/********************************************************************** proc.c - Proc, Binding, Env $Author$ created at: Wed Jan 17 12:13:14 2007 Copyright (C) 2004-2007 Koichi Sasada **********************************************************************/ #include "eval_intern.h" #include "internal.h" #include "gc.h" #include "vm_core.h" #include "iseq.h" /* Proc.new with no block will raise an exception in the future * versions */ #define PROC_NEW_REQUIRES_BLOCK 0 #if !defined(__GNUC__) || __GNUC__ < 5 || defined(__MINGW32__) # define NO_CLOBBERED(v) (*(volatile VALUE *)&(v)) #else # define NO_CLOBBERED(v) (v) #endif #define UPDATE_TYPED_REFERENCE(_type, _ref) *(_type*)&_ref = (_type)rb_gc_location((VALUE)_ref) #define UPDATE_REFERENCE(_ref) UPDATE_TYPED_REFERENCE(VALUE, _ref) const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase); struct METHOD { const VALUE recv; const VALUE klass; const VALUE iclass; const rb_method_entry_t * const me; /* for bound methods, `me' should be rb_callable_method_entry_t * */ }; VALUE rb_cUnboundMethod; VALUE rb_cMethod; VALUE rb_cBinding; VALUE rb_cProc; static rb_block_call_func bmcall; static int method_arity(VALUE); static int method_min_max_arity(VALUE, int *max); #define attached id__attached__ /* Proc */ #define IS_METHOD_PROC_IFUNC(ifunc) ((ifunc)->func == bmcall) static void block_mark(const struct rb_block *block) { switch (vm_block_type(block)) { case block_type_iseq: case block_type_ifunc: { const struct rb_captured_block *captured = &block->as.captured; RUBY_MARK_NO_PIN_UNLESS_NULL(captured->self); RUBY_MARK_NO_PIN_UNLESS_NULL((VALUE)captured->code.val); if (captured->ep && captured->ep[VM_ENV_DATA_INDEX_ENV] != Qundef /* cfunc_proc_t */) { RUBY_MARK_NO_PIN_UNLESS_NULL(VM_ENV_ENVVAL(captured->ep)); } } break; case block_type_symbol: RUBY_MARK_NO_PIN_UNLESS_NULL(block->as.symbol); break; case block_type_proc: RUBY_MARK_NO_PIN_UNLESS_NULL(block->as.proc); break; } } static void block_compact(struct rb_block *block) { switch (block->type) { case block_type_iseq: case block_type_ifunc: { struct rb_captured_block *captured = &block->as.captured; captured->self = rb_gc_location(captured->self); captured->code.val = rb_gc_location(captured->code.val); if (captured->ep && captured->ep[VM_ENV_DATA_INDEX_ENV] != Qundef /* cfunc_proc_t */) { UPDATE_REFERENCE(captured->ep[VM_ENV_DATA_INDEX_ENV]); } } break; case block_type_symbol: block->as.symbol = rb_gc_location(block->as.symbol); break; case block_type_proc: block->as.proc = rb_gc_location(block->as.proc); break; } } static void proc_compact(void *ptr) { rb_proc_t *proc = ptr; block_compact((struct rb_block *)&proc->block); } static void proc_mark(void *ptr) { rb_proc_t *proc = ptr; block_mark(&proc->block); RUBY_MARK_LEAVE("proc"); } typedef struct { rb_proc_t basic; VALUE env[VM_ENV_DATA_SIZE + 1]; /* ..., envval */ } cfunc_proc_t; static size_t proc_memsize(const void *ptr) { const rb_proc_t *proc = ptr; if (proc->block.as.captured.ep == ((const cfunc_proc_t *)ptr)->env+1) return sizeof(cfunc_proc_t); return sizeof(rb_proc_t); } static const rb_data_type_t proc_data_type = { "proc", { proc_mark, RUBY_TYPED_DEFAULT_FREE, proc_memsize, proc_compact, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED }; VALUE rb_proc_alloc(VALUE klass) { rb_proc_t *proc; return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc); } VALUE rb_obj_is_proc(VALUE proc) { if (rb_typeddata_is_kind_of(proc, &proc_data_type)) { return Qtrue; } else { return Qfalse; } } /* :nodoc: */ static VALUE proc_clone(VALUE self) { VALUE procval = rb_proc_dup(self); CLONESETUP(procval, self); return procval; } /* * call-seq: * prc.lambda? -> true or false * * Returns +true+ if a Proc object is lambda. * +false+ if non-lambda. * * The lambda-ness affects argument handling and the behavior of +return+ and +break+. * * A Proc object generated by +proc+ ignores extra arguments. * * proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2] * * It provides +nil+ for missing arguments. * * proc {|a,b| [a,b] }.call(1) #=> [1,nil] * * It expands a single array argument. * * proc {|a,b| [a,b] }.call([1,2]) #=> [1,2] * * A Proc object generated by +lambda+ doesn't have such tricks. * * lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError * lambda {|a,b| [a,b] }.call(1) #=> ArgumentError * lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError * * Proc#lambda? is a predicate for the tricks. * It returns +true+ if no tricks apply. * * lambda {}.lambda? #=> true * proc {}.lambda? #=> false * * Proc.new is the same as +proc+. * * Proc.new {}.lambda? #=> false * * +lambda+, +proc+ and Proc.new preserve the tricks of * a Proc object given by <code>&</code> argument. * * lambda(&lambda {}).lambda? #=> true * proc(&lambda {}).lambda? #=> true * Proc.new(&lambda {}).lambda? #=> true * * lambda(&proc {}).lambda? #=> false * proc(&proc {}).lambda? #=> false * Proc.new(&proc {}).lambda? #=> false * * A Proc object generated by <code>&</code> argument has the tricks * * def n(&b) b.lambda? end * n {} #=> false * * The <code>&</code> argument preserves the tricks if a Proc object * is given by <code>&</code> argument. * * n(&lambda {}) #=> true * n(&proc {}) #=> false * n(&Proc.new {}) #=> false * * A Proc object converted from a method has no tricks. * * def m() end * method(:m).to_proc.lambda? #=> true * * n(&method(:m)) #=> true * n(&method(:m).to_proc) #=> true * * +define_method+ is treated the same as method definition. * The defined method has no tricks. * * class C * define_method(:d) {} * end * C.new.d(1,2) #=> ArgumentError * C.new.method(:d).to_proc.lambda? #=> true * * +define_method+ always defines a method without the tricks, * even if a non-lambda Proc object is given. * This is the only exception for which the tricks are not preserved. * * class C * define_method(:e, &proc {}) * end * C.new.e(1,2) #=> ArgumentError * C.new.method(:e).to_proc.lambda? #=> true * * This exception ensures that methods never have tricks * and makes it easy to have wrappers to define methods that behave as usual. * * class C * def self.def2(name, &body) * define_method(name, &body) * end * * def2(:f) {} * end * C.new.f(1,2) #=> ArgumentError * * The wrapper <i>def2</i> defines a method which has no tricks. * */ VALUE rb_proc_lambda_p(VALUE procval) { rb_proc_t *proc; GetProcPtr(procval, proc); return proc->is_lambda ? Qtrue : Qfalse; } /* Binding */ static void binding_free(void *ptr) { RUBY_FREE_ENTER("binding"); ruby_xfree(ptr); RUBY_FREE_LEAVE("binding"); } static void binding_mark(void *ptr) { rb_binding_t *bind = ptr; RUBY_MARK_ENTER("binding"); block_mark(&bind->block); rb_gc_mark_movable(bind->pathobj); RUBY_MARK_LEAVE("binding"); } static void binding_compact(void *ptr) { rb_binding_t *bind = ptr; block_compact((struct rb_block *)&bind->block); UPDATE_REFERENCE(bind->pathobj); } static size_t binding_memsize(const void *ptr) { return sizeof(rb_binding_t); } const rb_data_type_t ruby_binding_data_type = { "binding", { binding_mark, binding_free, binding_memsize, binding_compact, }, 0, 0, RUBY_TYPED_WB_PROTECTED | RUBY_TYPED_FREE_IMMEDIATELY }; VALUE rb_binding_alloc(VALUE klass) { VALUE obj; rb_binding_t *bind; obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind); return obj; } /* :nodoc: */ static VALUE binding_dup(VALUE self) { VALUE bindval = rb_binding_alloc(rb_cBinding); rb_binding_t *src, *dst; GetBindingPtr(self, src); GetBindingPtr(bindval, dst); rb_vm_block_copy(bindval, &dst->block, &src->block); RB_OBJ_WRITE(bindval, &dst->pathobj, src->pathobj); dst->first_lineno = src->first_lineno; return bindval; } /* :nodoc: */ static VALUE binding_clone(VALUE self) { VALUE bindval = binding_dup(self); CLONESETUP(bindval, self); return bindval; } VALUE rb_binding_new(void) { rb_execution_context_t *ec = GET_EC(); return rb_vm_make_binding(ec, ec->cfp); } /* * call-seq: * binding -> a_binding * * Returns a +Binding+ object, describing the variable and * method bindings at the point of call. This object can be used when * calling +eval+ to execute the evaluated command in this * environment. See also the description of class +Binding+. * * def get_binding(param) * binding * end * b = get_binding("hello") * eval("param", b) #=> "hello" */ static VALUE rb_f_binding(VALUE self) { return rb_binding_new(); } /* * call-seq: * binding.eval(string [, filename [,lineno]]) -> obj * * Evaluates the Ruby expression(s) in <em>string</em>, in the * <em>binding</em>'s context. If the optional <em>filename</em> and * <em>lineno</em> parameters are present, they will be used when * reporting syntax errors. * * def get_binding(param) * binding * end * b = get_binding("hello") * b.eval("param") #=> "hello" */ static VALUE bind_eval(int argc, VALUE *argv, VALUE bindval) { VALUE args[4]; rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]); args[1] = bindval; return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */); } static const VALUE * get_local_variable_ptr(const rb_env_t **envp, ID lid) { const rb_env_t *env = *envp; do { if (!VM_ENV_FLAGS(env->ep, VM_FRAME_FLAG_CFRAME)) { const rb_iseq_t *iseq = env->iseq; unsigned int i; VM_ASSERT(rb_obj_is_iseq((VALUE)iseq)); for (i=0; i<iseq->body->local_table_size; i++) { if (iseq->body->local_table[i] == lid) { if (iseq->body->local_iseq == iseq && iseq->body->param.flags.has_block && (unsigned int)iseq->body->param.block_start == i) { const VALUE *ep = env->ep; if (!VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)) { RB_OBJ_WRITE(env, &env->env[i], rb_vm_bh_to_procval(GET_EC(), VM_ENV_BLOCK_HANDLER(ep))); VM_ENV_FLAGS_SET(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM); } } *envp = env; return &env->env[i]; } } } else { *envp = NULL; return NULL; } } while ((env = rb_vm_env_prev_env(env)) != NULL); *envp = NULL; return NULL; } /* * check local variable name. * returns ID if it's an already interned symbol, or 0 with setting * local name in String to *namep. */ static ID check_local_id(VALUE bindval, volatile VALUE *pname) { ID lid = rb_check_id(pname); VALUE name = *pname; if (lid) { if (!rb_is_local_id(lid)) { rb_name_err_raise("wrong local variable name `%1$s' for %2$s", bindval, ID2SYM(lid)); } } else { if (!rb_is_local_name(name)) { rb_name_err_raise("wrong local variable name `%1$s' for %2$s", bindval, name); } return 0; } return lid; } /* * call-seq: * binding.local_variables -> Array * * Returns the names of the binding's local variables as symbols. * * def foo * a = 1 * 2.times do |n| * binding.local_variables #=> [:a, :n] * end * end * * This method is the short version of the following code: * * binding.eval("local_variables") * */ static VALUE bind_local_variables(VALUE bindval) { const rb_binding_t *bind; const rb_env_t *env; GetBindingPtr(bindval, bind); env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); return rb_vm_env_local_variables(env); } /* * call-seq: * binding.local_variable_get(symbol) -> obj * * Returns the value of the local variable +symbol+. * * def foo * a = 1 * binding.local_variable_get(:a) #=> 1 * binding.local_variable_get(:b) #=> NameError * end * * This method is the short version of the following code: * * binding.eval("#{symbol}") * */ static VALUE bind_local_variable_get(VALUE bindval, VALUE sym) { ID lid = check_local_id(bindval, &sym); const rb_binding_t *bind; const VALUE *ptr; const rb_env_t *env; if (!lid) goto undefined; GetBindingPtr(bindval, bind); env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); if ((ptr = get_local_variable_ptr(&env, lid)) == NULL) { sym = ID2SYM(lid); undefined: rb_name_err_raise("local variable `%1$s' is not defined for %2$s", bindval, sym); } return *ptr; } /* * call-seq: * binding.local_variable_set(symbol, obj) -> obj * * Set local variable named +symbol+ as +obj+. * * def foo * a = 1 * bind = binding * bind.local_variable_set(:a, 2) # set existing local variable `a' * bind.local_variable_set(:b, 3) # create new local variable `b' * # `b' exists only in binding * * p bind.local_variable_get(:a) #=> 2 * p bind.local_variable_get(:b) #=> 3 * p a #=> 2 * p b #=> NameError * end * * This method behaves similarly to the following code: * * binding.eval("#{symbol} = #{obj}") * * if +obj+ can be dumped in Ruby code. */ static VALUE bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val) { ID lid = check_local_id(bindval, &sym); rb_binding_t *bind; const VALUE *ptr; const rb_env_t *env; if (!lid) lid = rb_intern_str(sym); GetBindingPtr(bindval, bind); env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); if ((ptr = get_local_variable_ptr(&env, lid)) == NULL) { /* not found. create new env */ ptr = rb_binding_add_dynavars(bindval, bind, 1, &lid); env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); } RB_OBJ_WRITE(env, ptr, val); return val; } /* * call-seq: * binding.local_variable_defined?