1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

* ext/bigdecimal/bigdecimal.c (BigMath_s_log): move BigMath.log from

bigdecimal/math.rb.
* ext/bigdecimal/lib/bigdecimal/math.rb: ditto.
* test/bigdecimal/test_bigdecimal.rb: move test for BigMath.log from
  test/bigdecimal/test_bigmath.rb.
* test/bigdecimal/test_bigmath.rb: ditto.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@32258 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
mrkn 2011-06-27 16:26:09 +00:00
parent 576b44165a
commit bb6384761e
5 changed files with 288 additions and 44 deletions

View file

@ -1,3 +1,15 @@
Tue Jun 28 01:22:00 2011 Kenta Murata <mrkn@mrkn.jp>
* ext/bigdecimal/bigdecimal.c (BigMath_s_log): move BigMath.log from
bigdecimal/math.rb.
* ext/bigdecimal/lib/bigdecimal/math.rb: ditto.
* test/bigdecimal/test_bigdecimal.rb: move test for BigMath.log from
test/bigdecimal/test_bigmath.rb.
* test/bigdecimal/test_bigmath.rb: ditto.
Tue Jun 28 01:19:52 2011 Keiju Ishitsuka <keiju@ishitsuka.com>
* lib/irb/ruby-lex.rb: fix [Bug #4232].

