mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
lib/matrix: Use consistent style
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@65504 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
parent
5ba9a9505d
commit
c8c66bcf92
2 changed files with 13 additions and 19 deletions
|
|
@ -82,8 +82,8 @@ class Matrix
|
|||
end
|
||||
alias_method :to_a, :to_ary
|
||||
|
||||
private
|
||||
def build_eigenvectors
|
||||
|
||||
private def build_eigenvectors
|
||||
# JAMA stores complex eigenvectors in a strange way
|
||||
# See http://web.archive.org/web/20111016032731/http://cio.nist.gov/esd/emaildir/lists/jama/msg01021.html
|
||||
@e.each_with_index.map do |imag, i|
|
||||
|
|
@ -96,9 +96,10 @@ class Matrix
|
|||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Complex scalar division.
|
||||
|
||||
def cdiv(xr, xi, yr, yi)
|
||||
private def cdiv(xr, xi, yr, yi)
|
||||
if (yr.abs > yi.abs)
|
||||
r = yi/yr
|
||||
d = yr + r*yi
|
||||
|
|
@ -113,7 +114,7 @@ class Matrix
|
|||
|
||||
# Symmetric Householder reduction to tridiagonal form.
|
||||
|
||||
def tridiagonalize
|
||||
private def tridiagonalize
|
||||
|
||||
# This is derived from the Algol procedures tred2 by
|
||||
# Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
||||
|
|
@ -231,7 +232,7 @@ class Matrix
|
|||
|
||||
# Symmetric tridiagonal QL algorithm.
|
||||
|
||||
def diagonalize
|
||||
private def diagonalize
|
||||
# This is derived from the Algol procedures tql2, by
|
||||
# Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
||||
# Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
||||
|
|
@ -350,7 +351,7 @@ class Matrix
|
|||
|
||||
# Nonsymmetric reduction to Hessenberg form.
|
||||
|
||||
def reduce_to_hessenberg
|
||||
private def reduce_to_hessenberg
|
||||
# This is derived from the Algol procedures orthes and ortran,
|
||||
# by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
# Vol.ii-Linear Algebra, and the corresponding
|
||||
|
|
@ -440,11 +441,9 @@ class Matrix
|
|||
end
|
||||
end
|
||||
|
||||
|
||||
|
||||
# Nonsymmetric reduction from Hessenberg to real Schur form.
|
||||
|
||||
def hessenberg_to_real_schur
|
||||
private def hessenberg_to_real_schur
|
||||
|
||||
# This is derived from the Algol procedure hqr2,
|
||||
# by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue