1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

* ext/digest/sha2/sha2.[ch]: Update to 1.0 RELEASE which fixes an

off-by-one bug in SHA-256 hashing.  Reduce differences from
  the original while at it. [Bug #1799]




git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@24415 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
knu 2009-08-05 16:40:33 +00:00
parent c7b5cecb36
commit d427b8a8ee
3 changed files with 450 additions and 135 deletions

View file

@ -1,3 +1,9 @@
Thu Aug 6 01:37:20 2009 Akinori MUSHA <knu@iDaemons.org>
* ext/digest/sha2/sha2.[ch]: Update to 1.0 RELEASE which fixes an
off-by-one bug in SHA-256 hashing. Reduce differences from
the original while at it. [Bug #1799]
Thu Aug 6 00:09:56 2009 Akinori MUSHA <knu@iDaemons.org>
* lib/ipaddr.rb (IPAddr#hash): Take account of netmask; submitted

View file

@ -1,11 +1,9 @@
/*
* sha2.c
*
* Version 1.0.0beta1
*
* Written by Aaron D. Gifford <me@aarongifford.com>
*
* Copyright 2000 Aaron D. Gifford. All rights reserved.
* FILE: sha2.c
* AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
*
* Copyright (c) 2000-2001, Aaron D. Gifford
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -19,10 +17,10 @@
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
@ -31,15 +29,15 @@
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $OrigId: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
* $RoughId: sha2.c,v 1.3 2002/02/26 22:03:36 knu Exp $
* $Id$
*/
/* $RoughId: sha2.c,v 1.3 2002/02/26 22:03:36 knu Exp $ */
/* $Id$ */
#include "sha2.h"
#include <stdio.h>
#include "defs.h"
#include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
#include <assert.h> /* assert() */
#include "sha2.h"
/*
* ASSERT NOTE:
@ -63,15 +61,64 @@
/*** SHA-256/384/512 Machine Architecture Definitions *****************/
/*
* BYTE_ORDER NOTE:
*
* Please make sure that your system defines BYTE_ORDER. If your
* architecture is little-endian, make sure it also defines
* LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
* equivilent.
*
* If your system does not define the above, then you can do so by
* hand like this:
*
* #define LITTLE_ENDIAN 1234
* #define BIG_ENDIAN 4321
*
* And for little-endian machines, add:
*
* #define BYTE_ORDER LITTLE_ENDIAN
*
* Or for big-endian machines:
*
* #define BYTE_ORDER BIG_ENDIAN
*
* The FreeBSD machine this was written on defines BYTE_ORDER
* appropriately by including <sys/types.h> (which in turn includes
* <machine/endian.h> where the appropriate definitions are actually
* made).
*/
#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
#endif
/*
* Define the followingsha2_* types to types of the correct length on
* the native archtecture. Most BSD systems and Linux define u_intXX_t
* types. Machines with very recent ANSI C headers, can use the
* uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
* during compile or in the sha.h header file.
*
* Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
* will need to define these three typedefs below (and the appropriate
* ones in sha.h too) by hand according to their system architecture.
*
* Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
* types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
*/
#ifdef SHA2_USE_INTTYPES_H
typedef uint8_t sha2_byte; /* Exactly 1 byte */
typedef uint32_t sha2_word32; /* Exactly 4 bytes */
typedef uint64_t sha2_word64; /* Exactly 8 bytes */
#if defined(__GNUC__) || defined(_HPUX_SOURCE) || defined(__IBMC__)
#define ULL(number) number##ULL
#else
#define ULL(number) (uint64_t)(number)
#endif
#else /* SHA2_USE_INTTYPES_H */
typedef u_int8_t sha2_byte; /* Exactly 1 byte */
typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
#endif /* SHA2_USE_INTTYPES_H */
/*** SHA-256/384/512 Various Length Definitions ***********************/
@ -82,7 +129,7 @@ typedef uint64_t sha2_word64; /* Exactly 8 bytes */
/*** ENDIAN REVERSAL MACROS *******************************************/
#ifndef WORDS_BIGENDIAN
#if BYTE_ORDER == LITTLE_ENDIAN
#define REVERSE32(w,x) { \
sha2_word32 tmp = (w); \
tmp = (tmp >> 16) | (tmp << 16); \
@ -91,12 +138,12 @@ typedef uint64_t sha2_word64; /* Exactly 8 bytes */
#define REVERSE64(w,x) { \
sha2_word64 tmp = (w); \
tmp = (tmp >> 32) | (tmp << 32); \
tmp = ((tmp & ULL(0xff00ff00ff00ff00)) >> 8) | \
((tmp & ULL(0x00ff00ff00ff00ff)) << 8); \
(x) = ((tmp & ULL(0xffff0000ffff0000)) >> 16) | \
((tmp & ULL(0x0000ffff0000ffff)) << 16); \
tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
((tmp & 0x00ff00ff00ff00ffULL) << 8); \
(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
((tmp & 0x0000ffff0000ffffULL) << 16); \
}
#endif
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
/*
* Macro for incrementally adding the unsigned 64-bit integer n to the
@ -215,72 +262,78 @@ const static sha2_word32 sha256_initial_hash_value[8] = {
/* Hash constant words K for SHA-384 and SHA-512: */
const static sha2_word64 K512[80] = {
ULL(0x428a2f98d728ae22), ULL(0x7137449123ef65cd),
ULL(0xb5c0fbcfec4d3b2f), ULL(0xe9b5dba58189dbbc),
ULL(0x3956c25bf348b538), ULL(0x59f111f1b605d019),
ULL(0x923f82a4af194f9b), ULL(0xab1c5ed5da6d8118),
ULL(0xd807aa98a3030242), ULL(0x12835b0145706fbe),
ULL(0x243185be4ee4b28c), ULL(0x550c7dc3d5ffb4e2),
ULL(0x72be5d74f27b896f), ULL(0x80deb1fe3b1696b1),
ULL(0x9bdc06a725c71235), ULL(0xc19bf174cf692694),
ULL(0xe49b69c19ef14ad2), ULL(0xefbe4786384f25e3),
ULL(0x0fc19dc68b8cd5b5), ULL(0x240ca1cc77ac9c65),
ULL(0x2de92c6f592b0275), ULL(0x4a7484aa6ea6e483),
ULL(0x5cb0a9dcbd41fbd4), ULL(0x76f988da831153b5),
ULL(0x983e5152ee66dfab), ULL(0xa831c66d2db43210),
ULL(0xb00327c898fb213f), ULL(0xbf597fc7beef0ee4),
ULL(0xc6e00bf33da88fc2), ULL(0xd5a79147930aa725),
ULL(0x06ca6351e003826f), ULL(0x142929670a0e6e70),
ULL(0x27b70a8546d22ffc), ULL(0x2e1b21385c26c926),
ULL(0x4d2c6dfc5ac42aed), ULL(0x53380d139d95b3df),
ULL(0x650a73548baf63de), ULL(0x766a0abb3c77b2a8),
ULL(0x81c2c92e47edaee6), ULL(0x92722c851482353b),
ULL(0xa2bfe8a14cf10364), ULL(0xa81a664bbc423001),
ULL(0xc24b8b70d0f89791), ULL(0xc76c51a30654be30),
ULL(0xd192e819d6ef5218), ULL(0xd69906245565a910),
ULL(0xf40e35855771202a), ULL(0x106aa07032bbd1b8),
ULL(0x19a4c116b8d2d0c8), ULL(0x1e376c085141ab53),
ULL(0x2748774cdf8eeb99), ULL(0x34b0bcb5e19b48a8),
ULL(0x391c0cb3c5c95a63), ULL(0x4ed8aa4ae3418acb),
ULL(0x5b9cca4f7763e373), ULL(0x682e6ff3d6b2b8a3),
ULL(0x748f82ee5defb2fc), ULL(0x78a5636f43172f60),
ULL(0x84c87814a1f0ab72), ULL(0x8cc702081a6439ec),
ULL(0x90befffa23631e28), ULL(0xa4506cebde82bde9),
ULL(0xbef9a3f7b2c67915), ULL(0xc67178f2e372532b),
ULL(0xca273eceea26619c), ULL(0xd186b8c721c0c207),
ULL(0xeada7dd6cde0eb1e), ULL(0xf57d4f7fee6ed178),
ULL(0x06f067aa72176fba), ULL(0x0a637dc5a2c898a6),
ULL(0x113f9804bef90dae), ULL(0x1b710b35131c471b),
ULL(0x28db77f523047d84), ULL(0x32caab7b40c72493),
ULL(0x3c9ebe0a15c9bebc), ULL(0x431d67c49c100d4c),
ULL(0x4cc5d4becb3e42b6), ULL(0x597f299cfc657e2a),
ULL(0x5fcb6fab3ad6faec), ULL(0x6c44198c4a475817)
0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};
/* Initial hash value H for SHA-384 */
const static sha2_word64 sha384_initial_hash_value[8] = {
ULL(0xcbbb9d5dc1059ed8),
ULL(0x629a292a367cd507),
ULL(0x9159015a3070dd17),
ULL(0x152fecd8f70e5939),
ULL(0x67332667ffc00b31),
ULL(0x8eb44a8768581511),
ULL(0xdb0c2e0d64f98fa7),
ULL(0x47b5481dbefa4fa4)
0xcbbb9d5dc1059ed8ULL,
0x629a292a367cd507ULL,
0x9159015a3070dd17ULL,
0x152fecd8f70e5939ULL,
0x67332667ffc00b31ULL,
0x8eb44a8768581511ULL,
0xdb0c2e0d64f98fa7ULL,
0x47b5481dbefa4fa4ULL
};
/* Initial hash value H for SHA-512 */
const static sha2_word64 sha512_initial_hash_value[8] = {
ULL(0x6a09e667f3bcc908),
ULL(0xbb67ae8584caa73b),
ULL(0x3c6ef372fe94f82b),
ULL(0xa54ff53a5f1d36f1),
ULL(0x510e527fade682d1),
ULL(0x9b05688c2b3e6c1f),
ULL(0x1f83d9abfb41bd6b),
ULL(0x5be0cd19137e2179)
0x6a09e667f3bcc908ULL,
0xbb67ae8584caa73bULL,
0x3c6ef372fe94f82bULL,
0xa54ff53a5f1d36f1ULL,
0x510e527fade682d1ULL,
0x9b05688c2b3e6c1fULL,
0x1f83d9abfb41bd6bULL,
0x5be0cd19137e2179ULL
};
/*
* Constant used by SHA256/384/512_End() functions for converting the
* digest to a readable hexadecimal character string:
*/
static const char *sha2_hex_digits = "0123456789abcdef";
/*** SHA-256: *********************************************************/
void SHA256_Init(SHA256_CTX* context) {
@ -296,7 +349,7 @@ void SHA256_Init(SHA256_CTX* context) {
/* Unrolled SHA-256 round macros: */
#ifndef WORDS_BIGENDIAN
#if BYTE_ORDER == LITTLE_ENDIAN
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
REVERSE32(*data++, W256[j]); \
@ -307,7 +360,7 @@ void SHA256_Init(SHA256_CTX* context) {
j++
#else
#else /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
@ -316,7 +369,7 @@ void SHA256_Init(SHA256_CTX* context) {
(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
j++
#endif
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND256(a,b,c,d,e,f,g,h) \
s0 = W256[(j+1)&0x0f]; \
@ -406,15 +459,15 @@ void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
j = 0;
do {
#ifndef WORDS_BIGENDIAN
#if BYTE_ORDER == LITTLE_ENDIAN
/* Copy data while converting to host byte order */
REVERSE32(*data++,W256[j]);
/* Apply the SHA-256 compression function to update a..h */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
#else
#else /* BYTE_ORDER == LITTLE_ENDIAN */
/* Apply the SHA-256 compression function to update a..h with copy */
T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
#endif
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
T2 = Sigma0_256(a) + Maj(a, b, c);
h = g;
g = f;
@ -476,7 +529,7 @@ void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
}
/* Sanity check: */
assert(context != NULL && data != NULL);
assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
if (usedspace > 0) {
@ -501,7 +554,7 @@ void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
}
while (len >= SHA256_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
SHA256_Transform(context, (const sha2_word32*)data);
SHA256_Transform(context, (sha2_word32*)data);
context->bitcount += SHA256_BLOCK_LENGTH << 3;
len -= SHA256_BLOCK_LENGTH;
data += SHA256_BLOCK_LENGTH;
@ -515,17 +568,21 @@ void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
usedspace = freespace = 0;
}
#ifdef RUBY
void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
#else
void SHA256_Finish(SHA256_CTX* context, sha2_byte digest[]) {
#endif
sha2_word32 *d = (sha2_word32*)digest;
unsigned int usedspace;
/* Sanity check: */
assert(context != NULL);
assert(context != (SHA256_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
#ifndef WORDS_BIGENDIAN
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount,context->bitcount);
#endif
@ -559,7 +616,7 @@ void SHA256_Finish(SHA256_CTX* context, sha2_byte digest[]) {
/* Final transform: */
SHA256_Transform(context, (sha2_word32*)context->buffer);
#ifndef WORDS_BIGENDIAN
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
@ -574,10 +631,46 @@ void SHA256_Finish(SHA256_CTX* context, sha2_byte digest[]) {
}
/* Clean up state data: */
MEMSET_BZERO(context, sizeof(SHA256_CTX));
MEMSET_BZERO(context, sizeof(context));
usedspace = 0;
}
char *SHA256_End(SHA256_CTX* context, char buffer[]) {
sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA256_CTX*)0);
if (buffer != (char*)0) {
#ifdef RUBY
SHA256_Finish(context, digest);
#else
SHA256_Final(digest, context);
#endif
for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
return buffer;
}
char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
SHA256_CTX context;
SHA256_Init(&context);
SHA256_Update(&context, data, len);
return SHA256_End(&context, digest);
}
/*** SHA-512: *********************************************************/
void SHA512_Init(SHA512_CTX* context) {
if (context == (SHA512_CTX*)0) {
@ -591,7 +684,7 @@ void SHA512_Init(SHA512_CTX* context) {
#ifdef SHA2_UNROLL_TRANSFORM
/* Unrolled SHA-512 round macros: */
#ifndef WORDS_BIGENDIAN
#if BYTE_ORDER == LITTLE_ENDIAN
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
REVERSE64(*data++, W512[j]); \
@ -602,7 +695,7 @@ void SHA512_Init(SHA512_CTX* context) {
j++
#else
#else /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
@ -611,7 +704,7 @@ void SHA512_Init(SHA512_CTX* context) {
(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
j++
#endif
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
#define ROUND512(a,b,c,d,e,f,g,h) \
s0 = W512[(j+1)&0x0f]; \
@ -696,15 +789,15 @@ void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
j = 0;
do {
#ifndef WORDS_BIGENDIAN
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert TO host byte order */
REVERSE64(*data++, W512[j]);
/* Apply the SHA-512 compression function to update a..h */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
#else
#else /* BYTE_ORDER == LITTLE_ENDIAN */
/* Apply the SHA-512 compression function to update a..h with copy */
T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
#endif
#endif /* BYTE_ORDER == LITTLE_ENDIAN */
T2 = Sigma0_512(a) + Maj(a, b, c);
h = g;
g = f;
@ -766,7 +859,7 @@ void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
}
/* Sanity check: */
assert(context != NULL && data != NULL);
assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
if (usedspace > 0) {
@ -779,7 +872,7 @@ void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
ADDINC128(context->bitcount, freespace << 3);
len -= freespace;
data += freespace;
SHA512_Transform(context, (const sha2_word64*)context->buffer);
SHA512_Transform(context, (sha2_word64*)context->buffer);
} else {
/* The buffer is not yet full */
MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
@ -791,7 +884,7 @@ void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
}
while (len >= SHA512_BLOCK_LENGTH) {
/* Process as many complete blocks as we can */
SHA512_Transform(context, (const sha2_word64*)data);
SHA512_Transform(context, (sha2_word64*)data);
ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
len -= SHA512_BLOCK_LENGTH;
data += SHA512_BLOCK_LENGTH;
@ -809,7 +902,7 @@ void SHA512_Last(SHA512_CTX* context) {
unsigned int usedspace;
usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
#ifndef WORDS_BIGENDIAN
#if BYTE_ORDER == LITTLE_ENDIAN
/* Convert FROM host byte order */
REVERSE64(context->bitcount[0],context->bitcount[0]);
REVERSE64(context->bitcount[1],context->bitcount[1]);
@ -826,7 +919,7 @@ void SHA512_Last(SHA512_CTX* context) {
MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
}
/* Do second-to-last transform: */
SHA512_Transform(context, (const sha2_word64*)context->buffer);
SHA512_Transform(context, (sha2_word64*)context->buffer);
/* And set-up for the last transform: */
MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
@ -843,21 +936,25 @@ void SHA512_Last(SHA512_CTX* context) {
*(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
/* Final transform: */
SHA512_Transform(context, (const sha2_word64*)context->buffer);
SHA512_Transform(context, (sha2_word64*)context->buffer);
}
#ifdef RUBY
void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
#else
void SHA512_Finish(SHA512_CTX* context, sha2_byte digest[]) {
#endif
sha2_word64 *d = (sha2_word64*)digest;
/* Sanity check: */
assert(context != NULL);
assert(context != (SHA512_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
SHA512_Last(context);
/* Save the hash data for output: */
#ifndef WORDS_BIGENDIAN
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
@ -872,9 +969,45 @@ void SHA512_Finish(SHA512_CTX* context, sha2_byte digest[]) {
}
/* Zero out state data */
MEMSET_BZERO(context, sizeof(SHA512_CTX));
MEMSET_BZERO(context, sizeof(context));
}
char *SHA512_End(SHA512_CTX* context, char buffer[]) {
sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA512_CTX*)0);
if (buffer != (char*)0) {
#ifdef RUBY
SHA512_Finish(context, digest);
#else
SHA512_Final(digest, context);
#endif
for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
return buffer;
}
char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
SHA512_CTX context;
SHA512_Init(&context);
SHA512_Update(&context, data, len);
return SHA512_End(&context, digest);
}
/*** SHA-384: *********************************************************/
void SHA384_Init(SHA384_CTX* context) {
if (context == (SHA384_CTX*)0) {
@ -889,18 +1022,22 @@ void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
SHA512_Update((SHA512_CTX*)context, data, len);
}
#ifdef RUBY
void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
#else
void SHA384_Finish(SHA384_CTX* context, sha2_byte digest[]) {
#endif
sha2_word64 *d = (sha2_word64*)digest;
/* Sanity check: */
assert(context != NULL);
assert(context != (SHA384_CTX*)0);
/* If no digest buffer is passed, we don't bother doing this: */
if (digest != (sha2_byte*)0) {
SHA512_Last((SHA512_CTX*)context);
/* Save the hash data for output: */
#ifndef WORDS_BIGENDIAN
#if BYTE_ORDER == LITTLE_ENDIAN
{
/* Convert TO host byte order */
int j;
@ -915,5 +1052,41 @@ void SHA384_Finish(SHA384_CTX* context, sha2_byte digest[]) {
}
/* Zero out state data */
MEMSET_BZERO(context, sizeof(SHA384_CTX));
MEMSET_BZERO(context, sizeof(context));
}
char *SHA384_End(SHA384_CTX* context, char buffer[]) {
sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
int i;
/* Sanity check: */
assert(context != (SHA384_CTX*)0);
if (buffer != (char*)0) {
#ifdef RUBY
SHA384_Finish(context, digest);
#else
SHA384_Final(digest, context);
#endif
for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
*buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
*buffer++ = sha2_hex_digits[*d & 0x0f];
d++;
}
*buffer = (char)0;
} else {
MEMSET_BZERO(context, sizeof(context));
}
MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
return buffer;
}
char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
SHA384_CTX context;
SHA384_Init(&context);
SHA384_Update(&context, data, len);
return SHA384_End(&context, digest);
}

View file

@ -1,11 +1,9 @@
/*
* sha2.h
*
* Version 1.0.0beta1
*
* Written by Aaron D. Gifford <me@aarongifford.com>
*
* Copyright 2000 Aaron D. Gifford. All rights reserved.
