YJIT: Fail gracefully while OOM for new entry points

Previously, YJIT crashes with rb_bug() when asked to compile new methods
while out of executable memory.

To handle this situation gracefully, this change keeps track of all the
blocks compiled each invocation in case YJIT runs out of memory in the
middle of a compliation sequence. The list is used to free all blocks in
case compilation fails.

yjit_gen_block() is renamed to gen_single_block() to make it distinct from
gen_block_version(). Call to limit_block_version() and block_t
allocation is moved into the function to help tidy error checking in the
outer loop.

limit_block_version() now returns by value. I feel that an out parameter
with conditional mutation is unnecessarily hard to read in code that
does not need to go for last drop performance. There is a good chance
that the optimizer is able to output identical code anyways.
This commit is contained in:
Alan Wu 2021-11-19 23:44:13 -05:00
parent a84dc9d80d
commit d0772632bf
Notes: git 2021-12-02 02:26:03 +09:00
7 changed files with 131 additions and 66 deletions

View File

@ -2474,6 +2474,18 @@ assert_equal 'new', %q{
test
} if false # disabled for now since OOM crashes in the test harness
assert_equal 'ok', %q{
# Try to compile new method while OOM
def foo
:ok
end
RubyVM::YJIT.simulate_oom! if defined?(RubyVM::YJIT)
foo
foo
}
# struct aref embedded
assert_equal '2', %q{
def foo(s)

1
yjit.c
View File

@ -122,6 +122,7 @@ YJIT_DECLARE_COUNTERS(
vm_insns_count,
compiled_iseq_count,
compiled_block_count,
compilation_failure,
exit_from_branch_stub,

View File

@ -193,8 +193,12 @@ module RubyVM::YJIT
total_insns_count = retired_in_yjit + stats[:vm_insns_count]
yjit_ratio_pct = 100.0 * retired_in_yjit.to_f / total_insns_count
# Number of failed compiler invocations
compilation_failure = stats[:compilation_failure]
$stderr.puts "bindings_allocations: " + ("%10d" % stats[:binding_allocations])
$stderr.puts "bindings_set: " + ("%10d" % stats[:binding_set])
$stderr.puts "compilation_failure: " + ("%10d" % compilation_failure) if compilation_failure != 0
$stderr.puts "compiled_iseq_count: " + ("%10d" % stats[:compiled_iseq_count])
$stderr.puts "compiled_block_count: " + ("%10d" % stats[:compiled_block_count])
$stderr.puts "invalidation_count: " + ("%10d" % stats[:invalidation_count])

View File

@ -545,10 +545,15 @@ yjit_entry_prologue(codeblock_t *cb, const rb_iseq_t *iseq)
{
RUBY_ASSERT(cb != NULL);
if (cb->write_pos + 1024 >= cb->mem_size) {
rb_bug("out of executable memory");
enum { MAX_PROLOGUE_SIZE = 1024 };
// Check if we have enough executable memory
if (cb->write_pos + MAX_PROLOGUE_SIZE >= cb->mem_size) {
return NULL;
}
const uint32_t old_write_pos = cb->write_pos;
// Align the current write positon to cache line boundaries
cb_align_pos(cb, 64);
@ -581,6 +586,9 @@ yjit_entry_prologue(codeblock_t *cb, const rb_iseq_t *iseq)
yjit_pc_guard(cb, iseq);
}
// Verify MAX_PROLOGUE_SIZE
RUBY_ASSERT_ALWAYS(cb->write_pos - old_write_pos <= MAX_PROLOGUE_SIZE);
return code_ptr;
}
@ -625,32 +633,46 @@ jit_jump_to_next_insn(jitstate_t *jit, const ctx_t *current_context)
);
}
// Compile a sequence of bytecode instructions for a given basic block version
static void
yjit_gen_block(block_t *block, rb_execution_context_t *ec)
// Compile a sequence of bytecode instructions for a given basic block version.
// Part of gen_block_version().
static block_t *
gen_single_block(blockid_t blockid, const ctx_t *start_ctx, rb_execution_context_t *ec)
{
RUBY_ASSERT(cb != NULL);
RUBY_ASSERT(block != NULL);
RUBY_ASSERT(!(block->blockid.idx == 0 && block->ctx.stack_size > 0));
// Copy the block's context to avoid mutating it
ctx_t ctx_copy = block->ctx;
// Check if there is enough executable memory.
// FIXME: This bound isn't enforced and long blocks can potentially use more.
enum { MAX_CODE_PER_BLOCK = 1024 };
if (cb->write_pos + MAX_CODE_PER_BLOCK >= cb->mem_size) {
return NULL;
}
if (ocb->write_pos + MAX_CODE_PER_BLOCK >= ocb->mem_size) {
return NULL;
}
// Allocate the new block
block_t *block = calloc(1, sizeof(block_t));
if (!block) {
return NULL;
}
// Copy the starting context to avoid mutating it
ctx_t ctx_copy = *start_ctx;
ctx_t *ctx = &ctx_copy;
// Limit the number of specialized versions for this block
*ctx = limit_block_versions(blockid, ctx);
// Save the starting context on the block.
block->blockid = blockid;
block->ctx = *ctx;
RUBY_ASSERT(!(blockid.idx == 0 && start_ctx->stack_size > 0));
const rb_iseq_t *iseq = block->blockid.iseq;
uint32_t insn_idx = block->blockid.idx;
const uint32_t starting_insn_idx = insn_idx;
// NOTE: if we are ever deployed in production, we
// should probably just log an error and return NULL here,
// so we can fail more gracefully
if (cb->write_pos + 1024 >= cb->mem_size) {
rb_bug("out of executable memory");
}
if (ocb->write_pos + 1024 >= ocb->mem_size) {
rb_bug("out of executable memory (outlined block)");
}
// Initialize a JIT state object
jitstate_t jit = {
.cb = cb,
@ -765,6 +787,8 @@ yjit_gen_block(block_t *block, rb_execution_context_t *ec)
idx += insn_len(opcode);
}
}
return block;
}
static codegen_status_t gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb);

