/********************************************************************** gc.c - $Author$ created at: Tue Oct 5 09:44:46 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #define rb_data_object_alloc rb_data_object_alloc #define rb_data_typed_object_alloc rb_data_typed_object_alloc #include "ruby/internal/config.h" #ifdef _WIN32 # include "ruby/ruby.h" #endif #include #define sighandler_t ruby_sighandler_t #ifndef _WIN32 #include #include #endif #if defined(__wasm__) && !defined(__EMSCRIPTEN__) # include "wasm/setjmp.h" # include "wasm/machine.h" #else # include #endif #include #include /* MALLOC_HEADERS_BEGIN */ #ifndef HAVE_MALLOC_USABLE_SIZE # ifdef _WIN32 # define HAVE_MALLOC_USABLE_SIZE # define malloc_usable_size(a) _msize(a) # elif defined HAVE_MALLOC_SIZE # define HAVE_MALLOC_USABLE_SIZE # define malloc_usable_size(a) malloc_size(a) # endif #endif #ifdef HAVE_MALLOC_USABLE_SIZE # ifdef RUBY_ALTERNATIVE_MALLOC_HEADER /* Alternative malloc header is included in ruby/missing.h */ # elif defined(HAVE_MALLOC_H) # include # elif defined(HAVE_MALLOC_NP_H) # include # elif defined(HAVE_MALLOC_MALLOC_H) # include # endif #endif #if !defined(PAGE_SIZE) && defined(HAVE_SYS_USER_H) /* LIST_HEAD conflicts with sys/queue.h on macOS */ # include #endif /* MALLOC_HEADERS_END */ #ifdef HAVE_SYS_TIME_H # include #endif #ifdef HAVE_SYS_RESOURCE_H # include #endif #if defined _WIN32 || defined __CYGWIN__ # include #elif defined(HAVE_POSIX_MEMALIGN) #elif defined(HAVE_MEMALIGN) # include #endif #include #ifdef __EMSCRIPTEN__ #include #endif #ifdef HAVE_MACH_TASK_EXCEPTION_PORTS # include # include # include #endif #undef LIST_HEAD /* ccan/list conflicts with BSD-origin sys/queue.h. */ #include "constant.h" #include "debug_counter.h" #include "eval_intern.h" #include "gc.h" #include "id_table.h" #include "internal.h" #include "internal/class.h" #include "internal/complex.h" #include "internal/cont.h" #include "internal/error.h" #include "internal/eval.h" #include "internal/gc.h" #include "internal/hash.h" #include "internal/imemo.h" #include "internal/io.h" #include "internal/numeric.h" #include "internal/object.h" #include "internal/proc.h" #include "internal/rational.h" #include "internal/sanitizers.h" #include "internal/struct.h" #include "internal/symbol.h" #include "internal/thread.h" #include "internal/variable.h" #include "internal/warnings.h" #include "mjit.h" #include "probes.h" #include "regint.h" #include "ruby/debug.h" #include "ruby/io.h" #include "ruby/re.h" #include "ruby/st.h" #include "ruby/thread.h" #include "ruby/util.h" #include "ruby_assert.h" #include "ruby_atomic.h" #include "symbol.h" #include "transient_heap.h" #include "vm_core.h" #include "vm_sync.h" #include "vm_callinfo.h" #include "ractor_core.h" #include "builtin.h" #define rb_setjmp(env) RUBY_SETJMP(env) #define rb_jmp_buf rb_jmpbuf_t #undef rb_data_object_wrap #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) #define MAP_ANONYMOUS MAP_ANON #endif static inline struct rbimpl_size_mul_overflow_tag size_add_overflow(size_t x, size_t y) { size_t z; bool p; #if 0 #elif __has_builtin(__builtin_add_overflow) p = __builtin_add_overflow(x, y, &z); #elif defined(DSIZE_T) RB_GNUC_EXTENSION DSIZE_T dx = x; RB_GNUC_EXTENSION DSIZE_T dy = y; RB_GNUC_EXTENSION DSIZE_T dz = dx + dy; p = dz > SIZE_MAX; z = (size_t)dz; #else z = x + y; p = z < y; #endif return (struct rbimpl_size_mul_overflow_tag) { p, z, }; } static inline struct rbimpl_size_mul_overflow_tag size_mul_add_overflow(size_t x, size_t y, size_t z) /* x * y + z */ { struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y); struct rbimpl_size_mul_overflow_tag u = size_add_overflow(t.right, z); return (struct rbimpl_size_mul_overflow_tag) { t.left || u.left, u.right }; } static inline struct rbimpl_size_mul_overflow_tag size_mul_add_mul_overflow(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */ { struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y); struct rbimpl_size_mul_overflow_tag u = rbimpl_size_mul_overflow(z, w); struct rbimpl_size_mul_overflow_tag v = size_add_overflow(t.right, u.right); return (struct rbimpl_size_mul_overflow_tag) { t.left || u.left || v.left, v.right }; } PRINTF_ARGS(NORETURN(static void gc_raise(VALUE, const char*, ...)), 2, 3); static inline size_t size_mul_or_raise(size_t x, size_t y, VALUE exc) { struct rbimpl_size_mul_overflow_tag t = rbimpl_size_mul_overflow(x, y); if (LIKELY(!t.left)) { return t.right; } else if (rb_during_gc()) { rb_memerror(); /* or...? */ } else { gc_raise( exc, "integer overflow: %"PRIuSIZE " * %"PRIuSIZE " > %"PRIuSIZE, x, y, (size_t)SIZE_MAX); } } size_t rb_size_mul_or_raise(size_t x, size_t y, VALUE exc) { return size_mul_or_raise(x, y, exc); } static inline size_t size_mul_add_or_raise(size_t x, size_t y, size_t z, VALUE exc) { struct rbimpl_size_mul_overflow_tag t = size_mul_add_overflow(x, y, z); if (LIKELY(!t.left)) { return t.right; } else if (rb_during_gc()) { rb_memerror(); /* or...? */ } else { gc_raise( exc, "integer overflow: %"PRIuSIZE " * %"PRIuSIZE " + %"PRIuSIZE " > %"PRIuSIZE, x, y, z, (size_t)SIZE_MAX); } } size_t rb_size_mul_add_or_raise(size_t x, size_t y, size_t z, VALUE exc) { return size_mul_add_or_raise(x, y, z, exc); } static inline size_t size_mul_add_mul_or_raise(size_t x, size_t y, size_t z, size_t w, VALUE exc) { struct rbimpl_size_mul_overflow_tag t = size_mul_add_mul_overflow(x, y, z, w); if (LIKELY(!t.left)) { return t.right; } else if (rb_during_gc()) { rb_memerror(); /* or...? */ } else { gc_raise( exc, "integer overflow: %"PRIdSIZE " * %"PRIdSIZE " + %"PRIdSIZE " * %"PRIdSIZE " > %"PRIdSIZE, x, y, z, w, (size_t)SIZE_MAX); } } #if defined(HAVE_RB_GC_GUARDED_PTR_VAL) && HAVE_RB_GC_GUARDED_PTR_VAL /* trick the compiler into thinking a external signal handler uses this */ volatile VALUE rb_gc_guarded_val; volatile VALUE * rb_gc_guarded_ptr_val(volatile VALUE *ptr, VALUE val) { rb_gc_guarded_val = val; return ptr; } #endif #ifndef GC_HEAP_INIT_SLOTS #define GC_HEAP_INIT_SLOTS 10000 #endif #ifndef GC_HEAP_FREE_SLOTS #define GC_HEAP_FREE_SLOTS 4096 #endif #ifndef GC_HEAP_GROWTH_FACTOR #define GC_HEAP_GROWTH_FACTOR 1.8 #endif #ifndef GC_HEAP_GROWTH_MAX_SLOTS #define GC_HEAP_GROWTH_MAX_SLOTS 0 /* 0 is disable */ #endif #ifndef GC_HEAP_OLDOBJECT_LIMIT_FACTOR #define GC_HEAP_OLDOBJECT_LIMIT_FACTOR 2.0 #endif #ifndef GC_HEAP_FREE_SLOTS_MIN_RATIO #define GC_HEAP_FREE_SLOTS_MIN_RATIO 0.20 #endif #ifndef GC_HEAP_FREE_SLOTS_GOAL_RATIO #define GC_HEAP_FREE_SLOTS_GOAL_RATIO 0.40 #endif #ifndef GC_HEAP_FREE_SLOTS_MAX_RATIO #define GC_HEAP_FREE_SLOTS_MAX_RATIO 0.65 #endif #ifndef GC_MALLOC_LIMIT_MIN #define GC_MALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */) #endif #ifndef GC_MALLOC_LIMIT_MAX #define GC_MALLOC_LIMIT_MAX (32 * 1024 * 1024 /* 32MB */) #endif #ifndef GC_MALLOC_LIMIT_GROWTH_FACTOR #define GC_MALLOC_LIMIT_GROWTH_FACTOR 1.4 #endif #ifndef GC_OLDMALLOC_LIMIT_MIN #define GC_OLDMALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */) #endif #ifndef GC_OLDMALLOC_LIMIT_GROWTH_FACTOR #define GC_OLDMALLOC_LIMIT_GROWTH_FACTOR 1.2 #endif #ifndef GC_OLDMALLOC_LIMIT_MAX #define GC_OLDMALLOC_LIMIT_MAX (128 * 1024 * 1024 /* 128MB */) #endif #ifndef PRINT_MEASURE_LINE #define PRINT_MEASURE_LINE 0 #endif #ifndef PRINT_ENTER_EXIT_TICK #define PRINT_ENTER_EXIT_TICK 0 #endif #ifndef PRINT_ROOT_TICKS #define PRINT_ROOT_TICKS 0 #endif #define USE_TICK_T (PRINT_ENTER_EXIT_TICK || PRINT_MEASURE_LINE || PRINT_ROOT_TICKS) #define TICK_TYPE 1 typedef struct { size_t heap_init_slots; size_t heap_free_slots; double growth_factor; size_t growth_max_slots; double heap_free_slots_min_ratio; double heap_free_slots_goal_ratio; double heap_free_slots_max_ratio; double oldobject_limit_factor; size_t malloc_limit_min; size_t malloc_limit_max; double malloc_limit_growth_factor; size_t oldmalloc_limit_min; size_t oldmalloc_limit_max; double oldmalloc_limit_growth_factor; VALUE gc_stress; } ruby_gc_params_t; static ruby_gc_params_t gc_params = { GC_HEAP_INIT_SLOTS, GC_HEAP_FREE_SLOTS, GC_HEAP_GROWTH_FACTOR, GC_HEAP_GROWTH_MAX_SLOTS, GC_HEAP_FREE_SLOTS_MIN_RATIO, GC_HEAP_FREE_SLOTS_GOAL_RATIO, GC_HEAP_FREE_SLOTS_MAX_RATIO, GC_HEAP_OLDOBJECT_LIMIT_FACTOR, GC_MALLOC_LIMIT_MIN, GC_MALLOC_LIMIT_MAX, GC_MALLOC_LIMIT_GROWTH_FACTOR, GC_OLDMALLOC_LIMIT_MIN, GC_OLDMALLOC_LIMIT_MAX, GC_OLDMALLOC_LIMIT_GROWTH_FACTOR, FALSE, }; /* GC_DEBUG: * enable to embed GC debugging information. */ #ifndef GC_DEBUG #define GC_DEBUG 0 #endif /* RGENGC_DEBUG: * 1: basic information * 2: remember set operation * 3: mark * 4: * 5: sweep */ #ifndef RGENGC_DEBUG #ifdef RUBY_DEVEL #define RGENGC_DEBUG -1 #else #define RGENGC_DEBUG 0 #endif #endif #if RGENGC_DEBUG < 0 && !defined(_MSC_VER) # define RGENGC_DEBUG_ENABLED(level) (-(RGENGC_DEBUG) >= (level) && ruby_rgengc_debug >= (level)) #elif defined(HAVE_VA_ARGS_MACRO) # define RGENGC_DEBUG_ENABLED(level) ((RGENGC_DEBUG) >= (level)) #else # define RGENGC_DEBUG_ENABLED(level) 0 #endif int ruby_rgengc_debug; /* RGENGC_CHECK_MODE * 0: disable all assertions * 1: enable assertions (to debug RGenGC) * 2: enable internal consistency check at each GC (for debugging) * 3: enable internal consistency check at each GC steps (for debugging) * 4: enable liveness check * 5: show all references */ #ifndef RGENGC_CHECK_MODE #define RGENGC_CHECK_MODE 0 #endif // Note: using RUBY_ASSERT_WHEN() extend a macro in expr (info by nobu). #define GC_ASSERT(expr) RUBY_ASSERT_MESG_WHEN(RGENGC_CHECK_MODE > 0, expr, #expr) /* RGENGC_OLD_NEWOBJ_CHECK * 0: disable all assertions * >0: make a OLD object when new object creation. * * Make one OLD object per RGENGC_OLD_NEWOBJ_CHECK WB protected objects creation. */ #ifndef RGENGC_OLD_NEWOBJ_CHECK #define RGENGC_OLD_NEWOBJ_CHECK 0 #endif /* RGENGC_PROFILE * 0: disable RGenGC profiling * 1: enable profiling for basic information * 2: enable profiling for each types */ #ifndef RGENGC_PROFILE #define RGENGC_PROFILE 0 #endif /* RGENGC_ESTIMATE_OLDMALLOC * Enable/disable to estimate increase size of malloc'ed size by old objects. * If estimation exceeds threshold, then will invoke full GC. * 0: disable estimation. * 1: enable estimation. */ #ifndef RGENGC_ESTIMATE_OLDMALLOC #define RGENGC_ESTIMATE_OLDMALLOC 1 #endif /* RGENGC_FORCE_MAJOR_GC * Force major/full GC if this macro is not 0. */ #ifndef RGENGC_FORCE_MAJOR_GC #define RGENGC_FORCE_MAJOR_GC 0 #endif #ifndef GC_PROFILE_MORE_DETAIL #define GC_PROFILE_MORE_DETAIL 0 #endif #ifndef GC_PROFILE_DETAIL_MEMORY #define GC_PROFILE_DETAIL_MEMORY 0 #endif #ifndef GC_ENABLE_INCREMENTAL_MARK #define GC_ENABLE_INCREMENTAL_MARK USE_RINCGC #endif #ifndef GC_ENABLE_LAZY_SWEEP #define GC_ENABLE_LAZY_SWEEP 1 #endif #ifndef CALC_EXACT_MALLOC_SIZE #define CALC_EXACT_MALLOC_SIZE USE_GC_MALLOC_OBJ_INFO_DETAILS #endif #if defined(HAVE_MALLOC_USABLE_SIZE) || CALC_EXACT_MALLOC_SIZE > 0 #ifndef MALLOC_ALLOCATED_SIZE #define MALLOC_ALLOCATED_SIZE 0 #endif #else #define MALLOC_ALLOCATED_SIZE 0 #endif #ifndef MALLOC_ALLOCATED_SIZE_CHECK #define MALLOC_ALLOCATED_SIZE_CHECK 0 #endif #ifndef GC_DEBUG_STRESS_TO_CLASS #define GC_DEBUG_STRESS_TO_CLASS 0 #endif #ifndef RGENGC_OBJ_INFO #define RGENGC_OBJ_INFO (RGENGC_DEBUG | RGENGC_CHECK_MODE) #endif typedef enum { GPR_FLAG_NONE = 0x000, /* major reason */ GPR_FLAG_MAJOR_BY_NOFREE = 0x001, GPR_FLAG_MAJOR_BY_OLDGEN = 0x002, GPR_FLAG_MAJOR_BY_SHADY = 0x004, GPR_FLAG_MAJOR_BY_FORCE = 0x008, #if RGENGC_ESTIMATE_OLDMALLOC GPR_FLAG_MAJOR_BY_OLDMALLOC = 0x020, #endif GPR_FLAG_MAJOR_MASK = 0x0ff, /* gc reason */ GPR_FLAG_NEWOBJ = 0x100, GPR_FLAG_MALLOC = 0x200, GPR_FLAG_METHOD = 0x400, GPR_FLAG_CAPI = 0x800, GPR_FLAG_STRESS = 0x1000, /* others */ GPR_FLAG_IMMEDIATE_SWEEP = 0x2000, GPR_FLAG_HAVE_FINALIZE = 0x4000, GPR_FLAG_IMMEDIATE_MARK = 0x8000, GPR_FLAG_FULL_MARK = 0x10000, GPR_FLAG_COMPACT = 0x20000, GPR_DEFAULT_REASON = (GPR_FLAG_FULL_MARK | GPR_FLAG_IMMEDIATE_MARK | GPR_FLAG_IMMEDIATE_SWEEP | GPR_FLAG_CAPI), } gc_profile_record_flag; typedef struct gc_profile_record { unsigned int flags; double gc_time; double gc_invoke_time; size_t heap_total_objects; size_t heap_use_size; size_t heap_total_size; size_t moved_objects; #if GC_PROFILE_MORE_DETAIL double gc_mark_time; double gc_sweep_time; size_t heap_use_pages; size_t heap_live_objects; size_t heap_free_objects; size_t allocate_increase; size_t allocate_limit; double prepare_time; size_t removing_objects; size_t empty_objects; #if GC_PROFILE_DETAIL_MEMORY long maxrss; long minflt; long majflt; #endif #endif #if MALLOC_ALLOCATED_SIZE size_t allocated_size; #endif #if RGENGC_PROFILE > 0 size_t old_objects; size_t remembered_normal_objects; size_t remembered_shady_objects; #endif } gc_profile_record; struct RMoved { VALUE flags; VALUE dummy; VALUE destination; }; #define RMOVED(obj) ((struct RMoved *)(obj)) typedef struct RVALUE { union { struct { VALUE flags; /* always 0 for freed obj */ struct RVALUE *next; } free; struct RMoved moved; struct RBasic basic; struct RObject object; struct RClass klass; struct RFloat flonum; struct RString string; struct RArray array; struct RRegexp regexp; struct RHash hash; struct RData data; struct RTypedData typeddata; struct RStruct rstruct; struct RBignum bignum; struct RFile file; struct RMatch match; struct RRational rational; struct RComplex complex; struct RSymbol symbol; union { rb_cref_t cref; struct vm_svar svar; struct vm_throw_data throw_data; struct vm_ifunc ifunc; struct MEMO memo; struct rb_method_entry_struct ment; const rb_iseq_t iseq; rb_env_t env; struct rb_imemo_tmpbuf_struct alloc; rb_ast_t ast; } imemo; struct { struct RBasic basic; VALUE v1; VALUE v2; VALUE v3; } values; } as; #if GC_DEBUG const char *file; int line; #endif } RVALUE; #if GC_DEBUG STATIC_ASSERT(sizeof_rvalue, offsetof(RVALUE, file) == SIZEOF_VALUE * 5); #else STATIC_ASSERT(sizeof_rvalue, sizeof(RVALUE) == SIZEOF_VALUE * 5); #endif STATIC_ASSERT(alignof_rvalue, RUBY_ALIGNOF(RVALUE) == SIZEOF_VALUE); typedef uintptr_t bits_t; enum { BITS_SIZE = sizeof(bits_t), BITS_BITLENGTH = ( BITS_SIZE * CHAR_BIT ) }; #define popcount_bits rb_popcount_intptr struct heap_page_header { struct heap_page *page; }; struct heap_page_body { struct heap_page_header header; /* char gap[]; */ /* RVALUE values[]; */ }; struct gc_list { VALUE *varptr; struct gc_list *next; }; #define STACK_CHUNK_SIZE 500 typedef struct stack_chunk { VALUE data[STACK_CHUNK_SIZE]; struct stack_chunk *next; } stack_chunk_t; typedef struct mark_stack { stack_chunk_t *chunk; stack_chunk_t *cache; int index; int limit; size_t cache_size; size_t unused_cache_size; } mark_stack_t; #define SIZE_POOL_EDEN_HEAP(size_pool) (&(size_pool)->eden_heap) #define SIZE_POOL_TOMB_HEAP(size_pool) (&(size_pool)->tomb_heap) typedef struct rb_heap_struct { struct heap_page *free_pages; struct ccan_list_head pages; struct heap_page *sweeping_page; /* iterator for .pages */ struct heap_page *compact_cursor; uintptr_t compact_cursor_index; #if GC_ENABLE_INCREMENTAL_MARK struct heap_page *pooled_pages; #endif size_t total_pages; /* total page count in a heap */ size_t total_slots; /* total slot count (about total_pages * HEAP_PAGE_OBJ_LIMIT) */ } rb_heap_t; typedef struct rb_size_pool_struct { short slot_size; size_t allocatable_pages; /* Basic statistics */ size_t total_allocated_pages; size_t total_freed_pages; size_t force_major_gc_count; #if USE_RVARGC /* Sweeping statistics */ size_t freed_slots; size_t empty_slots; #endif rb_heap_t eden_heap; rb_heap_t tomb_heap; } rb_size_pool_t; enum gc_mode { gc_mode_none, gc_mode_marking, gc_mode_sweeping, gc_mode_compacting, }; typedef struct rb_objspace { struct { size_t limit; size_t increase; #if MALLOC_ALLOCATED_SIZE size_t allocated_size; size_t allocations; #endif } malloc_params; struct { unsigned int mode : 2; unsigned int immediate_sweep : 1; unsigned int dont_gc : 1; unsigned int dont_incremental : 1; unsigned int during_gc : 1; unsigned int during_compacting : 1; unsigned int gc_stressful: 1; unsigned int has_hook: 1; unsigned int during_minor_gc : 1; #if GC_ENABLE_INCREMENTAL_MARK unsigned int during_incremental_marking : 1; #endif unsigned int measure_gc : 1; } flags; rb_event_flag_t hook_events; size_t total_allocated_objects; VALUE next_object_id; rb_size_pool_t size_pools[SIZE_POOL_COUNT]; struct { rb_atomic_t finalizing; } atomic_flags; mark_stack_t mark_stack; size_t marked_slots; struct { struct heap_page **sorted; size_t allocated_pages; size_t allocatable_pages; size_t sorted_length; uintptr_t range[2]; size_t freeable_pages; /* final */ size_t final_slots; VALUE deferred_final; } heap_pages; st_table *finalizer_table; struct { int run; unsigned int latest_gc_info; gc_profile_record *records; gc_profile_record *current_record; size_t next_index; size_t size; #if GC_PROFILE_MORE_DETAIL double prepare_time; #endif double invoke_time; size_t minor_gc_count; size_t major_gc_count; size_t compact_count; size_t read_barrier_faults; #if RGENGC_PROFILE > 0 size_t total_generated_normal_object_count; size_t total_generated_shady_object_count; size_t total_shade_operation_count; size_t total_promoted_count; size_t total_remembered_normal_object_count; size_t total_remembered_shady_object_count; #if RGENGC_PROFILE >= 2 size_t generated_normal_object_count_types[RUBY_T_MASK]; size_t generated_shady_object_count_types[RUBY_T_MASK]; size_t shade_operation_count_types[RUBY_T_MASK]; size_t promoted_types[RUBY_T_MASK]; size_t remembered_normal_object_count_types[RUBY_T_MASK]; size_t remembered_shady_object_count_types[RUBY_T_MASK]; #endif #endif /* RGENGC_PROFILE */ /* temporary profiling space */ double gc_sweep_start_time; size_t total_allocated_objects_at_gc_start; size_t heap_used_at_gc_start; /* basic statistics */ size_t count; size_t total_freed_objects; uint64_t total_time_ns; struct timespec start_time; } profile; struct gc_list *global_list; VALUE gc_stress_mode; struct { VALUE parent_object; int need_major_gc; size_t last_major_gc; size_t uncollectible_wb_unprotected_objects; size_t uncollectible_wb_unprotected_objects_limit; size_t old_objects; size_t old_objects_limit; #if RGENGC_ESTIMATE_OLDMALLOC size_t oldmalloc_increase; size_t oldmalloc_increase_limit; #endif #if RGENGC_CHECK_MODE >= 2 struct st_table *allrefs_table; size_t error_count; #endif } rgengc; struct { size_t considered_count_table[T_MASK]; size_t moved_count_table[T_MASK]; size_t moved_up_count_table[T_MASK]; size_t