mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
* complex.c, rational.c, lib/cmath.rb, lib/date.rb lib/date/delta*:
reverted r27484-27486. now official spec. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@27503 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
parent
76b33197e2
commit
a90469602c
9 changed files with 1147 additions and 2 deletions
|
@ -1,3 +1,8 @@
|
|||
Mon Apr 26 20:11:05 2010 Tadayoshi Funaba <tadf@dotrb.org>
|
||||
|
||||
* complex.c, rational.c, lib/cmath.rb, lib/date.rb lib/date/delta*:
|
||||
reverted r27484-27486. now official spec.
|
||||
|
||||
Mon Apr 26 15:42:59 2010 NAKAMURA Usaku <usa@ruby-lang.org>
|
||||
|
||||
* ext/json/generator/generator.c (convert_UTF8_to_JSON_ASCII): get rid
|
||||
|
|
15
complex.c
15
complex.c
|
@ -1333,6 +1333,20 @@ nucomp_to_r(VALUE self)
|
|||
return f_to_r(dat->real);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* cmp.rationalize([eps]) -> rational
|
||||
*
|
||||
* Returns the value as a rational if possible. An optional argument
|
||||
* eps is always ignored.
|
||||
*/
|
||||
static VALUE
|
||||
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
rb_scan_args(argc, argv, "01", NULL);
|
||||
return nucomp_to_r(self);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* nil.to_c -> (0+0i)
|
||||
|
@ -1923,6 +1937,7 @@ Init_Complex(void)
|
|||
rb_define_method(rb_cComplex, "to_i", nucomp_to_i, 0);
|
||||
rb_define_method(rb_cComplex, "to_f", nucomp_to_f, 0);
|
||||
rb_define_method(rb_cComplex, "to_r", nucomp_to_r, 0);
|
||||
rb_define_method(rb_cComplex, "rationalize", nucomp_rationalize, -1);
|
||||
rb_define_method(rb_cNilClass, "to_c", nilclass_to_c, 0);
|
||||
rb_define_method(rb_cNumeric, "to_c", numeric_to_c, 0);
|
||||
|
||||
|
|
24
lib/cmath.rb
24
lib/cmath.rb
|
@ -4,8 +4,10 @@ module CMath
|
|||
|
||||
alias exp! exp
|
||||
alias log! log
|
||||
alias log2! log2
|
||||
alias log10! log10
|
||||
alias sqrt! sqrt
|
||||
alias cbrt! cbrt
|
||||
|
||||
alias sin! sin
|
||||
alias cos! cos
|
||||
|
@ -47,6 +49,14 @@ module CMath
|
|||
end
|
||||
end
|
||||
|
||||
def log2(z)
|
||||
if z.real? and z >= 0
|
||||
log2!(z)
|
||||
else
|
||||
log(z) / log!(2)
|
||||
end
|
||||
end
|
||||
|
||||
def log10(z)
|
||||
if z.real? and z >= 0
|
||||
log10!(z)
|
||||
|
@ -74,6 +84,14 @@ module CMath
|
|||
end
|
||||
end
|
||||
|
||||
def cbrt(z)
|
||||
if z.real? and z >= 0
|
||||
cbrt!(z)
|
||||
else
|
||||
Complex(z) ** (1.0/3)
|
||||
end
|
||||
end
|
||||
|
||||
def sin(z)
|
||||
if z.real?
|
||||
sin!(z)
|
||||
|
@ -186,10 +204,14 @@ module CMath
|
|||
module_function :exp
|
||||
module_function :log!
|
||||
module_function :log
|
||||
module_function :log2!
|
||||
module_function :log2
|
||||
module_function :log10!
|
||||
module_function :log10
|
||||
module_function :sqrt!
|
||||
module_function :sqrt
|
||||
module_function :cbrt!
|
||||
module_function :cbrt
|
||||
|
||||
module_function :sin!
|
||||
module_function :sin
|
||||
|
@ -221,8 +243,6 @@ module CMath
|
|||
module_function :atanh!
|
||||
module_function :atanh
|
||||
|
||||
module_function :log2
|
||||
module_function :cbrt
|
||||
module_function :frexp
|
||||
module_function :ldexp
|
||||
module_function :hypot
|
||||
|
|
|
@ -1371,6 +1371,12 @@ class Date
|
|||
case other
|
||||
when Numeric; return @ajd <=> other
|
||||
when Date; return @ajd <=> other.ajd
|
||||
else
|
||||
begin
|
||||
l, r = other.coerce(self)
|
||||
return l <=> r
|
||||
rescue NoMethodError
|
||||
end
|
||||
end
|
||||
nil
|
||||
end
|
||||
|
@ -1385,6 +1391,9 @@ class Date
|
|||
case other
|
||||
when Numeric; return jd == other
|
||||
when Date; return jd == other.jd
|
||||
else
|
||||
l, r = other.coerce(self)
|
||||
return l === r
|
||||
end
|
||||
false
|
||||
end
|
||||
|
|
431
lib/date/delta.rb
Normal file
431
lib/date/delta.rb
Normal file
|
@ -0,0 +1,431 @@
|
|||
# delta.rb: Written by Tadayoshi Funaba 2004-2009
|
||||
|
||||
require 'date'
|
||||
require 'date/delta/parser'
|
||||
|
||||
class Date
|
||||
|