(symbol) -> obj * * Returns +true+ if a local variable +symbol+ exists. * * def foo * a = 1 * binding.local_variable_defined?(:a) #=> true * binding.local_variable_defined?(:b) #=> false * end * * This method is the short version of the following code: * * binding.eval("defined?(#{symbol}) == 'local-variable'") * */ static VALUE bind_local_variable_defined_p(VALUE bindval, VALUE sym) { ID lid = check_local_id(bindval, &sym); const rb_binding_t *bind; const rb_env_t *env; if (!lid) return Qfalse; GetBindingPtr(bindval, bind); env = VM_ENV_ENVVAL_PTR(vm_block_ep(&bind->block)); return get_local_variable_ptr(&env, lid) ? Qtrue : Qfalse; } /* * call-seq: * binding.receiver -> object * * Returns the bound receiver of the binding object. */ static VALUE bind_receiver(VALUE bindval) { const rb_binding_t *bind; GetBindingPtr(bindval, bind); return vm_block_self(&bind->block); } /* * call-seq: * binding.source_location -> [String, Integer] * * Returns the Ruby source filename and line number of the binding object. */ static VALUE bind_location(VALUE bindval) { VALUE loc[2]; const rb_binding_t *bind; GetBindingPtr(bindval, bind); loc[0] = pathobj_path(bind->pathobj); loc[1] = INT2FIX(bind->first_lineno); return rb_ary_new4(2, loc); } static VALUE cfunc_proc_new(VALUE klass, VALUE ifunc, int8_t is_lambda) { rb_proc_t *proc; cfunc_proc_t *sproc; VALUE procval = TypedData_Make_Struct(klass, cfunc_proc_t, &proc_data_type, sproc); VALUE *ep; proc = &sproc->basic; vm_block_type_set(&proc->block, block_type_ifunc); *(VALUE **)&proc->block.as.captured.ep = ep = sproc->env + VM_ENV_DATA_SIZE-1; ep[VM_ENV_DATA_INDEX_FLAGS] = VM_FRAME_MAGIC_IFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL | VM_ENV_FLAG_ESCAPED; ep[VM_ENV_DATA_INDEX_ME_CREF] = Qfalse; ep[VM_ENV_DATA_INDEX_SPECVAL] = VM_BLOCK_HANDLER_NONE; ep[VM_ENV_DATA_INDEX_ENV] = Qundef; /* envval */ /* self? */ RB_OBJ_WRITE(procval, &proc->block.as.captured.code.ifunc, ifunc); proc->is_lambda = is_lambda; return procval; } static VALUE sym_proc_new(VALUE klass, VALUE sym) { VALUE procval = rb_proc_alloc(klass); rb_proc_t *proc; GetProcPtr(procval, proc); vm_block_type_set(&proc->block, block_type_symbol); RB_OBJ_WRITE(procval, &proc->block.as.symbol, sym); return procval; } struct vm_ifunc * rb_vm_ifunc_new(rb_block_call_func_t func, const void *data, int min_argc, int max_argc) { union { struct vm_ifunc_argc argc; VALUE packed; } arity; if (min_argc < UNLIMITED_ARGUMENTS || #if SIZEOF_INT * 2 > SIZEOF_VALUE min_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) || #endif 0) { rb_raise(rb_eRangeError, "minimum argument number out of range: %d", min_argc); } if (max_argc < UNLIMITED_ARGUMENTS || #if SIZEOF_INT * 2 > SIZEOF_VALUE max_argc >= (int)(1U << (SIZEOF_VALUE * CHAR_BIT) / 2) || #endif 0) { rb_raise(rb_eRangeError, "maximum argument number out of range: %d", max_argc); } arity.argc.min = min_argc; arity.argc.max = max_argc; return IFUNC_NEW(func, data, arity.packed); } MJIT_FUNC_EXPORTED VALUE rb_func_proc_new(rb_block_call_func_t func, VALUE val) { struct vm_ifunc *ifunc = rb_vm_ifunc_proc_new(func, (void *)val); return cfunc_proc_new(rb_cProc, (VALUE)ifunc, 0); } VALUE rb_func_lambda_new(rb_block_call_func_t func, VALUE val, int min_argc, int max_argc) { struct vm_ifunc *ifunc = rb_vm_ifunc_new(func, (void *)val, min_argc, max_argc); return cfunc_proc_new(rb_cProc, (VALUE)ifunc, 1); } static const char proc_without_block[] = "tried to create Proc object without a block"; static VALUE proc_new(VALUE klass, int8_t is_lambda) { VALUE procval; const rb_execution_context_t *ec = GET_EC(); rb_control_frame_t *cfp = ec->cfp; VALUE block_handler; if ((block_handler = rb_vm_frame_block_handler(cfp)) == VM_BLOCK_HANDLER_NONE) { #if !PROC_NEW_REQUIRES_BLOCK cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); if ((block_handler = rb_vm_frame_block_handler(cfp)) != VM_BLOCK_HANDLER_NONE) { if (is_lambda) { rb_raise(rb_eArgError, proc_without_block); } else { rb_warn("Capturing the given block using Proc.new is deprecated; use `&block` instead"); } } #else if (0) #endif else { rb_raise(rb_eArgError, proc_without_block); } } /* block is in cf */ switch (vm_block_handler_type(block_handler)) { case block_handler_type_proc: procval = VM_BH_TO_PROC(block_handler); if (RBASIC_CLASS(procval) == klass) { return procval; } else { VALUE newprocval = rb_proc_dup(procval); RBASIC_SET_CLASS(newprocval, klass); return newprocval; } break; case block_handler_type_symbol: return (klass != rb_cProc) ? sym_proc_new(klass, VM_BH_TO_SYMBOL(block_handler)) : rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler)); break; case block_handler_type_ifunc: case block_handler_type_iseq: return rb_vm_make_proc_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), klass, is_lambda); } VM_UNREACHABLE(proc_new); return Qnil; } /* * call-seq: * Proc.new {|...| block } -> a_proc * Proc.new -> a_proc * * Creates a new Proc object, bound to the current context. Proc::new * may be called without a block only within a method with an * attached block, in which case that block is converted to the Proc * object. * * def proc_from * Proc.new * end * proc = proc_from { "hello" } * proc.call #=> "hello" */ static VALUE rb_proc_s_new(int argc, VALUE *argv, VALUE klass) { VALUE block = proc_new(klass, FALSE); rb_obj_call_init_kw(block, argc, argv, RB_PASS_CALLED_KEYWORDS); return block; } VALUE rb_block_proc(void) { return proc_new(rb_cProc, FALSE); } /* * call-seq: * proc { |...| block } -> a_proc * * Equivalent to Proc.new. */ static VALUE f_proc(VALUE _) { return rb_block_proc(); } VALUE rb_block_lambda(void) { return proc_new(rb_cProc, TRUE); } /* * call-seq: * lambda { |...| block } -> a_proc * * Equivalent to Proc.new, except the resulting Proc objects check the * number of parameters passed when called. */ static VALUE f_lambda(VALUE _) { return rb_block_lambda(); } /* Document-method: Proc#=== * * call-seq: * proc === obj -> result_of_proc * * Invokes the block with +obj+ as the proc's parameter like Proc#call. * This allows a proc object to be the target of a +when+ clause * in a case statement. */ /* CHECKME: are the argument checking semantics correct? */ /* * Document-method: Proc#[] * Document-method: Proc#call * Document-method: Proc#yield * * call-seq: * prc.call(params,...) -> obj * prc[params,...] -> obj * prc.(params,...) -> obj * prc.yield(params,...) -> obj * * Invokes the block, setting the block's parameters to the values in * <i>params</i> using something close to method calling semantics. * Returns the value of the last expression evaluated in the block. * * a_proc = Proc.new {|scalar, *values| values.map {|value| value*scalar } } * a_proc.call(9, 1, 2, 3) #=> [9, 18, 27] * a_proc[9, 1, 2, 3] #=> [9, 18, 27] * a_proc.(9, 1, 2, 3) #=> [9, 18, 27] * a_proc.yield(9, 1, 2, 3) #=> [9, 18, 27] * * Note that <code>prc.()</code> invokes <code>prc.call()</code> with * the parameters given. It's syntactic sugar to hide "call". * * For procs created using #lambda or <code>->()</code> an error is * generated if the wrong number of parameters are passed to the * proc. For procs created using Proc.new or Kernel.proc, extra * parameters are silently discarded and missing parameters are set * to +nil+. * * a_proc = proc {|a,b| [a,b] } * a_proc.call(1) #=> [1, nil] * * a_proc = lambda {|a,b| [a,b] } * a_proc.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2) * * See also Proc#lambda?. */ #if 0 static VALUE proc_call(int argc, VALUE *argv, VALUE procval) { /* removed */ } #endif #if SIZEOF_LONG > SIZEOF_INT static inline int check_argc(long argc) { if (argc > INT_MAX || argc < 0) { rb_raise(rb_eArgError, "too many arguments (%lu)", (unsigned long)argc); } return (int)argc; } #else #define check_argc(argc) (argc) #endif VALUE rb_proc_call_kw(VALUE self, VALUE args, int kw_splat) { VALUE vret; rb_proc_t *proc; VALUE v; int argc = check_argc(RARRAY_LEN(args)); const VALUE *argv = RARRAY_CONST_PTR(args); GetProcPtr(self, proc); v = rb_adjust_argv_kw_splat(&argc, &argv, &kw_splat); vret = rb_vm_invoke_proc(GET_EC(), proc, argc, argv, kw_splat, VM_BLOCK_HANDLER_NONE); rb_free_tmp_buffer(&v); RB_GC_GUARD(self); RB_GC_GUARD(args); return vret; } VALUE rb_proc_call(VALUE self, VALUE args) { VALUE vret; rb_proc_t *proc; GetProcPtr(self, proc); vret = rb_vm_invoke_proc(GET_EC(), proc, check_argc(RARRAY_LEN(args)), RARRAY_CONST_PTR(args), RB_NO_KEYWORDS, VM_BLOCK_HANDLER_NONE); RB_GC_GUARD(self); RB_GC_GUARD(args); return vret; } static VALUE proc_to_block_handler(VALUE procval) { return NIL_P(procval) ? VM_BLOCK_HANDLER_NONE : procval; } VALUE rb_proc_call_with_block_kw(VALUE self, int argc, const VALUE *argv, VALUE passed_procval, int kw_splat) { rb_execution_context_t *ec = GET_EC(); VALUE vret; rb_proc_t *proc; VALUE v = rb_adjust_argv_kw_splat(&argc, &argv, &kw_splat); GetProcPtr(self, proc); vret = rb_vm_invoke_proc(ec, proc, argc, argv, kw_splat, proc_to_block_handler(passed_procval)); rb_free_tmp_buffer(&v); RB_GC_GUARD(self); return vret; } VALUE rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE passed_procval) { rb_execution_context_t *ec = GET_EC(); VALUE vret; rb_proc_t *proc; GetProcPtr(self, proc); vret = rb_vm_invoke_proc(ec, proc, argc, argv, RB_NO_KEYWORDS, proc_to_block_handler(passed_procval)); RB_GC_GUARD(self); return vret; } /* * call-seq: * prc.arity -> integer * * Returns the number of mandatory arguments. If the block * is declared to take no arguments, returns 0. If the block is known * to take exactly n arguments, returns n. * If the block has optional arguments, returns -n-1, where n is the * number of mandatory arguments, with the exception for blocks that * are not lambdas and have only a finite number of optional arguments; * in this latter case, returns n. * Keyword arguments will be considered as a single additional argument, * that argument being mandatory if any keyword argument is mandatory. * A #proc with no argument declarations is the same as a block * declaring <code>||</code> as its arguments. * * proc {}.arity #=> 0 * proc { || }.arity #=> 0 * proc { |a| }.arity #=> 1 * proc { |a, b| }.arity #=> 2 * proc { |a, b, c| }.arity #=> 3 * proc { |*a| }.arity #=> -1 * proc { |a, *b| }.arity #=> -2 * proc { |a, *b, c| }.arity #=> -3 * proc { |x:, y:, z:0| }.arity #=> 1 * proc { |*a, x:, y:0| }.arity #=> -2 * * proc { |a=0| }.arity #=> 0 * lambda { |a=0| }.arity #=> -1 * proc { |a=0, b| }.arity #=> 1 * lambda { |a=0, b| }.arity #=> -2 * proc { |a=0, b=0| }.arity #=> 0 * lambda { |a=0, b=0| }.arity #=> -1 * proc { |a, b=0| }.arity #=> 1 * lambda { |a, b=0| }.arity #=> -2 * proc { |(a, b), c=0| }.arity #=> 1 * lambda { |(a, b), c=0| }.arity #=> -2 * proc { |a, x:0, y:0| }.arity #=> 1 * lambda { |a, x:0, y:0| }.arity #=> -2 */ static VALUE proc_arity(VALUE self) { int arity = rb_proc_arity(self); return INT2FIX(arity); } static inline int rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max) { *max = iseq->body->param.flags.has_rest == FALSE ? iseq->body->param.lead_num + iseq->body->param.opt_num + iseq->body->param.post_num + (iseq->body->param.flags.has_kw == TRUE || iseq->body->param.flags.has_kwrest == TRUE) : UNLIMITED_ARGUMENTS; return iseq->body->param.lead_num + iseq->body->param.post_num + (iseq->body->param.flags.has_kw && iseq->body->param.keyword->required_num > 0); } static int rb_vm_block_min_max_arity(const struct rb_block *block, int *max) { again: switch (vm_block_type(block)) { case block_type_iseq: return rb_iseq_min_max_arity(rb_iseq_check(block->as.captured.code.iseq), max); case block_type_proc: block = vm_proc_block(block->as.proc); goto again; case block_type_ifunc: { const struct vm_ifunc *ifunc = block->as.captured.code.ifunc; if (IS_METHOD_PROC_IFUNC(ifunc)) { /* e.g. method(:foo).to_proc.arity */ return method_min_max_arity((VALUE)ifunc->data, max); } *max = ifunc->argc.max; return ifunc->argc.min; } case block_type_symbol: break; } *max = UNLIMITED_ARGUMENTS; return 0; } /* * Returns the number of required parameters and stores the maximum * number of parameters in max, or UNLIMITED_ARGUMENTS if no max. * For non-lambda procs, the maximum is the number of non-ignored * parameters even though there is no actual limit to the number of parameters */ static int rb_proc_min_max_arity(VALUE self, int *max) { rb_proc_t *proc; GetProcPtr(self, proc); return rb_vm_block_min_max_arity(&proc->block, max); } int rb_proc_arity(VALUE self) { rb_proc_t *proc; int max, min; GetProcPtr(self, proc); min = rb_vm_block_min_max_arity(&proc->block, &max); return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1; } static void block_setup(struct rb_block *block, VALUE block_handler) { switch (vm_block_handler_type(block_handler)) { case block_handler_type_iseq: block->type = block_type_iseq; block->as.captured = *VM_BH_TO_ISEQ_BLOCK(block_handler); break; case block_handler_type_ifunc: block->type = block_type_ifunc; block->as.captured = *VM_BH_TO_IFUNC_BLOCK(block_handler); break; case block_handler_type_symbol: block->type = block_type_symbol; block->as.symbol = VM_BH_TO_SYMBOL(block_handler); break; case block_handler_type_proc: block->type = block_type_proc; block->as.proc = VM_BH_TO_PROC(block_handler); } } int rb_block_arity(void) { int min, max; const rb_execution_context_t *ec = GET_EC(); rb_control_frame_t *cfp = ec->cfp; VALUE block_handler = rb_vm_frame_block_handler(cfp); struct rb_block block; if (block_handler == VM_BLOCK_HANDLER_NONE) { rb_raise(rb_eArgError, "no block given"); } block_setup(&block, block_handler); min = rb_vm_block_min_max_arity(&block, &max); switch (vm_block_type(&block)) { case block_handler_type_symbol: return -1; case block_handler_type_proc: { VALUE procval = block_handler; rb_proc_t *proc; GetProcPtr(procval, proc); return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1; /* fall through */ } default: return max != UNLIMITED_ARGUMENTS ? min : -min-1; } } int rb_block_min_max_arity(int *max) { const rb_execution_context_t *ec = GET_EC(); rb_control_frame_t *cfp = ec->cfp; VALUE block_handler = rb_vm_frame_block_handler(cfp); struct rb_block block; if (block_handler == VM_BLOCK_HANDLER_NONE) { rb_raise(rb_eArgError, "no block given"); } block_setup(&block, block_handler); return rb_vm_block_min_max_arity(&block, max); } const rb_iseq_t * rb_proc_get_iseq(VALUE self, int *is_proc) { const rb_proc_t *proc; const struct rb_block *block; GetProcPtr(self, proc); block = &proc->block; if (is_proc) *is_proc = !proc->is_lambda; switch (vm_block_type(block)) { case block_type_iseq: return rb_iseq_check(block->as.captured.code.iseq); case block_type_proc: return rb_proc_get_iseq(block->as.proc, is_proc); case block_type_ifunc: { const struct vm_ifunc *ifunc = block->as.captured.code.ifunc; if (IS_METHOD_PROC_IFUNC(ifunc)) { /* method(:foo).to_proc */ if (is_proc) *is_proc = 0; return rb_method_iseq((VALUE)ifunc->data); } else { return NULL; } } case block_type_symbol: return NULL; } VM_UNREACHABLE(rb_proc_get_iseq); return NULL; } static VALUE iseq_location(const rb_iseq_t *iseq) { VALUE loc[2]; if (!iseq) return Qnil; rb_iseq_check(iseq); loc[0] = rb_iseq_path(iseq); loc[1] = iseq->body->location.first_lineno; return rb_ary_new4(2, loc); } MJIT_FUNC_EXPORTED VALUE rb_iseq_location(const rb_iseq_t *iseq) { return iseq_location(iseq); } /* * call-seq: * prc.source_location -> [String, Integer] * * Returns the Ruby source filename and line number containing this proc * or +nil+ if this proc was not defined in Ruby (i.e. native). */ VALUE rb_proc_location(VALUE self) { return iseq_location(rb_proc_get_iseq(self, 0)); } VALUE rb_unnamed_parameters(int arity) { VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity); int n = (arity < 0) ? ~arity : arity; ID req, rest; CONST_ID(req, "req"); a = rb_ary_new3(1, ID2SYM(req)); OBJ_FREEZE(a); for (; n; --n) { rb_ary_push(param, a); } if (arity < 0) { CONST_ID(rest, "rest"); rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest))); } return param; } /* * call-seq: * prc.parameters -> array * * Returns the parameter information of this proc. * * prc = lambda{|x, y=42, *other|} * prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]] */ static VALUE rb_proc_parameters(VALUE self) { int is_proc; const rb_iseq_t *iseq = rb_proc_get_iseq(self, &is_proc); if (!iseq) { return rb_unnamed_parameters(rb_proc_arity(self)); } return rb_iseq_parameters(iseq, is_proc); } st_index_t rb_hash_proc(st_index_t hash, VALUE prc) { rb_proc_t *proc; GetProcPtr(prc, proc); hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.code.val); hash = rb_hash_uint(hash, (st_index_t)proc->block.as.captured.self); return rb_hash_uint(hash, (st_index_t)proc->block.as.captured.ep >> 16); } MJIT_FUNC_EXPORTED VALUE rb_sym_to_proc(VALUE sym) { static VALUE sym_proc_cache = Qfalse; enum {SYM_PROC_CACHE_SIZE = 67}; VALUE proc; long index; ID id; if (!sym_proc_cache) { sym_proc_cache = rb_ary_tmp_new(SYM_PROC_CACHE_SIZE * 2); rb_gc_register_mark_object(sym_proc_cache); rb_ary_store(sym_proc_cache, SYM_PROC_CACHE_SIZE*2 - 1, Qnil); } id = SYM2ID(sym); index = (id % SYM_PROC_CACHE_SIZE) << 1; if (RARRAY_AREF(sym_proc_cache, index) == sym) { return RARRAY_AREF(sym_proc_cache, index + 1); } else { proc = sym_proc_new(rb_cProc, ID2SYM(id)); RARRAY_ASET(sym_proc_cache, index, sym); RARRAY_ASET(sym_proc_cache, index + 1, proc); return proc; } } /* * call-seq: * prc.hash -> integer * * Returns a hash value corresponding to proc body. * * See also Object#hash. */ static VALUE proc_hash(VALUE self) { st_index_t hash; hash = rb_hash_start(0); hash = rb_hash_proc(hash, self); hash = rb_hash_end(hash); return ST2FIX(hash); } VALUE rb_block_to_s(VALUE self, const struct rb_block *block, const char *additional_info) { VALUE cname = rb_obj_class(self); VALUE str = rb_sprintf("#<%"PRIsVALUE":", cname); again: switch (vm_block_type(block)) { case block_type_proc: block = vm_proc_block(block->as.proc); goto again; case block_type_iseq: { const rb_iseq_t *iseq = rb_iseq_check(block->as.captured.code.iseq); rb_str_catf(str, "%p %"PRIsVALUE":%d", (void *)self, rb_iseq_path(iseq), FIX2INT(iseq->body->location.first_lineno)); } break; case block_type_symbol: rb_str_catf(str, "%p(&%+"PRIsVALUE")", (void *)self, block->as.symbol); break; case block_type_ifunc: rb_str_catf(str, "%p", (void *)block->as.captured.code.ifunc); break; } if (additional_info) rb_str_cat_cstr(str, additional_info); rb_str_cat_cstr(str, ">"); OBJ_INFECT_RAW(str, self); return str; } /* * call-seq: * prc.to_s -> string * * Returns the unique identifier for this proc, along with * an indication of where the proc was defined. */ static VALUE proc_to_s(VALUE self) { const rb_proc_t *proc; GetProcPtr(self, proc); return rb_block_to_s(self, &proc->block, proc->is_lambda ? " (lambda)" : NULL); } /* * call-seq: * prc.to_proc -> proc * * Part of the protocol for converting objects to Proc objects. * Instances of class Proc simply return themselves. */ static VALUE proc_to_proc(VALUE self) { return self; } static void bm_mark(void *ptr) { struct METHOD *data = ptr; rb_gc_mark_movable(data->recv); rb_gc_mark_movable(data->klass); rb_gc_mark_movable(data->iclass); rb_gc_mark_movable((VALUE)data->me); } static void bm_compact(void *ptr) { struct METHOD *data = ptr; UPDATE_REFERENCE(data->recv); UPDATE_REFERENCE(data->klass); UPDATE_REFERENCE(data->iclass); UPDATE_TYPED_REFERENCE(rb_method_entry_t *, data->me); } static size_t bm_memsize(const void *ptr) { return sizeof(struct METHOD); } static const rb_data_type_t method_data_type = { "method", { bm_mark, RUBY_TYPED_DEFAULT_FREE, bm_memsize, bm_compact, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; VALUE rb_obj_is_method(VALUE m) { if (rb_typeddata_is_kind_of(m, &method_data_type)) { return Qtrue; } else { return Qfalse; } } static int respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope) { /* TODO: merge with obj_respond_to() */ ID rmiss = idRespond_to_missing; if (obj == Qundef) return 0; if (rb_method_basic_definition_p(klass, rmiss)) return 0; return RTEST(rb_funcall(obj, rmiss, 2, sym, scope ? Qfalse : Qtrue)); } static VALUE mnew_missing(VALUE klass, VALUE obj, ID id, VALUE mclass) { struct METHOD *data; VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data); rb_method_entry_t *me; rb_method_definition_t *def; RB_OBJ_WRITE(method, &data->recv, obj); RB_OBJ_WRITE(method, &data->klass, klass); def = ZALLOC(rb_method_definition_t); def->type = VM_METHOD_TYPE_MISSING; def->original_id = id; me = rb_method_entry_create(id, klass, METHOD_VISI_UNDEF, def); RB_OBJ_WRITE(method, &data->me, me); OBJ_INFECT(method, klass); return method; } static VALUE mnew_missing_by_name(VALUE klass, VALUE obj, VALUE *name, int scope, VALUE mclass) { VALUE vid = rb_str_intern(*name); *name = vid; if (!respond_to_missing_p(klass, obj, vid, scope)) return Qfalse; return mnew_missing(klass, obj, SYM2ID(vid), mclass); } static VALUE mnew_internal(const rb_method_entry_t *me, VALUE klass, VALUE iclass, VALUE obj, ID id, VALUE mclass, int scope, int error) { struct METHOD *data; VALUE method; rb_method_visibility_t visi = METHOD_VISI_UNDEF; again: if (UNDEFINED_METHOD_ENTRY_P(me)) { if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) { return mnew_missing(klass, obj, id, mclass); } if (!error) return Qnil; rb_print_undef(klass, id, METHOD_VISI_UNDEF); } if (visi == METHOD_VISI_UNDEF) { visi = METHOD_ENTRY_VISI(me); if (scope && (visi != METHOD_VISI_PUBLIC)) { if (!error) return Qnil; rb_print_inaccessible(klass, id, visi); } } if (me->def->type == VM_METHOD_TYPE_ZSUPER) { if (me->defined_class) { VALUE klass = RCLASS_SUPER(RCLASS_ORIGIN(me->defined_class)); id = me->def->original_id; me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass); } else { VALUE klass = RCLASS_SUPER(me->owner); id = me->def->original_id; me = rb_method_entry_without_refinements(klass, id, &iclass); } goto