm_stack, fiber_stack_bytes / sizeof(VALUE));
sec->tag = NULL; sec->tag = NULL;
sec->local_storage = NULL; sec->local_storage = NULL;
sec->local_storage_recursive_hash = Qnil; sec->local_storage_recursive_hash = Qnil;
sec->local_storage_recursive_hash_for_trace = Qnil; sec->local_storage_recursive_hash_for_trace = Qnil;
fib->first_proc = proc; fiber->first_proc = proc;
#if !FIBER_USE_NATIVE #if !FIBER_USE_NATIVE
MEMCPY(&cont->jmpbuf, &cth->root_jmpbuf, rb_jmpbuf_t, 1); MEMCPY(&cont->jmpbuf, &cth->root_jmpbuf, rb_jmpbuf_t, 1);
#endif #endif
return fibval; return fiber_value;
} }
/* :nodoc: */ /* :nodoc: */
static VALUE static VALUE
rb_fiber_init(VALUE fibval) rb_fiber_init(VALUE fiber_value)
{ {
return fiber_init(fibval, rb_block_proc()); return fiber_init(fiber_value, rb_block_proc());
} }
VALUE VALUE
@ -1462,30 +1462,30 @@ rb_fiber_new(VALUE (*func)(ANYARGS), VALUE obj)
return fiber_init(fiber_alloc(rb_cFiber), rb_proc_new(func, obj)); return fiber_init(fiber_alloc(rb_cFiber), rb_proc_new(func, obj));
} }
static void rb_fiber_terminate(rb_fiber_t *fib, int need_interrupt); static void rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt);
void void
rb_fiber_start(void) rb_fiber_start(void)
{ {
rb_thread_t * volatile th = GET_THREAD(); rb_thread_t * volatile th = GET_THREAD();
rb_fiber_t *fib = th->ec->fiber_ptr; rb_fiber_t *fiber = th->ec->fiber_ptr;
rb_proc_t *proc; rb_proc_t *proc;
enum ruby_tag_type state; enum ruby_tag_type state;
int need_interrupt = TRUE; int need_interrupt = TRUE;
VM_ASSERT(th->ec == ruby_current_execution_context_ptr); VM_ASSERT(th->ec == ruby_current_execution_context_ptr);
VM_ASSERT(FIBER_RESUMED_P(fib)); VM_ASSERT(FIBER_RESUMED_P(fiber));
EC_PUSH_TAG(th->ec); EC_PUSH_TAG(th->ec);
if ((state = EC_EXEC_TAG()) == TAG_NONE) { if ((state = EC_EXEC_TAG()) == TAG_NONE) {
rb_context_t *cont = &VAR_FROM_MEMORY(fib)->cont; rb_context_t *cont = &VAR_FROM_MEMORY(fiber)->cont;
int argc; int argc;
const VALUE *argv, args = cont->value; const VALUE *argv, args = cont->value;
GetProcPtr(fib->first_proc, proc); GetProcPtr(fiber->first_proc, proc);
argv = (argc = cont->argc) > 1 ? RARRAY_CONST_PTR(args) : &args; argv = (argc = cont->argc) > 1 ? RARRAY_CONST_PTR(args) : &args;
cont->value = Qnil; cont->value = Qnil;
th->ec->errinfo = Qnil; th->ec->errinfo = Qnil;
th->ec->root_lep = rb_vm_proc_local_ep(fib->first_proc); th->ec->root_lep = rb_vm_proc_local_ep(fiber->first_proc);
th->ec->root_svar = Qfalse; th->ec->root_svar = Qfalse;
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil); EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
@ -1495,7 +1495,7 @@ rb_fiber_start(void)
if (state) { if (state) {
VALUE err = th->ec->errinfo; VALUE err = th->ec->errinfo;
VM_ASSERT(FIBER_RESUMED_P(fib)); VM_ASSERT(FIBER_RESUMED_P(fiber));
if (state == TAG_RAISE || state == TAG_FATAL) { if (state == TAG_RAISE || state == TAG_FATAL) {
rb_threadptr_pending_interrupt_enque(th, err); rb_threadptr_pending_interrupt_enque(th, err);
@ -1509,57 +1509,57 @@ rb_fiber_start(void)
need_interrupt = TRUE; need_interrupt = TRUE;
} }
rb_fiber_terminate(fib, need_interrupt); rb_fiber_terminate(fiber, need_interrupt);
VM_UNREACHABLE(rb_fiber_start); VM_UNREACHABLE(rb_fiber_start);
