1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

* process.c (reduce_factors): New function.

(timetick2dblnum): Use reduce_factors.
  (timetick2integer): Ditto.
  (make_clock_result): Follow the above change.
  (rb_clock_gettime): Ditto.



git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@42669 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
akr 2013-08-23 12:46:06 +00:00
parent f0bf7f7518
commit ca0b5118a5
2 changed files with 114 additions and 59 deletions

View file

@ -1,3 +1,11 @@
Fri Aug 23 21:37:28 2013 Tanaka Akira <akr@fsij.org>
* process.c (reduce_factors): New function.
(timetick2dblnum): Use reduce_factors.
(timetick2integer): Ditto.
(make_clock_result): Follow the above change.
(rb_clock_gettime): Ditto.
Fri Aug 23 21:00:55 2013 Tanaka Akira <akr@fsij.org> Fri Aug 23 21:00:55 2013 Tanaka Akira <akr@fsij.org>
* process.c (timetick_int_t): Renamed from timetick_giga_count_t. * process.c (timetick_int_t): Renamed from timetick_giga_count_t.

161
process.c
View file

@ -6709,73 +6709,123 @@ reduce_fraction(timetick_int_t *np, timetick_int_t *dp)
} }
} }
static void
reduce_factors(timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators)
{
int i, j;
for (i = 0; i < num_numerators; i++) {
if (numerators[i] == 1)
continue;
for (j = 0; j < num_denominators; j++) {
if (denominators[j] == 1)
continue;
reduce_fraction(&numerators[i], &denominators[j]);
}
}
}
struct timetick { struct timetick {
timetick_int_t giga_count; timetick_int_t giga_count;
int32_t count; /* 0 .. 999999999 */ int32_t count; /* 0 .. 999999999 */
}; };
static VALUE static VALUE
timetick2dblnum(struct timetick *ttp, timetick_int_t numerator, timetick_int_t denominator, timetick_int_t factor) timetick2dblnum(struct timetick *ttp,
timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators)
{ {
if (factor != 1 && denominator != 1) double d;
reduce_fraction(&factor, &denominator); int i;
if (numerator != 1 && denominator != 1)
reduce_fraction(&numerator, &denominator); reduce_factors(numerators, num_numerators,
return DBL2NUM(((ttp->giga_count * 1e9 + ttp->count) * numerator * factor) / denominator); denominators, num_denominators);
d = ttp->giga_count * 1e9 + ttp->count;
for (i = 0; i < num_numerators; i++)
d *= numerators[i];
for (i = 0; i < num_denominators; i++)
d /= denominators[i];
return DBL2NUM(d);
} }
#define NDIV(x,y) (-(-((x)+1)/(y))-1) #define NDIV(x,y) (-(-((x)+1)/(y))-1)
#define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d)) #define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
static VALUE static VALUE
timetick2integer(struct timetick *ttp, timetick_int_t numerator, timetick_int_t denominator, timetick_int_t factor) timetick2integer(struct timetick *ttp,
timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators)
{ {
VALUE v; VALUE v;
int i;
if (denominator != 1 && factor != 1) reduce_factors(numerators, num_numerators,
reduce_fraction(&factor, &denominator); denominators, num_denominators);
if (denominator != 1 && numerator != 1)
reduce_fraction(&numerator, &denominator);
if (!MUL_OVERFLOW_SIGNED_INTEGER_P(1000000000, ttp->giga_count, if (!MUL_OVERFLOW_SIGNED_INTEGER_P(1000000000, ttp->giga_count,
TIMETICK_INT_MIN, TIMETICK_INT_MAX-ttp->count)) { TIMETICK_INT_MIN, TIMETICK_INT_MAX-ttp->count)) {
timetick_int_t t = ttp->giga_count * 1000000000 + ttp->count; timetick_int_t t = ttp->giga_count * 1000000000 + ttp->count;
if (!MUL_OVERFLOW_SIGNED_INTEGER_P(numerator, t, for (i = 0; i < num_numerators; i++) {
TIMETICK_INT_MIN, TIMETICK_INT_MAX)) { timetick_int_t factor = numerators[i];
t *= numerator; if (MUL_OVERFLOW_SIGNED_INTEGER_P(factor, t,
if (!MUL_OVERFLOW_SIGNED_INTEGER_P(factor, t, TIMETICK_INT_MIN, TIMETICK_INT_MAX))
TIMETICK_INT_MIN, TIMETICK_INT_MAX)) { goto generic;
t *= factor; t *= factor;