||||
class Delta
|
||||
|
||||
include Comparable
|
||||
|
||||
UNIT_PREFIXES = {
|
||||
'yotta' => Rational(10**24),
|
||||
'zetta' => Rational(10**21),
|
||||
'exa' => Rational(10**18),
|
||||
'peta' => Rational(10**15),
|
||||
'tera' => Rational(10**12),
|
||||
'giga' => Rational(10**9),
|
||||
'mega' => Rational(10**6),
|
||||
'kilo' => Rational(10**3),
|
||||
'hecto' => Rational(10**2),
|
||||
'deca' => Rational(10**1),
|
||||
'deka' => Rational(10**1),
|
||||
'deci' => Rational(1, 10**1),
|
||||
'centi' => Rational(1, 10**2),
|
||||
'milli' => Rational(1, 10**3),
|
||||
'decimilli' => Rational(1, 10**4),
|
||||
'centimilli' => Rational(1, 10**5),
|
||||
'micro' => Rational(1, 10**6),
|
||||
'nano' => Rational(1, 10**9),
|
||||
'millimicro' => Rational(1, 10**9),
|
||||
'pico' => Rational(1, 10**12),
|
||||
'micromicro' => Rational(1, 10**12),
|
||||
'femto' => Rational(1, 10**15),
|
||||
'atto' => Rational(1, 10**18),
|
||||
'zepto' => Rational(1, 10**21),
|
||||
'yocto' => Rational(1, 10**24)
|
||||
}
|
||||
|
||||
IUNITS = {
|
||||
'year' => Complex(0, 12),
|
||||
'month' => Complex(0, 1)
|
||||
}
|
||||
|
||||
RUNITS = {
|
||||
'day' => Rational(1),
|
||||
'week' => Rational(7),
|
||||
'sennight' => Rational(7),
|
||||
'fortnight' => Rational(14),
|
||||
'hour' => Rational(1, 24),
|
||||
'minute' => Rational(1, 1440),
|
||||
'second' => Rational(1, 86400)
|
||||
}
|
||||
|
||||
UNIT_PREFIXES.each do |k, v|
|
||||
RUNITS[k + 'second'] = v * RUNITS['second']
|
||||
end
|
||||
|
||||
remove_const :UNIT_PREFIXES
|
||||
|
||||
UNITS = {}
|
||||
|
||||
IUNITS.each do |k, v|
|
||||
UNITS[k] = v
|
||||
end
|
||||
|
||||
RUNITS.each do |k, v|
|
||||
UNITS[k] = v
|
||||
end
|
||||
|
||||
UNITS4KEY = {}
|
||||
|
||||
UNITS.each do |k, v|
|
||||
UNITS4KEY[k] = UNITS4KEY[k + 's'] = v
|
||||
end
|
||||
|
||||
UNITS4KEY['y'] = UNITS4KEY['years']
|
||||
UNITS4KEY['yr'] = UNITS4KEY['years']
|
||||
UNITS4KEY['yrs'] = UNITS4KEY['years']
|
||||
UNITS4KEY['m'] = UNITS4KEY['months']
|
||||
UNITS4KEY['mo'] = UNITS4KEY['months']
|
||||
UNITS4KEY['mon'] = UNITS4KEY['months']
|
||||
UNITS4KEY['mnth'] = UNITS4KEY['months']
|
||||
UNITS4KEY['mnths'] = UNITS4KEY['months']
|
||||
UNITS4KEY['w'] = UNITS4KEY['weeks']
|
||||
UNITS4KEY['wk'] = UNITS4KEY['weeks']
|
||||
UNITS4KEY['d'] = UNITS4KEY['days']
|
||||
UNITS4KEY['dy'] = UNITS4KEY['days']
|
||||
UNITS4KEY['dys'] = UNITS4KEY['days']
|
||||
UNITS4KEY['h'] = UNITS4KEY['hours']
|
||||
UNITS4KEY['hr'] = UNITS4KEY['hours']
|
||||
UNITS4KEY['hrs'] = UNITS4KEY['hours']
|
||||
UNITS4KEY['min'] = UNITS4KEY['minutes']
|
||||
UNITS4KEY['mins'] = UNITS4KEY['minutes']
|
||||
UNITS4KEY['s'] = UNITS4KEY['seconds']
|
||||
UNITS4KEY['sec'] = UNITS4KEY['seconds']
|
||||
UNITS4KEY['secs'] = UNITS4KEY['seconds']
|
||||
UNITS4KEY['ms'] = UNITS4KEY['milliseconds']
|
||||
UNITS4KEY['msec'] = UNITS4KEY['milliseconds']
|
||||
UNITS4KEY['msecs'] = UNITS4KEY['milliseconds']
|
||||
UNITS4KEY['milli'] = UNITS4KEY['milliseconds']
|
||||
UNITS4KEY['us'] = UNITS4KEY['microseconds']
|
||||
UNITS4KEY['usec'] = UNITS4KEY['microseconds']
|
||||
UNITS4KEY['usecs'] = UNITS4KEY['microseconds']
|
||||
UNITS4KEY['micro'] = UNITS4KEY['microseconds']
|
||||
UNITS4KEY['ns'] = UNITS4KEY['nanoseconds']
|
||||
UNITS4KEY['nsec'] = UNITS4KEY['nanoseconds']
|
||||
UNITS4KEY['nsecs'] = UNITS4KEY['nanoseconds']
|
||||
UNITS4KEY['nano'] = UNITS4KEY['nanoseconds']
|
||||
|
||||
def self.delta_to_dhms(delta)
|
||||
fr = delta.imag.abs
|
||||
y, fr = fr.divmod(12)
|
||||
m, fr = fr.divmod(1)
|
||||
|
||||
if delta.imag < 0
|
||||
y = -y
|
||||
m = -m
|
||||
end
|
||||
|
||||
fr = delta.real.abs
|
||||
ss, fr = fr.divmod(SECONDS_IN_DAY) # 4p
|
||||
d, ss = ss.divmod(86400)
|
||||
h, ss = ss.divmod(3600)
|
||||
min, s = ss.divmod(60)
|
||||
|
||||
if delta.real < 0
|
||||
d = -d
|
||||
h = -h
|
||||
min = -min
|
||||
s = -s
|
||||
end
|
||||
|
||||
return y, m, d, h, min, s, fr
|
||||
end
|
||||
|
||||
def self.dhms_to_delta(y, m, d, h, min, s, fr)
|
||||