} }
static rb_fiber_t * static rb_fiber_t *
root_fiber_alloc(rb_thread_t *th) root_fiber_alloc(rb_thread_t *th)
{ {
VALUE fibval = fiber_alloc(rb_cFiber); VALUE fiber_value = fiber_alloc(rb_cFiber);
rb_fiber_t *fib = th->ec->fiber_ptr; rb_fiber_t *fiber = th->ec->fiber_ptr;
VM_ASSERT(DATA_PTR(fibval) == NULL); VM_ASSERT(DATA_PTR(fiber_value) == NULL);
VM_ASSERT(fib->cont.type == FIBER_CONTEXT); VM_ASSERT(fiber->cont.type == FIBER_CONTEXT);
VM_ASSERT(fib->status == FIBER_RESUMED); VM_ASSERT(fiber->status == FIBER_RESUMED);
th->root_fiber = fib; th->root_fiber = fiber;
DATA_PTR(fibval) = fib; DATA_PTR(fiber_value) = fiber;
fib->cont.self = fibval; fiber->cont.self = fiber_value;
#if FIBER_USE_NATIVE #if FIBER_USE_NATIVE
#if defined(FIBER_USE_COROUTINE) #if defined(FIBER_USE_COROUTINE)
coroutine_initialize_main(&fib->context); coroutine_initialize_main(&fiber->context);
#elif defined(_WIN32) #elif defined(_WIN32)
/* setup fib_handle for root Fiber */ /* setup fiber_handle for root Fiber */
if (fib->fib_handle == 0) { if (fiber->fiber_handle == 0) {
if ((fib->fib_handle = ConvertThreadToFiber(0)) == 0) { if ((fiber->fiber_handle = ConvertThreadToFiber(0)) == 0) {
rb_bug("root_fiber_alloc: ConvertThreadToFiber() failed - %s\n", rb_w32_strerror(-1)); rb_bug("root_fiber_alloc: ConvertThreadToFiber() failed - %s\n", rb_w32_strerror(-1));
} }
} }
else { else {
rb_bug("root_fiber_alloc: fib_handle is not NULL."); rb_bug("root_fiber_alloc: fiber_handle is not NULL.");
} }
#endif #endif
#endif #endif
return fib; return fiber;
} }
void void
rb_threadptr_root_fiber_setup(rb_thread_t *th) rb_threadptr_root_fiber_setup(rb_thread_t *th)
{ {
rb_fiber_t *fib = ruby_mimmalloc(sizeof(rb_fiber_t)); rb_fiber_t *fiber = ruby_mimmalloc(sizeof(rb_fiber_t));
MEMZERO(fib, rb_fiber_t, 1); MEMZERO(fiber, rb_fiber_t, 1);
fib->cont.type = FIBER_CONTEXT; fiber->cont.type = FIBER_CONTEXT;
fib->cont.saved_ec.fiber_ptr = fib; fiber->cont.saved_ec.fiber_ptr = fiber;
fib->cont.saved_ec.thread_ptr = th; fiber->cont.saved_ec.thread_ptr = th;
fiber_status_set(fib, FIBER_RESUMED); /* skip CREATED */ fiber_status_set(fiber, FIBER_RESUMED); /* skip CREATED */
th->ec = &fib->cont.saved_ec; th->ec = &fiber->cont.saved_ec;
VM_ASSERT(fib->cont.free_vm_stack == 0); VM_ASSERT(fiber->cont.free_vm_stack == 0);
/* NOTE: On WIN32, fib_handle is not allocated yet. */ /* NOTE: On WIN32, fiber_handle is not allocated yet. */
} }
void void
@ -1606,8 +1606,8 @@ fiber_current(void)
static inline rb_fiber_t* static inline rb_fiber_t*
return_fiber(void) return_fiber(void)
{ {
rb_fiber_t *fib = fiber_current(); rb_fiber_t *fiber = fiber_current();
rb_fiber_t *prev = fib->prev; rb_fiber_t *prev = fiber->prev;
if (!prev) { if (!prev) {
rb_thread_t *th = GET_THREAD(); rb_thread_t *th = GET_THREAD();
@ -1615,13 +1615,13 @@ return_fiber(void)
VM_ASSERT(root_fiber != NULL); VM_ASSERT(root_fiber != NULL);
if (root_fiber == fib) { if (root_fiber == fiber) {
rb_raise(rb_eFiberError, "can't yield from root fiber"); rb_raise(rb_eFiberError, "can't yield from root fiber");
} }
return root_fiber; return root_fiber;
} }
else { else {
fib->prev = NULL; fiber->prev = NULL;
return prev; return prev;
} }
} }
@ -1633,38 +1633,38 @@ rb_fiber_current(void)