moved_down_count_table[T_MASK]; size_t total_moved; } rcompactor; #if GC_ENABLE_INCREMENTAL_MARK struct { size_t pooled_slots; size_t step_slots; } rincgc; #endif st_table *id_to_obj_tbl; st_table *obj_to_id_tbl; #if GC_DEBUG_STRESS_TO_CLASS VALUE stress_to_class; #endif } rb_objspace_t; #ifndef HEAP_PAGE_ALIGN_LOG /* default tiny heap size: 64KiB */ #define HEAP_PAGE_ALIGN_LOG 16 #endif #define BASE_SLOT_SIZE sizeof(RVALUE) #define CEILDIV(i, mod) roomof(i, mod) enum { HEAP_PAGE_ALIGN = (1UL << HEAP_PAGE_ALIGN_LOG), HEAP_PAGE_ALIGN_MASK = (~(~0UL << HEAP_PAGE_ALIGN_LOG)), HEAP_PAGE_SIZE = HEAP_PAGE_ALIGN, HEAP_PAGE_OBJ_LIMIT = (unsigned int)((HEAP_PAGE_SIZE - sizeof(struct heap_page_header)) / BASE_SLOT_SIZE), HEAP_PAGE_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_PAGE_SIZE, BASE_SLOT_SIZE), BITS_BITLENGTH), HEAP_PAGE_BITMAP_SIZE = (BITS_SIZE * HEAP_PAGE_BITMAP_LIMIT), }; #define HEAP_PAGE_ALIGN (1 << HEAP_PAGE_ALIGN_LOG) #define HEAP_PAGE_SIZE HEAP_PAGE_ALIGN #if GC_ENABLE_INCREMENTAL_MARK && !defined(INCREMENTAL_MARK_STEP_ALLOCATIONS) # define INCREMENTAL_MARK_STEP_ALLOCATIONS 500 #endif #undef INIT_HEAP_PAGE_ALLOC_USE_MMAP /* Must define either HEAP_PAGE_ALLOC_USE_MMAP or * INIT_HEAP_PAGE_ALLOC_USE_MMAP. */ #ifndef HAVE_MMAP /* We can't use mmap of course, if it is not available. */ static const bool HEAP_PAGE_ALLOC_USE_MMAP = false; #elif defined(__wasm__) /* wasmtime does not have proper support for mmap. * See https://github.com/bytecodealliance/wasmtime/blob/main/docs/WASI-rationale.md#why-no-mmap-and-friends */ static const bool HEAP_PAGE_ALLOC_USE_MMAP = false; #elif HAVE_CONST_PAGE_SIZE /* If we have the PAGE_SIZE and it is a constant, then we can directly use it. */ static const bool HEAP_PAGE_ALLOC_USE_MMAP = (PAGE_SIZE <= HEAP_PAGE_SIZE); #elif defined(PAGE_MAX_SIZE) && (PAGE_MAX_SIZE <= HEAP_PAGE_SIZE) /* If we can use the maximum page size. */ static const bool HEAP_PAGE_ALLOC_USE_MMAP = true; #elif defined(PAGE_SIZE) /* If the PAGE_SIZE macro can be used dynamically. */ # define INIT_HEAP_PAGE_ALLOC_USE_MMAP (PAGE_SIZE <= HEAP_PAGE_SIZE) #elif defined(HAVE_SYSCONF) && defined(_SC_PAGE_SIZE) /* If we can use sysconf to determine the page size. */ # define INIT_HEAP_PAGE_ALLOC_USE_MMAP (sysconf(_SC_PAGE_SIZE) <= HEAP_PAGE_SIZE) #else /* Otherwise we can't determine the system page size, so don't use mmap. */ static const bool HEAP_PAGE_ALLOC_USE_MMAP = false; #endif #ifdef INIT_HEAP_PAGE_ALLOC_USE_MMAP /* We can determine the system page size at runtime. */ # define HEAP_PAGE_ALLOC_USE_MMAP (heap_page_alloc_use_mmap != false) static bool heap_page_alloc_use_mmap; #endif struct heap_page { short slot_size; short total_slots; short free_slots; short pinned_slots; short final_slots; struct { unsigned int before_sweep : 1; unsigned int has_remembered_objects : 1; unsigned int has_uncollectible_shady_objects : 1; unsigned int in_tomb : 1; } flags; rb_size_pool_t *size_pool; struct heap_page *free_next; uintptr_t start; RVALUE *freelist; struct ccan_list_node page_node; bits_t wb_unprotected_bits[HEAP_PAGE_BITMAP_LIMIT]; /* the following three bitmaps are cleared at the beginning of full GC */ bits_t mark_bits[HEAP_PAGE_BITMAP_LIMIT]; bits_t uncollectible_bits[HEAP_PAGE_BITMAP_LIMIT]; bits_t marking_bits[HEAP_PAGE_BITMAP_LIMIT]; /* If set, the object is not movable */ bits_t pinned_bits[HEAP_PAGE_BITMAP_LIMIT]; }; /* * When asan is enabled, this will prohibit writing to the freelist until it is unlocked */ static void asan_lock_freelist(struct heap_page *page) { asan_poison_memory_region(&page->freelist, sizeof(RVALUE*)); } /* * When asan is enabled, this will enable the ability to write to the freelist */ static void asan_unlock_freelist(struct heap_page *page) { asan_unpoison_memory_region(&page->freelist, sizeof(RVALUE*), false); } #define GET_PAGE_BODY(x) ((struct heap_page_body *)((bits_t)(x) & ~(HEAP_PAGE_ALIGN_MASK))) #define GET_PAGE_HEADER(x) (&GET_PAGE_BODY(x)->header) #define GET_HEAP_PAGE(x) (GET_PAGE_HEADER(x)->page) #define NUM_IN_PAGE(p) (((bits_t)(p) & HEAP_PAGE_ALIGN_MASK) / BASE_SLOT_SIZE) #define BITMAP_INDEX(p) (NUM_IN_PAGE(p) / BITS_BITLENGTH ) #define BITMAP_OFFSET(p) (NUM_IN_PAGE(p) & (BITS_BITLENGTH-1)) #define BITMAP_BIT(p) ((bits_t)1 << BITMAP_OFFSET(p)) /* Bitmap Operations */ #define MARKED_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] & BITMAP_BIT(p)) #define MARK_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] | BITMAP_BIT(p)) #define CLEAR_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] & ~BITMAP_BIT(p)) /* getting bitmap */ #define GET_HEAP_MARK_BITS(x) (&GET_HEAP_PAGE(x)->mark_bits[0]) #define GET_HEAP_PINNED_BITS(x) (&GET_HEAP_PAGE(x)->pinned_bits[0]) #define GET_HEAP_UNCOLLECTIBLE_BITS(x) (&GET_HEAP_PAGE(x)->uncollectible_bits[0]) #define GET_HEAP_WB_UNPROTECTED_BITS(x) (&GET_HEAP_PAGE(x)->wb_unprotected_bits[0]) #define GET_HEAP_MARKING_BITS(x) (&GET_HEAP_PAGE(x)->marking_bits[0]) #define GC_SWEEP_PAGES_FREEABLE_PER_STEP 3 /* Aliases */ #define rb_objspace (*rb_objspace_of(GET_VM())) #define rb_objspace_of(vm) ((vm)->objspace) #define ruby_initial_gc_stress gc_params.gc_stress VALUE *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress; #define malloc_limit objspace->malloc_params.limit #define malloc_increase objspace->malloc_params.increase #define malloc_allocated_size objspace->malloc_params.allocated_size #define heap_pages_sorted objspace->heap_pages.sorted #define heap_allocated_pages objspace->heap_pages.allocated_pages #define heap_pages_sorted_length objspace->heap_pages.sorted_length #define heap_pages_lomem objspace->heap_pages.range[0] #define heap_pages_himem objspace->heap_pages.range[1] #define heap_pages_freeable_pages objspace->heap_pages.freeable_pages #define heap_pages_final_slots objspace->heap_pages.final_slots #define heap_pages_deferred_final objspace->heap_pages.deferred_final #define size_pools objspace->size_pools #define during_gc objspace->flags.during_gc #define finalizing objspace->atomic_flags.finalizing #define finalizer_table objspace->finalizer_table #define global_list objspace->global_list #define ruby_gc_stressful objspace->flags.gc_stressful #define ruby_gc_stress_mode objspace->gc_stress_mode #if GC_DEBUG_STRESS_TO_CLASS #define stress_to_class objspace->stress_to_class #else #define stress_to_class 0 #endif #if 0 #define dont_gc_on() (fprintf(stderr, "dont_gc_on@%s:%d\n", __FILE__, __LINE__), objspace->flags.dont_gc = 1) #define dont_gc_off() (fprintf(stderr, "dont_gc_off@%s:%d\n", __FILE__, __LINE__), objspace->flags.dont_gc = 0) #define dont_gc_set(b) (fprintf(stderr, "dont_gc_set(%d)@%s:%d\n", __FILE__, __LINE__), (int)b), objspace->flags.dont_gc = (b)) #define dont_gc_val() (objspace->flags.dont_gc) #else #define dont_gc_on() (objspace->flags.dont_gc = 1) #define dont_gc_off() (objspace->flags.dont_gc = 0) #define dont_gc_set(b) (((int)b), objspace->flags.dont_gc = (b)) #define dont_gc_val() (objspace->flags.dont_gc) #endif static inline enum gc_mode gc_mode_verify(enum gc_mode mode) { #if RGENGC_CHECK_MODE > 0 switch (mode) { case gc_mode_none: case gc_mode_marking: case gc_mode_sweeping: case gc_mode_compacting: break; default: rb_bug("gc_mode_verify: unreachable (%d)", (int)mode); } #endif return mode; } static inline bool has_sweeping_pages(rb_objspace_t *objspace) { for (int i = 0; i < SIZE_POOL_COUNT; i++) { if (SIZE_POOL_EDEN_HEAP(&size_pools[i])->sweeping_page) { return TRUE; } } return FALSE; } static inline size_t heap_eden_total_pages(rb_objspace_t *objspace) { size_t count = 0; for (int i = 0; i < SIZE_POOL_COUNT; i++) { count += SIZE_POOL_EDEN_HEAP(&size_pools[i])->total_pages; } return count; } static inline size_t heap_eden_total_slots(rb_objspace_t *objspace) { size_t count = 0; for (int i = 0; i < SIZE_POOL_COUNT; i++) { count += SIZE_POOL_EDEN_HEAP(&size_pools[i])->total_slots; } return count; } static inline size_t heap_tomb_total_pages(rb_objspace_t *objspace) { size_t count = 0; for (int i = 0; i < SIZE_POOL_COUNT; i++) { count += SIZE_POOL_TOMB_HEAP(&size_pools[i])->total_pages; } return count; } static inline size_t heap_allocatable_pages(rb_objspace_t *objspace) { size_t count = 0; for (int i = 0; i < SIZE_POOL_COUNT; i++) { count += size_pools[i].allocatable_pages; } return count; } static inline size_t heap_allocatable_slots(rb_objspace_t *objspace) { size_t count = 0; for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; int slot_size_multiple = size_pool->slot_size / BASE_SLOT_SIZE; count += size_pool->allocatable_pages * HEAP_PAGE_OBJ_LIMIT / slot_size_multiple; } return count; } static inline size_t total_allocated_pages(rb_objspace_t *objspace) { size_t count = 0; for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; count += size_pool->total_allocated_pages; } return count; } static inline size_t total_freed_pages(rb_objspace_t *objspace) { size_t count = 0; for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; count += size_pool->total_freed_pages; } return count; } #define gc_mode(objspace) gc_mode_verify((enum gc_mode)(objspace)->flags.mode) #define gc_mode_set(objspace, mode) ((objspace)->flags.mode = (unsigned int)gc_mode_verify(mode)) #define is_marking(objspace) (gc_mode(objspace) == gc_mode_marking) #define is_sweeping(objspace) (gc_mode(objspace) == gc_mode_sweeping) #define is_full_marking(objspace) ((objspace)->flags.during_minor_gc == FALSE) #if GC_ENABLE_INCREMENTAL_MARK #define is_incremental_marking(objspace) ((objspace)->flags.during_incremental_marking != FALSE) #else #define is_incremental_marking(objspace) FALSE #endif #if GC_ENABLE_INCREMENTAL_MARK #define will_be_incremental_marking(objspace) ((objspace)->rgengc.need_major_gc != GPR_FLAG_NONE) #else #define will_be_incremental_marking(objspace) FALSE #endif #if GC_ENABLE_INCREMENTAL_MARK #define GC_INCREMENTAL_SWEEP_SLOT_COUNT 2048 #endif #define is_lazy_sweeping(objspace) (GC_ENABLE_LAZY_SWEEP && has_sweeping_pages(objspace)) #if SIZEOF_LONG == SIZEOF_VOIDP # define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG) # define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */ #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP # define nonspecial_obj_id(obj) LL2NUM((SIGNED_VALUE)(obj) / 2) # define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \ ((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1)) #else # error not supported #endif #define RANY(o) ((RVALUE*)(o)) struct RZombie { struct RBasic basic; VALUE next; void (*dfree)(void *); void *data; }; #define RZOMBIE(o) ((struct RZombie *)(o)) #define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory] #if RUBY_MARK_FREE_DEBUG int ruby_gc_debug_indent = 0; #endif VALUE rb_mGC; int ruby_disable_gc = 0; int ruby_enable_autocompact = 0; void rb_iseq_mark(const rb_iseq_t *iseq); void rb_iseq_update_references(rb_iseq_t *iseq); void rb_iseq_free(const rb_iseq_t *iseq); size_t rb_iseq_memsize(const rb_iseq_t *iseq); void rb_vm_update_references(void *ptr); void rb_gcdebug_print_obj_condition(VALUE obj); static VALUE define_final0(VALUE obj, VALUE block); NORETURN(static void *gc_vraise(void *ptr)); NORETURN(static void gc_raise(VALUE exc, const char *fmt, ...)); NORETURN(static void negative_size_allocation_error(const char *)); static void init_mark_stack(mark_stack_t *stack); static int ready_to_gc(rb_objspace_t *objspace); static int garbage_collect(rb_objspace_t *, unsigned int reason); static int gc_start(rb_objspace_t *objspace, unsigned int reason); static void gc_rest(rb_objspace_t *objspace); enum gc_enter_event { gc_enter_event_start, gc_enter_event_mark_continue, gc_enter_event_sweep_continue, gc_enter_event_rest, gc_enter_event_finalizer, gc_enter_event_rb_memerror, }; static inline void gc_enter(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev); static inline void gc_exit(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev); static void gc_marks(rb_objspace_t *objspace, int full_mark); static void gc_marks_start(rb_objspace_t *objspace, int full); static void gc_marks_finish(rb_objspace_t *objspace); static void gc_marks_rest(rb_objspace_t *objspace); static void gc_marks_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap); static void gc_sweep(rb_objspace_t *objspace); static void gc_sweep_start(rb_objspace_t *objspace); #if USE_RVARGC static void gc_sweep_finish_size_pool(rb_objspace_t *objspace, rb_size_pool_t *size_pool); #endif static void gc_sweep_finish(rb_objspace_t *objspace); static int gc_sweep_step(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap); static void gc_sweep_rest(rb_objspace_t *objspace); static void gc_sweep_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap); static inline void gc_mark(rb_objspace_t *objspace, VALUE ptr); static inline void gc_pin(rb_objspace_t *objspace, VALUE ptr); static inline void gc_mark_and_pin(rb_objspace_t *objspace, VALUE ptr); static void gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr); NO_SANITIZE("memory", static void gc_mark_maybe(rb_objspace_t *objspace, VALUE ptr)); static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr); static int gc_mark_stacked_objects_incremental(rb_objspace_t *, size_t count); static int gc_mark_stacked_objects_all(rb_objspace_t *); static void gc_grey(rb_objspace_t *objspace, VALUE ptr); static inline int gc_mark_set(rb_objspace_t *objspace, VALUE obj); NO_SANITIZE("memory", static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)); static void push_mark_stack(mark_stack_t *, VALUE); static int pop_mark_stack(mark_stack_t *, VALUE *); static size_t mark_stack_size(mark_stack_t *stack); static void shrink_stack_chunk_cache(mark_stack_t *stack); static size_t obj_memsize_of(VALUE obj, int use_all_types); static void gc_verify_internal_consistency(rb_objspace_t *objspace); static int gc_verify_heap_page(rb_objspace_t *objspace, struct heap_page *page, VALUE obj); static int gc_verify_heap_pages(rb_objspace_t *objspace); static void gc_stress_set(rb_objspace_t *objspace, VALUE flag); static VALUE gc_disable_no_rest(rb_objspace_t *); static double getrusage_time(void); static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, unsigned int reason); static inline void gc_prof_timer_start(rb_objspace_t *); static inline void gc_prof_timer_stop(rb_objspace_t *); static inline void gc_prof_mark_timer_start(rb_objspace_t *); static inline void gc_prof_mark_timer_stop(rb_objspace_t *); static inline void gc_prof_sweep_timer_start(rb_objspace_t *); static inline void gc_prof_sweep_timer_stop(rb_objspace_t *); static inline void gc_prof_set_malloc_info(rb_objspace_t *); static inline void gc_prof_set_heap_info(rb_objspace_t *); #define TYPED_UPDATE_IF_MOVED(_objspace, _type, _thing) do { \ if (gc_object_moved_p((_objspace), (VALUE)(_thing))) { \ *(_type *)&(_thing) = (_type)RMOVED(_thing)->destination; \ } \ } while (0) #define UPDATE_IF_MOVED(_objspace, _thing) TYPED_UPDATE_IF_MOVED(_objspace, VALUE, _thing) #define gc_prof_record(objspace) (objspace)->profile.current_record #define gc_prof_enabled(objspace) ((objspace)->profile.run && (objspace)->profile.current_record) #ifdef HAVE_VA_ARGS_MACRO # define gc_report(level, objspace, ...) \ if (!RGENGC_DEBUG_ENABLED(level)) {} else gc_report_body(level, objspace, __VA_ARGS__) #else # define gc_report if (!RGENGC_DEBUG_ENABLED(0)) {} else gc_report_body #endif PRINTF_ARGS(static void gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...), 3, 4); static const char *obj_info(VALUE obj); static const char *obj_type_name(VALUE obj); /* * 1 - TSC (H/W Time Stamp Counter) * 2 - getrusage */ #ifndef TICK_TYPE #define TICK_TYPE 1 #endif #if USE_TICK_T #if TICK_TYPE == 1 /* the following code is only for internal tuning. */ /* Source code to use RDTSC is quoted and modified from * https://www.mcs.anl.gov/~kazutomo/rdtsc.html * written by Kazutomo Yoshii */ #if defined(__GNUC__) && defined(__i386__) typedef unsigned long long tick_t; #define PRItick "llu" static inline tick_t tick(void) { unsigned long long int x; __asm__ __volatile__ ("rdtsc" : "=A" (x)); return x; } #elif defined(__GNUC__) && defined(__x86_64__) typedef unsigned long long tick_t; #define PRItick "llu" static __inline__ tick_t tick(void) { unsigned long hi, lo; __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi)); return ((unsigned long long)lo)|( ((unsigned long long)hi)<<32); } #elif defined(__powerpc64__) && GCC_VERSION_SINCE(4,8,0) typedef unsigned long long tick_t; #define PRItick "llu" static __inline__ tick_t tick(void) { unsigned long long val = __builtin_ppc_get_timebase(); return val; } /* Implementation for macOS PPC by @nobu * See: https://github.com/ruby/ruby/pull/5975#discussion_r890045558 */ #elif defined(__POWERPC__) && defined(__APPLE__) typedef unsigned long long tick_t; #define PRItick "llu" static __inline__ tick_t tick(void) { unsigned long int upper, lower, tmp; # define mftbu(r) __asm__ volatile("mftbu %0" : "=r"(r)) # define mftb(r) __asm__ volatile("mftb %0" : "=r"(r)) do { mftbu(upper); mftb(lower); mftbu(tmp); } while (tmp != upper); return ((tick_t)upper << 32) | lower; } #elif defined(__aarch64__) && defined(__GNUC__) typedef unsigned long tick_t; #define PRItick "lu" static __inline__ tick_t tick(void) { unsigned long val; __asm__ __volatile__ ("mrs %0, cntvct_el0" : "=r" (val)); return val; } #elif defined(_WIN32) && defined(_MSC_VER) #include typedef unsigned __int64 tick_t; #define PRItick "llu" static inline tick_t tick(void) { return __rdtsc(); } #else /* use clock */ typedef clock_t tick_t; #define PRItick "llu" static inline tick_t tick(void) { return clock(); } #endif /* TSC */ #elif TICK_TYPE == 2 typedef double tick_t; #define PRItick "4.9f" static inline tick_t tick(void) { return getrusage_time(); } #else /* TICK_TYPE */ #error "choose tick type" #endif /* TICK_TYPE */ #define MEASURE_LINE(expr) do { \ volatile tick_t start_time = tick(); \ volatile tick_t end_time; \ expr; \ end_time = tick(); \ fprintf(stderr, "0\t%"PRItick"\t%s\n", end_time - start_time, #expr); \ } while (0) #else /* USE_TICK_T */ #define MEASURE_LINE(expr) expr #endif /* USE_TICK_T */ static inline void * asan_unpoison_object_temporary(VALUE obj) { void *ptr = asan_poisoned_object_p(obj); asan_unpoison_object(obj, false); return ptr; } static inline void * asan_poison_object_restore(VALUE obj, void *ptr) { if (ptr) { asan_poison_object(obj); } return NULL; } #define asan_unpoisoning_object(obj) \ for (void *poisoned = asan_unpoison_object_temporary(obj), \ *unpoisoning = &poisoned; /* flag to loop just once */ \ unpoisoning; \ unpoisoning = asan_poison_object_restore(obj, poisoned)) #define FL_CHECK2(name, x, pred) \ ((RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) ? \ (rb_bug(name": SPECIAL_CONST (%p)", (void *)(x)), 0) : (pred)) #define FL_TEST2(x,f) FL_CHECK2("FL_TEST2", x, FL_TEST_RAW((x),(f)) != 0) #define FL_SET2(x,f) FL_CHECK2("FL_SET2", x, RBASIC(x)->flags |= (f)) #define FL_UNSET2(x,f) FL_CHECK2("FL_UNSET2", x, RBASIC(x)->flags &= ~(f)) #define RVALUE_MARK_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), (obj)) #define RVALUE_PIN_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), (obj)) #define RVALUE_PAGE_MARKED(page, obj) MARKED_IN_BITMAP((page)->mark_bits, (obj)) #define RVALUE_WB_UNPROTECTED_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), (obj)) #define RVALUE_UNCOLLECTIBLE_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), (obj)) #define RVALUE_MARKING_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), (obj)) #define RVALUE_PAGE_WB_UNPROTECTED(page, obj) MARKED_IN_BITMAP((page)->wb_unprotected_bits, (obj)) #define RVALUE_PAGE_UNCOLLECTIBLE(page, obj) MARKED_IN_BITMAP((page)->uncollectible_bits, (obj)) #define RVALUE_PAGE_MARKING(page, obj) MARKED_IN_BITMAP((page)->marking_bits, (obj)) #define RVALUE_OLD_AGE 3 #define RVALUE_AGE_SHIFT 5 /* FL_PROMOTED0 bit */ static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj); static int rgengc_remembered_sweep(rb_objspace_t *objspace, VALUE obj); static int rgengc_remember(rb_objspace_t *objspace, VALUE obj); static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap); static void rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap); static inline int RVALUE_FLAGS_AGE(VALUE flags) { return (int)((flags & (FL_PROMOTED0 | FL_PROMOTED1)) >> RVALUE_AGE_SHIFT); } static int check_rvalue_consistency_force(const VALUE obj, int terminate) { int err = 0; rb_objspace_t *objspace = &rb_objspace; RB_VM_LOCK_ENTER_NO_BARRIER(); { if (SPECIAL_CONST_P(obj)) { fprintf(stderr, "check_rvalue_consistency: %p is a special const.\n", (void *)obj); err++; } else if (!is_pointer_to_heap(objspace, (void *)obj)) { /* check if it is in tomb_pages */ struct heap_page *page = NULL; for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; ccan_list_for_each(&size_pool->tomb_heap.pages, page, page_node) { if (page->start <= (uintptr_t)obj && (uintptr_t)obj < (page->start + (page->total_slots * size_pool->slot_size))) { fprintf(stderr, "check_rvalue_consistency: %p is in a tomb_heap (%p).\n", (void *)obj, (void *)page); err++; goto skip; } } } bp(); fprintf(stderr, "check_rvalue_consistency: %p is not a Ruby object.\n", (void *)obj); err++; skip: ; } else { const int wb_unprotected_bit = RVALUE_WB_UNPROTECTED_BITMAP(obj) != 0; const int uncollectible_bit = RVALUE_UNCOLLECTIBLE_BITMAP(obj) != 0; const int mark_bit = RVALUE_MARK_BITMAP(obj) != 0; const int marking_bit = RVALUE_MARKING_BITMAP(obj) != 0, remembered_bit = marking_bit; const int age = RVALUE_FLAGS_AGE(RBASIC(obj)->flags); if (GET_HEAP_PAGE(obj)->flags.in_tomb) { fprintf(stderr, "check_rvalue_consistency: %s is in tomb page.\n", obj_info(obj)); err++; } if (BUILTIN_TYPE(obj) == T_NONE) { fprintf(stderr, "check_rvalue_consistency: %s is T_NONE.\n", obj_info(obj)); err++; } if (BUILTIN_TYPE(obj) == T_ZOMBIE) { fprintf(stderr, "check_rvalue_consistency: %s is T_ZOMBIE.\n", obj_info(obj)); err++; } obj_memsize_of((VALUE)obj, FALSE); /* check generation * * OLD == age == 3 && old-bitmap && mark-bit (except incremental marking) */ if (age > 0 && wb_unprotected_bit) { fprintf(stderr, "check_rvalue_consistency: %s is not WB protected, but age is %d > 0.\n", obj_info(obj), age); err++; } if (!is_marking(objspace) && uncollectible_bit && !mark_bit) { fprintf(stderr, "check_rvalue_consistency: %s is uncollectible, but is not marked while !gc.\n", obj_info(obj)); err++; } if (!is_full_marking(objspace)) { if (uncollectible_bit && age != RVALUE_OLD_AGE && !wb_unprotected_bit) { fprintf(stderr, "check_rvalue_consistency: %s is uncollectible, but not old (age: %d) and not WB unprotected.\n", obj_info(obj), age); err++; } if (remembered_bit && age != RVALUE_OLD_AGE) { fprintf(stderr, "check_rvalue_consistency: %s is remembered, but not old (age: %d).\n", obj_info(obj), age); err++; } } /* * check coloring * * marking:false marking:true * marked:false white *invalid* * marked:true black grey */ if (is_incremental_marking(objspace) && marking_bit) { if (!is_marking(objspace) && !mark_bit) { fprintf(stderr, "check_rvalue_consistency: %s is marking, but not marked.\n", obj_info(obj)); err++; } } } } RB_VM_LOCK_LEAVE_NO_BARRIER(); if (err > 0 && terminate) { rb_bug("check_rvalue_consistency_force: there is %d errors.", err); } return err; } #if RGENGC_CHECK_MODE == 0 static inline VALUE check_rvalue_consistency(const VALUE obj) { return obj; } #else static VALUE check_rvalue_consistency(const VALUE obj) { check_rvalue_consistency_force(obj, TRUE); return obj; } #endif static inline int gc_object_moved_p(rb_objspace_t * objspace, VALUE obj) { if (RB_SPECIAL_CONST_P(obj)) { return FALSE; } else { void *poisoned = asan_unpoison_object_temporary(obj); int ret = BUILTIN_TYPE(obj) == T_MOVED; /* Re-poison slot if it's not the one we want */ if (poisoned) { GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE); asan_poison_object(obj); } return ret; } } static inline int RVALUE_MARKED(VALUE obj) { check_rvalue_consistency(obj); return RVALUE_MARK_BITMAP(obj) != 0; } static inline int RVALUE_PINNED(VALUE obj) { check_rvalue_consistency(obj); return RVALUE_PIN_BITMAP(obj) != 0; } static inline int RVALUE_WB_UNPROTECTED(VALUE obj) { check_rvalue_consistency(obj); return RVALUE_WB_UNPROTECTED_BITMAP(obj) != 0; } static inline int RVALUE_MARKING(VALUE obj) { check_rvalue_consistency(obj); return RVALUE_MARKING_BITMAP(obj) != 0; } static inline int RVALUE_REMEMBERED(VALUE obj) { check_rvalue_consistency(obj); return RVALUE_MARKING_BITMAP(obj) != 0; } static inline int RVALUE_UNCOLLECTIBLE(VALUE obj) { check_rvalue_consistency(obj); return RVALUE_UNCOLLECTIBLE_BITMAP(obj) != 0; } static inline int RVALUE_OLD_P_RAW(VALUE obj) { const VALUE promoted = FL_PROMOTED0 | FL_PROMOTED1; return (RBASIC(obj)->flags & promoted) == promoted; } static inline int RVALUE_OLD_P(VALUE obj) { check_rvalue_consistency(obj); return RVALUE_OLD_P_RAW(obj); } #if RGENGC_CHECK_MODE || GC_DEBUG static inline int RVALUE_AGE(VALUE obj) { check_rvalue_consistency(obj); return RVALUE_FLAGS_AGE(RBASIC(obj)->flags); } #endif static inline void RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, struct heap_page *page, VALUE obj) { MARK_IN_BITMAP(&page->uncollectible_bits[0], obj); objspace->rgengc.old_objects++; rb_transient_heap_promote(obj); #if RGENGC_PROFILE >= 2 objspace->profile.total_promoted_count++; objspace->profile.promoted_types[BUILTIN_TYPE(obj)]++; #endif } static inline void RVALUE_OLD_UNCOLLECTIBLE_SET(rb_objspace_t *objspace, VALUE obj) { RB_DEBUG_COUNTER_INC(obj_promote); RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, GET_HEAP_PAGE(obj), obj); } static inline VALUE RVALUE_FLAGS_AGE_SET(VALUE flags, int age) { flags &= ~(FL_PROMOTED0 | FL_PROMOTED1); flags |= (age << RVALUE_AGE_SHIFT); return flags; } /* set age to age+1 */ static inline void RVALUE_AGE_INC(rb_objspace_t *objspace, VALUE obj) { VALUE flags = RBASIC(obj)->flags; int age = RVALUE_FLAGS_AGE(flags); if (RGENGC_CHECK_MODE && age == RVALUE_OLD_AGE) { rb_bug("RVALUE_AGE_INC: can not increment age of OLD object %s.", obj_info(obj)); } age++; RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(flags, age); if (age == RVALUE_OLD_AGE) { RVALUE_OLD_UNCOLLECTIBLE_SET(objspace, obj); } check_rvalue_consistency(obj); } /* set age to RVALUE_OLD_AGE */ static inline void RVALUE_AGE_SET_OLD(rb_objspace_t *objspace, VALUE obj) { check_rvalue_consistency(obj); GC_ASSERT(!RVALUE_OLD_P(obj)); RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, RVALUE_OLD_AGE); RVALUE_OLD_UNCOLLECTIBLE_SET(objspace, obj); check_rvalue_consistency(obj); } /* set age to RVALUE_OLD_AGE - 1 */ static inline void RVALUE_AGE_SET_CANDIDATE(rb_objspace_t *objspace, VALUE obj) { check_rvalue_consistency(obj); GC_ASSERT(!RVALUE_OLD_P(obj)); RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, RVALUE_OLD_AGE - 1); check_rvalue_consistency(obj); } static inline void RVALUE_DEMOTE_RAW(rb_objspace_t *objspace, VALUE obj) { RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, 0); CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS(obj), obj); } static inline void RVALUE_DEMOTE(rb_objspace_t *objspace, VALUE obj) { check_rvalue_consistency(obj); GC_ASSERT(RVALUE_OLD_P(obj)); if (!is_incremental_marking(objspace) && RVALUE_REMEMBERED(obj)) { CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj); } RVALUE_DEMOTE_RAW(objspace, obj); if (RVALUE_MARKED(obj)) { objspace->rgengc.old_objects--; } check_rvalue_consistency(obj); } static inline void RVALUE_AGE_RESET_RAW(VALUE obj) { RBASIC(obj)->flags = RVALUE_FLAGS_AGE_SET(RBASIC(obj)->flags, 0); } static inline void RVALUE_AGE_RESET(VALUE obj) { check_rvalue_consistency(obj); GC_ASSERT(!RVALUE_OLD_P(obj)); RVALUE_AGE_RESET_RAW(obj); check_rvalue_consistency(obj); } static inline int RVALUE_BLACK_P(VALUE obj) { return RVALUE_MARKED(obj) && !RVALUE_MARKING(obj); } #if 0 static inline int RVALUE_GREY_P(VALUE obj) { return RVALUE_MARKED(obj) && RVALUE_MARKING(obj); } #endif static inline int RVALUE_WHITE_P(VALUE obj) { return RVALUE_MARKED(obj) == FALSE; } /* --------------------------- ObjectSpace ----------------------------- */ static inline void * calloc1(size_t n) { return calloc(1, n); } rb_objspace_t * rb_objspace_alloc(void) { rb_objspace_t *objspace = calloc1(sizeof(rb_objspace_t)); objspace->flags.measure_gc = 1; malloc_limit = gc_params.malloc_limit_min; for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; size_pool->slot_size = (1 << i) * BASE_SLOT_SIZE; ccan_list_head_init(&SIZE_POOL_EDEN_HEAP(size_pool)->pages); ccan_list_head_init(&SIZE_POOL_TOMB_HEAP(size_pool)->pages); } dont_gc_on(); return objspace; } static void free_stack_chunks(mark_stack_t *); static void mark_stack_free_cache(mark_stack_t *); static void heap_page_free(rb_objspace_t *objspace, struct heap_page *page); void rb_objspace_free(rb_objspace_t *objspace) { if (is_lazy_sweeping(objspace)) rb_bug("lazy sweeping underway when freeing object space"); if (objspace->profile.records) { free(objspace->profile.records); objspace->profile.records = 0; } if (global_list) { struct gc_list *list, *next; for (list = global_list; list; list = next) { next = list->next; xfree(list); } } if (heap_pages_sorted) { size_t i; for (i = 0; i < heap_allocated_pages; ++i) { heap_page_free(objspace, heap_pages_sorted[i]); } free(heap_pages_sorted); heap_allocated_pages = 0; heap_pages_sorted_length = 0; heap_pages_lomem = 0; heap_pages_himem = 0; for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; SIZE_POOL_EDEN_HEAP(size_pool)->total_pages = 0; SIZE_POOL_EDEN_HEAP(size_pool)->total_slots = 0; } } st_free_table(objspace->id_to_obj_tbl); st_free_table(objspace->obj_to_id_tbl); free_stack_chunks(&objspace->mark_stack); mark_stack_free_cache(&objspace->mark_stack); free(objspace); } static void heap_pages_expand_sorted_to(rb_objspace_t *objspace, size_t next_length) { struct heap_page **sorted; size_t size = size_mul_or_raise(next_length, sizeof(struct heap_page *), rb_eRuntimeError); gc_report(3, objspace, "heap_pages_expand_sorted: next_length: %"PRIdSIZE", size: %"PRIdSIZE"\n", next_length, size); if (heap_pages_sorted_length > 0) { sorted = (struct heap_page **)realloc(heap_pages_sorted, size); if (sorted) heap_pages_sorted = sorted; } else { sorted = heap_pages_sorted = (struct heap_page **)malloc(size); } if (sorted == 0) { rb_memerror(); } heap_pages_sorted_length = next_length; } static void heap_pages_expand_sorted(rb_objspace_t *objspace) { /* usually heap_allocatable_pages + heap_eden->total_pages == heap_pages_sorted_length * because heap_allocatable_pages contains heap_tomb->total_pages (recycle heap_tomb pages). * however, if there are pages which do not have empty slots, then try to create new pages * so that the additional allocatable_pages counts (heap_tomb->total_pages) are added. */ size_t next_length = heap_allocatable_pages(objspace); for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; next_length += SIZE_POOL_EDEN_HEAP(size_pool)->total_pages; next_length += SIZE_POOL_TOMB_HEAP(size_pool)->total_pages; } if (next_length > heap_pages_sorted_length) { heap_pages_expand_sorted_to(objspace, next_length); } GC_ASSERT(heap_allocatable_pages(objspace) + heap_eden_total_pages(objspace) <= heap_pages_sorted_length); GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length); } static void size_pool_allocatable_pages_set(rb_objspace_t *objspace, rb_size_pool_t *size_pool, size_t s) { size_pool->allocatable_pages = s; heap_pages_expand_sorted(objspace); } static inline void heap_page_add_freeobj(rb_objspace_t *objspace, struct heap_page *page, VALUE obj) { ASSERT_vm_locking(); RVALUE *p = (RVALUE *)obj; asan_unpoison_object(obj, false); asan_unlock_freelist(page); p->as.free.flags = 0; p->as.free.next = page->freelist; page->freelist = p; asan_lock_freelist(page); if (RGENGC_CHECK_MODE && /* obj should belong to page */ !(page->start <= (uintptr_t)obj && (uintptr_t)obj < ((uintptr_t)page->start + (page->total_slots * page->slot_size)) && obj % BASE_SLOT_SIZE == 0)) { rb_bug("heap_page_add_freeobj: %p is not rvalue.", (void *)p); } asan_poison_object(obj); gc_report(3, objspace, "heap_page_add_freeobj: add %p to freelist\n", (void *)obj); } static inline void heap_add_freepage(rb_heap_t *heap, struct heap_page *page) { asan_unlock_freelist(page); GC_ASSERT(page->free_slots != 0); GC_ASSERT(page->freelist != NULL); page->free_next = heap->free_pages; heap->free_pages = page; RUBY_DEBUG_LOG("page:%p freelist:%p", (void *)page, (void *)page->freelist); asan_lock_freelist(page); } #if GC_ENABLE_INCREMENTAL_MARK static inline void heap_add_poolpage(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page) { asan_unlock_freelist(page); GC_ASSERT(page->free_slots != 0); GC_ASSERT(page->freelist != NULL); page->free_next = heap->pooled_pages; heap->pooled_pages = page; objspace->rincgc.pooled_slots += page->free_slots; asan_lock_freelist(page); } #endif static void heap_unlink_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page) { ccan_list_del(&page->page_node); heap->total_pages--; heap->total_slots -= page->total_slots; } static void rb_aligned_free(void *ptr, size_t size); static void heap_page_body_free(struct heap_page_body *page_body) { GC_ASSERT((uintptr_t)page_body % HEAP_PAGE_ALIGN == 0); if (HEAP_PAGE_ALLOC_USE_MMAP) { #ifdef HAVE_MMAP GC_ASSERT(HEAP_PAGE_SIZE % sysconf(_SC_PAGE_SIZE) == 0); if (munmap(page_body, HEAP_PAGE_SIZE)) { rb_bug("heap_page_body_free: munmap failed"); } #endif } else { rb_aligned_free(page_body, HEAP_PAGE_SIZE); } } static void heap_page_free(rb_objspace_t *objspace, struct heap_page *page) { heap_allocated_pages--; page->size_pool->total_freed_pages++; heap_page_body_free(GET_PAGE_BODY(page->start)); free(page); } static void heap_pages_free_unused_pages(rb_objspace_t *objspace) { size_t i, j; bool has_pages_in_tomb_heap = FALSE; for (i = 0; i < SIZE_POOL_COUNT; i++) { if (!ccan_list_empty(&SIZE_POOL_TOMB_HEAP(&size_pools[i])->pages)) { has_pages_in_tomb_heap = TRUE; break; } } if (has_pages_in_tomb_heap) { for (i = j = 1; j < heap_allocated_pages; i++) { struct heap_page *page = heap_pages_sorted[i]; if (page->flags.in_tomb && page->free_slots == page->total_slots) { heap_unlink_page(objspace, SIZE_POOL_TOMB_HEAP(page->size_pool), page); heap_page_free(objspace, page); } else { if (i != j) { heap_pages_sorted[j] = page; } j++; } } struct heap_page *hipage = heap_pages_sorted[heap_allocated_pages - 1]; uintptr_t himem = (uintptr_t)hipage->start + (hipage->total_slots * hipage->slot_size); GC_ASSERT(himem <= heap_pages_himem); heap_pages_himem = himem; GC_ASSERT(j == heap_allocated_pages); } } static struct heap_page_body * heap_page_body_allocate(void) { struct heap_page_body *page_body; if (HEAP_PAGE_ALLOC_USE_MMAP) { #ifdef HAVE_MMAP GC_ASSERT(HEAP_PAGE_ALIGN % sysconf(_SC_PAGE_SIZE) == 0); char *ptr = mmap(NULL, HEAP_PAGE_ALIGN + HEAP_PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (ptr == MAP_FAILED) { return NULL; } char *aligned = ptr + HEAP_PAGE_ALIGN; aligned -= ((VALUE)aligned & (HEAP_PAGE_ALIGN - 1)); GC_ASSERT(aligned > ptr); GC_ASSERT(aligned <= ptr + HEAP_PAGE_ALIGN); size_t start_out_of_range_size = aligned - ptr; GC_ASSERT(start_out_of_range_size % sysconf(_SC_PAGE_SIZE) == 0); if (start_out_of_range_size > 0) { if (munmap(ptr, start_out_of_range_size)) { rb_bug("heap_page_body_allocate: munmap failed for start"); } } size_t end_out_of_range_size = HEAP_PAGE_ALIGN - start_out_of_range_size; GC_ASSERT(end_out_of_range_size % sysconf(_SC_PAGE_SIZE) == 0); if (end_out_of_range_size > 0) { if (munmap(aligned + HEAP_PAGE_SIZE, end_out_of_range_size)) { rb_bug("heap_page_body_allocate: munmap failed for end"); } } page_body = (struct heap_page_body *)aligned; #endif } else { page_body = rb_aligned_malloc(HEAP_PAGE_ALIGN, HEAP_PAGE_SIZE); } GC_ASSERT((uintptr_t)page_body % HEAP_PAGE_ALIGN == 0); return page_body; } static struct heap_page * heap_page_allocate(rb_objspace_t *objspace, rb_size_pool_t *size_pool) { uintptr_t start, end, p; struct heap_page *page; uintptr_t hi, lo, mid; size_t stride = size_pool->slot_size; unsigned int limit = (unsigned int)((HEAP_PAGE_SIZE - sizeof(struct heap_page_header)))/(int)stride; /* assign heap_page body (contains heap_page_header and RVALUEs) */ struct heap_page_body *page_body = heap_page_body_allocate(); if (page_body == 0) { rb_memerror(); } /* assign heap_page entry */ page = calloc1(sizeof(struct heap_page)); if (page == 0) { heap_page_body_free(page_body); rb_memerror(); } /* adjust obj_limit (object number available in this page) */ start = (uintptr_t)((VALUE)page_body + sizeof(struct heap_page_header)); if (start % BASE_SLOT_SIZE != 0) { int delta = BASE_SLOT_SIZE - (start % BASE_SLOT_SIZE); start = start + delta; GC_ASSERT(NUM_IN_PAGE(start) == 0 || NUM_IN_PAGE(start) == 1); /* Find a num in page that is evenly divisible by `stride`. * This is to ensure that objects are aligned with bit planes. * In other words, ensure there are an even number of objects * per bit plane. */ if (NUM_IN_PAGE(start) == 1) { start += stride - BASE_SLOT_SIZE; } GC_ASSERT(NUM_IN_PAGE(start) * BASE_SLOT_SIZE % stride == 0); limit = (HEAP_PAGE_SIZE - (int)(start - (uintptr_t)page_body))/(int)stride; } end = start + (limit * (int)stride); /* setup heap_pages_sorted */ lo = 0; hi = (uintptr_t)heap_allocated_pages; while (lo < hi) { struct heap_page *mid_page; mid = (lo + hi) / 2; mid_page = heap_pages_sorted[mid]; if ((uintptr_t)mid_page->start < start) { lo = mid + 1; } else if ((uintptr_t)mid_page->start > start) { hi = mid; } else { rb_bug("same heap page is allocated: %p at %"PRIuVALUE, (void *)page_body, (VALUE)mid); } } if (hi < (uintptr_t)heap_allocated_pages) { MEMMOVE(&heap_pages_sorted[hi+1], &heap_pages_sorted[hi], struct heap_page_header*, heap_allocated_pages - hi); } heap_pages_sorted[hi] = page; heap_allocated_pages++; GC_ASSERT(heap_eden_total_pages(objspace) + heap_allocatable_pages(objspace) <= heap_pages_sorted_length); GC_ASSERT(heap_eden_total_pages(objspace) + heap_tomb_total_pages(objspace) == heap_allocated_pages - 1); GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length); size_pool->total_allocated_pages++; if (heap_allocated_pages > heap_pages_sorted_length) { rb_bug("heap_page_allocate: allocated(%"PRIdSIZE") > sorted(%"PRIdSIZE")", heap_allocated_pages, heap_pages_sorted_length); } if (heap_pages_lomem == 0 || heap_pages_lomem > start) heap_pages_lomem = start; if (heap_pages_himem < end) heap_pages_himem = end; page->start = start; page->total_slots = limit; page->slot_size = size_pool->slot_size; page->size_pool = size_pool; page_body->header.page = page; for (p = start; p != end; p += stride) { gc_report(3, objspace, "assign_heap_page: %p is added to freelist\n", (void *)p); heap_page_add_freeobj(objspace, page, (VALUE)p); } page->free_slots = limit; asan_lock_freelist(page); return page; } static struct heap_page * heap_page_resurrect(rb_objspace_t *objspace, rb_size_pool_t *size_pool) { struct heap_page *page = 0, *next; ccan_list_for_each_safe(&SIZE_POOL_TOMB_HEAP(size_pool)->pages, page, next, page_node) { asan_unlock_freelist(page); if (page->freelist != NULL) { heap_unlink_page(objspace, &size_pool->tomb_heap, page); asan_lock_freelist(page); return page; } } return NULL; } static struct heap_page * heap_page_create(rb_objspace_t *objspace, rb_size_pool_t *size_pool) { struct heap_page *page; const char *method = "recycle"; size_pool->allocatable_pages--; page = heap_page_resurrect(objspace, size_pool); if (page == NULL) { page = heap_page_allocate(objspace, size_pool); method = "allocate"; } if (0) fprintf(stderr, "heap_page_create: %s - %p, " "heap_allocated_pages: %"PRIdSIZE", " "heap_allocated_pages: %"PRIdSIZE", " "tomb->total_pages: %"PRIdSIZE"\n", method, (void *)page, heap_pages_sorted_length, heap_allocated_pages, SIZE_POOL_TOMB_HEAP(size_pool)->total_pages); return page; } static void heap_add_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, struct heap_page *page) { /* Adding to eden heap during incremental sweeping is forbidden */ GC_ASSERT(!(heap == SIZE_POOL_EDEN_HEAP(size_pool) && heap->sweeping_page)); page->flags.in_tomb = (heap == SIZE_POOL_TOMB_HEAP(size_pool)); ccan_list_add_tail(&heap->pages, &page->page_node); heap->total_pages++; heap->total_slots += page->total_slots; } static void heap_assign_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) { struct heap_page *page = heap_page_create(objspace, size_pool); heap_add_page(objspace, size_pool, heap, page); heap_add_freepage(heap, page); } static void heap_add_pages(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, size_t add) { size_t i; size_pool_allocatable_pages_set(objspace, size_pool, add); for (i = 0; i < add; i++) { heap_assign_page(objspace, size_pool, heap); } GC_ASSERT(size_pool->allocatable_pages == 0); } static size_t heap_extend_pages(rb_objspace_t *objspace, rb_size_pool_t *size_pool, size_t free_slots, size_t total_slots, size_t used) { double goal_ratio = gc_params.heap_free_slots_goal_ratio; size_t next_used; if (goal_ratio == 0.0) { next_used = (size_t)(used * gc_params.growth_factor); } else if (total_slots == 0) { int multiple = size_pool->slot_size / BASE_SLOT_SIZE; next_used = (gc_params.heap_init_slots * multiple) / HEAP_PAGE_OBJ_LIMIT; } else { /* Find `f' where free_slots = f * total_slots * goal_ratio * => f = (total_slots - free_slots) / ((1 - goal_ratio) * total_slots) */ double f = (double)(total_slots - free_slots) / ((1 - goal_ratio) * total_slots); if (f > gc_params.growth_factor) f = gc_params.growth_factor; if (f < 1.0) f = 1.1; next_used = (size_t)(f * used); if (0) { fprintf(stderr, "free_slots(%8"PRIuSIZE")/total_slots(%8"PRIuSIZE")=%1.2f," " G(%1.2f), f(%1.2f)," " used(%8"PRIuSIZE") => next_used(%8"PRIuSIZE")\n", free_slots, total_slots, free_slots/(double)total_slots, goal_ratio, f, used, next_used); } } if (gc_params.growth_max_slots > 0) { size_t max_used = (size_t)(used + gc_params.growth_max_slots/HEAP_PAGE_OBJ_LIMIT); if (next_used > max_used) next_used = max_used; } size_t extend_page_count = next_used - used; /* Extend by at least 1 page. */ if (extend_page_count == 0) extend_page_count = 1; return extend_page_count; } static int heap_increment(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) { if (size_pool->allocatable_pages > 0) { gc_report(1, objspace, "heap_increment: heap_pages_sorted_length: %"PRIdSIZE", " "heap_pages_inc: %"PRIdSIZE", heap->total_pages: %"PRIdSIZE"\n", heap_pages_sorted_length, size_pool->allocatable_pages, heap->total_pages); GC_ASSERT(heap_allocatable_pages(objspace) + heap_eden_total_pages(objspace) <= heap_pages_sorted_length); GC_ASSERT(heap_allocated_pages <= heap_pages_sorted_length); heap_assign_page(objspace, size_pool, heap); return TRUE; } return FALSE; } static void gc_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) { /* Continue marking if in incremental marking. */ if (heap->free_pages == NULL && is_incremental_marking(objspace)) { gc_marks_continue(objspace, size_pool, heap); } /* Continue sweeping if in lazy sweeping or the previous incremental * marking finished and did not yield a free page. */ if (heap->free_pages == NULL && is_lazy_sweeping(objspace)) { gc_sweep_continue(objspace, size_pool, heap); } } static void heap_prepare(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) { GC_ASSERT(heap->free_pages == NULL); /* Continue incremental marking or lazy sweeping, if in any of those steps. */ gc_continue(objspace, size_pool, heap); /* If we still don't have a free page and not allowed to create a new page, * we should start a new GC cycle. */ if (heap->free_pages == NULL && (will_be_incremental_marking(objspace) || (heap_increment(objspace, size_pool, heap) == FALSE))) { if (gc_start(objspace, GPR_FLAG_NEWOBJ) == FALSE) { rb_memerror(); } else { /* Do steps of incremental marking or lazy sweeping if the GC run permits. */ gc_continue(objspace, size_pool, heap); /* If we're not incremental marking (e.g. a minor GC) or finished * sweeping and still don't have a free page, then * gc_sweep_finish_size_pool should allow us to create a new page. */ if (heap->free_pages == NULL && !heap_increment(objspace, size_pool, heap)) { if (objspace->rgengc.need_major_gc == GPR_FLAG_NONE) { rb_bug("cannot create a new page after GC"); } else { // Major GC is required, which will allow us to create new page if (gc_start(objspace, GPR_FLAG_NEWOBJ) == FALSE) { rb_memerror(); } else { /* Do steps of incremental marking or lazy sweeping. */ gc_continue(objspace, size_pool, heap); if (heap->free_pages == NULL && !heap_increment(objspace, size_pool, heap)) { rb_bug("cannot create a new page after major GC"); } } } } } } GC_ASSERT(heap->free_pages != NULL); } void rb_objspace_set_event_hook(const rb_event_flag_t event) { rb_objspace_t *objspace = &rb_objspace; objspace->hook_events = event & RUBY_INTERNAL_EVENT_OBJSPACE_MASK; objspace->flags.has_hook = (objspace->hook_events != 0); } static void gc_event_hook_body(rb_execution_context_t *ec, rb_objspace_t *objspace, const rb_event_flag_t event, VALUE data) { const VALUE *pc = ec->cfp->pc; if (pc && VM_FRAME_RUBYFRAME_P(ec->cfp)) { /* increment PC because source line is calculated with PC-1 */ ec->cfp->pc++; } EXEC_EVENT_HOOK(ec, event, ec->cfp->self, 0, 0, 0, data); ec->cfp->pc = pc; } #define gc_event_hook_available_p(objspace) ((objspace)->flags.has_hook) #define gc_event_hook_needed_p(objspace, event) ((objspace)->hook_events & (event)) #define gc_event_hook_prep(objspace, event, data, prep) do { \ if (UNLIKELY(gc_event_hook_needed_p(objspace, event))) { \ prep; \ gc_event_hook_body(GET_EC(), (objspace), (event), (data)); \ } \ } while (0) #define gc_event_hook(objspace, event, data) gc_event_hook_prep(objspace, event, data, (void)0) static inline VALUE newobj_init(VALUE klass, VALUE flags, int wb_protected, rb_objspace_t *objspace, VALUE obj) { #if !