fr = 0 if fr == 0
|
||||
Complex(0, y.to_i * 12 + m.to_i) +
|
||||
Rational(d * 86400 + h * 3600 + min * 60 + (s + fr), 86400) # 4p
|
||||
end
|
||||
|
||||
def initialize(delta)
|
||||
@delta = delta
|
||||
@__ca__ = {}
|
||||
end
|
||||
|
||||
class << self; alias_method :new!, :new end
|
||||
|
||||
def self.new(arg=0, h=0, min=0, s=0)
|
||||
if Hash === arg
|
||||
d = Complex(0)
|
||||
arg.each do |k, v|
|
||||
k = k.to_s.downcase
|
||||
unless UNITS4KEY[k]
|
||||
raise ArgumentError, "unknown keyword #{k}"
|
||||
end
|
||||
d += v * UNITS4KEY[k]
|
||||
end
|
||||
else
|
||||
d = dhms_to_delta(0, 0, arg, h, min, s, 0)
|
||||
end
|
||||
new!(d)
|
||||
end
|
||||
|
||||
UNITS.each_key do |k|
|
||||
module_eval <<-"end;"
|
||||
def self.#{k}s(n=1)
|
||||
new(:d=>n * UNITS['#{k}'])
|
||||
end
|
||||
end;
|
||||
end
|
||||
|
||||
class << self; alias_method :mins, :minutes end
|
||||
class << self; alias_method :secs, :seconds end
|
||||
|
||||
def self.parse(str)
|
||||
d = begin (@@pa ||= Parser.new).parse(str)
|
||||
rescue Racc::ParseError
|
||||
raise ArgumentError, 'syntax error'
|
||||
end
|
||||
new!(d)
|
||||
end
|
||||
|
||||
def self.diff(d1, d2) new(d1.ajd - d2.ajd) end
|
||||
|
||||
class << self
|
||||
|
||||
def once(*ids) # :nodoc: -- restricted
|
||||
for id in ids
|
||||
module_eval <<-"end;"
|
||||
alias_method :__#{id.object_id}__, :#{id.to_s}
|
||||
private :__#{id.object_id}__
|
||||
def #{id.to_s}(*args)
|
||||
@__ca__[#{id.object_id}] ||= __#{id.object_id}__(*args)
|
||||
end
|
||||
end;
|
||||
end
|
||||
end
|
||||
|
||||
private :once
|
||||
|
||||
end
|
||||
|
||||
def dhms() self.class.delta_to_dhms(@delta) end
|
||||
|
||||
once :dhms
|
||||
|
||||
def delta() @delta end
|
||||
|
||||
protected :delta
|
||||
|
||||
def years() dhms[0] end
|
||||
def months() dhms[1] end
|
||||
def days() dhms[2] end
|
||||
def hours() dhms[3] end
|
||||
def minutes() dhms[4] end
|
||||
def seconds() dhms[5] end
|
||||
def second_fractions() dhms[6] end
|
||||
|
||||
alias_method :mins, :minutes
|
||||
alias_method :secs, :seconds
|
||||
alias_method :sec_fractions, :second_fractions
|
||||
|
||||
RUNITS.each_key do |k|
|
||||
module_eval <<-"end;"
|
||||
def in_#{k}s(u=1)
|
||||
if @delta.imag != 0
|
||||
raise ArgumentError, "#{k}: #{self} has month"
|
||||
end
|
||||
@delta.real / (u * RUNITS['#{k}'])
|
||||
end
|
||||
end;
|
||||
end
|
||||
|
||||
alias_method :in_mins, :in_minutes
|
||||
alias_method :in_secs, :in_seconds
|
||||
|
||||
def zero?() @delta.zero? end
|
||||
def nonzero?() unless zero? then self end end
|
||||
|
||||
def integer? () @delta.imag == 0 && @delta.real.integer? end
|
||||
|
||||
def -@ () self.class.new!(-@delta) end
|
||||
def +@ () self.class.new!(+@delta) end
|
||||
|
||||
def dx_addsub(m, n)
|
||||
case n
|
||||
when Numeric; return self.class.new!(@delta.__send__(m, n))
|
||||
when Delta; return self.class.new!(@delta.__send__(m, n.delta))
|
||||
else
|
||||
l, r = n.coerce(self)
|
||||
return l.__send__(m, r)
|
||||
end
|
||||
end
|
||||
|
||||
private :dx_addsub
|
||||
|
||||
def + (n) dx_addsub(:+, n) end
|
||||
def - (n) dx_addsub(:-, n) end
|
||||
|
||||
def dx_muldiv(m, n)
|
||||
case n
|
||||
when Numeric
|
||||
return self.class.new!(@delta.__send__(m, n))
|
||||
else
|
||||
l, r = n.coerce(self)
|
||||
return l.__send__(m, r)
|
||||
end
|
||||
end
|
||||
|
||||
private :dx_muldiv
|
||||
|
||||
def * (n) dx_muldiv(:*, n) end
|
||||
def / (n) dx_muldiv(:/, n) end
|
||||
|
||||
def dx_conv1(m, n)
|
||||
if @delta.imag != 0
|
||||
raise ArgumentError, "#{m}: #{self} has month"
|
||||
end
|
||||
case n
|
||||
when Numeric
|
||||
return self.class.new!(Complex(@delta.real.__send__(m, n), 0))
|
||||
else
|
||||
l, r = n.coerce(self)
|
||||
return l.__send__(m, r)
|
||||
end
|
||||
end
|
||||
|
||||
private :dx_conv1
|
||||
|
||||
def % (n) dx_conv1(:%, n) end
|
||||
|
||||
def div(n) dx_conv1(:div, n) end
|
||||
def modulo(n) dx_conv1(:modulo, n) end
|
||||
def divmod(n) [div(n), modulo(n)] end
