1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00

* ext/bigdecimal/bigdecimal.c (BigDecimal_power): support non-integral

exponent.  fixes #3271
* ext/bigdecimal/bigdecimal.c (rmpd_power_by_big_decimal): ditto.
* ext/bigdecimal/bigdecimal.c (BigDecimal_power_op): add a function to
  only use for "**" operator.
* test/bigdecimal/test_bigdecimal.rb: add a bunch of tests for the
  above changes.
* ext/bigdecimal/bigdecimal.c (is_integer): add an utility function.
* ext/bigdecimal/bigdecimal.c (is_negative): ditto.
* ext/bigdecimal/bigdecimal.c (is_positive): ditto.
* ext/bigdecimal/bigdecimal.c (is_zero): ditto.
* ext/bigdecimal/bigdecimal.c (is_one): ditto.
* ext/bigdecimal/bigdecimal.c (is_even): ditto.

git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@32485 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
This commit is contained in:
mrkn 2011-07-10 03:19:49 +00:00
parent b88daae7ec
commit ebd61e5f28
3 changed files with 547 additions and 34 deletions

View file

@ -1,3 +1,28 @@
Sun Jul 10 12:18:00 2011 Kenta Murata <mrkn@mrkn.jp>
* ext/bigdecimal/bigdecimal.c (BigDecimal_power): support non-integral
exponent. fixes [Bug #3271]
* ext/bigdecimal/bigdecimal.c (rmpd_power_by_big_decimal): ditto.
* ext/bigdecimal/bigdecimal.c (BigDecimal_power_op): add a function to
only use for "**" operator.
* test/bigdecimal/test_bigdecimal.rb: add a bunch of tests for the
above changes.
* ext/bigdecimal/bigdecimal.c (is_integer): add an utility function.
* ext/bigdecimal/bigdecimal.c (is_negative): ditto.
* ext/bigdecimal/bigdecimal.c (is_positive): ditto.
* ext/bigdecimal/bigdecimal.c (is_zero): ditto.
* ext/bigdecimal/bigdecimal.c (is_one): ditto.
* ext/bigdecimal/bigdecimal.c (is_even): ditto.
Sun Jul 10 12:08:39 2011 Yusuke Endoh <mame@tsg.ne.jp> Sun Jul 10 12:08:39 2011 Yusuke Endoh <mame@tsg.ne.jp>
* compile.c (when_vals): when a string literal is written on when * compile.c (when_vals): when a string literal is written on when

View file

@ -52,6 +52,7 @@ static ID id_ceiling;
static ID id_ceil; static ID id_ceil;
static ID id_floor; static ID id_floor;
static ID id_to_r; static ID id_to_r;
static ID id_eq;
/* MACRO's to guard objects from GC by keeping them in stack */ /* MACRO's to guard objects from GC by keeping them in stack */
#define ENTER(n) volatile VALUE vStack[n];int iStack=0 #define ENTER(n) volatile VALUE vStack[n];int iStack=0
@ -1834,28 +1835,331 @@ BigDecimal_inspect(VALUE self)
return obj; return obj;
} }
static VALUE BigMath_s_exp(VALUE, VALUE, VALUE);
static VALUE BigMath_s_log(VALUE, VALUE, VALUE);
#define BigMath_exp(x, n) BigMath_s_exp(rb_mBigMath, (x), (n))
#define BigMath_log(x, n) BigMath_s_log(rb_mBigMath, (x), (n))
inline static int
is_integer(VALUE x)
{
return (TYPE(x) == T_FIXNUM || TYPE(x) == T_BIGNUM);
}
inline static int
is_negative(VALUE x)
{
if (FIXNUM_P(x)) {
return FIX2LONG(x) < 0;
}
else if (TYPE(x) == T_BIGNUM) {
return RBIGNUM_NEGATIVE_P(x);
}
else if (TYPE(x) == T_FLOAT) {
return RFLOAT_VALUE(x) < 0.0;
}
return RTEST(rb_funcall(x, '<', 1, INT2FIX(0)));
}
#define is_positive(x) (!is_negative(x))
inline static int
is_zero(VALUE x)
{
VALUE num;
switch (TYPE(x)) {
case T_FIXNUM:
return FIX2LONG(x) == 0;
case T_BIGNUM:
return Qfalse;
case T_RATIONAL:
num = RRATIONAL(x)->num;
return FIXNUM_P(num) && FIX2LONG(num) == 0;
default:
break;
}
return RTEST(rb_funcall(x, id_eq, 1, INT2FIX(0)));
}
inline static int
is_one(VALUE x)
{
VALUE num, den;
switch (TYPE(x)) {
case T_FIXNUM:
return FIX2LONG(x) == 1;
case T_BIGNUM:
return Qfalse;
case T_RATIONAL:
num = RRATIONAL(x)->num;
den = RRATIONAL(x)->den;
return FIXNUM_P(den) && FIX2LONG(den) == 1 &&
FIXNUM_P(num) && FIX2LONG(num) == 1;
default:
break;
}
return RTEST(rb_funcall(x, id_eq, 1, INT2FIX(1)));
}
inline static int
is_even(VALUE x)
{
switch (TYPE(x)) {
case T_FIXNUM:
return (FIX2LONG(x) % 2) == 0;
case T_BIGNUM:
return (RBIGNUM_DIGITS(x)[0] % 2) == 0;
default:
break;
}
return 0;
}
static VALUE
rmpd_power_by_big_decimal(Real const* x, Real const* exp, ssize_t const n)
{
VALUE log_x, multiplied, y;
if (VpIsZero(exp)) {
return ToValue(VpCreateRbObject(n, "1"));
}
log_x = BigMath_log(x->obj, n);
multiplied = BigDecimal_mult2(exp->obj, log_x, SSIZET2NUM(n));
y = BigMath_exp(multiplied, n);
return y;
}
/* call-seq: /* call-seq:
* power(n) * power(n)
* power(n, prec)
* *
* Returns the value raised to the power of n. Note that n must be an Integer. * Returns the value raised to the power of n. Note that n must be an Integer.
* *
* Also available as the operator ** * Also available as the operator **
*/ */
static VALUE static VALUE
BigDecimal_power(VALUE self, VALUE p) BigDecimal_power(VALUE self, VALUE vexp, VALUE prec)
{ {
ENTER(5); ENTER(5);
Real* exp = NULL;
Real *x, *y; Real *x, *y;
ssize_t mp, ma; ssize_t mp, ma, n;
SIGNED_VALUE n; SIGNED_VALUE int_exp;
double d;
Check_Type(p, T_FIXNUM); GUARD_OBJ(x, GetVpValue(self, 1));
n = FIX2INT(p); n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);
ma = n;
if (VpIsNaN(x)) {
y = VpCreateRbObject(n, "0#");
RB_GC_GUARD(y->obj);
VpSetNaN(y);
return ToValue(y);
}
retry:
switch (TYPE(vexp)) {
case T_FIXNUM:
break;
case T_BIGNUM:
break;
case T_FLOAT:
d = RFLOAT_VALUE(vexp);
if (d == round(d)) {
vexp = LL2NUM((LONG_LONG)round(d));
goto retry;
}
exp = GetVpValueWithPrec(vexp, DBL_DIG+1, 1);
break;
case T_RATIONAL:
if (is_zero(RRATIONAL(vexp)->num)) {
if (is_positive(vexp)) {
vexp = INT2FIX(0);
goto retry;
}
}
else if (is_one(RRATIONAL(vexp)->den)) {
vexp = RRATIONAL(vexp)->num;
goto retry;
}
exp = GetVpValueWithPrec(vexp, n, 1);
break;
case T_DATA:
if (is_kind_of_BigDecimal(vexp)) {
VALUE zero = INT2FIX(0);
VALUE rounded = BigDecimal_round(1, &zero, vexp);
if (RTEST(BigDecimal_eq(vexp, rounded))) {
vexp = BigDecimal_to_i(vexp);
goto retry;
}
exp = DATA_PTR(vexp);
break;
}
/* fall through */
default:
rb_raise(rb_eTypeError,
"wrong argument type %s (expected scalar Numeric)",
rb_obj_classname(vexp));
}
if (VpIsZero(x)) {
if (is_negative(vexp)) {
y = VpCreateRbObject(n, "#0");
RB_GC_GUARD(y->obj);
if (VpGetSign(x) < 0) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
/* (-0) ** (-even_integer) -> Infinity */
VpSetPosInf(y);
}
else {
/* (-0) ** (-odd_integer) -> -Infinity */
VpSetNegInf(y);
}
}
else {
/* (-0) ** (-non_integer) -> Infinity */
VpSetPosInf(y);
}
}
else {
/* (+0) ** (-num) -> Infinity */
VpSetPosInf(y);
}
return ToValue(y);
}
else if (is_zero(vexp)) {
return ToValue(VpCreateRbObject(n, "1"));
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
if (is_zero(vexp)) {
return ToValue(VpCreateRbObject(n, "1"));
}
else if (is_one(vexp)) {
return self;
}
if (VpIsInf(x)) {
if (is_negative(vexp)) {
if (VpGetSign(x) < 0) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
/* (-Infinity) ** (-even_integer) -> +0 */
return ToValue(VpCreateRbObject(n, "0"));
}
else {
/* (-Infinity) ** (-odd_integer) -> -0 */
return ToValue(VpCreateRbObject(n, "-0"));
}
}
else {
/* (-Infinity) ** (-non_integer) -> -0 */
return ToValue(VpCreateRbObject(n, "-0"));
}
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
else {
y = VpCreateRbObject(n, "0#");
if (VpGetSign(x) < 0) {
if (is_integer(vexp)) {
if (is_even(vexp)) {
VpSetPosInf(y);
}
else {
VpSetNegInf(y);
}
}
else {
/* TODO: support complex */
rb_raise(rb_eMathDomainError,
"a non-integral exponent for a negative base");
}
}
else {
VpSetPosInf(y);
}
return ToValue(y);
}
}
if (exp != NULL) {
return rmpd_power_by_big_decimal(x, exp, n);
}
else if (TYPE(vexp) == T_BIGNUM) {
VALUE abs_value = BigDecimal_abs(self);
if (is_one(abs_value)) {
return ToValue(VpCreateRbObject(n, "1"));
}
else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
if (is_negative(vexp)) {
y = VpCreateRbObject(n, "0#");
if (is_even(vexp)) {
VpSetInf(y, VpGetSign(x));
}
else {
VpSetInf(y, -VpGetSign(x));
}
return ToValue(y);
}
else if (VpGetSign(x) < 0 && is_even(vexp)) {
return ToValue(VpCreateRbObject(n, "-0"));
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
else {
if (is_positive(vexp)) {
y = VpCreateRbObject(n, "0#");
if (is_even(vexp)) {
VpSetInf(y, VpGetSign(x));
}
else {
VpSetInf(y, -VpGetSign(x));
}
return ToValue(y);
}
else if (VpGetSign(x) < 0 && is_even(vexp)) {
return ToValue(VpCreateRbObject(n, "-0"));
}
else {
return ToValue(VpCreateRbObject(n, "0"));
}
}
}
int_exp = FIX2INT(vexp);
ma = int_exp;
if (ma < 0) ma = -ma; if (ma < 0) ma = -ma;
if (ma == 0) ma = 1; if (ma == 0) ma = 1;
GUARD_OBJ(x, GetVpValue(self, 1));
if (VpIsDef(x)) { if (VpIsDef(x)) {
mp = x->Prec * (VpBaseFig() + 1); mp = x->Prec * (VpBaseFig() + 1);
GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0")); GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0"));
@ -1863,10 +2167,21 @@ BigDecimal_power(VALUE self, VALUE p)
else { else {
GUARD_OBJ(y, VpCreateRbObject(1, "0")); GUARD_OBJ(y, VpCreateRbObject(1, "0"));
} }
VpPower(y, x, n); VpPower(y, x, int_exp);
return ToValue(y); return ToValue(y);
} }
/* call-seq:
* big_decimal ** exp -> big_decimal
*
* It is a synonym of big_decimal.power(exp).
*/
static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
return BigDecimal_power(self, exp, Qnil);
}
/* call-seq: /* call-seq:
* new(initial, digits) * new(initial, digits)
* *
@ -2595,8 +2910,8 @@ Init_bigdecimal(void)
rb_define_method(rb_cBigDecimal, "frac", BigDecimal_frac, 0); rb_define_method(rb_cBigDecimal, "frac", BigDecimal_frac, 0);
rb_define_method(rb_cBigDecimal, "floor", BigDecimal_floor, -1); rb_define_method(rb_cBigDecimal, "floor", BigDecimal_floor, -1);
rb_define_method(rb_cBigDecimal, "ceil", BigDecimal_ceil, -1); rb_define_method(rb_cBigDecimal, "ceil", BigDecimal_ceil, -1);
rb_define_method(rb_cBigDecimal, "power", BigDecimal_power, 1); rb_define_method(rb_cBigDecimal, "power", BigDecimal_power, 2);
rb_define_method(rb_cBigDecimal, "**", BigDecimal_power, 1); rb_define_method(rb_cBigDecimal, "**", BigDecimal_power_op, 1);
rb_define_method(rb_cBigDecimal, "<=>", BigDecimal_comp, 1); rb_define_method(rb_cBigDecimal, "<=>", BigDecimal_comp, 1);
rb_define_method(rb_cBigDecimal, "==", BigDecimal_eq, 1); rb_define_method(rb_cBigDecimal, "==", BigDecimal_eq, 1);
rb_define_method(rb_cBigDecimal, "===", BigDecimal_eq, 1); rb_define_method(rb_cBigDecimal, "===", BigDecimal_eq, 1);
@ -2638,6 +2953,7 @@ Init_bigdecimal(void)
id_ceil = rb_intern_const("ceil"); id_ceil = rb_intern_const("ceil");
id_floor = rb_intern_const("floor"); id_floor = rb_intern_const("floor");
id_to_r = rb_intern_const("to_r"); id_to_r = rb_intern_const("to_r");
id_eq = rb_intern_const("==");
} }
/* /*
@ -3963,7 +4279,7 @@ VpDivd(Real *c, Real *r, Real *a, Real *b)
VpAsgn(c, a, VpGetSign(b)); VpAsgn(c, a, VpGetSign(b));
VpSetZero(r,VpGetSign(a)); VpSetZero(r,VpGetSign(a));
goto Exit; goto Exit;
} }
word_a = a->Prec; word_a = a->Prec;
word_b = b->Prec; word_b = b->Prec;

View file

@ -19,6 +19,30 @@ class TestBigDecimal < Test::Unit::TestCase
[ BigDecimal::ROUND_FLOOR, :floor], [ BigDecimal::ROUND_FLOOR, :floor],
] ]
def assert_nan(x)
assert(x.nan?, "Expected #{x.inspect} to be NaN")
end
def assert_positive_infinite(x)
assert(x.infinite?, "Expected #{x.inspect} to be positive infinite")
assert_operator(x, :>, 0)
end
def assert_negative_infinite(x)
assert(x.infinite?, "Expected #{x.inspect} to be negative infinite")
assert_operator(x, :<, 0)
end
def assert_positive_zero(x)
assert_equal(BigDecimal::SIGN_POSITIVE_ZERO, x.sign,
"Expected #{x.inspect} to be positive zero")
end
def assert_negative_zero(x)
assert_equal(BigDecimal::SIGN_NEGATIVE_ZERO, x.sign,
"Expected #{x.inspect} to be negative zero")
end
def test_version def test_version
assert_equal("1.0.1", BigDecimal.ver) assert_equal("1.0.1", BigDecimal.ver)
end end
@ -764,32 +788,180 @@ class TestBigDecimal < Test::Unit::TestCase
assert_match(/^#<BigDecimal:[0-9a-f]+,'0.12345678E4',#{prec}\(#{maxprec}\)>$/, x.inspect) assert_match(/^#<BigDecimal:[0-9a-f]+,'0.12345678E4',#{prec}\(#{maxprec}\)>$/, x.inspect)
end end
def test_power def test_power_with_nil
x = BigDecimal.new("3") assert_raise(TypeError) do
assert_equal(81, x ** 4) BigDecimal(3) ** nil
assert_equal(1.0/81, (x ** -4).to_f) end
assert_equal(1.quo(81), x ** -4) end
def test_power_of_nan
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)
assert_nan(BigDecimal::NAN ** 0)
assert_nan(BigDecimal::NAN ** 1)
assert_nan(BigDecimal::NAN ** 42)
assert_nan(BigDecimal::NAN ** -42)
assert_nan(BigDecimal::NAN ** 42.0)
assert_nan(BigDecimal::NAN ** -42.0)
assert_nan(BigDecimal::NAN ** BigDecimal(42))
assert_nan(BigDecimal::NAN ** BigDecimal(-42))