* FILE: sha2.h
* AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
*
* Copyright (c) 2000-2001, Aaron D. Gifford
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -19,10 +17,10 @@
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
@ -31,11 +29,11 @@
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $OrigId: sha2.h,v 1.1 2001/11/08 00:02:01 adg Exp adg $
* $RoughId: sha2.h,v 1.3 2002/02/24 08:14:32 knu Exp $
* $Id$
*/
/* $RoughId: sha2.h,v 1.3 2002/02/24 08:14:32 knu Exp $ */
/* $Id$ */
#ifndef __SHA2_H__
#define __SHA2_H__
@ -43,7 +41,28 @@
extern "C" {
#endif
#include "defs.h"
/*
* Import u_intXX_t size_t type definitions from system headers. You
* may need to change this, or define these things yourself in this
* file.
*/
#include <sys/types.h>
#ifdef RUBY
# ifdef HAVE_PROTOTYPES
# undef NOPROTO
# else
# define NOPROTO
# endif
# define SHA2_USE_INTTYPES_H
#else /* RUBY */
#ifdef SHA2_USE_INTTYPES_H
#include <inttypes.h>
#endif /* SHA2_USE_INTTYPES_H */
#endif /* RUBY */
/*** SHA-256/384/512 Various Length Definitions ***********************/
@ -59,6 +78,32 @@ extern "C" {
/*** SHA-256/384/512 Context Structures *******************************/
/* NOTE: If your architecture does not define either u_intXX_t types or
* uintXX_t (from inttypes.h), you may need to define things by hand
* for your system:
*/
#if 0
typedef unsigned char u_int8_t; /* 1-byte (8-bits) */
typedef unsigned int u_int32_t; /* 4-bytes (32-bits) */
typedef unsigned long long u_int64_t; /* 8-bytes (64-bits) */
#endif
/*
* Most BSD systems already define u_intXX_t types, as does Linux.
* Some systems, however, like Compaq's Tru64 Unix instead can use
* uintXX_t types defined by very recent ANSI C standards and included
* in the file:
*
* #include <inttypes.h>
*
* If you choose to use <inttypes.h> then please define:
*
* #define SHA2_USE_INTTYPES_H
*
* Or on the command line during compile:
*
* cc -DSHA2_USE_INTTYPES_H ...
*/
#ifdef SHA2_USE_INTTYPES_H
typedef struct _SHA256_CTX {
uint32_t state[8];
@ -71,9 +116,25 @@ typedef struct _SHA512_CTX {
uint8_t buffer[SHA512_BLOCK_LENGTH];
} SHA512_CTX;
#else /* SHA2_USE_INTTYPES_H */
typedef struct _SHA256_CTX {
u_int32_t state[8];
u_int64_t bitcount;
u_int8_t buffer[SHA256_BLOCK_LENGTH];
} SHA256_CTX;
typedef struct _SHA512_CTX {
u_int64_t state[8];
u_int64_t bitcount[2];
u_int8_t buffer[SHA512_BLOCK_LENGTH];
} SHA512_CTX;
#endif /* SHA2_USE_INTTYPES_H */
typedef SHA512_CTX SHA384_CTX;
/*** SHA-256/384/512 Function Prototypes ******************************/
#ifdef RUBY
#define SHA256_Init rb_Digest_SHA256_Init
#define SHA256_Update rb_Digest_SHA256_Update
@ -86,20 +147,95 @@ typedef SHA512_CTX SHA384_CTX;
#define SHA512_Init rb_Digest_SHA512_Init
#define SHA512_Update rb_Digest_SHA512_Update
#define SHA512_Finish rb_Digest_SHA512_Finish
#endif
#endif /* RUBY */
#ifndef NOPROTO
#ifdef SHA2_USE_INTTYPES_H
/*** SHA-256/384/512 Function Prototypes ******************************/
void SHA256_Init _((SHA256_CTX *));
void SHA256_Update _((SHA256_CTX*, const uint8_t*, size_t));
void SHA256_Finish _((SHA256_CTX*, uint8_t[SHA256_DIGEST_LENGTH]));