|
||||
|
||||
def quotient(n)
|
||||
if @delta.imag != 0
|
||||
raise ArgumentError, "quotient: #{self} has month"
|
||||
end
|
||||
case n
|
||||
when Numeric
|
||||
return self.class.new!(Complex((@delta.real / n).truncate))
|
||||
else
|
||||
l, r = n.coerce(self)
|
||||
return l.__send__(m, r)
|
||||
end
|
||||
end
|
||||
|
||||
def remainder(n) dx_conv1(:remainder, n) end
|
||||
def quotrem(n) [quotient(n), remainder(n)] end
|
||||
|
||||
def ** (n) dx_conv1(:**, n) end
|
||||
def quo(n) dx_muldiv(:quo, n) end
|
||||
|
||||
def <=> (other)
|
||||
if @delta.imag != 0
|
||||
raise ArgumentError, "<=>: #{self} has month"
|
||||
end
|
||||
case other
|
||||
when Numeric; return @delta.real <=> other
|
||||
when Delta; return @delta.real <=> other.delta.real
|
||||
else
|
||||
begin
|
||||
l, r = other.coerce(self)
|
||||
return l <=> r
|
||||
rescue NoMethodError
|
||||
end
|
||||
end
|
||||
nil
|
||||
end
|
||||
|
||||
def == (other)
|
||||
case other
|
||||
when Numeric; return @delta == other
|
||||
when Delta; return @delta == other
|
||||
else
|
||||
begin
|
||||
l, r = other.coerce(self)
|
||||
return l == r
|
||||
rescue NoMethodError
|
||||
end
|
||||
end
|
||||
nil
|
||||
end
|
||||
|
||||
def coerce(other)
|
||||
case other
|
||||
when Numeric; return other, @delta
|
||||
else
|
||||
super
|
||||
end
|
||||
end
|
||||
|
||||
def eql? (other) Delta === other && self == other end
|
||||
def hash() @delta.hash end
|
||||
|
||||
def dx_conv0(m)
|
||||
if @delta.imag != 0
|
||||
raise ArgumentError, "#{m}: #{self} has month"
|
||||
end
|
||||
@delta.real.__send__(m)
|
||||
end
|
||||
|
||||
private :dx_conv0
|
||||
|
||||
def abs() dx_conv0(:abs) end
|
||||
|
||||
def ceil() dx_conv0(:ceil) end
|
||||
def floor() dx_conv0(:floor) end
|
||||
def round() dx_conv0(:round) end
|
||||
def truncate() dx_conv0(:truncate) end
|
||||
|
||||
def to_i() dx_conv0(:to_i) end
|
||||
def to_f() dx_conv0(:to_f) end
|
||||
def to_r() dx_conv0(:to_r) end
|
||||
def to_c() @delta end
|
||||
|
||||
alias_method :to_int, :to_i
|
||||
|
||||
def inspect() format('#<%s: %s (%s)>', self.class, to_s, @delta) end
|
||||
|
||||
def to_s
|
||||
format(%(%s(%dd %.02d:%02d'%02d"%03d)%s(%dy %dm)), # '
|
||||
if @delta.real < 0 then '-' else '+' end,
|
||||
days.abs, hours.abs, mins.abs, secs.abs, sec_fractions.abs * 1000,
|
||||
if @delta.imag < 0 then '-' else '+' end,
|
||||
years.abs, months.abs)
|
||||
end
|
||||
|
||||
def marshal_dump() @delta end
|
||||
|
||||
def marshal_load(a)
|
||||
@delta = a
|
||||
@__ca__ = {}
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
vsave = $VERBOSE
|
||||
$VERBOSE = false
|
||||
|
||||
class Date
|
||||
|
||||
def + (n)
|
||||
case n
|
||||
when Numeric; return self.class.new!(@ajd + n, @of, @sg)
|
||||
when Delta
|
||||
d = n.__send__(:delta)
|
||||
return (self >> d.imag) + d.real
|
||||
end
|
||||
raise TypeError, 'expected numeric'
|
||||
end
|
||||
|
||||
def - (x)
|
||||
case x
|
||||
when Numeric; return self.class.new!(@ajd - x, @of, @sg)
|
||||
when Date; return @ajd - x.ajd
|
||||
when Delta
|
||||
d = x.__send__(:delta)
|
||||
return (self << d.imag) - d.real
|
||||
end
|
||||
raise TypeError, 'expected numeric'
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
$VERBOSE = vsave
|
301
lib/date/delta/parser.rb
Normal file
301
lib/date/delta/parser.rb
Normal file
|
@ -0,0 +1,301 @@
|
|||
#
|
||||
# DO NOT MODIFY!!!!
|
||||
# This file is automatically generated by racc 1.4.5
|
||||
# from racc grammer file "parser.ry".
|
||||
#
|
||||
|
||||
require 'racc/parser'
|
||||
|
||||
|
||||
class Date
|
||||
|
||||
class Delta
|
||||
|
||||
class Parser < Racc::Parser
|
||||
|
||||
module_eval <<'..end parser.ry modeval..id43bff5dec9', 'parser.ry', 42
|
||||
|
||||
def lookup(str)
|
||||
t = str.downcase
|
||||
k = UNITS4KEY[t]
|
||||
return [:UNIT, k] if k
|
||||
return [:AND, nil] if t == 'and'
|
||||
return [:UNKNOWNWORD, nil]
|
||||
end
|
||||
|
||||
def parse(str)
|
||||
@q = []
|
||||
until str.empty?
|
||||
case str
|
||||
when /\A\s+/
|
||||
when /\AP(\d+y)?(\d+m)?(\d+d)?t?(\d+h)?(\d+m)?(\d+s)?(\d+w)?/i
|
||||
y, m, d, h, min, s, w =
|
||||
[$1, $2, $3, $4, $5, $6, $7].collect{|x| x.to_i}
|
||||
y *= UNITS4KEY['years']
|
||||
m *= UNITS4KEY['months']
|
||||
d *= UNITS4KEY['days']
|
||||
h *= UNITS4KEY['hours']
|
||||
min *= UNITS4KEY['minutes']
|
||||
s *= UNITS4KEY['seconds']
|
||||
w *= UNITS4KEY['weeks']
|
||||
@q.push [:DURATION, y + m + d + h + min + s + w]
|
||||
when /\A\d+/
|
||||
@q.push [:DIGITS, $&.to_i]
|
||||
when /\A[a-z]+/i
|
||||
@q.push lookup($&)
|
||||
when /\A.|\n/
|
||||
@q.push [$&, $&]
|
||||
end
|
||||
str = $'
|
||||
end
|
||||
@q.push [false, false]
|
||||
do_parse
|
||||
end
|
||||
|
||||
def next_token
|
||||
@q.shift
|
||||
end
|
||||
|
||||
..end parser.ry modeval..id43bff5dec9
|
||||
|
||||
##### racc 1.4.5 generates ###
|
||||
|
||||
racc_reduce_table = [
|
||||
0, 0, :racc_error,
|
||||
1, 16, :_reduce_none,
|
||||
1, 17, :_reduce_none,
|
||||
1, 17, :_reduce_none,
|
||||
3, 17, :_reduce_4,
|
||||
3, 17, :_reduce_5,
|
||||
3, 17, :_reduce_6,
|
||||
3, 17, :_reduce_7,
|
||||
3, 17, :_reduce_8,
|
||||
3, 17, :_reduce_9,
|
||||
3, 17, :_reduce_10,
|
||||
2, 17, :_reduce_11,
|
||||
2, 17, :_reduce_12,
|
||||
3, 17, :_reduce_13,
|
||||
2, 18, :_reduce_14,
|
||||
0, 20, :_reduce_15,
|
||||
1, 20, :_reduce_none,
|
||||
1, 19, :_reduce_none ]
|
||||
|
||||
racc_reduce_n = 18
|
||||
|
||||
racc_shift_n = 32
|
||||
|
||||
racc_action_table = [
|
||||
13, 14, 15, 16, 17, 18, 19, 4, 27, 23,
|
||||
8, 9, 1, 4, 25, 2, 8, 9, 1, 4,
|
||||
24, 2, 8, 9, 1, 4, 21, 2, 8, 9,
|
||||
1, 4, 11, 2, 8, 9, 1, 4, 26, 2,
|
||||
8, 9, 1, 4, nil, 2, 8, 9, 1, 4,
|
||||
nil, 2, 8, 9, 1, nil, nil, 2, 13, 14,
|
||||
15, 16, 17, 18, 19, 13, 14, 15, 13, 14,
|
||||
15, 13, 14, 15, 13, 14, 15 ]
|
||||
|
||||
racc_action_check = [
|
||||
10, 10, 10, 10, 10, 10, 10, 17, 15, 10,
|
||||
17, 17, 17, 18, 13, 17, 18, 18, 18, 4,
|
||||
11, 18, 4, 4, 4, 1, 9, 4, 1, 1,
|
||||
1, 8, 3, 1, 8, 8, 8, 19, 14, 8,
|
||||
19, 19, 19, 0, nil, 19, 0, 0, 0, 16,
|
||||
nil, 0, 16, 16, 16, nil, nil, 16, 5, 5,
|
||||
5, 5, 5, 5, 5, 30, 30, 30, 28, 28,
|
||||
28, 29, 29, 29, 31, 31, 31 ]
|
||||
|
||||
racc_action_pointer = [
|
||||
37, 19, nil, 32, 13, 55, nil, nil, 25, 13,
|
||||
-3, 20, nil, 4, 28, -2, 43, 1, 7, 31,
|
||||
nil, nil, nil, nil, nil, nil, nil, nil, 65, 68,
|
||||
62, 71 ]
|
||||
|
||||
racc_action_default = [
|
||||
-18, -18, -17, -18, -18, -1, -2, -3, -18, -15,
|
||||
-18, -18, -12, -18, -18, -18, -18, -18, -18, -18,
|
||||
-11, -16, -14, -13, 32, -10, -8, -9, -4, -5,
|
||||
-6, -7 ]
|
||||
|
||||
racc_goto_table = [
|
||||
5, 10, 3, 22, 12, nil, nil, nil, 20, nil,
|
||||
nil, nil, nil, nil, nil, nil, 28, 29, 30, 31 ]
|
||||
|
||||
racc_goto_check = [
|
||||
2, 2, 1, 5, 2, nil, nil, nil, 2, nil,
|
||||
nil, nil, nil, nil, nil, nil, 2, 2, 2, 2 ]
|
||||
|
||||
racc_goto_pointer = [
|
||||
nil, 2, 0, nil, nil, -6 ]
|
||||
|
||||
racc_goto_default = [
|
||||
nil, nil, nil, 6, 7, nil ]
|
||||
|
||||
racc_token_table = {
|
||||
false => 0,
|
||||
Object.new => 1,
|
||||
:UNARY => 2,
|
||||
"^" => 3,
|
||||
"*" => 4,
|
||||
"/" => 5,
|
||||
"+" => 6,
|
||||
"," => 7,
|
||||
:AND => 8,
|
||||
"-" => 9,
|
||||
:DIGITS => 10,
|
||||
"(" => 11,
|
||||
")" => 12,
|
||||
:UNIT => 13,
|
||||
:DURATION => 14 }
|
||||
|
||||
racc_use_result_var = true
|
||||
|
||||
racc_nt_base = 15
|
||||
|
||||
Racc_arg = [
|
||||
racc_action_table,
|
||||
racc_action_check,
|
||||
racc_action_default,
|
||||
racc_action_pointer,
|
||||
racc_goto_table,
|
||||
racc_goto_check,
|
||||
racc_goto_default,
|
||||
racc_goto_pointer,
|
||||
racc_nt_base,
|
||||
racc_reduce_table,
|
||||
racc_token_table,
|
||||
racc_shift_n,
|
||||
racc_reduce_n,
|
||||
racc_use_result_var ]
|
||||
|
||||
Racc_token_to_s_table = [
|
||||
'$end',
|
||||
'error',
|
||||
'UNARY',
|
||||
'"^"',
|
||||
'"*"',
|
||||
'"/"',
|
||||
'"+"',
|
||||
'","',
|
||||
'AND',
|
||||
'"-"',
|
||||
'DIGITS',
|
||||
'"("',
|
||||
'")"',
|
||||
'UNIT',
|
||||
'DURATION',
|
||||
'$start',
|
||||
'stmt',
|
||||
'expr',
|
||||
'time',
|
||||
'iso',
|
||||
'unit']
|
||||
|
||||
Racc_debug_parser = false
|
||||
|
||||
##### racc system variables end #####
|
||||
|
||||
# reduce 0 omitted
|
||||
|
||||
# reduce 1 omitted
|
||||
|
||||
# reduce 2 omitted
|
||||
|
||||
# reduce 3 omitted
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 18
|
||||
def _reduce_4( val, _values, result )
|
||||
result += val[2]
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 19
|
||||
def _reduce_5( val, _values, result )
|
||||
result += val[2]
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 20
|
||||
def _reduce_6( val, _values, result )
|
||||
result += val[2]
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 21