} }
static inline VALUE static inline VALUE
fiber_store(rb_fiber_t *next_fib, rb_thread_t *th) fiber_store(rb_fiber_t *next_fiber, rb_thread_t *th)
{ {
rb_fiber_t *fib; rb_fiber_t *fiber;
if (th->ec->fiber_ptr != NULL) { if (th->ec->fiber_ptr != NULL) {
fib = th->ec->fiber_ptr; fiber = th->ec->fiber_ptr;
} }
else { else {
/* create root fiber */ /* create root fiber */
fib = root_fiber_alloc(th); fiber = root_fiber_alloc(th);
} }
VM_ASSERT(FIBER_RESUMED_P(fib) || FIBER_TERMINATED_P(fib)); VM_ASSERT(FIBER_RESUMED_P(fiber) || FIBER_TERMINATED_P(fiber));
VM_ASSERT(FIBER_RUNNABLE_P(next_fib)); VM_ASSERT(FIBER_RUNNABLE_P(next_fiber));
#if FIBER_USE_NATIVE #if FIBER_USE_NATIVE
if (FIBER_CREATED_P(next_fib)) { if (FIBER_CREATED_P(next_fiber)) {
fiber_initialize_machine_stack_context(next_fib, th->vm->default_params.fiber_machine_stack_size); fiber_initialize_machine_stack_context(next_fiber, th->vm->default_params.fiber_machine_stack_size);
} }
#endif #endif
if (FIBER_RESUMED_P(fib)) fiber_status_set(fib, FIBER_SUSPENDED); if (FIBER_RESUMED_P(fiber)) fiber_status_set(fiber, FIBER_SUSPENDED);
#if FIBER_USE_NATIVE == 0 #if FIBER_USE_NATIVE == 0
/* should (re-)allocate stack are before fib->status change to pass fiber_verify() */ /* should (re-)allocate stack are before fiber->status change to pass fiber_verify() */
cont_save_machine_stack(th, &fib->cont); cont_save_machine_stack(th, &fiber->cont);
#endif #endif
fiber_status_set(next_fib, FIBER_RESUMED); fiber_status_set(next_fiber, FIBER_RESUMED);
#if FIBER_USE_NATIVE #if FIBER_USE_NATIVE
fiber_setcontext(next_fib, fib); fiber_setcontext(next_fiber, fiber);
/* restored */ /* restored */
#ifdef MAX_MACHINE_STACK_CACHE #ifdef MAX_MACHINE_STACK_CACHE
if (terminated_machine_stack.ptr) { if (terminated_machine_stack.ptr) {
@ -1672,7 +1672,7 @@ fiber_store(rb_fiber_t *next_fib, rb_thread_t *th)
machine_stack_cache[machine_stack_cache_index++] = terminated_machine_stack; machine_stack_cache[machine_stack_cache_index++] = terminated_machine_stack;
} }
else { else {
if (terminated_machine_stack.ptr != fib->cont.machine.stack) { if (terminated_machine_stack.ptr != fiber->cont.machine.stack) {
#ifdef _WIN32 #ifdef _WIN32
VirtualFree(terminated_machine_stack.ptr, 0, MEM_RELEASE); VirtualFree(terminated_machine_stack.ptr, 0, MEM_RELEASE);
#else #else
@ -1687,41 +1687,41 @@ fiber_store(rb_fiber_t *next_fib, rb_thread_t *th)
terminated_machine_stack.size = 0; terminated_machine_stack.size = 0;
} }
#endif /* MAX_MACHINE_STACK_CACHE */ #endif /* MAX_MACHINE_STACK_CACHE */
fib = th->ec->fiber_ptr; fiber = th->ec->fiber_ptr;
if (fib->cont.argc == -1) rb_exc_raise(fib->cont.value); if (fiber->cont.argc == -1) rb_exc_raise(fiber->cont.value);
return fib->cont.value; return fiber->cont.value;
#else /* FIBER_USE_NATIVE */ #else /* FIBER_USE_NATIVE */
fib->cont.saved_ec.machine.stack_end = NULL; fiber->cont.saved_ec.machine.stack_end = NULL;
if (ruby_setjmp(fib->cont.jmpbuf)) { if (ruby_setjmp(fiber->cont.jmpbuf)) {
/* restored */ /* restored */
fib = th->ec->fiber_ptr; fiber = th->ec->fiber_ptr;
if (fib->cont.argc == -1) rb_exc_raise(fib->cont.value); if (fiber->cont.argc == -1) rb_exc_raise(fiber->cont.value);