again; } method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data); RB_OBJ_WRITE(method, &data->recv, obj); RB_OBJ_WRITE(method, &data->klass, klass); RB_OBJ_WRITE(method, &data->iclass, iclass); RB_OBJ_WRITE(method, &data->me, me); OBJ_INFECT(method, klass); return method; } static VALUE mnew_from_me(const rb_method_entry_t *me, VALUE klass, VALUE iclass, VALUE obj, ID id, VALUE mclass, int scope) { return mnew_internal(me, klass, iclass, obj, id, mclass, scope, TRUE); } static VALUE mnew(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope) { const rb_method_entry_t *me; VALUE iclass = Qnil; if (obj == Qundef) { /* UnboundMethod */ me = rb_method_entry_with_refinements(klass, id, &iclass); } else { me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(klass, id, &iclass); } return mnew_from_me(me, klass, iclass, obj, id, mclass, scope); } static inline VALUE method_entry_defined_class(const rb_method_entry_t *me) { VALUE defined_class = me->defined_class; return defined_class ? defined_class : me->owner; } /********************************************************************** * * Document-class: Method * * Method objects are created by Object#method, and are associated * with a particular object (not just with a class). They may be * used to invoke the method within the object, and as a block * associated with an iterator. They may also be unbound from one * object (creating an UnboundMethod) and bound to another. * * class Thing * def square(n) * n*n * end * end * thing = Thing.new * meth = thing.method(:square) * * meth.call(9) #=> 81 * [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9] * * [ 1, 2, 3 ].each(&method(:puts)) #=> prints 1, 2, 3 * * require 'date' * %w[2017-03-01 2017-03-02].collect(&Date.method(:parse)) * #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>] */ /* * call-seq: * meth.eql?(other_meth) -> true or false * meth == other_meth -> true or false * * Two method objects are equal if they are bound to the same * object and refer to the same method definition and their owners are the * same class or module. */ static VALUE method_eq(VALUE method, VALUE other) { struct METHOD *m1, *m2; VALUE klass1, klass2; if (!rb_obj_is_method(other)) return Qfalse; if (CLASS_OF(method) != CLASS_OF(other)) return Qfalse; Check_TypedStruct(method, &method_data_type); m1 = (struct METHOD *)DATA_PTR(method); m2 = (struct METHOD *)DATA_PTR(other); klass1 = method_entry_defined_class(m1->me); klass2 = method_entry_defined_class(m2->me); if (!rb_method_entry_eq(m1->me, m2->me) || klass1 != klass2 || m1->klass != m2->klass || m1->recv != m2->recv) { return Qfalse; } return Qtrue; } /* * call-seq: * meth.hash -> integer * * Returns a hash value corresponding to the method object. * * See also Object#hash. */ static VALUE method_hash(VALUE method) { struct METHOD *m; st_index_t hash; TypedData_Get_Struct(method, struct METHOD, &method_data_type, m); hash = rb_hash_start((st_index_t)m->recv); hash = rb_hash_method_entry(hash, m->me); hash = rb_hash_end(hash); return ST2FIX(hash); } /* * call-seq: * meth.unbind -> unbound_method * * Dissociates <i>meth</i> from its current receiver. The resulting * UnboundMethod can subsequently be bound to a new object of the * same class (see UnboundMethod). */ static VALUE method_unbind(VALUE obj) { VALUE method; struct METHOD *orig, *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig); method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD, &method_data_type, data); RB_OBJ_WRITE(method, &data->recv, Qundef); RB_OBJ_WRITE(method, &data->klass, orig->klass); RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me)); OBJ_INFECT(method, obj); return method; } /* * call-seq: * meth.receiver -> object * * Returns the bound receiver of the method object. * * (1..3).method(:map).receiver # => 1..3 */ static VALUE method_receiver(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return data->recv; } /* * call-seq: * meth.name -> symbol * * Returns the name of the method. */ static VALUE method_name(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return ID2SYM(data->me->called_id); } /* * call-seq: * meth.original_name -> symbol * * Returns the original name of the method. * * class C * def foo; end * alias bar foo * end * C.instance_method(:bar).original_name # => :foo */ static VALUE method_original_name(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return ID2SYM(data->me->def->original_id); } /* * call-seq: * meth.owner -> class_or_module * * Returns the class or module that defines the method. * See also Method#receiver. * * (1..3).method(:map).owner #=> Enumerable */ static VALUE method_owner(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return data->me->owner; } void rb_method_name_error(VALUE klass, VALUE str) { #define MSG(s) rb_fstring_lit("undefined method `%1$s' for"s" `%2$s'") VALUE c = klass; VALUE s; if (FL_TEST(c, FL_SINGLETON)) { VALUE obj = rb_ivar_get(klass, attached); switch (BUILTIN_TYPE(obj)) { case T_MODULE: case T_CLASS: c = obj; s = MSG(""); } goto normal_class; } else if (RB_TYPE_P(c, T_MODULE)) { s = MSG(" module"); } else { normal_class: s = MSG(" class"); } rb_name_err_raise_str(s, c, str); #undef MSG } static VALUE obj_method(VALUE obj, VALUE vid, int scope) { ID id = rb_check_id(&vid); const VALUE klass = CLASS_OF(obj); const VALUE mclass = rb_cMethod; if (!id) { VALUE m = mnew_missing_by_name(klass, obj, &vid, scope, mclass); if (m) return m; rb_method_name_error(klass, vid); } return mnew(klass, obj, id, mclass, scope); } /* * call-seq: * obj.method(sym) -> method * * Looks up the named method as a receiver in <i>obj</i>, returning a * Method object (or raising NameError). The Method object acts as a * closure in <i>obj</i>'s object instance, so instance variables and * the value of <code>self</code> remain available. * * class Demo * def initialize(n) * @iv = n * end * def hello() * "Hello, @iv = #{@iv}" * end * end * * k = Demo.new(99) * m = k.method(:hello) * m.call #=> "Hello, @iv = 99" * * l = Demo.new('Fred') * m = l.method("hello") * m.call #=> "Hello, @iv = Fred" * * Note that Method implements <code>to_proc</code> method, which * means it can be used with iterators. * * [ 1, 2, 3 ].each(&method(:puts)) # => prints 3 lines to stdout * * out = File.open('test.txt', 'w') * [ 1, 2, 3 ].each(&out.method(:puts)) # => prints 3 lines to file * * require 'date' * %w[2017-03-01 2017-03-02].collect(&Date.method(:parse)) * #=> [#<Date: 2017-03-01 ((2457814j,0s,0n),+0s,2299161j)>, #<Date: 2017-03-02 ((2457815j,0s,0n),+0s,2299161j)>] */ VALUE rb_obj_method(VALUE obj, VALUE vid) { return obj_method(obj, vid, FALSE); } /* * call-seq: * obj.public_method(sym) -> method * * Similar to _method_, searches public method only. */ VALUE rb_obj_public_method(VALUE obj, VALUE vid) { return obj_method(obj, vid, TRUE); } /* * call-seq: * obj.singleton_method(sym) -> method * * Similar to _method_, searches singleton method only. * * class Demo * def initialize(n) * @iv = n * end * def hello() * "Hello, @iv = #{@iv}" * end * end * * k = Demo.new(99) * def k.hi * "Hi, @iv = #{@iv}" * end * m = k.singleton_method(:hi) * m.call #=> "Hi, @iv = 99" * m = k.singleton_method(:hello) #=> NameError */ VALUE rb_obj_singleton_method(VALUE obj, VALUE vid) { const rb_method_entry_t *me; VALUE klass = rb_singleton_class_get(obj); ID id = rb_check_id(&vid); if (NIL_P(klass) || NIL_P(klass = RCLASS_ORIGIN(klass))) { undef: rb_name_err_raise("undefined singleton method `%1$s' for `%2$s'", obj, vid); } if (!id) { VALUE m = mnew_missing_by_name(klass, obj, &vid, FALSE, rb_cMethod); if (m) return m; goto undef; } me = rb_method_entry_at(klass, id); if (UNDEFINED_METHOD_ENTRY_P(me) || UNDEFINED_REFINED_METHOD_P(me->def)) { vid = ID2SYM(id); goto undef; } return mnew_from_me(me, klass, klass, obj, id, rb_cMethod, FALSE); } /* * call-seq: * mod.instance_method(symbol) -> unbound_method * * Returns an +UnboundMethod+ representing the given * instance method in _mod_. * * class Interpreter * def do_a() print "there, "; end * def do_d() print "Hello "; end * def do_e() print "!\n"; end * def do_v() print "Dave"; end * Dispatcher = { * "a" => instance_method(:do_a), * "d" => instance_method(:do_d), * "e" => instance_method(:do_e), * "v" => instance_method(:do_v) * } * def interpret(string) * string.each_char {|b| Dispatcher[b].bind(self).call } * end * end * * interpreter = Interpreter.new * interpreter.interpret('dave') * * <em>produces:</em> * * Hello there, Dave! */ static VALUE rb_mod_instance_method(VALUE mod, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(mod, vid); } return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE); } /* * call-seq: * mod.public_instance_method(symbol) -> unbound_method * * Similar to _instance_method_, searches public method only. */ static VALUE rb_mod_public_instance_method(VALUE mod, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(mod, vid); } return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE); } /* * call-seq: * define_method(symbol, method) -> symbol * define_method(symbol) { block } -> symbol * * Defines an instance method in the receiver. The _method_ * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object. * If a block is specified, it is used as the method body. * If a block or the _method_ parameter has parameters, * they're used as method parameters. * This block is evaluated using #instance_eval. * * class A * def fred * puts "In Fred" * end * def create_method(name, &block) * self.class.define_method(name, &block) * end * define_method(:wilma) { puts "Charge it!" } * define_method(:flint) {|name| puts "I'm #{name}!"} * end * class B < A * define_method(:barney, instance_method(:fred)) * end * a = B.new * a.barney * a.wilma * a.flint('Dino') * a.create_method(:betty) { p self } * a.betty * * <em>produces:</em> * * In Fred * Charge it! * I'm Dino! * #<B:0x401b39e8> */ static VALUE rb_mod_define_method(int argc, VALUE *argv, VALUE mod) { ID id; VALUE body; VALUE name; const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod); const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE}; const rb_scope_visibility_t *scope_visi = &default_scope_visi; int is_method = FALSE; if (cref) { scope_visi = CREF_SCOPE_VISI(cref); } rb_check_arity(argc, 1, 2); name = argv[0]; id = rb_check_id(&name); if (argc == 1) { #if PROC_NEW_REQUIRES_BLOCK body = rb_block_lambda(); #else const rb_execution_context_t *ec = GET_EC(); VALUE block_handler = rb_vm_frame_block_handler(ec->cfp); if (block_handler == VM_BLOCK_HANDLER_NONE) rb_raise(rb_eArgError, proc_without_block); switch (vm_block_handler_type(block_handler)) { case block_handler_type_proc: body = VM_BH_TO_PROC(block_handler); break; case block_handler_type_symbol: body = rb_sym_to_proc(VM_BH_TO_SYMBOL(block_handler)); break; case block_handler_type_iseq: case block_handler_type_ifunc: body = rb_vm_make_lambda(ec, VM_BH_TO_CAPT_BLOCK(block_handler), rb_cProc); } #endif } else { body = argv[1]; if (rb_obj_is_method(body)) { is_method = TRUE; } else if (rb_obj_is_proc(body)) { is_method = FALSE; } else { rb_raise(rb_eTypeError, "wrong argument type %s (expected Proc/Method)", rb_obj_classname(body)); } } if (!id) id = rb_to_id(name); if (is_method) { struct METHOD *method = (struct METHOD *)DATA_PTR(body); if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) && !RTEST(rb_class_inherited_p(mod, method->me->owner))) { if (FL_TEST(method->me->owner, FL_SINGLETON)) { rb_raise(rb_eTypeError, "can't bind singleton method to a different class"); } else { rb_raise(rb_eTypeError, "bind argument must be a subclass of % "PRIsVALUE, method->me->owner); } } rb_method_entry_set(mod, id, method->me, scope_visi->method_visi); if (scope_visi->module_func) { rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC); } RB_GC_GUARD(body); } else { VALUE procval = rb_proc_dup(body); if (vm_proc_iseq(procval) != NULL) { rb_proc_t *proc; GetProcPtr(procval, proc); proc->is_lambda = TRUE; proc->is_from_method = TRUE; } rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)procval, scope_visi->method_visi); if (scope_visi->module_func) { rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC); } } return ID2SYM(id); } /* * call-seq: * define_singleton_method(symbol, method) -> symbol * define_singleton_method(symbol) { block } -> symbol * * Defines a singleton method in the receiver. The _method_ * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object. * If a block is specified, it is used as the method body. * If a block or a method has parameters, they're used as method parameters. * * class A * class << self * def class_name * to_s * end * end * end * A.define_singleton_method(:who_am_i) do * "I am: #{class_name}" * end * A.who_am_i # ==> "I am: A" * * guy = "Bob" * guy.define_singleton_method(:hello) { "#{self}: Hello there!" } * guy.hello #=> "Bob: Hello there!" * * chris = "Chris" * chris.define_singleton_method(:greet) {|greeting| "#{greeting}, I'm Chris!" } * chris.greet("Hi") #=> "Hi, I'm Chris!" */ static VALUE rb_obj_define_method(int argc, VALUE *argv, VALUE obj) { VALUE klass = rb_singleton_class(obj); return rb_mod_define_method(argc, argv, klass); } /* * define_method(symbol, method) -> symbol * define_method(symbol) { block } -> symbol * * Defines a global function by _method_ or the block. */ static VALUE top_define_method(int argc, VALUE *argv, VALUE obj) { rb_thread_t *th = GET_THREAD(); VALUE klass; klass = th->top_wrapper; if (klass) { rb_warning("main.define_method in the wrapped load is effective only in wrapper module"); } else { klass = rb_cObject; } return rb_mod_define_method(argc, argv, klass); } /* * call-seq: * method.clone -> new_method * * Returns a clone of this method. * * class A * def foo * return "bar" * end * end * * m = A.new.method(:foo) * m.call # => "bar" * n = m.clone.call # => "bar" */ static VALUE method_clone(VALUE self) { VALUE clone; struct METHOD *orig, *data; TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig); clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data); CLONESETUP(clone, self); RB_OBJ_WRITE(clone, &data->recv, orig->recv); RB_OBJ_WRITE(clone, &data->klass, orig->klass); RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me)); return clone; } /* Document-method: Method#=== * * call-seq: * method === obj -> result_of_method * * Invokes the method with +obj+ as the parameter like #call. * This allows a method object to be the target of a +when+ clause * in a case statement. * * require 'prime' * * case 1373 * when Prime.method(:prime?) * # ... * end */ /* * call-seq: * meth.call(args, ...) -> obj * meth[args, ...] -> obj * * Invokes the <i>meth</i> with the specified arguments, returning the * method's return value. * * m = 12.method("+") * m.call(3) #=> 15 * m.call(20) #=> 32 */ static VALUE rb_method_call_pass_called_kw(int argc, const VALUE *argv, VALUE method) { VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil; return rb_method_call_with_block_kw(argc, argv, method, procval, RB_PASS_CALLED_KEYWORDS); } VALUE rb_method_call_kw(int argc, const VALUE *argv, VALUE method, int kw_splat) { VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil; return rb_method_call_with_block_kw(argc, argv, method, procval, kw_splat); } VALUE rb_method_call(int argc, const VALUE *argv, VALUE method) { VALUE procval = rb_block_given_p() ? rb_block_proc() : Qnil; return rb_method_call_with_block(argc, argv, method, procval); } static const rb_callable_method_entry_t * method_callable_method_entry(const struct METHOD *data) { if (data->me->defined_class == 0) rb_bug("method_callable_method_entry: not callable."); return (const rb_callable_method_entry_t *)data->me; } static inline VALUE call_method_data(rb_execution_context_t *ec, const struct METHOD *data, int argc, const VALUE *argv, VALUE passed_procval, int kw_splat) { vm_passed_block_handler_set(ec, proc_to_block_handler(passed_procval)); return rb_vm_call_kw(ec, data->recv, data->me->called_id, argc, argv, method_callable_method_entry(data), kw_splat); } static VALUE call_method_data_safe(rb_execution_context_t *ec, const struct METHOD *data, int argc, const VALUE *argv, VALUE passed_procval, int safe, int kw_splat) { VALUE result = Qnil; /* OK */ enum ruby_tag_type state; EC_PUSH_TAG(ec); if ((state = EC_EXEC_TAG()) == TAG_NONE) { /* result is used only if state == 0, no exceptions is caught. */ /* otherwise it doesn't matter even if clobbered. */ NO_CLOBBERED(result) = call_method_data(ec, data, argc, argv, passed_procval, kw_splat); } EC_POP_TAG(); rb_set_safe_level_force(safe); if (state) EC_JUMP_TAG(ec, state); return result; } VALUE rb_method_call_with_block_kw(int argc, const VALUE *argv, VALUE method, VALUE passed_procval, int kw_splat) { const struct METHOD *data; rb_execution_context_t *ec = GET_EC(); TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); if (data->recv == Qundef) { rb_raise(rb_eTypeError, "can't call unbound method; bind first"); } if (OBJ_TAINTED(method)) { const int safe_level_to_run = RUBY_SAFE_LEVEL_MAX; int safe = rb_safe_level(); if (safe < safe_level_to_run) { rb_set_safe_level_force(safe_level_to_run); return call_method_data_safe(ec, data, argc, argv, passed_procval, safe, kw_splat); } } return call_method_data(ec, data, argc, argv, passed_procval, kw_splat); } VALUE rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE passed_procval) { return rb_method_call_with_block_kw(argc, argv, method, passed_procval, RB_NO_KEYWORDS); } /********************************************************************** * * Document-class: UnboundMethod * * Ruby supports two forms of objectified methods. Class Method is * used to represent methods that are associated with a particular * object: these method objects are bound to that object. Bound * method objects for an object can be created using Object#method. * * Ruby also supports unbound methods; methods objects that are not * associated with a particular object. These can be created either * by calling Module#instance_method or by calling #unbind on a bound * method object. The result of both of these is an UnboundMethod * object. * * Unbound methods can only be called after they are bound to an * object. That object must be a kind_of? the method's original * class. * * class Square * def area * @side * @side * end * def initialize(side) * @side = side * end * end * * area_un = Square.instance_method(:area) * * s = Square.new(12) * area = area_un.bind(s) * area.call #=> 144 * * Unbound methods are a reference to the method at the time it was * objectified: subsequent changes to the underlying class will not * affect the unbound method. * * class Test * def test * :original * end * end * um = Test.instance_method(:test) * class Test * def test * :modified * end * end * t = Test.new * t.test #=> :modified * um.bind(t).call #=> :original * */ static void convert_umethod_to_method_components(VALUE method, VALUE recv, VALUE *methclass_out, VALUE *klass_out, const rb_method_entry_t **me_out) { struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); VALUE methclass = data->me->owner; VALUE klass = CLASS_OF(recv); if (!RB_TYPE_P(methclass, T_MODULE) && methclass != CLASS_OF(recv) && !rb_obj_is_kind_of(recv, methclass)) { if (FL_TEST(methclass, FL_SINGLETON)) { rb_raise(rb_eTypeError, "singleton method called for a different object"); } else { rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE, methclass); } } const rb_method_entry_t *me = rb_method_entry_clone(data->me); if (RB_TYPE_P(me->owner, T_MODULE)) { VALUE ic = rb_class_search_ancestor(klass, me->owner); if (ic) { klass = ic; } else { klass = rb_include_class_new(methclass, klass); } me = (const rb_method_entry_t *) rb_method_entry_complement_defined_class(me, me->called_id, klass); } *methclass_out = methclass; *klass_out = klass; *me_out = me; } /* * call-seq: * umeth.bind(obj) -> method * * Bind <i>umeth</i> to <i>obj</i>. If Klass was the class from which * <i>umeth</i> was obtained, <code>obj.kind_of?(Klass)</code> must * be true. * * class A * def test * puts "In test, class = #{self.class}" * end * end * class B < A * end * class C < B * end * * * um = B.instance_method(:test) * bm = um.bind(C.new) * bm.call * bm = um.bind(B.new) * bm.call * bm = um.bind(A.new) * bm.call * * <em>produces:</em> * * In test, class = C * In test, class = B * prog.rb:16:in `bind': bind argument must be an instance of B (TypeError) * from prog.rb:16 */ static VALUE umethod_bind(VALUE method, VALUE recv) { VALUE methclass, klass; const rb_method_entry_t *me; convert_umethod_to_method_components(method, recv, &methclass, &klass, &me); struct METHOD *bound; method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound); RB_OBJ_WRITE(method, &bound->recv, recv); RB_OBJ_WRITE(method, &bound->klass, klass); RB_OBJ_WRITE(method, &bound->me, me); return method; } /* * call-seq: * umeth.bind_call(recv, args, ...) -> obj * * Bind <i>umeth</i> to <i>recv</i> and then invokes the method with the * specified arguments. * This is semantically equivalent to <code>umeth.bind(recv).call(args, ...)</code>. */ static VALUE umethod_bind_call(int argc, VALUE *argv, VALUE method) { rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); VALUE recv = argv[0]; argc--; argv++; VALUE methclass, klass; const rb_method_entry_t *me; convert_umethod_to_method_components(method, recv, &methclass, &klass, &me); struct METHOD bound = { recv, klass, 0, me }; VALUE passed_procval = rb_block_given_p() ? rb_block_proc() : Qnil; rb_execution_context_t *ec = GET_EC(); return call_method_data(ec, &bound, argc, argv, passed_procval, RB_PASS_CALLED_KEYWORDS); } /* * Returns the number of required parameters and stores the maximum * number of parameters in max, or UNLIMITED_ARGUMENTS * if there is no maximum. */ static int rb_method_entry_min_max_arity(const rb_method_entry_t *me, int *max) { const rb_method_definition_t *def = me->def; again: if (!def) return *max = 0; switch (def->type) { case VM_METHOD_TYPE_CFUNC: if (def->body.cfunc.argc < 0) { *max = UNLIMITED_ARGUMENTS; return 0; } return *max = check_argc(def->body.cfunc.argc); case VM_METHOD_TYPE_ZSUPER: *max = UNLIMITED_ARGUMENTS; return 0; case VM_METHOD_TYPE_ATTRSET: return *max = 1; case VM_METHOD_TYPE_IVAR: return *max = 0; case VM_METHOD_TYPE_ALIAS: def = def->body.alias.original_me->def; goto again; case VM_METHOD_TYPE_BMETHOD: return rb_proc_min_max_arity(def->body.bmethod.proc, max); case VM_METHOD_TYPE_ISEQ: return rb_iseq_min_max_arity(rb_iseq_check(def->body.iseq.iseqptr), max); case VM_METHOD_TYPE_UNDEF: case VM_METHOD_TYPE_NOTIMPLEMENTED: return *max = 0; case VM_METHOD_TYPE_MISSING: *max = UNLIMITED_ARGUMENTS; return 0; case VM_METHOD_TYPE_OPTIMIZED: { switch (def->body.optimize_type) { case OPTIMIZED_METHOD_TYPE_SEND: *max = UNLIMITED_ARGUMENTS; return 0; case OPTIMIZED_METHOD_TYPE_CALL: *max = UNLIMITED_ARGUMENTS; return 0; case OPTIMIZED_METHOD_TYPE_BLOCK_CALL: *max = UNLIMITED_ARGUMENTS; return 0; default: break; } break; } case VM_METHOD_TYPE_REFINED: *max = UNLIMITED_ARGUMENTS; return 0; } rb_bug("rb_method_entry_min_max_arity: invalid method entry type (%d)", def->type); UNREACHABLE_RETURN(Qnil); } int rb_method_entry_arity(const rb_method_entry_t *me) { int max, min = rb_method_entry_min_max_arity(me, &max); return min == max ? min : -min-1; } /* * call-seq: * meth.arity -> integer * * Returns an indication of the number of arguments accepted by a * method. Returns a nonnegative integer for methods that take a fixed * number of arguments. For Ruby methods that take a variable number of * arguments, returns -n-1, where n is the number of required arguments. * Keyword arguments will be considered as a single additional argument, * that argument being mandatory if any keyword argument is mandatory. * For methods written in C, returns -1 if the call takes a * variable number of arguments. * * class C * def one; end * def two(a); end * def three(*a); end * def four(a, b); end * def five(a, b, *c); end * def six(a, b, *c, &d); end * def seven(a, b, x:0); end * def eight(x:, y:); end * def nine(x:, y:, **z); end * def ten(*a, x:, y:); end * end * c = C.new * c.method(:one).arity #=> 0 * c.method(:two).arity #=> 1 * c.method(:three).arity #=> -1 * c.method(:four).arity #=> 2 * c.method(:five).arity #=> -3 * c.method(:six).arity #=> -3 * c.method(:seven).arity #=> -3 * c.method(:eight).arity #=> 1 * c.method(:nine).arity #=> 1 * c.method(:ten).arity #=> -2 * * "cat".method(:size).arity #=> 0 * "cat".method(:replace).arity #=> 1 * "cat".method(:squeeze).arity #=> -1 * "cat".method(:count).arity #=> -1 */ static VALUE method_arity_m(VALUE method) { int n = method_arity(method); return INT2FIX(n); } static int method_arity(VALUE method) { struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); return rb_method_entry_arity(data->me); } static const rb_method_entry_t * original_method_entry(VALUE mod, ID id) { const rb_method_entry_t *me; while ((me = rb_method_entry(mod, id)) != 0) { const rb_method_definition_t *def = me->def; if (def->type != VM_METHOD_TYPE_ZSUPER) break; mod = RCLASS_SUPER(me->owner); id = def->original_id; } return me; } static int method_min_max_arity(VALUE method, int *max) { const struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); return rb_method_entry_min_max_arity(data->me, max); } int rb_mod_method_arity(VALUE mod, ID id) { const rb_method_entry_t *me = original_method_entry(mod, id); if (!me) return 0; /* should raise? */ return rb_method_entry_arity(me); } int rb_obj_method_arity(VALUE obj, ID id) { return rb_mod_method_arity(CLASS_OF(obj), id); } const rb_method_definition_t * rb_method_def(VALUE method) { const struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); return data->me->def; } static const rb_iseq_t * method_def_iseq(const rb_method_definition_t *def) { switch (def->type) { case VM_METHOD_TYPE_ISEQ: return rb_iseq_check(def->body.iseq.iseqptr); case VM_METHOD_TYPE_BMETHOD: return rb_proc_get_iseq(def->body.bmethod.proc, 0); case VM_METHOD_TYPE_ALIAS: return method_def_iseq(def->body.alias.original_me->def); case VM_METHOD_TYPE_CFUNC: case VM_METHOD_TYPE_ATTRSET: case VM_METHOD_TYPE_IVAR: case VM_METHOD_TYPE_ZSUPER: case VM_METHOD_TYPE_UNDEF: case VM_METHOD_TYPE_NOTIMPLEMENTED: case VM_METHOD_TYPE_OPTIMIZED: case VM_METHOD_TYPE_MISSING: case VM_METHOD_TYPE_REFINED: break; } return NULL; } const rb_iseq_t * rb_method_iseq(VALUE method) { return method_def_iseq(rb_method_def(method)); } static const rb_cref_t * method_cref(VALUE method) { const rb_method_definition_t *def = rb_method_def(method); again: switch (def->type) { case VM_METHOD_TYPE_ISEQ: return def->body.iseq.cref; case VM_METHOD_TYPE_ALIAS: def = def->body.alias.original_me->def; goto again; default: return NULL; } } static VALUE method_def_location(const rb_method_definition_t *def) { if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) { if (!def->body.attr.location) return Qnil; return rb_ary_dup(def->body.attr.location); } return iseq_location(method_def_iseq(def)); } VALUE rb_method_entry_location(const rb_method_entry_t *me) { if (!me) return Qnil; return method_def_location(me->def); } VALUE rb_mod_method_location(VALUE mod, ID id) { const rb_method_entry_t *me = original_method_entry(mod, id); return rb_method_entry_location(me); } MJIT_FUNC_EXPORTED VALUE rb_obj_method_location(VALUE obj, ID id) { return rb_mod_method_location(CLASS_OF(obj), id); } /* * call-seq: * meth.source_location -> [String, Integer] * * Returns the Ruby source filename and line number containing this method * or nil if this method was not defined in Ruby (i.e. native). */ VALUE rb_method_location(VALUE method) { return method_def_location(rb_method_def(method)); } /* * call-seq: * meth.parameters -> array * * Returns the parameter information of this method. * * def foo(bar); end * method(:foo).parameters #=> [[:req, :bar]] * * def foo(bar, baz, bat, &blk); end * method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]] * * def foo(bar, *args); end * method(:foo).parameters #=> [[:req, :bar], [:rest, :args]] * * def foo(bar, baz, *args, &blk); end * method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]] */ static VALUE rb_method_parameters(VALUE method) { const rb_iseq_t *iseq = rb_method_iseq(method); if (!iseq) { return rb_unnamed_parameters(method_arity(method)); } return rb_iseq_parameters(iseq, 0); } /* * call-seq: * meth.to_s -> string * meth.inspect -> string * * Returns a human-readable description of the underlying method. * * "cat".method(:count).inspect #=> "#<Method: String#count>" * (1..3).method(:map).inspect #=> "#<Method: Range(Enumerable)#map>" * * In the latter case, the method description includes the "owner" of the * original method (+Enumerable+ module, which is included into +Range+). */ static VALUE method_inspect(VALUE method) { struct METHOD *data; VALUE str; const char *sharp = "#"; VALUE mklass; VALUE defined_class; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); str = rb_sprintf("#<% "PRIsVALUE": ", rb_obj_class(method)); OBJ_INFECT_RAW(str, method); mklass = data->klass; if (data->me->def->type == VM_METHOD_TYPE_ALIAS) { defined_class = data->me->def->body.alias.original_me->owner; } else { defined_class = method_entry_defined_class(data->me); } if (RB_TYPE_P(defined_class, T_ICLASS)) { defined_class = RBASIC_CLASS(defined_class); } if (FL_TEST(mklass, FL_SINGLETON)) { VALUE v = rb_ivar_get(mklass, attached); if (data->recv == Qundef) { rb_str_buf_append(str, rb_inspect(mklass)); } else if (data->recv == v) { rb_str_buf_append(str, rb_inspect(v)); sharp = "."; } else { rb_str_buf_append(str, rb_inspect(data->recv)); rb_str_buf_cat2(str, "("); rb_str_buf_append(str, rb_inspect(v)); rb_str_buf_cat2(str, ")"); sharp = "."; } } else { rb_str_buf_append(str, rb_inspect(mklass)); if (defined_class != mklass) { rb_str_catf(str, "(% "PRIsVALUE")", defined_class); } } rb_str_buf_cat2(str, sharp); rb_str_append(str, rb_id2str(data->me->called_id)); if (data->me->called_id != data->me->def->original_id) { rb_str_catf(str, "(%"PRIsVALUE")", rb_id2str(data->me->def->original_id)); } if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) { rb_str_buf_cat2(str, " (not-implemented)"); } // parameter information // TODO { // source location VALUE loc = rb_method_location(method); if (!NIL_P(loc)) { rb_str_catf(str, " %"PRIsVALUE":%"PRIsVALUE, RARRAY_AREF(loc, 0), RARRAY_AREF(loc, 1)); } } rb_str_buf_cat2(str, ">"); return str; } static VALUE mproc(VALUE method) { return rb_funcallv(rb_mRubyVMFrozenCore, idProc, 0, 0); } static VALUE mlambda(VALUE method) { return rb_funcallv(rb_mRubyVMFrozenCore, idLambda, 0, 0); } static VALUE bmcall(RB_BLOCK_CALL_FUNC_ARGLIST(args, method)) { return rb_method_call_with_block_kw(argc, argv, method, blockarg, RB_PASS_CALLED_KEYWORDS); } VALUE rb_proc_new( rb_block_call_func_t func, VALUE val) { VALUE procval = rb_iterate(mproc, 0, func, val); return procval; } /* * call-seq: * meth.to_proc -> proc * * Returns a Proc object corresponding to this method. */ static VALUE method_to_proc(VALUE method) { VALUE procval; rb_proc_t *proc; /* * class Method * def to_proc * lambda{|*args| * self.call(*args) * } * end * end */ procval = rb_iterate(mlambda, 0, bmcall, method); GetProcPtr(procval, proc); proc->is_from_method = 1; return procval; } /* * call-seq: * meth.super_method -> method * * Returns a Method of superclass which would be called when super is used * or nil if there is no method on superclass. */ static VALUE method_super_method(VALUE method) { const struct METHOD *data; VALUE super_class, iclass; ID mid; const rb_method_entry_t *me; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); iclass = data->iclass; if (!iclass) return Qnil; super_class = RCLASS_SUPER(RCLASS_ORIGIN(iclass)); mid = data->me->called_id; if (!super_class) return Qnil; me = (rb_method_entry_t *)rb_callable_method_entry_with_refinements(super_class, mid, &iclass); if (!me) return Qnil; return mnew_internal(me, me->owner, iclass, data->recv, mid, rb_obj_class(method), FALSE, FALSE); } /* * call-seq: * local_jump_error.exit_value -> obj * * Returns the exit value associated with this +LocalJumpError+. */ static VALUE localjump_xvalue(VALUE exc) { return rb_iv_get(exc, "@exit_value"); } /* * call-seq: * local_jump_error.reason -> symbol * * The reason this block was terminated: * :break, :redo, :retry, :next, :return, or :noreason. */ static VALUE localjump_reason(VALUE exc) { return rb_iv_get(exc, "@reason"); } rb_cref_t *rb_vm_cref_new_toplevel(void); /* vm.c */ static const rb_env_t * env_clone(const rb_env_t *env, const rb_cref_t *cref) { VALUE *new_ep; VALUE *new_body; const rb_env_t *new_env; VM_ASSERT(env->ep > env->env); VM_ASSERT(VM_ENV_ESCAPED_P(env->ep)); if (cref == NULL) { cref = rb_vm_cref_new_toplevel(); } new_body = ALLOC_N(VALUE, env->env_size); MEMCPY(new_body, env->env, VALUE, env->env_size); new_ep = &new_body[env->ep - env->env]; new_env = vm_env_new(new_ep, new_body, env->env_size, env->iseq); RB_OBJ_WRITE(new_env, &new_ep[VM_ENV_DATA_INDEX_ME_CREF], (VALUE)cref); VM_ASSERT(VM_ENV_ESCAPED_P(new_ep)); return new_env; } /* * call-seq: * prc.binding -> binding * * Returns the binding associated with <i>prc</i>. * * def fred(param) * proc {} * end * * b = fred(99) * eval("param", b.binding) #=> 99 */ static VALUE proc_binding(VALUE self) { VALUE bindval, binding_self = Qundef; rb_binding_t *bind; const rb_proc_t *proc; const rb_iseq_t *iseq = NULL; const struct rb_block *block; const rb_env_t *env = NULL; GetProcPtr(self, proc); block = &proc->block; again: switch (vm_block_type(block)) { case block_type_iseq: iseq = block->as.captured.code.iseq; binding_self = block->as.captured.self; env = VM_ENV_ENVVAL_PTR(block->as.captured.ep); break; case block_type_proc: GetProcPtr(block->as.proc, proc); block = &proc->block; goto again; case block_type_symbol: goto error; case block_type_ifunc: { const struct vm_ifunc *ifunc = block->as.captured.code.ifunc; if (IS_METHOD_PROC_IFUNC(ifunc)) { VALUE method = (VALUE)ifunc->data; VALUE name = rb_fstring_lit("<empty_iseq>"); rb_iseq_t *empty; binding_self = method_receiver(method); iseq = rb_method_iseq(method); env = VM_ENV_ENVVAL_PTR(block->as.captured.ep); env = env_clone(env, method_cref(method)); /* set empty iseq */ empty = rb_iseq_new(NULL, name, name, Qnil, 0, ISEQ_TYPE_TOP); RB_OBJ_WRITE(env, &env->iseq, empty); break; } else { error: rb_raise(rb_eArgError, "Can't create Binding from C level Proc"); return Qnil; } } } bindval = rb_binding_alloc(rb_cBinding); GetBindingPtr(bindval, bind); RB_OBJ_WRITE(bindval, &bind->block.as.captured.self, binding_self); RB_OBJ_WRITE(bindval, &bind->block.as.captured.code.iseq, env->iseq); rb_vm_block_ep_update(bindval, &bind->block, env->ep); RB_OBJ_WRITTEN(bindval, Qundef, VM_ENV_ENVVAL(env->ep)); if (iseq) { rb_iseq_check(iseq); RB_OBJ_WRITE(bindval, &bind->pathobj, iseq->body->location.pathobj); bind->first_lineno = FIX2INT(rb_iseq_first_lineno(iseq)); } else { RB_OBJ_WRITE(bindval, &bind->pathobj, rb_iseq_pathobj_new(rb_fstring_lit("(binding)"), Qnil)); bind->first_lineno = 1; } return bindval; } static rb_block_call_func curry; static VALUE make_curry_proc(VALUE proc, VALUE passed, VALUE arity) { VALUE args = rb_ary_new3(3, proc, passed, arity); rb_proc_t *procp; int is_lambda; GetProcPtr(proc, procp); is_lambda = procp->is_lambda; rb_ary_freeze(passed); rb_ary_freeze(args); proc = rb_proc_new(curry, args); GetProcPtr(proc, procp); procp->is_lambda = is_lambda; return proc; } static VALUE curry(RB_BLOCK_CALL_FUNC_ARGLIST(_, args)) { VALUE proc, passed, arity; proc = RARRAY_AREF(args, 0); passed = RARRAY_AREF(args, 1); arity = RARRAY_AREF(args, 2); passed = rb_ary_plus(passed, rb_ary_new4(argc, argv)); rb_ary_freeze(passed); if (RARRAY_LEN(passed) < FIX2INT(arity)) { if (!NIL_P(blockarg)) { rb_warn("given block not used"); } arity = make_curry_proc(proc, passed, arity); return arity; } else { return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), blockarg); } } /* * call-seq: * prc.curry -> a_proc * prc.curry(arity) -> a_proc * * Returns a curried proc. If the optional <i>arity</i> argument is given, * it determines the number of arguments. * A curried proc receives some arguments. If a sufficient number of * arguments are supplied, it passes the supplied arguments to the original * proc and returns the result. Otherwise, returns another curried proc that * takes the rest of arguments. * * b = proc {|x, y, z| (x||0) + (y||0) + (z||0) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> 6 * p b.curry(5)[1][2][3][4][5] #=> 6 * p b.curry(5)[1, 2][3, 4][5] #=> 6 * p b.curry(1)[1] #=> 1 * * b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> 10 * p b.curry(5)[1][2][3][4][5] #=> 15 * p b.curry(5)[1, 2][3, 4][5] #=> 15 * p b.curry(1)[1] #=> 1 * * b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> wrong number of arguments (given 4, expected 3) * p b.curry(5) #=> wrong number of arguments (given 5, expected 3) * p b.curry(1) #=> wrong number of arguments (given 1, expected 3) * * b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> 10 * p b.curry(5)[1][2][3][4][5] #=> 15 * p b.curry(5)[1, 2][3, 4][5] #=> 15 * p b.curry(1) #=> wrong number of arguments (given 1, expected 3) * * b = proc { :foo } * p b.curry[] #=> :foo */ static VALUE proc_curry(int argc, const VALUE *argv, VALUE self) { int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity); VALUE arity; if (rb_check_arity(argc, 0, 1) == 0 || NIL_P(arity = argv[0])) { arity = INT2FIX(min_arity); } else { sarity = FIX2INT(arity); if (rb_proc_lambda_p(self)) { rb_check_arity(sarity, min_arity, max_arity); } } return make_curry_proc(self, rb_ary_new(), arity); } /* * call-seq: * meth.curry -> proc * meth.curry(arity) -> proc * * Returns a curried proc based on the method. When the proc is called with a number of * arguments that is lower than the method's arity, then another curried proc is returned. * Only when enough arguments have been supplied to satisfy the method signature, will the * method actually be called. * * The optional <i>arity</i> argument should be supplied when currying methods with * variable arguments to determine how many arguments are needed before the method is * called. * * def foo(a,b,c) * [a, b, c] * end * * proc = self.method(:foo).curry * proc2 = proc.call(1, 2) #=> #<Proc> * proc2.call(3) #=> [1,2,3] * * def vararg(*args) * args * end * * proc = self.method(:vararg).curry(4) * proc2 = proc.call(:x) #=> #<Proc> * proc3 = proc2.call(:y, :z) #=> #<Proc> * proc3.call(:a) #=> [:x, :y, :z, :a] */ static VALUE rb_method_curry(int argc, const VALUE *argv, VALUE self) { VALUE proc = method_to_proc(self); return proc_curry(argc, argv, proc); } static VALUE compose(RB_BLOCK_CALL_FUNC_ARGLIST(_, args)) { VALUE f, g, fargs; f = RARRAY_AREF(args, 0); g = RARRAY_AREF(args, 1); if (rb_obj_is_proc(g)) fargs = rb_proc_call_with_block_kw(g, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS); else fargs = rb_funcall_with_block_kw(g, idCall, argc, argv, blockarg, RB_PASS_CALLED_KEYWORDS); if (rb_obj_is_proc(f)) return rb_proc_call(f, rb_ary_new3(1, fargs)); else return rb_funcallv(f, idCall, 1, &fargs); } static VALUE to_callable(VALUE f) { VALUE mesg; if (rb_obj_is_proc(f)) return f; if (rb_obj_is_method(f)) return f; if (rb_obj_respond_to(f, idCall, TRUE)) return f; mesg = rb_fstring_lit("callable object is expected"); rb_exc_raise(rb_exc_new_str(rb_eTypeError, mesg)); } static VALUE rb_proc_compose_to_left(VALUE self, VALUE g); static VALUE rb_proc_compose_to_right(VALUE self, VALUE g); /* * call-seq: * prc << g -> a_proc * * Returns a proc that is the composition of this proc and the given <i>g</i>. * The returned proc takes a variable number of arguments, calls <i>g</i> with them * then calls this proc with the result. * * f = proc {|x| x * x } * g = proc {|x| x + x } * p (f << g).call(2) #=> 16 */ static VALUE proc_compose_to_left(VALUE self, VALUE g) { return rb_proc_compose_to_left(self, to_callable(g)); } static VALUE rb_proc_compose_to_left(VALUE self, VALUE g) { VALUE proc, args, procs[2]; rb_proc_t *procp; int is_lambda; procs[0] = self; procs[1] = g; args = rb_ary_tmp_new_from_values(0, 2, procs); GetProcPtr(self, procp); is_lambda = procp->is_lambda; proc = rb_proc_new(compose, args); GetProcPtr(proc, procp); procp->is_lambda = is_lambda; return proc; } /* * call-seq: * prc >> g -> a_proc * * Returns a proc that is the composition of this proc and the given <i>g</i>. * The returned proc takes a variable number of arguments, calls <i>g</i> with them * then calls this proc with the result. * * f = proc {|x| x * x } * g = proc {|x| x + x } * p (f >> g).call(2) #=> 8 */ static VALUE proc_compose_to_right(VALUE self, VALUE g) { return rb_proc_compose_to_right(self, to_callable(g)); } static VALUE rb_proc_compose_to_right(VALUE self, VALUE g) { VALUE proc, args, procs[2]; rb_proc_t *procp; int is_lambda; procs[0] = g; procs[1] = self; args = rb_ary_tmp_new_from_values(0, 2, procs); GetProcPtr(self, procp); is_lambda = procp->is_lambda; proc = rb_proc_new(compose, args); GetProcPtr(proc, procp); procp->is_lambda = is_lambda; return proc; } /* * call-seq: * meth << g -> a_proc * * Returns a proc that is the composition of this method and the given <i>g</i>. * The returned proc takes a variable number of arguments, calls <i>g</i> with them * then calls this method with the result. * * def f(x) * x * x * end * * f = self.method(:f) * g = proc {|x| x + x } * p (f << g).call(2) #=> 16 */ static VALUE rb_method_compose_to_left(VALUE self, VALUE g) { g = to_callable(g); self = method_to_proc(self); return proc_compose_to_left(self, g); } /* * call-seq: * meth >> g -> a_proc * * Returns a proc that is the composition of this method and the given <i>g</i>. * The returned proc takes a variable number of arguments, calls <i>g</i> with them * then calls this method with the result. * * def f(x) * x * x * end * * f = self.method(:f) * g = proc {|x| x + x } * p (f >> g).call(2) #=> 8 */ static VALUE rb_method_compose_to_right(VALUE self, VALUE g) { g = to_callable(g); self = method_to_proc(self); return proc_compose_to_right(self, g); } /* * Document-class: LocalJumpError * * Raised when Ruby can't yield as requested. * * A typical scenario is attempting to yield when no block is given: * * def call_block * yield 42 * end * call_block * * <em>raises the exception:</em> * * LocalJumpError: no block given (yield) * * A more subtle example: * * def get_me_a_return * Proc.new { return 42 } * end * get_me_a_return.call * * <em>raises the exception:</em> * * LocalJumpError: unexpected return */ /* * Document-class: SystemStackError * * Raised in case of a stack overflow. * * def me_myself_and_i * me_myself_and_i * end * me_myself_and_i * * <em>raises the exception:</em> * * SystemStackError: stack level too deep */ /* * Document-class: Proc * * A +Proc+ object is an encapsulation of a block of code, which can be stored * in a local variable, passed to a method or another Proc, and can be called. * Proc is an essential concept in Ruby and a core of its functional * programming features. * * square = Proc.new {|x| x**2 } * * square.call(3) #=> 9 * # shorthands: * square.(3) #=> 9 * square[3] #=> 9 * * Proc objects are _closures_, meaning they remember and can use the entire * context in which they were created. * * def gen_times(factor) * Proc.new {|n| n*factor } # remembers the value of factor at the moment of creation * end * * times3 = gen_times(3) * times5 = gen_times(5) * * times3.call(12) #=> 36 * times5.call(5) #=> 25 * times3.call(times5.call(4)) #=> 60 * * == Creation * * There are several methods to create a Proc * * * Use the Proc class constructor: * * proc1 = Proc.new {|x| x**2 } * * * Use the Kernel#proc method as a shorthand of Proc.new: * * proc2 = proc {|x| x**2 } * * * Receiving a block of code into proc argument (note the <code>&</code>): * * def make_proc(&block) * block * end * * proc3 = make_proc {|x| x**2 } * * * Construct a proc with lambda semantics using the Kernel#lambda method * (see below for explanations about lambdas): * * lambda1 = lambda {|x| x**2 } * * * Use the Lambda literal syntax (also constructs a proc with lambda semantics): * * lambda2 = ->(x) { x**2 } * * == Lambda and non-lambda semantics * * Procs are coming in two flavors: lambda and non-lambda (regular procs). * Differences are: * * * In lambdas, +return+ and +break+ means exit from this lambda; * * In non-lambda procs, +return+ means exit from embracing method * (and will throw +LocalJumpError+ if invoked outside the method); * * In non-lambda procs, +break+ means exit from the method which the block given for. * (and will throw +LocalJumpError+ if invoked after the method returns); * * In lambdas, arguments are treated in the same way as in methods: strict, * with +ArgumentError+ for mismatching argument number, * and no additional argument processing; * * Regular procs accept arguments more generously: missing arguments * are filled with +nil+, single Array arguments are deconstructed if the * proc has multiple arguments, and there is no error raised on extra * arguments. * * Examples: * * # +return+ in non-lambda proc, +b+, exits +m2+. * # (The block +{ return }+ is given for +m1+ and embraced by +m2+.) * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { return }; $a << :m2 end; m2; p $a * #=> [] * * # +break+ in non-lambda proc, +b+, exits +m1+. * # (The block +{ break }+ is given for +m1+ and embraced by +m2+.) * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { break }; $a << :m2 end; m2; p $a * #=> [:m2] * * # +next+ in non-lambda proc, +b+, exits the block. * # (The block +{ next }+ is given for +m1+ and embraced by +m2+.) * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1 { next }; $a << :m2 end; m2; p $a * #=> [:m1, :m2] * * # Using +proc+ method changes the behavior as follows because * # The block is given for +proc+ method and embraced by +m2+. * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { return }); $a << :m2 end; m2; p $a * #=> [] * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { break }); $a << :m2 end; m2; p $a * # break from proc-closure (LocalJumpError) * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&proc { next }); $a << :m2 end; m2; p $a * #=> [:m1, :m2] * * # +return+, +break+ and +next+ in the stubby lambda