assert_nan(BigDecimal::NAN ** BigDecimal::INFINITY)
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, false)
assert_nan(BigDecimal::NAN ** (-BigDecimal::INFINITY))
end
end
end
def test_power_with_Bignum
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, false)
assert_equal(0, BigDecimal(0) ** (2**100))
assert_positive_infinite(BigDecimal(0) ** -(2**100))
assert_positive_infinite((-BigDecimal(0)) ** -(2**100))
assert_negative_infinite((-BigDecimal(0)) ** -(2**100 + 1))
assert_equal(1, BigDecimal(1) ** (2**100))
assert_positive_infinite(BigDecimal(3) ** (2**100))
assert_positive_zero(BigDecimal(3) ** (-2**100))
assert_negative_infinite(BigDecimal(-3) ** (2**100))
assert_positive_infinite(BigDecimal(-3) ** (2**100 + 1))
assert_negative_zero(BigDecimal(-3) ** (-2**100))
assert_positive_zero(BigDecimal(-3) ** (-2**100 - 1))
assert_positive_zero(BigDecimal(0.5, Float::DIG) ** (2**100))
assert_positive_infinite(BigDecimal(0.5, Float::DIG) ** (-2**100))
assert_negative_zero(BigDecimal(-0.5, Float::DIG) ** (2**100))
assert_positive_zero(BigDecimal(-0.5, Float::DIG) ** (2**100 - 1))
assert_negative_infinite(BigDecimal(-0.5, Float::DIG) ** (-2**100))
assert_positive_infinite(BigDecimal(-0.5, Float::DIG) ** (-2**100 - 1))
end
end
def test_power_with_BigDecimal
assert_nothing_raised do
assert_in_delta(3 ** 3, BigDecimal(3) ** BigDecimal(3))
end
end
def test_power_of_finite_with_zero
x = BigDecimal(1)
assert_equal(1, x ** 0) assert_equal(1, x ** 0)
assert_raise(TypeError) { x ** x } assert_equal(1, x ** 0.quo(1))
assert_equal(0, BigDecimal.new("0") ** 4) assert_equal(1, x ** 0.0)
assert_equal(1, BigDecimal.new("0") ** 0) assert_equal(1, x ** BigDecimal(0))
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
assert_equal(BigDecimal.new("Infinity"), BigDecimal.new("0") ** -1)
assert_equal(BigDecimal.new("-Infinity"), BigDecimal.new("-0") ** -1)
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)
assert_equal(true, (BigDecimal.new("NaN") ** 1).nan?)
assert_equal(BigDecimal::SIGN_POSITIVE_INFINITE, (BigDecimal.new("Infinity") ** 2).sign) x = BigDecimal(42)
assert_equal(BigDecimal::SIGN_POSITIVE_INFINITE, (BigDecimal.new("Infinity") ** 1).sign) assert_equal(1, x ** 0)
assert_equal(1, BigDecimal.new("Infinity") ** 0) assert_equal(1, x ** 0.quo(1))
assert_equal(BigDecimal::SIGN_POSITIVE_ZERO, (BigDecimal.new("Infinity") ** -1).sign) assert_equal(1, x ** 0.0)
assert_equal(BigDecimal::SIGN_POSITIVE_ZERO, (BigDecimal.new("Infinity") ** -2).sign) assert_equal(1, x ** BigDecimal(0))
assert_equal(BigDecimal::SIGN_POSITIVE_INFINITE, (BigDecimal.new("-Infinity") ** 2).sign) x = BigDecimal(-42)
assert_equal(BigDecimal::SIGN_NEGATIVE_INFINITE, (BigDecimal.new("-Infinity") ** 1).sign) assert_equal(1, x ** 0)
assert_equal(1, BigDecimal.new("-Infinity") ** 0) assert_equal(1, x ** 0.quo(1))
assert_equal(BigDecimal::SIGN_NEGATIVE_ZERO, (BigDecimal.new("-Infinity") ** -1).sign) assert_equal(1, x ** 0.0)
assert_equal(BigDecimal::SIGN_POSITIVE_ZERO, (BigDecimal.new("-Infinity") ** -2).sign) assert_equal(1, x ** BigDecimal(0))
end
def test_power_of_three
x = BigDecimal(3)
assert_equal(81, x ** 4)
assert_equal(1.quo(81), x ** -4)
assert_in_delta(1.0/81, x ** -4)
end
def test_power_of_zero
zero = BigDecimal(0)
assert_equal(0, zero ** 4)
assert_equal(0, zero ** 4.quo(1))
assert_equal(0, zero ** 4.0)
assert_equal(0, zero ** BigDecimal(4))
assert_equal(1, zero ** 0)
assert_equal(1, zero ** 0.quo(1))
assert_equal(1, zero ** 0.0)
assert_equal(1, zero ** BigDecimal(0))
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, false)