View File

@ -14,7 +14,7 @@ static void jit_ensure_block_entry_exit(jitstate_t *jit);
static uint8_t *yjit_entry_prologue(codeblock_t *cb, const rb_iseq_t *iseq);
static void yjit_gen_block(block_t *block, rb_execution_context_t *ec);
static block_t *gen_single_block(blockid_t blockid, const ctx_t *start_ctx, rb_execution_context_t *ec);
static void gen_code_for_exit_from_stub(void);

View File

@ -542,9 +542,10 @@ static size_t get_num_versions(blockid_t blockid)
// Keep track of a block version. Block should be fully constructed.
static void
add_block_version(blockid_t blockid, block_t *block)
add_block_version(block_t *block)
{
const rb_iseq_t *iseq = block->blockid.iseq;
const blockid_t blockid = block->blockid;
const rb_iseq_t *iseq = blockid.iseq;
struct rb_iseq_constant_body *body = iseq->body;
// Function entry blocks must have stack size 0
@ -704,57 +705,66 @@ find_block_version(blockid_t blockid, const ctx_t *ctx)
// Produce a generic context when the block version limit is hit for a blockid
// Note that this will mutate the ctx argument
static void
limit_block_versions(blockid_t blockid, ctx_t *ctx)
static ctx_t
limit_block_versions(blockid_t blockid, const ctx_t *ctx)
{
// Guard chains implement limits separately, do nothing
if (ctx->chain_depth > 0)
return;
return *ctx;
// If this block version we're about to add will hit the version limit
if (get_num_versions(blockid) + 1 >= rb_yjit_opts.max_versions)
{
if (get_num_versions(blockid) + 1 >= rb_yjit_opts.max_versions) {
// Produce a generic context that stores no type information,
// but still respects the stack_size and sp_offset constraints
// but still respects the stack_size and sp_offset constraints.
// This new context will then match all future requests.
ctx_t generic_ctx = DEFAULT_CTX;
generic_ctx.stack_size = ctx->stack_size;
generic_ctx.sp_offset = ctx->sp_offset;
// Mutate the incoming context
*ctx = generic_ctx;
return generic_ctx;
}
return *ctx;
}
// Compile a new block version immediately
static void yjit_free_block(block_t *block);
// Immediately compile a series of block versions at a starting point and
// return the starting block.
static block_t *
gen_block_version(blockid_t blockid, const ctx_t *start_ctx, rb_execution_context_t *ec)
{
// Allocate a new block version object
block_t *block = calloc(1, sizeof(block_t));
block->blockid = blockid;
memcpy(&block->ctx, start_ctx, sizeof(ctx_t));
// Store a pointer to the first block (returned by this function)
block_t *first_block = block;
// Limit the number of specialized versions for this block
limit_block_versions(block->blockid, &block->ctx);
// Small array to keep track of all the blocks compiled per invocation. We
// tend to have small batches since we often break up compilation with lazy
// stubs. Compilation is successful only if the whole batch is successful.
enum { MAX_PER_BATCH = 64 };
block_t *batch[MAX_PER_BATCH];
int compiled_count = 0;
bool batch_success = true;
block_t *block;
// Generate code for the first block
yjit_gen_block(block, ec);
block = gen_single_block(blockid, start_ctx, ec);
batch_success = block && compiled_count < MAX_PER_BATCH;
// Keep track of the new block version
add_block_version(block->blockid, block);
if (batch_success) {
// Track the block
add_block_version(block);
batch[compiled_count] = block;
compiled_count++;
}
// For each successor block to compile
for (;;) {
while (batch_success) {
// If the previous block compiled doesn't have outgoing branches, stop
if (rb_darray_size(block->outgoing) == 0) {
break;
}
// Get the last outgoing branch from the previous block
// Get the last outgoing branch from the previous block. Blocks can use
// gen_direct_jump() to request a block to be placed immediately after.
branch_t *last_branch = rb_darray_back(block->outgoing);
// If there is no next block to compile, stop
@ -766,32 +776,48 @@ gen_block_version(blockid_t blockid, const ctx_t *start_ctx, rb_execution_contex
rb_bug("invalid target for last branch");
}
// Allocate a new block version object
// Use the context from the branch
block = calloc(1, sizeof(block_t));
block->blockid = last_branch->targets[0];
block->ctx = last_branch->target_ctxs[0];
//memcpy(&block->ctx, ctx, sizeof(ctx_t));
// Generate code for the current block using context from the last branch.
blockid_t requested_id = last_branch->targets[0];
const ctx_t *requested_ctx = &last_branch->target_ctxs[0];
block = gen_single_block(requested_id, requested_ctx, ec);
batch_success = block && compiled_count < MAX_PER_BATCH;
// Limit the number of specialized versions for this block
limit_block_versions(block->blockid, &block->ctx);
// If the batch failed, stop
if (!batch_success) {
break;
}
// Generate code for the current block
yjit_gen_block(block, ec);
// Keep track of the new block version
add_block_version(block->blockid, block);
// Patch the last branch address
// Connect the last branch and the new block
last_branch->dst_addrs[0] = block->start_addr;
rb_darray_append(&block->incoming, last_branch);
last_branch->blocks[0] = block;
// This block should immediately follow the last branch
RUBY_ASSERT(block->start_addr == last_branch->end_addr);
// Track the block
add_block_version(block);
batch[compiled_count] = block;
compiled_count++;
}
return first_block;
if (batch_success) {
// Success. Return first block in the batch.
RUBY_ASSERT(compiled_count > 0);
return batch[0];
}
else {
// The batch failed. Free everything in the batch
for (int block_idx = 0; block_idx < compiled_count; block_idx++) {
yjit_free_block(batch[block_idx]);
}
#if YJIT_STATS
yjit_runtime_counters.compilation_failure++;
#endif
return NULL;
}
}
// Generate a block version that is an entry point inserted into an iseq
@ -807,15 +833,14 @@ gen_entry_point(const rb_iseq_t *iseq, uint32_t insn_idx, rb_execution_context_t
// The entry context makes no assumptions about types
blockid_t blockid = { iseq, insn_idx };
// Write the interpreter entry prologue
// Write the interpreter entry prologue. Might be NULL when out of memory.
uint8_t *code_ptr = yjit_entry_prologue(cb, iseq);
// Try to generate code for the entry block
block_t *block = gen_block_version(blockid, &DEFAULT_CTX, ec);
// If we couldn't generate any code
if (block->end_idx == insn_idx)
{
if (!block || block->end_idx == insn_idx) {
return NULL;
}

View File

@ -483,8 +483,7 @@ rb_yjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec)
// Compile a block version starting at the first instruction
uint8_t *code_ptr = gen_entry_point(iseq, 0, ec);
if (code_ptr)
{
if (code_ptr) {
iseq->body->jit_func = (yjit_func_t)code_ptr;
}
else {