exits the block. * # (+lambda+ method behaves same.) * # (The block is given for stubby lambda syntax and embraced by +m2+.) * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { return }); $a << :m2 end; m2; p $a * #=> [:m1, :m2] * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { break }); $a << :m2 end; m2; p $a * #=> [:m1, :m2] * $a = []; def m1(&b) b.call; $a << :m1 end; def m2() m1(&-> { next }); $a << :m2 end; m2; p $a * #=> [:m1, :m2] * * p = proc {|x, y| "x=#{x}, y=#{y}" } * p.call(1, 2) #=> "x=1, y=2" * p.call([1, 2]) #=> "x=1, y=2", array deconstructed * p.call(1, 2, 8) #=> "x=1, y=2", extra argument discarded * p.call(1) #=> "x=1, y=", nil substituted instead of error * * l = lambda {|x, y| "x=#{x}, y=#{y}" } * l.call(1, 2) #=> "x=1, y=2" * l.call([1, 2]) # ArgumentError: wrong number of arguments (given 1, expected 2) * l.call(1, 2, 8) # ArgumentError: wrong number of arguments (given 3, expected 2) * l.call(1) # ArgumentError: wrong number of arguments (given 1, expected 2) * * def test_return * -> { return 3 }.call # just returns from lambda into method body * proc { return 4 }.call # returns from method * return 5 * end * * test_return # => 4, return from proc * * Lambdas are useful as self-sufficient functions, in particular useful as * arguments to higher-order functions, behaving exactly like Ruby methods. * * Procs are useful for implementing iterators: * * def test * [[1, 2], [3, 4], [5, 6]].map {|a, b| return a if a + b > 10 } * # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ * end * * Inside +map+, the block of code is treated as a regular (non-lambda) proc, * which means that the internal arrays will be deconstructed to pairs of * arguments, and +return+ will exit from the method +test+. That would * not be possible with a stricter lambda. * * You can tell a lambda from a regular proc by using the #lambda? instance method. * * Lambda semantics is typically preserved during the proc lifetime, including * <code>&</code>-deconstruction to a block of code: * * p = proc {|x, y| x } * l = lambda {|x, y| x } * [[1, 2], [3, 4]].map(&p) #=> [1, 2] * [[1, 2], [3, 4]].map(&l) # ArgumentError: wrong number of arguments (given 1, expected 2) * * The only exception is dynamic method definition: even if defined by * passing a non-lambda proc, methods still have normal semantics of argument * checking. * * class C * define_method(:e, &proc {}) * end * C.new.e(1,2) #=> ArgumentError * C.new.method(:e).to_proc.lambda? #=> true * * This exception ensures that methods never have unusual argument passing * conventions, and makes it easy to have wrappers defining methods that * behave as usual. * * class C * def self.def2(name, &body) * define_method(name, &body) * end * * def2(:f) {} * end * C.new.f(1,2) #=> ArgumentError * * The wrapper <code>def2</code> receives _body_ as a non-lambda proc, * yet defines a method which has normal semantics. * * == Conversion of other objects to procs * * Any object that implements the +to_proc+ method can be converted into * a proc by the <code>&</code> operator, and therefore con be * consumed by iterators. * * class Greeter * def initialize(greeting) * @greeting = greeting * end * * def to_proc * proc {|name| "#{@greeting}, #{name}!" } * end * end * * hi = Greeter.new("Hi") * hey = Greeter.new("Hey") * ["Bob", "Jane"].map(&hi) #=> ["Hi, Bob!", "Hi, Jane!"] * ["Bob", "Jane"].map(&hey) #=> ["Hey, Bob!", "Hey, Jane!"] * * Of the Ruby core classes, this method is implemented by Symbol, * Method, and Hash. * * :to_s.to_proc.call(1) #=> "1" * [1, 2].map(&:to_s) #=> ["1", "2"] * * method(:puts).to_proc.call(1) # prints 1 * [1, 2].each(&method(:puts)) # prints 1, 2 * * {test: 1}.to_proc.call(:test) #=> 1 * %i[test many keys].map(&{test: 1}) #=> [1, nil, nil] * * == Orphaned Proc * * +return+ and +break+ in a block exit a method. * If a Proc object is generated from the block and the Proc object * survives until the method is returned, +return+ and +break+ cannot work. * In such case, +return+ and +break+ raises LocalJumpError. * A Proc object in such situation is called as orphaned Proc object. * * Note that the method to exit is different for +return+ and +break+. * There is a situation that orphaned for +break+ but not orphaned for +return+. * * def m1(&b) b.call end; def m2(); m1 { return } end; m2 # ok * def m1(&b) b.call end; def m2(); m1 { break } end; m2 # ok * * def m1(&b) b end; def m2(); m1 { return }.call end; m2 # ok * def m1(&b) b end; def m2(); m1 { break }.call end; m2 # LocalJumpError * * def m1(&b) b end; def m2(); m1 { return } end; m2.call # LocalJumpError * def m1(&b) b end; def m2(); m1 { break } end; m2.call # LocalJumpError * * Since +return+ and +break+ exits the block itself in lambdas, * lambdas cannot be orphaned. * */ void Init_Proc(void) { #undef rb_intern /* Proc */ rb_cProc = rb_define_class("Proc", rb_cObject); rb_undef_alloc_func(rb_cProc); rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1); rb_add_method(rb_cProc, idCall, VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); rb_add_method(rb_cProc, rb_intern("[]"), VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); rb_add_method(rb_cProc, rb_intern("==="), VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); rb_add_method(rb_cProc, rb_intern("yield"), VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); #if 0 /* for RDoc */ rb_define_method(rb_cProc, "call", proc_call, -1); rb_define_method(rb_cProc, "[]", proc_call, -1); rb_define_method(rb_cProc, "===", proc_call, -1); rb_define_method(rb_cProc, "yield", proc_call, -1); #endif rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0); rb_define_method(rb_cProc, "arity", proc_arity, 0); rb_define_method(rb_cProc, "clone", proc_clone, 0); rb_define_method(rb_cProc, "dup", rb_proc_dup, 0); rb_define_method(rb_cProc, "hash", proc_hash, 0); rb_define_method(rb_cProc, "to_s", proc_to_s, 0); rb_define_alias(rb_cProc, "inspect", "to_s"); rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0); rb_define_method(rb_cProc, "binding", proc_binding, 0); rb_define_method(rb_cProc, "curry", proc_curry, -1); rb_define_method(rb_cProc, "<<", proc_compose_to_left, 1); rb_define_method(rb_cProc, ">>", proc_compose_to_right, 1); rb_define_method(rb_cProc, "source_location", rb_proc_location, 0); rb_define_method(rb_cProc, "parameters", rb_proc_parameters, 0); /* Exceptions */ rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError); rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0); rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0); rb_eSysStackError = rb_define_class("SystemStackError", rb_eException); rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep"); /* utility functions */ rb_define_global_function("proc", f_proc, 0); rb_define_global_function("lambda", f_lambda, 0); /* Method */ rb_cMethod = rb_define_class("Method", rb_cObject); rb_undef_alloc_func(rb_cMethod); rb_undef_method(CLASS_OF(rb_cMethod), "new"); rb_define_method(rb_cMethod, "==", method_eq, 1); rb_define_method(rb_cMethod, "eql?", method_eq, 1); rb_define_method(rb_cMethod, "hash", method_hash, 0); rb_define_method(rb_cMethod, "clone", method_clone, 0); rb_define_method(rb_cMethod, "call", rb_method_call_pass_called_kw, -1); rb_define_method(rb_cMethod, "===", rb_method_call_pass_called_kw, -1); rb_define_method(rb_cMethod, "curry", rb_method_curry, -1); rb_define_method(rb_cMethod, "<<", rb_method_compose_to_left, 1); rb_define_method(rb_cMethod, ">>", rb_method_compose_to_right, 1); rb_define_method(rb_cMethod, "[]", rb_method_call_pass_called_kw, -1); rb_define_method(rb_cMethod, "arity", method_arity_m, 0); rb_define_method(rb_cMethod, "inspect", method_inspect, 0); rb_define_method(rb_cMethod, "to_s", method_inspect, 0); rb_define_method(rb_cMethod, "to_proc", method_to_proc, 0); rb_define_method(rb_cMethod, "receiver", method_receiver, 0); rb_define_method(rb_cMethod, "name", method_name, 0); rb_define_method(rb_cMethod, "original_name", method_original_name, 0); rb_define_method(rb_cMethod, "owner", method_owner, 0); rb_define_method(rb_cMethod, "unbind", method_unbind, 0); rb_define_method(rb_cMethod, "source_location", rb_method_location, 0); rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0); rb_define_method(rb_cMethod, "super_method", method_super_method, 0); rb_define_method(rb_mKernel, "method", rb_obj_method, 1); rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1); rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1); /* UnboundMethod */ rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject); rb_undef_alloc_func(rb_cUnboundMethod); rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new"); rb_define_method(rb_cUnboundMethod, "==", method_eq, 1); rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1); rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0); rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0); rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0); rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0); rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0); rb_define_method(rb_cUnboundMethod, "name", method_name, 0); rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0); rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0); rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1); rb_define_method(rb_cUnboundMethod, "bind_call", umethod_bind_call, -1); rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0); rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0); rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0); /* Module#*_method */ rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1); rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1); rb_define_method(rb_cModule, "define_method", rb_mod_define_method, -1); /* Kernel */ rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1); rb_define_private_method(rb_singleton_class(rb_vm_top_self()), "define_method", top_define_method, -1); } /* * Objects of class Binding encapsulate the execution context at some * particular place in the code and retain this context for future * use. The variables, methods, value of <code>self</code>, and * possibly an iterator block that can be accessed in this context * are all retained. Binding objects can be created using * Kernel#binding, and are made available to the callback of * Kernel#set_trace_func and instances of TracePoint. * * These binding objects can be passed as the second argument of the * Kernel#eval method, establishing an environment for the * evaluation. * * class Demo * def initialize(n) * @secret = n * end * def get_binding * binding * end * end * * k1 = Demo.new(99) * b1 = k1.get_binding * k2 = Demo.new(-3) * b2 = k2.get_binding * * eval("@secret", b1) #=> 99 * eval("@secret", b2) #=> -3 * eval("@secret") #=> nil * * Binding objects have no class-specific methods. * */ void Init_Binding(void) { rb_cBinding = rb_define_class("Binding", rb_cObject); rb_undef_alloc_func(rb_cBinding); rb_undef_method(CLASS_OF(rb_cBinding), "new"); rb_define_method(rb_cBinding, "clone", binding_clone, 0); rb_define_method(rb_cBinding, "dup", binding_dup, 0); rb_define_method(rb_cBinding, "eval", bind_eval, -1); rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0); rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1); rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2); rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1); rb_define_method(rb_cBinding, "receiver", bind_receiver, 0); rb_define_method(rb_cBinding, "source_location", bind_location, 0); rb_define_global_function("binding", rb_f_binding, 0); }