|
||||
def _reduce_7( val, _values, result )
|
||||
result -= val[2]
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 22
|
||||
def _reduce_8( val, _values, result )
|
||||
result *= val[2]
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 23
|
||||
def _reduce_9( val, _values, result )
|
||||
result /= val[2]
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 24
|
||||
def _reduce_10( val, _values, result )
|
||||
result **= val[2]
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 25
|
||||
def _reduce_11( val, _values, result )
|
||||
result = -val[1]
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 26
|
||||
def _reduce_12( val, _values, result )
|
||||
result = +val[1]
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 27
|
||||
def _reduce_13( val, _values, result )
|
||||
result = val[1]
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 30
|
||||
def _reduce_14( val, _values, result )
|
||||
result = val[0] * val[1]
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
module_eval <<'.,.,', 'parser.ry', 33
|
||||
def _reduce_15( val, _values, result )
|
||||
result = 1
|
||||
result
|
||||
end
|
||||
.,.,
|
||||
|
||||
# reduce 16 omitted
|
||||
|
||||
# reduce 17 omitted
|
||||
|
||||
def _reduce_none( val, _values, result )
|
||||
result
|
||||
end
|
||||
|
||||
end # class Parser
|
||||
|
||||
end # class Delta
|
||||
|
||||
end # class Date
|
84
lib/date/delta/parser.ry
Normal file
84
lib/date/delta/parser.ry
Normal file
|
@ -0,0 +1,84 @@
|
|||
# parser.ry: Written by Tadayoshi Funaba 2006,2008,2009 -*- ruby -*-
|
||||
|
||||
class Date::Delta::Parser
|
||||
|
||||
prechigh
|
||||
nonassoc UNARY
|
||||
left '^'
|
||||
left '*' '/'
|
||||
left '+' ',' AND '-'
|
||||
preclow
|
||||
|
||||
rule
|
||||
|
||||
stmt : expr
|
||||
;
|
||||
|
||||
expr : time
|
||||
| iso
|
||||
| expr '+' expr {result += val[2]}
|
||||
| expr ',' expr {result += val[2]}
|
||||
| expr AND expr {result += val[2]}
|
||||
| expr '-' expr {result -= val[2]}
|
||||
| expr '*' DIGITS {result *= val[2]}
|
||||
| expr '/' DIGITS {result /= val[2]}
|
||||
| expr '^' DIGITS {result **= val[2]}
|
||||
| '-' expr =UNARY {result = -val[1]}
|
||||
| '+' expr =UNARY {result = +val[1]}
|
||||
| '(' expr ')' {result = val[1]}
|
||||
;
|
||||
|
||||
time : DIGITS unit {result = val[0] * val[1]}
|
||||
;
|
||||
|
||||
unit : {result = 1} | UNIT
|
||||
;
|
||||
|
||||
iso : DURATION
|
||||
;
|
||||
|
||||
---- header ----
|
||||
---- inner ----
|
||||
|
||||
def lookup(str)
|
||||
t = str.downcase
|
||||
k = UNITS4KEY[t]
|
||||
return [:UNIT, k] if k
|
||||
return [:AND, nil] if t == 'and'
|
||||
return [:UNKNOWNWORD, nil]
|
||||
end
|
||||
|
||||
def parse(str)
|
||||
@q = []
|
||||
until str.empty?
|
||||
case str
|
||||
when /\A\s+/
|
||||
when /\AP(\d+y)?(\d+m)?(\d+d)?t?(\d+h)?(\d+m)?(\d+s)?(\d+w)?/i
|
||||
y, m, d, h, min, s, w =
|
||||
[$1, $2, $3, $4, $5, $6, $7].collect{|x| x.to_i}
|
||||
y *= UNITS4KEY['years']
|
||||
m *= UNITS4KEY['months']
|
||||
d *= UNITS4KEY['days']
|
||||
h *= UNITS4KEY['hours']
|
||||
min *= UNITS4KEY['minutes']
|
||||
s *= UNITS4KEY['seconds']
|
||||
w *= UNITS4KEY['weeks']
|
||||
@q.push [:DURATION, y + m + d + h + min + s + w]
|
||||
when /\A\d+/
|
||||
@q.push [:DIGITS, $&.to_i]
|
||||
when /\A[a-z]+/i
|
||||
@q.push lookup($&)
|
||||
when /\A.|\n/
|
||||
@q.push [$&, $&]
|
||||
end
|
||||
str = $'
|
||||
end
|
||||
@q.push [false, false]
|
||||
do_parse
|
||||
end
|
||||
|
||||
def next_token
|
||||
@q.shift
|
||||
end
|
||||
|
||||
---- footer ----
|
225
rational.c
225
rational.c
|
@ -1354,6 +1354,141 @@ nurat_to_r(VALUE self)
|
|||
return self;
|
||||
}
|
||||
|
||||
#define id_ceil rb_intern("ceil")
|
||||
#define f_ceil(x) rb_funcall(x, id_ceil, 0)
|
||||
|
||||
#define id_quo rb_intern("quo")
|
||||
#define f_quo(x,y) rb_funcall(x, id_quo, 1, y)
|
||||
|
||||
#define f_reciprocal(x) f_quo(ONE, x)
|
||||
|
||||
/*
|
||||
The algorithm here is the method described in CLISP. Bruno Haible has
|
||||
graciously given permission to use this algorithm. He says, "You can use
|
||||
it, if you present the following explanation of the algorithm."
|
||||
|
||||
Algorithm (recursively presented):
|
||||
If x is a rational number, return x.
|
||||
If x = 0.0, return 0.
|
||||
If x < 0.0, return (- (rationalize (- x))).
|
||||
If x > 0.0:
|
||||
Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
|
||||
exponent, sign).
|
||||
If m = 0 or e >= 0: return x = m*2^e.
|
||||
Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
|
||||
with smallest possible numerator and denominator.
|
||||
Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
|
||||
But in this case the result will be x itself anyway, regardless of
|
||||
the choice of a. Therefore we can simply ignore this case.