t = DIV(t, denominator); }
for (i = 0; i < num_denominators; i++) {
t = DIV(t, denominators[i]);
}
return TIMETICK_INT2NUM(t); return TIMETICK_INT2NUM(t);
} }
}
}
generic:
v = TIMETICK_INT2NUM(ttp->giga_count); v = TIMETICK_INT2NUM(ttp->giga_count);
v = rb_funcall(v, '*', 1, LONG2FIX(1000000000)); v = rb_funcall(v, '*', 1, LONG2FIX(1000000000));
v = rb_funcall(v, '+', 1, LONG2FIX(ttp->count)); v = rb_funcall(v, '+', 1, LONG2FIX(ttp->count));
v = rb_funcall(v, '*', 1, TIMETICK_INT2NUM(numerator)); for (i = 0; i < num_numerators; i++) {
timetick_int_t factor = numerators[i];
if (factor == 1)
continue;
v = rb_funcall(v, '*', 1, TIMETICK_INT2NUM(factor)); v = rb_funcall(v, '*', 1, TIMETICK_INT2NUM(factor));
v = rb_funcall(v, '/', 1, TIMETICK_INT2NUM(denominator)); /* Ruby's '/' is div. */ }
for (i = 0; i < num_denominators; i++) {
v = rb_funcall(v, '/', 1, TIMETICK_INT2NUM(denominators[i])); /* Ruby's '/' is div. */
}
return v; return v;
} }
static VALUE static VALUE
make_clock_result(struct timetick *ttp, timetick_int_t numerator, timetick_int_t denominator, VALUE unit) make_clock_result(struct timetick *ttp,
timetick_int_t *numerators, int num_numerators,
timetick_int_t *denominators, int num_denominators,
VALUE unit)
{ {
if (unit == ID2SYM(rb_intern("nanosecond"))) if (unit == ID2SYM(rb_intern("nanosecond"))) {
return timetick2integer(ttp, numerator, denominator, 1000000000); numerators[num_numerators++] = 1000000000;
else if (unit == ID2SYM(rb_intern("microsecond"))) return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators);
return timetick2integer(ttp, numerator, denominator, 1000000); }
else if (unit == ID2SYM(rb_intern("millisecond"))) else if (unit == ID2SYM(rb_intern("microsecond"))) {
return timetick2integer(ttp, numerator, denominator, 1000); numerators[num_numerators++] = 1000000;
else if (unit == ID2SYM(rb_intern("float_microsecond"))) return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators);
return timetick2dblnum(ttp, numerator, denominator, 1000000); }
else if (unit == ID2SYM(rb_intern("float_millisecond"))) else if (unit == ID2SYM(rb_intern("millisecond"))) {
return timetick2dblnum(ttp, numerator, denominator, 1000); numerators[num_numerators++] = 1000;
else if (NIL_P(unit) || unit == ID2SYM(rb_intern("float_second"))) return timetick2integer(ttp, numerators, num_numerators, denominators, num_denominators);
return timetick2dblnum(ttp, numerator, denominator, 1); }
else if (unit == ID2SYM(rb_intern("float_microsecond"))) {
numerators[num_numerators++] = 1000000;
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (unit == ID2SYM(rb_intern("float_millisecond"))) {
numerators[num_numerators++] = 1000;
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators);
}
else if (NIL_P(unit) || unit == ID2SYM(rb_intern("float_second"))) {
return timetick2dblnum(ttp, numerators, num_numerators, denominators, num_denominators);
}
else else
rb_raise(rb_eArgError, "unexpected unit: %"PRIsVALUE, unit); rb_raise(rb_eArgError, "unexpected unit: %"PRIsVALUE, unit);
} }
@ -6890,8 +6940,10 @@ rb_clock_gettime(int argc, VALUE *argv)
int ret; int ret;
struct timetick tt; struct timetick tt;
timetick_int_t numerator; timetick_int_t numerators[2];
timetick_int_t denominator; timetick_int_t denominators[2];
int num_numerators = 0;
int num_denominators = 0;
rb_scan_args(argc, argv, "11", &clk_id, &unit); rb_scan_args(argc, argv, "11", &clk_id, &unit);
@ -6910,9 +6962,8 @@ rb_clock_gettime(int argc, VALUE *argv)
if (ret != 0) if (ret != 0)
rb_sys_fail("gettimeofday"); rb_sys_fail("gettimeofday");
tt.giga_count = tv.tv_sec; tt.giga_count = tv.tv_sec;
tt.count = tv.tv_usec * 1000; tt.count = (int32_t)tv.tv_usec * 1000;
numerator = 1; denominators[num_denominators++] = 1000000000;
denominator = 1000000000;