void SHA256_Init(SHA256_CTX *);
void SHA256_Update(SHA256_CTX*, const uint8_t*, size_t);
#ifdef RUBY
void SHA256_Finish(SHA256_CTX*, uint8_t[SHA256_DIGEST_LENGTH]);
#else
void SHA256_Final(uint8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
#endif /* RUBY */
char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
char* SHA256_Data(const uint8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
void SHA384_Init _((SHA384_CTX*));
void SHA384_Update _((SHA384_CTX*, const uint8_t*, size_t));
void SHA384_Finish _((SHA384_CTX*, uint8_t[SHA384_DIGEST_LENGTH]));
void SHA384_Init(SHA384_CTX*);
void SHA384_Update(SHA384_CTX*, const uint8_t*, size_t);
#ifdef RUBY
void SHA384_Finish(SHA384_CTX*, uint8_t[SHA384_DIGEST_LENGTH]);
#else
void SHA384_Final(uint8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
#endif /* RUBY */
char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
char* SHA384_Data(const uint8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
void SHA512_Init _((SHA512_CTX*));
void SHA512_Update _((SHA512_CTX*, const uint8_t*, size_t));
void SHA512_Finish _((SHA512_CTX*, uint8_t[SHA512_DIGEST_LENGTH]));
void SHA512_Init(SHA512_CTX*);
void SHA512_Update(SHA512_CTX*, const uint8_t*, size_t);
#ifdef RUBY
void SHA512_Finish(SHA512_CTX*, uint8_t[SHA512_DIGEST_LENGTH]);
#else
void SHA512_Final(uint8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
#endif /* RUBY */
char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
char* SHA512_Data(const uint8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
#else /* SHA2_USE_INTTYPES_H */
void SHA256_Init(SHA256_CTX *);
void SHA256_Update(SHA256_CTX*, const u_int8_t*, size_t);
void SHA256_Final(u_int8_t[SHA256_DIGEST_LENGTH], SHA256_CTX*);
char* SHA256_End(SHA256_CTX*, char[SHA256_DIGEST_STRING_LENGTH]);
char* SHA256_Data(const u_int8_t*, size_t, char[SHA256_DIGEST_STRING_LENGTH]);
void SHA384_Init(SHA384_CTX*);
void SHA384_Update(SHA384_CTX*, const u_int8_t*, size_t);
void SHA384_Final(u_int8_t[SHA384_DIGEST_LENGTH], SHA384_CTX*);
char* SHA384_End(SHA384_CTX*, char[SHA384_DIGEST_STRING_LENGTH]);
char* SHA384_Data(const u_int8_t*, size_t, char[SHA384_DIGEST_STRING_LENGTH]);
void SHA512_Init(SHA512_CTX*);
void SHA512_Update(SHA512_CTX*, const u_int8_t*, size_t);
void SHA512_Final(u_int8_t[SHA512_DIGEST_LENGTH], SHA512_CTX*);
char* SHA512_End(SHA512_CTX*, char[SHA512_DIGEST_STRING_LENGTH]);
char* SHA512_Data(const u_int8_t*, size_t, char[SHA512_DIGEST_STRING_LENGTH]);
#endif /* SHA2_USE_INTTYPES_H */
#else /* NOPROTO */
void SHA256_Init();
void SHA256_Update();
#ifdef RUBY
void SHA256_Finish();
#else
void SHA256_Final();
#endif /* RUBY */
char* SHA256_End();
char* SHA256_Data();
void SHA384_Init();
void SHA384_Update();
#ifdef RUBY
void SHA384_Finish();
#else
void SHA384_Final();
#endif /* RUBY */
char* SHA384_End();
char* SHA384_Data();
void SHA512_Init();
void SHA512_Update();
#ifdef RUBY
void SHA512_Finish();
#else
void SHA512_Final();
#endif /* RUBY */
char* SHA512_End();
char* SHA512_Data();
#endif /* NOPROTO */
#ifdef __cplusplus
}