|
||||
Note 2: At first, we need to consider the closed interval [a,b].
|
||||
but since a and b have the denominator 2^(|e|+1) whereas x itself
|
||||
has a denominator <= 2^|e|, we can restrict the search to the open
|
||||
interval (a,b).
|
||||
So, for given a and b (0 < a < b) we are searching a rational number
|
||||
y with a <= y <= b.
|
||||
Recursive algorithm fraction_between(a,b):
|
||||
c := (ceiling a)
|
||||
if c < b
|
||||
then return c ; because a <= c < b, c integer
|
||||
else
|
||||
; a is not integer (otherwise we would have had c = a < b)
|
||||
k := c-1 ; k = floor(a), k < a < b <= k+1
|
||||
return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
|
||||
; note 1 <= 1/(b-k) < 1/(a-k)
|
||||
|
||||
You can see that we are actually computing a continued fraction expansion.
|
||||
|
||||
Algorithm (iterative):
|
||||
If x is rational, return x.
|
||||
Call (integer-decode-float x). It returns a m,e,s (mantissa,
|
||||
exponent, sign).
|
||||
If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
|
||||
Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
|
||||
(positive and already in lowest terms because the denominator is a
|
||||
power of two and the numerator is odd).
|
||||
Start a continued fraction expansion
|
||||
p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
|
||||
Loop
|
||||
c := (ceiling a)
|
||||
if c >= b
|
||||
then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
|
||||
goto Loop
|
||||
finally partial_quotient(c).
|
||||
Here partial_quotient(c) denotes the iteration
|
||||
i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
|
||||
At the end, return s * (p[i]/q[i]).
|
||||
This rational number is already in lowest terms because
|
||||
p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
|
||||
*/
|
||||
|
||||
static void
|
||||
nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q)
|
||||
{
|
||||
VALUE c, k, t, p0, p1, p2, q0, q1, q2;
|
||||
|
||||
p0 = ZERO;
|
||||
p1 = ONE;
|
||||
q0 = ONE;
|
||||
q1 = ZERO;
|
||||
|
||||
while (1) {
|
||||
c = f_ceil(a);
|
||||
if (f_lt_p(c, b))
|
||||
break;
|
||||
k = f_sub(c, ONE);
|
||||
p2 = f_add(f_mul(k, p1), p0);
|
||||
q2 = f_add(f_mul(k, q1), q0);
|
||||
t = f_reciprocal(f_sub(b, k));
|
||||
b = f_reciprocal(f_sub(a, k));
|
||||
a = t;
|
||||
p0 = p1;
|
||||
q0 = q1;
|
||||
p1 = p2;
|
||||
q1 = q2;
|
||||
}
|
||||
*p = f_add(f_mul(c, p1), p0);
|
||||
*q = f_add(f_mul(c, q1), q0);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* rat.rationalize -> self
|
||||
* rat.rationalize(eps) -> rational
|
||||
*
|
||||
* Returns a simpler approximation of the value if an optional
|
||||
* argument eps is given (rat-|eps| <= result <= rat+|eps|), self
|
||||
* otherwise.
|
||||
*
|
||||
* For example:
|
||||
*
|
||||
* r = Rational(5033165, 16777216)
|
||||
* r.rationalize #=> (5033165/16777216)
|
||||
* r.rationalize(Rational('0.01')) #=> (3/10)
|
||||
* r.rationalize(Rational('0.1')) #=> (1/3)
|
||||
*/
|
||||
static VALUE
|
||||
nurat_rationalize(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
VALUE e, a, b, p, q;
|
||||
|
||||
if (argc == 0)
|
||||
return self;
|
||||
|
||||
if (f_negative_p(self))
|
||||
return f_negate(nurat_rationalize(argc, argv, f_abs(self)));
|
||||
|
||||
rb_scan_args(argc, argv, "01", &e);
|
||||
e = f_abs(e);
|
||||
a = f_sub(self, e);
|
||||
b = f_add(self, e);
|
||||
|
||||
if (f_eqeq_p(a, b))
|
||||
return self;
|
||||
|
||||
nurat_rationalize_internal(a, b, &p, &q);
|
||||
return f_rational_new2(CLASS_OF(self), p, q);
|
||||
}
|
||||
|
||||
/* :nodoc: */
|
||||
static VALUE
|
||||
nurat_hash(VALUE self)
|
||||
|
@ -1651,6 +1786,20 @@ nilclass_to_r(VALUE self)
|
|||
return rb_rational_new1(INT2FIX(0));
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* nil.rationalize([eps]) -> (0/1)
|
||||
*
|
||||
* Returns zero as a rational. An optional argument eps is always
|
||||
* ignored.
|
||||
*/
|
||||
static VALUE
|
||||
nilclass_rationalize(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
rb_scan_args(argc, argv, "01", NULL);
|
||||
return nilclass_to_r(self);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* int.to_r -> rational
|
||||
|
@ -1668,6 +1817,20 @@ integer_to_r(VALUE self)
|
|||
return rb_rational_new1(self);
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* int.rationalize([eps]) -> rational
|
||||
*
|
||||
* Returns the value as a rational. An optional argument eps is
|
||||
* always ignored.
|
||||
*/
|
||||
static VALUE
|
||||
integer_rationalize(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
rb_scan_args(argc, argv, "01", NULL);
|
||||
return integer_to_r(self);
|
||||
}
|
||||
|
||||
static void
|
||||
float_decode_internal(VALUE self, VALUE *rf, VALUE *rn)
|
||||
{
|
||||
|
@ -1733,6 +1896,64 @@ float_to_r(VALUE self)
|
|||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* call-seq:
|
||||
* flt.rationalize([eps]) -> rational
|
||||
*
|
||||
* Returns a simpler approximation of the value (flt-|eps| <= result
|
||||
* <= flt+|eps|). if eps is not given, it will be chosen
|
||||
* automatically.