if (next_fib->cont.value == Qundef) { if (next_fiber->cont.value == Qundef) {
cont_restore_0(&next_fib->cont, &next_fib->cont.value); cont_restore_0(&next_fiber->cont, &next_fiber->cont.value);
VM_UNREACHABLE(fiber_store); VM_UNREACHABLE(fiber_store);
} }
return fib->cont.value; return fiber->cont.value;
} }
else { else {
VALUE undef = Qundef; VALUE undef = Qundef;
cont_restore_0(&next_fib->cont, &undef); cont_restore_0(&next_fiber->cont, &undef);
VM_UNREACHABLE(fiber_store); VM_UNREACHABLE(fiber_store);
} }
#endif /* FIBER_USE_NATIVE */ #endif /* FIBER_USE_NATIVE */
} }
static inline VALUE static inline VALUE
fiber_switch(rb_fiber_t *fib, int argc, const VALUE *argv, int is_resume) fiber_switch(rb_fiber_t *fiber, int argc, const VALUE *argv, int is_resume)
{ {
VALUE value; VALUE value;
rb_context_t *cont = &fib->cont; rb_context_t *cont = &fiber->cont;
rb_thread_t *th = GET_THREAD(); rb_thread_t *th = GET_THREAD();
/* make sure the root_fiber object is available */ /* make sure the root_fiber object is available */
if (th->root_fiber == NULL) root_fiber_alloc(th); if (th->root_fiber == NULL) root_fiber_alloc(th);
if (th->ec->fiber_ptr == fib) { if (th->ec->fiber_ptr == fiber) {
/* ignore fiber context switch /* ignore fiber context switch
* because destination fiber is same as current fiber * because destination fiber is same as current fiber
*/ */
@ -1734,7 +1734,7 @@ fiber_switch(rb_fiber_t *fib, int argc, const VALUE *argv, int is_resume)
else if (cont->saved_ec.protect_tag != th->ec->protect_tag) { else if (cont->saved_ec.protect_tag != th->ec->protect_tag) {
rb_raise(rb_eFiberError, "fiber called across stack rewinding barrier"); rb_raise(rb_eFiberError, "fiber called across stack rewinding barrier");
} }
else if (FIBER_TERMINATED_P(fib)) { else if (FIBER_TERMINATED_P(fiber)) {
value = rb_exc_new2(rb_eFiberError, "dead fiber called"); value = rb_exc_new2(rb_eFiberError, "dead fiber called");
if (!FIBER_TERMINATED_P(th->ec->fiber_ptr)) { if (!FIBER_TERMINATED_P(th->ec->fiber_ptr)) {
@ -1760,14 +1760,14 @@ fiber_switch(rb_fiber_t *fib, int argc, const VALUE *argv, int is_resume)
} }
if (is_resume) { if (is_resume) {
fib->prev = fiber_current(); fiber->prev = fiber_current();
} }
VM_ASSERT(FIBER_RUNNABLE_P(fib)); VM_ASSERT(FIBER_RUNNABLE_P(fiber));
cont->argc = argc; cont->argc = argc;
cont->value = make_passing_arg(argc, argv); cont->value = make_passing_arg(argc, argv);
value = fiber_store(fib, th); value = fiber_store(fiber, th);
RUBY_VM_CHECK_INTS(th->ec); RUBY_VM_CHECK_INTS(th->ec);
EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil); EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
@ -1776,20 +1776,20 @@ fiber_switch(rb_fiber_t *fib, int argc, const VALUE *argv, int is_resume)
} }
VALUE VALUE
rb_fiber_transfer(VALUE fibval, int argc, const VALUE *argv) rb_fiber_transfer(VALUE fiber_value, int argc, const VALUE *argv)
{ {
return fiber_switch(fiber_ptr(fibval), argc, argv, 0); return fiber_switch(fiber_ptr(fiber_value), argc, argv, 0);
} }
void void
rb_fiber_close(rb_fiber_t *fib) rb_fiber_close(rb_fiber_t *fiber)
{ {
rb_execution_context_t *ec = &fib->cont.saved_ec; rb_execution_context_t *ec = &fiber->cont.saved_ec;
VALUE *vm_stack = ec->vm_stack; VALUE *vm_stack = ec->vm_stack;
