1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

* test/test_prime.rb

(TestPrime#test_eratosthenes_works_fine_after_timeout):
  test for [ruby-dev:39465].

* lib/prime.rb (Prime::EratosthenesSieve):
  fixed [ruby-dev:39465].
  suppressed memory reallocation.
  constantified some magic numbers.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@25388 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
yugui 2009-10-18 00:55:34 +00:00
parent 79a8955f8d
commit c0b42eedea
3 changed files with 82 additions and 21 deletions

View file

@ -1,3 +1,14 @@
Sun Oct 18 09:49:14 2009 Yuki Sonoda (Yugui) <yugui@yugui.jp>
* test/test_prime.rb
(TestPrime#test_eratosthenes_works_fine_after_timeout):
test for [ruby-dev:39465].
* lib/prime.rb (Prime::EratosthenesSieve):
fixed [ruby-dev:39465].
suppressed memory reallocation.
constantified some magic numbers.
Sat Oct 17 22:11:03 2009 Nobuyoshi Nakada <nobu@ruby-lang.org> Sat Oct 17 22:11:03 2009 Nobuyoshi Nakada <nobu@ruby-lang.org>
* marshal.c (id2encidx): register encoding name. * marshal.c (id2encidx): register encoding name.

View file

@ -408,44 +408,68 @@ class Prime
class EratosthenesSieve class EratosthenesSieve
include Singleton include Singleton
BITS_PER_ENTRY = 16 # each entry is a set of 16-bits in a Fixnum
NUMS_PER_ENTRY = BITS_PER_ENTRY * 2 # twiced because even numbers are omitted
ENTRIES_PER_TABLE = 8
NUMS_PER_TABLE = NUMS_PER_ENTRY * ENTRIES_PER_TABLE
FILLED_ENTRY = (1 << NUMS_PER_ENTRY) - 1
def initialize # :nodoc: def initialize # :nodoc:
# bitmap for odd prime numbers less than 256. # bitmap for odd prime numbers less than 256.
# For an arbitrary odd number n, @table[i][j] is 1 when n is prime where i,j = n.divmod(32) . # For an arbitrary odd number n, @tables[i][j][k] is
@table = [0xcb6e, 0x64b4, 0x129a, 0x816d, 0x4c32, 0x864a, 0x820d, 0x2196] # * 1 if n is prime,
# * 0 if n is composite,
# where i,j,k = indices(n)
@tables = [[0xcb6e, 0x64b4, 0x129a, 0x816d, 0x4c32, 0x864a, 0x820d, 0x2196].freeze]
end end
# returns the least odd prime number which is greater than +n+. # returns the least odd prime number which is greater than +n+.
def next_to(n) def next_to(n)
n = (n-1).div(2)*2+3 # the next odd number of given n n = (n-1).div(2)*2+3 # the next odd number to given n
i,j = n.divmod(32) table_index, integer_index, bit_index = indices(n)
loop do loop do
extend_table until @table.length > i extend_table until @tables.length > table_index
if !@table[i].zero? for j in integer_index...ENTRIES_PER_TABLE
(j...32).step(2) do |k| if !@tables[table_index][j].zero?
return 32*i+k if !@table[i][k.div(2)].zero? for k in bit_index...BITS_PER_ENTRY
return NUMS_PER_TABLE*table_index + NUMS_PER_ENTRY*j + 2*k+1 if !@tables[table_index][j][k].zero?
end
end end
bit_index = 0
end end
i += 1; j = 1 table_index += 1; integer_index = 0
end end
end end
private private
def extend_table # for an odd number +n+, returns (i, j, k) such that @tables[i][j][k] represents primarity of the number
orig_len = @table.length def indices(n)
new_len = [orig_len**2, orig_len+256].min # binary digits of n: |0|1|2|3|4|5|6|7|8|9|10|11|....
lbound = orig_len*32 # indices: |-| k | j | i
ubound = new_len*32 # because of NUMS_PER_ENTRY, NUMS_PER_TABLE
@table.fill(0xFFFF, orig_len...new_len)
(3..Integer(Math.sqrt(ubound))).step(2) do |p|
i, j = p.divmod(32)
next if @table[i][j.div(2)].zero?
start = (lbound.div(2*p)*2+1)*p # odd multiple of p which is greater than or equal to lbound k = (n & 0b00011111) >> 1
j = (n & 0b11100000) >> 5
i = n >> 8
return i, j, k
end
def extend_table
lbound = NUMS_PER_TABLE * @tables.length
ubound = lbound + NUMS_PER_TABLE
new_table = [FILLED_ENTRY] * ENTRIES_PER_TABLE # which represents primarity in lbound...ubound
(3..Integer(Math.sqrt(ubound))).step(2) do |p|
i, j, k = indices(p)
next if @tables[i][j][k].zero?
start = (lbound.div(p)+1)*p # least multiple of p which is >= lbound
start += p if start.even?
(start...ubound).step(2*p) do |n| (start...ubound).step(2*p) do |n|
i, j = n.divmod(32) _, j, k = indices(n)
@table[i] &= 0xFFFF ^ (1<<(j.div(2))) new_table[j] &= FILLED_ENTRY^(1<<k)
end end
end end
@tables << new_table.freeze
end end
end end

View file

@ -1,6 +1,7 @@
require 'test/unit' require 'test/unit'
require 'prime' require 'prime'
require 'stringio' require 'stringio'
require 'timeout'
class TestPrime < Test::Unit::TestCase class TestPrime < Test::Unit::TestCase
# The first 100 prime numbers # The first 100 prime numbers
@ -143,4 +144,29 @@ class TestPrime < Test::Unit::TestCase
assert !-4.prime? assert !-4.prime?
end end
end end
def test_eratosthenes_works_fine_after_timeout
sieve = Prime::EratosthenesSieve.instance
sieve.send(:initialize)
begin
# simulates that Timeout.timeout interrupts Prime::EratosthenesSieve#extend_table
def sieve.Integer(n)
n = super(n)
sleep 10 if /extend_table/ =~ caller.first
return n
end
begin
Timeout.timeout(0.5) { Prime.each(7*37){} }
flunk("timeout expected")
rescue Timeout::Error
end
ensure
class << sieve
remove_method :Integer
end
end
refute_includes Prime.each(7*37).to_a, 7*37, "[ruby-dev:39465]"
end
end end