|
||||
*
|
||||
* For example:
|
||||
*
|
||||
* 0.3.rationalize #=> (3/10)
|
||||
* 1.333.rationalize #=> (1333/1000)
|
||||
* 1.333.rationalize(0.01) #=> (4/3)
|
||||
*/
|
||||
static VALUE
|
||||
float_rationalize(int argc, VALUE *argv, VALUE self)
|
||||
{
|
||||
VALUE e, a, b, p, q;
|
||||
|
||||
if (f_negative_p(self))
|
||||
return f_negate(float_rationalize(argc, argv, f_abs(self)));
|
||||
|
||||
rb_scan_args(argc, argv, "01", &e);
|
||||
|
||||
if (argc != 0) {
|
||||
e = f_abs(e);
|
||||
a = f_sub(self, e);
|
||||
b = f_add(self, e);
|
||||
}
|
||||
else {
|
||||
VALUE f, n;
|
||||
|
||||
float_decode_internal(self, &f, &n);
|
||||
if (f_zero_p(f) || f_positive_p(n))
|
||||
return rb_rational_new1(f_lshift(f, n));
|
||||
|
||||
#if FLT_RADIX == 2
|
||||
a = rb_rational_new2(f_sub(f_mul(TWO, f), ONE),
|
||||
f_lshift(ONE, f_sub(ONE, n)));
|
||||
b = rb_rational_new2(f_add(f_mul(TWO, f), ONE),
|
||||
f_lshift(ONE, f_sub(ONE, n)));
|
||||
#else
|
||||
a = rb_rational_new2(f_sub(f_mul(INT2FIX(FLT_RADIX), f),
|
||||
INT2FIX(FLT_RADIX - 1)),
|
||||
f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
|
||||
b = rb_rational_new2(f_add(f_mul(INT2FIX(FLT_RADIX), f),
|
||||
INT2FIX(FLT_RADIX - 1)),
|
||||
f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
|
||||
#endif
|
||||
}
|
||||
|
||||
if (f_eqeq_p(a, b))
|
||||
return f_to_r(self);
|
||||
|
||||
nurat_rationalize_internal(a, b, &p, &q);
|
||||
return rb_rational_new2(p, q);
|
||||
}
|
||||
|
||||
static VALUE rat_pat, an_e_pat, a_dot_pat, underscores_pat, an_underscore;
|
||||
|
||||
#define WS "\\s*"
|
||||
|
@ -2101,6 +2322,7 @@ Init_Rational(void)
|
|||
rb_define_method(rb_cRational, "to_i", nurat_truncate, 0);
|
||||
rb_define_method(rb_cRational, "to_f", nurat_to_f, 0);
|
||||
rb_define_method(rb_cRational, "to_r", nurat_to_r, 0);
|
||||
rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1);
|
||||
|
||||
rb_define_method(rb_cRational, "hash", nurat_hash, 0);
|
||||
|
||||
|
@ -2126,8 +2348,11 @@ Init_Rational(void)
|
|||
rb_define_method(rb_cFloat, "denominator", float_denominator, 0);
|
||||
|
||||
rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0);
|
||||
rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1);
|
||||
rb_define_method(rb_cInteger, "to_r", integer_to_r, 0);
|
||||
rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1);
|
||||
rb_define_method(rb_cFloat, "to_r", float_to_r, 0);
|
||||
rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1);
|
||||
|
||||
make_patterns();
|
||||
|
||||
|
|
|
@ -965,6 +965,61 @@ class Rational_Test < Test::Unit::TestCase
|
|||
end
|
||||
end
|
||||
|
||||
def test_rationalize
|
||||
c = nil.rationalize
|
||||
assert_equal([0,1], [c.numerator, c.denominator])
|
||||
|
||||
c = 0.rationalize
|
||||
assert_equal([0,1], [c.numerator, c.denominator])
|
||||
|
||||
c = 1.rationalize
|
||||
assert_equal([1,1], [c.numerator, c.denominator])
|
||||
|
||||
c = 1.1.rationalize
|
||||
assert_equal([11, 10], [c.numerator, c.denominator])
|
||||
|
||||
c = Rational(1,2).rationalize
|
||||
assert_equal([1,2], [c.numerator, c.denominator])
|
||||
|
||||
assert_equal(nil.rationalize(Rational(1,10)), Rational(0))
|
||||
assert_equal(0.rationalize(Rational(1,10)), Rational(0))
|
||||
assert_equal(10.rationalize(Rational(1,10)), Rational(10))
|
||||
|
||||
r = 0.3333
|
||||
assert_equal(r.rationalize, Rational(3333, 10000))
|
||||
assert_equal(r.rationalize(Rational(1,10)), Rational(1,3))
|
||||
assert_equal(r.rationalize(Rational(-1,10)), Rational(1,3))
|
||||
|
||||
r = Rational(5404319552844595,18014398509481984)
|
||||
assert_equal(r.rationalize, r)
|
||||
assert_equal(r.rationalize(Rational(1,10)), Rational(1,3))
|
||||
assert_equal(r.rationalize(Rational(-1,10)), Rational(1,3))
|
||||
|
||||
r = -0.3333
|
||||
assert_equal(r.rationalize, Rational(-3333, 10000))
|
||||
assert_equal(r.rationalize(Rational(1,10)), Rational(-1,3))
|
||||
assert_equal(r.rationalize(Rational(-1,10)), Rational(-1,3))
|
||||
|
||||
r = Rational(-5404319552844595,18014398509481984)
|
||||
assert_equal(r.rationalize, r)
|
||||
assert_equal(r.rationalize(Rational(1,10)), Rational(-1,3))
|
||||
assert_equal(r.rationalize(Rational(-1,10)), Rational(-1,3))
|
||||
|
||||
if @complex
|
||||
if @keiju
|
||||
else
|
||||
assert_raise(RangeError){Complex(1,2).rationalize}
|
||||
end
|
||||
end
|
||||
|
||||
if (0.0/0).nan?
|
||||
assert_raise(FloatDomainError){(0.0/0).rationalize}
|
||||
end
|
||||
if (1.0/0).infinite?
|
||||
assert_raise(FloatDomainError){(1.0/0).rationalize}
|
||||
end
|
||||
end
|
||||
|
||||
def test_gcdlcm
|
||||
assert_equal(7, 91.gcd(-49))
|
||||
assert_equal(5, 5.gcd(0))
|
||||
|
|
Loading…
Reference in a new issue