mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
* lib/matrix.rb: Fix typos in doc and indent
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@24948 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
parent
9d3638448e
commit
c3db24a4dc
1 changed files with 8 additions and 10 deletions
|
@ -50,7 +50,6 @@ end
|
|||
# * <tt> Matrix.columns(columns) </tt>
|
||||
# * <tt> Matrix.diagonal(*values) </tt>
|
||||
# * <tt> Matrix.scalar(n, value) </tt>
|
||||
# * <tt> Matrix.scalar(n, value) </tt>
|
||||
# * <tt> Matrix.identity(n) </tt>
|
||||
# * <tt> Matrix.unit(n) </tt>
|
||||
# * <tt> Matrix.I(n) </tt>
|
||||
|
@ -122,11 +121,12 @@ class Matrix
|
|||
|
||||
#
|
||||
# Creates a matrix where +rows+ is an array of arrays, each of which is a row
|
||||
# to the matrix. If the optional argument +copy+ is false, use the given
|
||||
# of the matrix. If the optional argument +copy+ is false, use the given
|
||||
# arrays as the internal structure of the matrix without copying.
|
||||
# Matrix.rows([[25, 93], [-1, 66]])
|
||||
# => 25 93
|
||||
# -1 66
|
||||
#
|
||||
def Matrix.rows(rows, copy = true)
|
||||
new(:init_rows, rows, copy)
|
||||
end
|
||||
|
@ -137,7 +137,6 @@ class Matrix
|
|||
# => 25 -1
|
||||
# 93 66
|
||||
#
|
||||
#
|
||||
def Matrix.columns(columns)
|
||||
rows = (0 ... columns[0].size).collect {|i|
|
||||
(0 ... columns.size).collect {|j|
|
||||
|
@ -651,13 +650,13 @@ class Matrix
|
|||
|
||||
#
|
||||
# Returns the determinant of the matrix. If the matrix is not square, the
|
||||
# result is 0. This method's algorism is Gaussian elimination method
|
||||
# result is 0. This method's algorithm is Gaussian elimination method
|
||||
# and using Numeric#quo(). Beware that using Float values, with their
|
||||
# usual lack of precision, can affect the value returned by this method. Use
|
||||
# Rational values or Matrix#det_e instead if this is important to you.
|
||||
#
|
||||
# Matrix[[7,6], [3,9]].determinant
|
||||
# => 63.0
|
||||
# => 45.0
|
||||
#
|
||||
def determinant
|
||||
return 0 unless square?
|
||||
|
@ -692,8 +691,8 @@ class Matrix
|
|||
|
||||
#
|
||||
# Returns the determinant of the matrix. If the matrix is not square, the
|
||||
# result is 0. This method's algorism is Gaussian elimination method.
|
||||
# This method uses Euclidean algorism. If all elements are integer,
|
||||
# result is 0. This method's algorithm is Gaussian elimination method.
|
||||
# This method uses Euclidean algorithm. If all elements are integer,
|
||||
# really exact value. But, if an element is a float, can't return
|
||||
# exact value.
|
||||
#
|
||||
|
@ -802,7 +801,7 @@ class Matrix
|
|||
|
||||
#
|
||||
# Returns the rank of the matrix. This method uses Euclidean
|
||||
# algorism. If all elements are integer, really exact value. But, if
|
||||
# algorithm. If all elements are integer, really exact value. But, if
|
||||
# an element is a float, can't return exact value.
|
||||
#
|
||||
# Matrix[[7,6], [3,9]].rank
|
||||
|
@ -994,7 +993,7 @@ class Matrix
|
|||
when Vector
|
||||
Scalar.Raise WrongArgType, other.class, "Numeric or Scalar or Matrix"
|
||||
when Matrix
|
||||
self * other.inverse
|
||||
self * other.inverse
|
||||
else
|
||||
x, y = other.coerce(self)
|
||||
x.quo(y)
|
||||
|
@ -1349,6 +1348,5 @@ class Vector
|
|||
end
|
||||
end
|
||||
|
||||
|
||||
# Documentation comments:
|
||||
# - Matrix#coerce and Vector#coerce need to be documented
|
||||
|
|
Loading…
Reference in a new issue