size_t stack_bytes = ec->vm_stack_size * sizeof(VALUE); size_t stack_bytes = ec->vm_stack_size * sizeof(VALUE);
fiber_status_set(fib, FIBER_TERMINATED); fiber_status_set(fiber, FIBER_TERMINATED);
if (fib->cont.free_vm_stack) { if (fiber->cont.free_vm_stack) {
if (stack_bytes == rb_ec_vm_ptr(ec)->default_params.thread_vm_stack_size) { if (stack_bytes == rb_ec_vm_ptr(ec)->default_params.thread_vm_stack_size) {
rb_thread_recycle_stack_release(vm_stack); rb_thread_recycle_stack_release(vm_stack);
} }
@ -1807,54 +1807,54 @@ rb_fiber_close(rb_fiber_t *fib)
} }
static void static void
rb_fiber_terminate(rb_fiber_t *fib, int need_interrupt) rb_fiber_terminate(rb_fiber_t *fiber, int need_interrupt)
{ {
VALUE value = fib->cont.value; VALUE value = fiber->cont.value;
rb_fiber_t *ret_fib; rb_fiber_t *ret_fiber;
VM_ASSERT(FIBER_RESUMED_P(fib)); VM_ASSERT(FIBER_RESUMED_P(fiber));
rb_fiber_close(fib); rb_fiber_close(fiber);
#if FIBER_USE_NATIVE #if FIBER_USE_NATIVE
#if defined(FIBER_USE_COROUTINE) #if defined(FIBER_USE_COROUTINE)
coroutine_destroy(&fib->context); coroutine_destroy(&fiber->context);
#elif !defined(_WIN32) #elif !defined(_WIN32)
fib->context.uc_stack.ss_sp = NULL; fiber->context.uc_stack.ss_sp = NULL;
#endif #endif
#ifdef MAX_MACHINE_STACK_CACHE #ifdef MAX_MACHINE_STACK_CACHE
/* Ruby must not switch to other thread until storing terminated_machine_stack */ /* Ruby must not switch to other thread until storing terminated_machine_stack */
terminated_machine_stack.ptr = fib->ss_sp; terminated_machine_stack.ptr = fiber->ss_sp;
terminated_machine_stack.size = fib->ss_size / sizeof(VALUE); terminated_machine_stack.size = fiber->ss_size / sizeof(VALUE);
fib->ss_sp = NULL; fiber->ss_sp = NULL;
fib->cont.machine.stack = NULL; fiber->cont.machine.stack = NULL;
fib->cont.machine.stack_size = 0; fiber->cont.machine.stack_size = 0;
#endif #endif
#endif #endif
ret_fib = return_fiber(); ret_fiber = return_fiber();
if (need_interrupt) RUBY_VM_SET_INTERRUPT(&ret_fib->cont.saved_ec); if (need_interrupt) RUBY_VM_SET_INTERRUPT(&ret_fiber->cont.saved_ec);
fiber_switch(ret_fib, 1, &value, 0); fiber_switch(ret_fiber, 1, &value, 0);
} }
VALUE VALUE
rb_fiber_resume(VALUE fibval, int argc, const VALUE *argv) rb_fiber_resume(VALUE fiber_value, int argc, const VALUE *argv)
{ {
rb_fiber_t *fib = fiber_ptr(fibval); rb_fiber_t *fiber = fiber_ptr(fiber_value);
if (argc == -1 && FIBER_CREATED_P(fib)) { if (argc == -1 && FIBER_CREATED_P(fiber)) {
rb_raise(rb_eFiberError, "cannot raise exception on unborn fiber"); rb_raise(rb_eFiberError, "cannot raise exception on unborn fiber");
} }
if (fib->prev != 0 || fiber_is_root_p(fib)) { if (fiber->prev != 0 || fiber_is_root_p(fiber)) {
rb_raise(rb_eFiberError, "double resume"); rb_raise(rb_eFiberError, "double resume");
} }
if (fib->transferred != 0) { if (fiber->transferred != 0) {
rb_raise(rb_eFiberError, "cannot resume transferred Fiber"); rb_raise(rb_eFiberError, "cannot resume transferred Fiber");
} }
return fiber_switch(fib, argc, argv, 1); return fiber_switch(fiber, argc, argv, 1);
} }
VALUE VALUE
@ -1881,9 +1881,9 @@ rb_fiber_reset_root_local_storage(rb_thread_t *th)
* before using this method. * before using this method.