View file

@ -69,6 +69,33 @@ static ID id_to_r;
#define DBLE_FIG (DBL_DIG+1) /* figure of double */
#endif
#ifndef RBIGNUM_ZERO_P
# define RBIGNUM_ZERO_P(x) (RBIGNUM_LEN(x) == 0 || \
(RBIGNUM_DIGITS(x)[0] == 0 && \
(RBIGNUM_LEN(x) == 1 || bigzero_p(x))))
#endif
static inline int
bigzero_p(VALUE x)
{
long i;
BDIGIT *ds = RBIGNUM_DIGITS(x);
for (i = RBIGNUM_LEN(x) - 1; 0 <= i; i--) {
if (ds[i]) return 0;
}
return 1;
}
#ifndef RRATIONAL_ZERO_P
# define RRATIONAL_ZERO_P(x) (FIXNUM_P(RRATIONAL(x)->num) && \
FIX2LONG(RRATIONAL(x)->num) == 0)
#endif
#ifndef RRATIONAL_NEGATIVE_P
# define RRATIONAL_NEGATIVE_P(x) RTEST(rb_funcall((x), '<', 1, INT2FIX(0)))
#endif
/*
* ================== Ruby Interface part ==========================
*/
@ -2132,6 +2159,169 @@ BigMath_s_exp(VALUE klass, VALUE x, VALUE vprec)
}
}
/* call-seq:
* BigMath.log(x, prec)
*
* Computes the natural logarithm of x to the specified number of digits of
* precision.
*
* If x is zero or negative, raises Math::DomainError.
*
* If x is positive infinite, returns Infinity.
*
* If x is NaN, returns NaN.
*/
static VALUE
BigMath_s_log(VALUE klass, VALUE x, VALUE vprec)
{
ssize_t prec, n, i;
SIGNED_VALUE expo;
Real* vx = NULL;
VALUE argv[2], vn, one, two, w, x2, y, d;
int zero = 0;
int negative = 0;
int infinite = 0;
int nan = 0;
double flo;
long fix;
if (TYPE(vprec) != T_FIXNUM && TYPE(vprec) != T_BIGNUM) {
rb_raise(rb_eArgError, "precision must be an Integer");
}
prec = NUM2SSIZET(vprec);
if (prec <= 0) {
rb_raise(rb_eArgError, "Zero or negative precision for exp");
}
/* TODO: the following switch statement is almostly the same as one in the
* BigDecimalCmp function. */
switch (TYPE(x)) {
case T_DATA:
if (!is_kind_of_BigDecimal(x)) break;
vx = DATA_PTR(x);
zero = VpIsZero(vx);
negative = VpGetSign(vx) < 0;
infinite = VpIsPosInf(vx) || VpIsNegInf(vx);
nan = VpIsNaN(vx);
break;
case T_FIXNUM:
fix = FIX2LONG(x);
zero = fix == 0;
negative = fix < 0;
goto get_vp_value;
case T_BIGNUM:
zero = RBIGNUM_ZERO_P(x);
negative = RBIGNUM_NEGATIVE_P(x);
get_vp_value:
if (zero || negative) break;
vx = GetVpValue(x, 0);
break;
case T_FLOAT:
flo = RFLOAT_VALUE(x);
zero = flo == 0;
negative = flo < 0;
infinite = isinf(flo);
nan = isnan(flo);
if (!zero && !negative && !infinite && !nan) {
vx = GetVpValueWithPrec(x, DBL_DIG+1, 1);
}
break;
case T_RATIONAL:
zero = RRATIONAL_ZERO_P(x);
negative = RRATIONAL_NEGATIVE_P(x);
if (zero || negative) break;
vx = GetVpValueWithPrec(x, prec, 1);
break;
case T_COMPLEX:
rb_raise(rb_eMathDomainError,
"Complex argument for BigMath.log");
default:
break;
}
if (infinite && !negative) {
Real* vy;
vy = VpCreateRbObject(prec, "#0");
RB_GC_GUARD(vy->obj);
VpSetInf(vy, VP_SIGN_POSITIVE_INFINITE);
return ToValue(vy);
}
else if (nan) {
Real* vy;
vy = VpCreateRbObject(prec, "#0");
RB_GC_GUARD(vy->obj);
VpSetNaN(vy);
return ToValue(vy);
}
else if (zero || negative) {
rb_raise(rb_eMathDomainError,
"Zero or negative argument for log");
}
else if (vx == NULL) {
rb_raise(rb_eArgError, "%s can't be coerced into BigDecimal",
rb_special_const_p(x) ? RSTRING_PTR(rb_inspect(x)) : rb_obj_classname(x));
}
x = ToValue(vx);
RB_GC_GUARD(one) = ToValue(VpCreateRbObject(1, "1"));
RB_GC_GUARD(two) = ToValue(VpCreateRbObject(1, "2"));
n = prec + rmpd_double_figures();
RB_GC_GUARD(vn) = SSIZET2NUM(n);
expo = VpExponent10(vx);
if (expo < 0 || expo >= 3) {
char buf[16];
snprintf(buf, 16, "1E%ld", -expo);
x = BigDecimal_mult2(x, ToValue(VpCreateRbObject(1, buf)), vn);
}
else {
expo = 0;
}
w = BigDecimal_sub(x, one);
argv[0] = BigDecimal_add(x, one);
argv[1] = vn;
x = BigDecimal_div2(2, argv, w);
RB_GC_GUARD(x2) = BigDecimal_mult2(x, x, vn);
RB_GC_GUARD(y) = x;
RB_GC_GUARD(d) = y;
i = 1;
while (!VpIsZero((Real*)DATA_PTR(d))) {
SIGNED_VALUE const ey = VpExponent10(DATA_PTR(y));
SIGNED_VALUE const ed = VpExponent10(DATA_PTR(d));
ssize_t m = n - vabs(ey - ed);
if (m <= 0) {
break;
}
else if ((size_t)m < rmpd_double_figures()) {
m = rmpd_double_figures();
}
x = BigDecimal_mult2(x2, x, vn);
i += 2;
argv[0] = SSIZET2NUM(i);
argv[1] = SSIZET2NUM(m);
d = BigDecimal_div2(2, argv, x);
y = BigDecimal_add(y, d);
}
y = BigDecimal_mult(y, two);
if (expo != 0) {
VALUE log10, vexpo, dy;
log10 = BigMath_s_log(klass, INT2FIX(10), vprec);
vexpo = ToValue(GetVpValue(SSIZET2NUM(expo), 1));
dy = BigDecimal_mult(log10, vexpo);
y = BigDecimal_add(y, dy);
}
return y;
}
/* Document-class: BigDecimal
* BigDecimal provides arbitrary-precision floating point decimal arithmetic.
*
@ -2430,6 +2620,7 @@ Init_bigdecimal(void)
/* mathematical functions */
rb_mBigMath = rb_define_module("BigMath");
rb_define_singleton_method(rb_mBigMath, "exp", BigMath_s_exp, 2);
rb_define_singleton_method(rb_mBigMath, "log", BigMath_s_log, 2);
id_BigDecimal_exception_mode = rb_intern_const("BigDecimal.exception_mode");
id_BigDecimal_rounding_mode = rb_intern_const("BigDecimal.rounding_mode");