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
assert_positive_infinite(zero ** -1)
assert_positive_infinite(zero ** -1.quo(1))
assert_positive_infinite(zero ** -1.0)
assert_positive_infinite(zero ** BigDecimal(-1))
m_zero = BigDecimal("-0")
assert_negative_infinite(m_zero ** -1)
assert_negative_infinite(m_zero ** -1.quo(1))
assert_negative_infinite(m_zero ** -1.0)
assert_negative_infinite(m_zero ** BigDecimal(-1))
assert_positive_infinite(m_zero ** -2)
assert_positive_infinite(m_zero ** -2.quo(1))
assert_positive_infinite(m_zero ** -2.0)
assert_positive_infinite(m_zero ** BigDecimal(-2))
end
end
def test_power_of_positive_infinity
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
assert_positive_infinite(BigDecimal::INFINITY ** 3)
assert_positive_infinite(BigDecimal::INFINITY ** 3.quo(1))
assert_positive_infinite(BigDecimal::INFINITY ** 3.0)
assert_positive_infinite(BigDecimal::INFINITY ** BigDecimal(3))
assert_positive_infinite(BigDecimal::INFINITY ** 2)
assert_positive_infinite(BigDecimal::INFINITY ** 2.quo(1))
assert_positive_infinite(BigDecimal::INFINITY ** 2.0)
assert_positive_infinite(BigDecimal::INFINITY ** BigDecimal(2))
assert_positive_infinite(BigDecimal::INFINITY ** 1)
assert_positive_infinite(BigDecimal::INFINITY ** 1.quo(1))
assert_positive_infinite(BigDecimal::INFINITY ** 1.0)
assert_positive_infinite(BigDecimal::INFINITY ** BigDecimal(1))
assert_equal(1, BigDecimal::INFINITY ** 0)
assert_equal(1, BigDecimal::INFINITY ** 0.quo(1))
assert_equal(1, BigDecimal::INFINITY ** 0.0)
assert_equal(1, BigDecimal::INFINITY ** BigDecimal(0))
assert_positive_zero(BigDecimal::INFINITY ** -1)
assert_positive_zero(BigDecimal::INFINITY ** -1.quo(1))
assert_positive_zero(BigDecimal::INFINITY ** -1.0)
assert_positive_zero(BigDecimal::INFINITY ** BigDecimal(-1))
assert_positive_zero(BigDecimal::INFINITY ** -2)
assert_positive_zero(BigDecimal::INFINITY ** -2.0)
assert_positive_zero(BigDecimal::INFINITY ** BigDecimal(-2))
end
end
def test_power_of_negative_infinity
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
assert_negative_infinite((-BigDecimal::INFINITY) ** 3)
assert_negative_infinite((-BigDecimal::INFINITY) ** 3.quo(1))
assert_negative_infinite((-BigDecimal::INFINITY) ** 3.0)
assert_negative_infinite((-BigDecimal::INFINITY) ** BigDecimal(3))
assert_positive_infinite((-BigDecimal::INFINITY) ** 2)
assert_positive_infinite((-BigDecimal::INFINITY) ** 2.quo(1))
assert_positive_infinite((-BigDecimal::INFINITY) ** 2.0)
assert_positive_infinite((-BigDecimal::INFINITY) ** BigDecimal(2))
assert_negative_infinite((-BigDecimal::INFINITY) ** 1)
assert_negative_infinite((-BigDecimal::INFINITY) ** 1.quo(1))
assert_negative_infinite((-BigDecimal::INFINITY) ** 1.0)
assert_negative_infinite((-BigDecimal::INFINITY) ** BigDecimal(1))
assert_equal(1, (-BigDecimal::INFINITY) ** 0)
assert_equal(1, (-BigDecimal::INFINITY) ** 0.quo(1))
assert_equal(1, (-BigDecimal::INFINITY) ** 0.0)
assert_equal(1, (-BigDecimal::INFINITY) ** BigDecimal(0))
assert_negative_zero((-BigDecimal::INFINITY) ** -1)
assert_negative_zero((-BigDecimal::INFINITY) ** -1.quo(1))
assert_negative_zero((-BigDecimal::INFINITY) ** -1.0)
assert_negative_zero((-BigDecimal::INFINITY) ** BigDecimal(-1))
assert_positive_zero((-BigDecimal::INFINITY) ** -2)
assert_positive_zero((-BigDecimal::INFINITY) ** -2.quo(1))
assert_positive_zero((-BigDecimal::INFINITY) ** -2.0)
assert_positive_zero((-BigDecimal::INFINITY) ** BigDecimal(-2))
end
end end
def test_limit def test_limit