goto success; goto success;
} }
@ -6924,8 +6975,7 @@ rb_clock_gettime(int argc, VALUE *argv)
rb_sys_fail("time"); rb_sys_fail("time");
tt.giga_count = t; tt.giga_count = t;
tt.count = 0; tt.count = 0;
numerator = 1; denominators[num_denominators++] = 1000000000;
denominator = 1000000000;
goto success; goto success;
} }
@ -6934,7 +6984,7 @@ rb_clock_gettime(int argc, VALUE *argv)
ID2SYM(rb_intern("SUS_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID")) ID2SYM(rb_intern("SUS_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID"))
if (clk_id == RUBY_SUS_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) { if (clk_id == RUBY_SUS_GETRUSAGE_BASED_CLOCK_PROCESS_CPUTIME_ID) {
struct rusage usage; struct rusage usage;
long usec; int32_t usec;
ret = getrusage(RUSAGE_SELF, &usage); ret = getrusage(RUSAGE_SELF, &usage);
if (ret != 0) if (ret != 0)
rb_sys_fail("getrusage"); rb_sys_fail("getrusage");
@ -6945,8 +6995,7 @@ rb_clock_gettime(int argc, VALUE *argv)
usec -= 1000000; usec -= 1000000;
} }
tt.count = usec * 1000; tt.count = usec * 1000;
numerator = 1; denominators[num_denominators++] = 1000000000;
denominator = 1000000000;
goto success; goto success;
} }
#endif #endif
@ -6961,14 +7010,13 @@ rb_clock_gettime(int argc, VALUE *argv)
rb_sys_fail("times"); rb_sys_fail("times");
utime = (unsigned_clock_t)buf.tms_utime; utime = (unsigned_clock_t)buf.tms_utime;
stime = (unsigned_clock_t)buf.tms_stime; stime = (unsigned_clock_t)buf.tms_stime;
tt.count = (utime % 1000000000) + (stime % 1000000000); tt.count = (int32_t)((utime % 1000000000) + (stime % 1000000000));
tt.giga_count = (utime / 1000000000) + (stime / 1000000000); tt.giga_count = (utime / 1000000000) + (stime / 1000000000);
if (1000000000 <= tt.count) { if (1000000000 <= tt.count) {
tt.count -= 1000000000; tt.count -= 1000000000;
tt.giga_count++; tt.giga_count++;
} }
numerator = 1; denominators[num_denominators++] = get_clk_tck();
denominator = get_clk_tck();
goto success; goto success;
} }
#endif #endif
@ -6983,10 +7031,9 @@ rb_clock_gettime(int argc, VALUE *argv)
if (c == (clock_t)-1) if (c == (clock_t)-1)
rb_sys_fail("clock"); rb_sys_fail("clock");
uc = (unsigned_clock_t)c; uc = (unsigned_clock_t)c;
tt.count = uc % 1000000000; tt.count = (int32_t)(uc % 1000000000);
tt.giga_count = uc / 1000000000; tt.giga_count = uc / 1000000000;
numerator = 1; denominators[num_denominators++] = CLOCKS_PER_SEC;
denominator = CLOCKS_PER_SEC;
goto success; goto success;
} }
@ -7000,10 +7047,11 @@ rb_clock_gettime(int argc, VALUE *argv)
(void) mach_timebase_info(&sTimebaseInfo); (void) mach_timebase_info(&sTimebaseInfo);
} }
tt.count = t % 1000000000; tt.count = (int32_t)(t % 1000000000);
tt.giga_count = t / 1000000000; tt.giga_count = t / 1000000000;
numerator = sTimebaseInfo.numer; numerators[num_numerators++] = sTimebaseInfo.numer;
denominator = sTimebaseInfo.denom * (timetick_int_t)1000000000; denominators[num_denominators++] = sTimebaseInfo.denom;
denominators[num_denominators++] = 1000000000;
goto success; goto success;
} }
#endif #endif
@ -7016,10 +7064,9 @@ rb_clock_gettime(int argc, VALUE *argv)
ret = clock_gettime(c, &ts); ret = clock_gettime(c, &ts);
if (ret == -1) if (ret == -1)
rb_sys_fail("clock_gettime"); rb_sys_fail("clock_gettime");
tt.count = ts.tv_nsec; tt.count = (int32_t)ts.tv_nsec;
tt.giga_count = ts.tv_sec; tt.giga_count = ts.tv_sec;
numerator = 1; denominators[num_denominators++] = 1000000000;
denominator = 1000000000;
goto success; goto success;
#endif #endif
} }
@ -7028,7 +7075,7 @@ rb_clock_gettime(int argc, VALUE *argv)
rb_sys_fail(0); rb_sys_fail(0);
success: success:
return make_clock_result(&tt, numerator, denominator, unit); return make_clock_result(&tt, numerators, num_numerators, denominators, num_denominators, unit);
} }
VALUE rb_mProcess; VALUE rb_mProcess;