*/ */
VALUE VALUE
rb_fiber_alive_p(VALUE fibval) rb_fiber_alive_p(VALUE fiber_value)
{ {
return FIBER_TERMINATED_P(fiber_ptr(fibval)) ? Qfalse : Qtrue; return FIBER_TERMINATED_P(fiber_ptr(fiber_value)) ? Qfalse : Qtrue;
} }
/* /*
@ -1902,9 +1902,9 @@ rb_fiber_alive_p(VALUE fibval)
* Fiber.yield * Fiber.yield
*/ */
static VALUE static VALUE
rb_fiber_m_resume(int argc, VALUE *argv, VALUE fib) rb_fiber_m_resume(int argc, VALUE *argv, VALUE fiber)
{ {
return rb_fiber_resume(fib, argc, argv); return rb_fiber_resume(fiber, argc, argv);
} }
/* /*
@ -1927,10 +1927,10 @@ rb_fiber_m_resume(int argc, VALUE *argv, VALUE fib)
* blocks. * blocks.
*/ */
static VALUE static VALUE
rb_fiber_raise(int argc, VALUE *argv, VALUE fib) rb_fiber_raise(int argc, VALUE *argv, VALUE fiber)
{ {
VALUE exc = rb_make_exception(argc, argv); VALUE exc = rb_make_exception(argc, argv);
return rb_fiber_resume(fib, -1, &exc); return rb_fiber_resume(fiber, -1, &exc);
} }
/* /*
@ -1979,11 +1979,11 @@ rb_fiber_raise(int argc, VALUE *argv, VALUE fib)
* *
*/ */
static VALUE static VALUE
rb_fiber_m_transfer(int argc, VALUE *argv, VALUE fibval) rb_fiber_m_transfer(int argc, VALUE *argv, VALUE fiber_value)
{ {
rb_fiber_t *fib = fiber_ptr(fibval); rb_fiber_t *fiber = fiber_ptr(fiber_value);
fib->transferred = 1; fiber->transferred = 1;
return fiber_switch(fib, argc, argv, 0); return fiber_switch(fiber, argc, argv, 0);
} }
/* /*
@ -2025,22 +2025,22 @@ rb_fiber_s_current(VALUE klass)
*/ */
static VALUE static VALUE
fiber_to_s(VALUE fibval) fiber_to_s(VALUE fiber_value)
{ {
const rb_fiber_t *fib = fiber_ptr(fibval); const rb_fiber_t *fiber = fiber_ptr(fiber_value);
const rb_proc_t *proc; const rb_proc_t *proc;
char status_info[0x10]; char status_info[0x10];
snprintf(status_info, 0x10, " (%s)", fiber_status_name(fib->status)); snprintf(status_info, 0x10, " (%s)", fiber_status_name(fiber->status));
if (!rb_obj_is_proc(fib->first_proc)) { if (!rb_obj_is_proc(fiber->first_proc)) {
VALUE str = rb_any_to_s(fibval); VALUE str = rb_any_to_s(fiber_value);
strlcat(status_info, ">", sizeof(status_info)); strlcat(status_info, ">", sizeof(status_info));
rb_str_set_len(str, RSTRING_LEN(str)-1); rb_str_set_len(str, RSTRING_LEN(str)-1);
rb_str_cat_cstr(str, status_info); rb_str_cat_cstr(str, status_info);
return str; return str;
} }
GetProcPtr(fib->first_proc, proc); GetProcPtr(fiber->first_proc, proc);
return rb_block_to_s(fibval, &proc->block, status_info); return rb_block_to_s(fiber_value, &proc->block, status_info);
} }
#ifdef HAVE_WORKING_FORK #ifdef HAVE_WORKING_FORK