View file

@ -145,41 +145,6 @@ module BigMath
y
end
# Computes the natural logarithm of x to the specified number of digits
# of precision.
#
# Returns x if x is infinite or NaN.
#
def log(x, prec)
raise ArgumentError, "Zero or negative argument for log" if x <= 0 || prec <= 0
return x if x.infinite? || x.nan?
one = BigDecimal("1")
two = BigDecimal("2")
n = prec + BigDecimal.double_fig
if (expo = x.exponent) < 0 || expo >= 3
x = x.mult(BigDecimal("1E#{-expo}"), n)
else
expo = nil
end
x = (x - one).div(x + one,n)
x2 = x.mult(x,n)
y = x
d = y
i = one
while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0)
m = BigDecimal.double_fig if m < BigDecimal.double_fig
x = x2.mult(x,n)
i += two
d = x.div(i,m)
y += d
end
y *= two
if expo
y += log(BigDecimal("10"),prec) * BigDecimal(expo.to_s)
end
y
end
# Computes the value of pi to the specified number of digits of precision.
def PI(prec)
raise ArgumentError, "Zero or negative argument for PI" if prec <= 0

View file

@ -948,4 +948,89 @@ class TestBigDecimal < Test::Unit::TestCase
assert_in_epsilon(Math.exp(-n), BigMath.exp(BigDecimal("-20"), n))
assert_in_epsilon(Math.exp(-40), BigMath.exp(BigDecimal("-40"), n))
end
def test_BigMath_log_with_nil
assert_raise(ArgumentError) do
BigMath.log(nil, 20)
end
end
def test_BigMath_log_with_nil_precision
assert_raise(ArgumentError) do
BigMath.log(1, nil)
end
end
def test_BigMath_log_with_complex
assert_raise(Math::DomainError) do
BigMath.log(Complex(1, 2), 20)
end
end
def test_BigMath_log_with_zerp_precision
assert_raise(ArgumentError) do
BigMath.log(1, 0)
end
end
def test_BigMath_log_with_negative_precision
assert_raise(ArgumentError) do
BigMath.log(1, -42)
end
end
def test_BigMath_log_with_negative_infinite
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, false)
assert_raise(Math::DomainError) do
BigMath.log(-BigDecimal::INFINITY, 20)
end
end
end
def test_BigMath_log_with_positive_infinite
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, false)
assert(BigMath.log(BigDecimal::INFINITY, 20) > 0)
assert(BigMath.log(BigDecimal::INFINITY, 20).infinite?)
end
end
def test_BigMath_log_with_nan
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)
assert(BigMath.log(BigDecimal::NAN, 20).nan?)
end
end
def test_BigMath_log_with_1
assert_in_delta(0.0, BigMath.log(1, 20))
assert_in_delta(0.0, BigMath.log(1.0, 20))
assert_in_delta(0.0, BigMath.log(BigDecimal(1), 20))
end
def test_BigMath_log_with_exp_1
assert_in_delta(1.0, BigMath.log(BigMath.exp(1, 20), 20))
end
def test_BigMath_log_with_2
assert_in_delta(Math.log(2), BigMath.log(2, 20))
assert_in_delta(Math.log(2), BigMath.log(2.0, 20))
assert_in_delta(Math.log(2), BigMath.log(BigDecimal(2), 20))
end
def test_BigMath_log_with_square_of_exp_2
assert_in_delta(2, BigMath.log(BigMath.exp(1, 20)**2, 20))
end
def test_BigMath_log_with_42
assert_in_delta(Math.log(42), BigMath.log(42, 20))
assert_in_delta(Math.log(42), BigMath.log(42.0, 20))
assert_in_delta(Math.log(42), BigMath.log(BigDecimal(42), 20))
end
def test_BigMath_log_with_reciprocal_of_42
assert_in_delta(Math.log(1e-42), BigMath.log(1e-42, 20))
assert_in_delta(Math.log(1e-42), BigMath.log(BigDecimal("1e-42"), 20))
end
end

View file

@ -60,13 +60,4 @@ class TestBigMath < Test::Unit::TestCase
assert_equal(BigDecimal("0.823840753418636291769355073102514088959345624027952954058347023122539489"),
atan(BigDecimal("1.08"), 72).round(72), '[ruby-dev:41257]')
end
def test_log
assert_in_delta(0.0, log(BigDecimal("1"), N))
assert_in_delta(1.0, log(E(N), N))
assert_in_delta(Math.log(2.0), log(BigDecimal("2"), N))
assert_in_delta(2.0, log(E(N)*E(N), N))
assert_in_delta(Math.log(42.0), log(BigDecimal("42"), N))
assert_in_delta(Math.log(1e-42), log(BigDecimal("1e-42"), N))
end
end