__has_feature(memory_sanitizer) GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE); GC_ASSERT((flags & FL_WB_PROTECTED) == 0); #endif RVALUE *p = RANY(obj); p->as.basic.flags = flags; *((VALUE *)&p->as.basic.klass) = klass; #if RACTOR_CHECK_MODE rb_ractor_setup_belonging(obj); #endif #if RGENGC_CHECK_MODE p->as.values.v1 = p->as.values.v2 = p->as.values.v3 = 0; RB_VM_LOCK_ENTER_NO_BARRIER(); { check_rvalue_consistency(obj); GC_ASSERT(RVALUE_MARKED(obj) == FALSE); GC_ASSERT(RVALUE_MARKING(obj) == FALSE); GC_ASSERT(RVALUE_OLD_P(obj) == FALSE); GC_ASSERT(RVALUE_WB_UNPROTECTED(obj) == FALSE); if (flags & FL_PROMOTED1) { if (RVALUE_AGE(obj) != 2) rb_bug("newobj: %s of age (%d) != 2.", obj_info(obj), RVALUE_AGE(obj)); } else { if (RVALUE_AGE(obj) > 0) rb_bug("newobj: %s of age (%d) > 0.", obj_info(obj), RVALUE_AGE(obj)); } if (rgengc_remembered(objspace, (VALUE)obj)) rb_bug("newobj: %s is remembered.", obj_info(obj)); } RB_VM_LOCK_LEAVE_NO_BARRIER(); #endif if (UNLIKELY(wb_protected == FALSE)) { ASSERT_vm_locking(); MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj); } // TODO: make it atomic, or ractor local objspace->total_allocated_objects++; #if RGENGC_PROFILE if (wb_protected) { objspace->profile.total_generated_normal_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.generated_normal_object_count_types[BUILTIN_TYPE(obj)]++; #endif } else { objspace->profile.total_generated_shady_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.generated_shady_object_count_types[BUILTIN_TYPE(obj)]++; #endif } #endif #if GC_DEBUG RANY(obj)->file = rb_source_location_cstr(&RANY(obj)->line); GC_ASSERT(!SPECIAL_CONST_P(obj)); /* check alignment */ #endif gc_report(5, objspace, "newobj: %s\n", obj_info(obj)); #if RGENGC_OLD_NEWOBJ_CHECK > 0 { static int newobj_cnt = RGENGC_OLD_NEWOBJ_CHECK; if (!is_incremental_marking(objspace) && flags & FL_WB_PROTECTED && /* do not promote WB unprotected objects */ ! RB_TYPE_P(obj, T_ARRAY)) { /* array.c assumes that allocated objects are new */ if (--newobj_cnt == 0) { newobj_cnt = RGENGC_OLD_NEWOBJ_CHECK; gc_mark_set(objspace, obj); RVALUE_AGE_SET_OLD(objspace, obj); rb_gc_writebarrier_remember(obj); } } } #endif // RUBY_DEBUG_LOG("obj:%p (%s)", (void *)obj, obj_type_name(obj)); return obj; } size_t rb_gc_obj_slot_size(VALUE obj) { return GET_HEAP_PAGE(obj)->slot_size; } static inline size_t size_pool_slot_size(unsigned char pool_id) { GC_ASSERT(pool_id < SIZE_POOL_COUNT); size_t slot_size = (1 << pool_id) * BASE_SLOT_SIZE; #if RGENGC_CHECK_MODE rb_objspace_t *objspace = &rb_objspace; GC_ASSERT(size_pools[pool_id].slot_size == (short)slot_size); #endif return slot_size; } bool rb_gc_size_allocatable_p(size_t size) { return size <= size_pool_slot_size(SIZE_POOL_COUNT - 1); } static inline VALUE ractor_cache_allocate_slot(rb_objspace_t *objspace, rb_ractor_newobj_cache_t *cache, size_t size_pool_idx) { rb_ractor_newobj_size_pool_cache_t *size_pool_cache = &cache->size_pool_caches[size_pool_idx]; RVALUE *p = size_pool_cache->freelist; #if GC_ENABLE_INCREMENTAL_MARK if (is_incremental_marking(objspace)) { // Not allowed to allocate without running an incremental marking step if (cache->incremental_mark_step_allocated_slots >= INCREMENTAL_MARK_STEP_ALLOCATIONS) { return Qfalse; } if (p) { cache->incremental_mark_step_allocated_slots++; } } #endif if (p) { VALUE obj = (VALUE)p; MAYBE_UNUSED(const size_t) stride = size_pool_slot_size(size_pool_idx); size_pool_cache->freelist = p->as.free.next; #if USE_RVARGC asan_unpoison_memory_region(p, stride, true); #else asan_unpoison_object(obj, true); #endif #if RGENGC_CHECK_MODE GC_ASSERT(rb_gc_obj_slot_size(obj) == stride); // zero clear MEMZERO((char *)obj, char, stride); #endif return obj; } else { return Qfalse; } } static struct heap_page * heap_next_free_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) { ASSERT_vm_locking(); struct heap_page *page; if (heap->free_pages == NULL) { heap_prepare(objspace, size_pool, heap); } page = heap->free_pages; heap->free_pages = page->free_next; GC_ASSERT(page->free_slots != 0); RUBY_DEBUG_LOG("page:%p freelist:%p cnt:%d", (void *)page, (void *)page->freelist, page->free_slots); asan_unlock_freelist(page); return page; } static inline void ractor_cache_set_page(rb_ractor_newobj_cache_t *cache, size_t size_pool_idx, struct heap_page *page) { gc_report(3, &rb_objspace, "ractor_set_cache: Using page %p\n", (void *)GET_PAGE_BODY(page->start)); rb_ractor_newobj_size_pool_cache_t *size_pool_cache = &cache->size_pool_caches[size_pool_idx]; GC_ASSERT(size_pool_cache->freelist == NULL); GC_ASSERT(page->free_slots != 0); GC_ASSERT(page->freelist != NULL); size_pool_cache->using_page = page; size_pool_cache->freelist = page->freelist; page->free_slots = 0; page->freelist = NULL; asan_unpoison_object((VALUE)size_pool_cache->freelist, false); GC_ASSERT(RB_TYPE_P((VALUE)size_pool_cache->freelist, T_NONE)); asan_poison_object((VALUE)size_pool_cache->freelist); } static inline VALUE newobj_fill(VALUE obj, VALUE v1, VALUE v2, VALUE v3) { RVALUE *p = (RVALUE *)obj; p->as.values.v1 = v1; p->as.values.v2 = v2; p->as.values.v3 = v3; return obj; } static inline size_t size_pool_idx_for_size(size_t size) { #if USE_RVARGC size_t slot_count = CEILDIV(size, BASE_SLOT_SIZE); /* size_pool_idx is ceil(log2(slot_count)) */ size_t size_pool_idx = 64 - nlz_int64(slot_count - 1); if (size_pool_idx >= SIZE_POOL_COUNT) { rb_bug("size_pool_idx_for_size: allocation size too large"); } #if RGENGC_CHECK_MODE rb_objspace_t *objspace = &rb_objspace; GC_ASSERT(size <= (size_t)size_pools[size_pool_idx].slot_size); if (size_pool_idx > 0) GC_ASSERT(size > (size_t)size_pools[size_pool_idx - 1].slot_size); #endif return size_pool_idx; #else GC_ASSERT(size <= sizeof(RVALUE)); return 0; #endif } static VALUE newobj_alloc(rb_objspace_t *objspace, rb_ractor_t *cr, size_t size_pool_idx, bool vm_locked) { rb_size_pool_t *size_pool = &size_pools[size_pool_idx]; rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); rb_ractor_newobj_cache_t *cache = &cr->newobj_cache; VALUE obj = ractor_cache_allocate_slot(objspace, cache, size_pool_idx); if (UNLIKELY(obj == Qfalse)) { unsigned int lev; bool unlock_vm = false; if (!vm_locked) { RB_VM_LOCK_ENTER_CR_LEV(cr, &lev); vm_locked = true; unlock_vm = true; } { ASSERT_vm_locking(); #if GC_ENABLE_INCREMENTAL_MARK if (is_incremental_marking(objspace)) { gc_marks_continue(objspace, size_pool, heap); cache->incremental_mark_step_allocated_slots = 0; // Retry allocation after resetting incremental_mark_step_allocated_slots obj = ractor_cache_allocate_slot(objspace, cache, size_pool_idx); } #endif if (obj == Qfalse) { // Get next free page (possibly running GC) struct heap_page *page = heap_next_free_page(objspace, size_pool, heap); ractor_cache_set_page(cache, size_pool_idx, page); // Retry allocation after moving to new page obj = ractor_cache_allocate_slot(objspace, cache, size_pool_idx); GC_ASSERT(obj != Qfalse); } } if (unlock_vm) { RB_VM_LOCK_LEAVE_CR_LEV(cr, &lev); } } return obj; } ALWAYS_INLINE(static VALUE newobj_slowpath(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, int wb_protected, size_t size_pool_idx)); static inline VALUE newobj_slowpath(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, int wb_protected, size_t size_pool_idx) { VALUE obj; unsigned int lev; RB_VM_LOCK_ENTER_CR_LEV(cr, &lev); { if (UNLIKELY(during_gc || ruby_gc_stressful)) { if (during_gc) { dont_gc_on(); during_gc = 0; rb_bug("object allocation during garbage collection phase"); } if (ruby_gc_stressful) { if (!garbage_collect(objspace, GPR_FLAG_NEWOBJ)) { rb_memerror(); } } } obj = newobj_alloc(objspace, cr, size_pool_idx, true); newobj_init(klass, flags, wb_protected, objspace, obj); gc_event_hook_prep(objspace, RUBY_INTERNAL_EVENT_NEWOBJ, obj, newobj_fill(obj, 0, 0, 0)); } RB_VM_LOCK_LEAVE_CR_LEV(cr, &lev); return obj; } NOINLINE(static VALUE newobj_slowpath_wb_protected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, size_t size_pool_idx)); NOINLINE(static VALUE newobj_slowpath_wb_unprotected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, size_t size_pool_idx)); static VALUE newobj_slowpath_wb_protected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, size_t size_pool_idx) { return newobj_slowpath(klass, flags, objspace, cr, TRUE, size_pool_idx); } static VALUE newobj_slowpath_wb_unprotected(VALUE klass, VALUE flags, rb_objspace_t *objspace, rb_ractor_t *cr, size_t size_pool_idx) { return newobj_slowpath(klass, flags, objspace, cr, FALSE, size_pool_idx); } static inline VALUE newobj_of0(VALUE klass, VALUE flags, int wb_protected, rb_ractor_t *cr, size_t alloc_size) { VALUE obj; rb_objspace_t *objspace = &rb_objspace; RB_DEBUG_COUNTER_INC(obj_newobj); (void)RB_DEBUG_COUNTER_INC_IF(obj_newobj_wb_unprotected, !wb_protected); #if GC_DEBUG_STRESS_TO_CLASS if (UNLIKELY(stress_to_class)) { long i, cnt = RARRAY_LEN(stress_to_class); for (i = 0; i < cnt; ++i) { if (klass == RARRAY_AREF(stress_to_class, i)) rb_memerror(); } } #endif size_t size_pool_idx = size_pool_idx_for_size(alloc_size); if (!UNLIKELY(during_gc || ruby_gc_stressful || gc_event_hook_available_p(objspace)) && wb_protected) { obj = newobj_alloc(objspace, cr, size_pool_idx, false); newobj_init(klass, flags, wb_protected, objspace, obj); } else { RB_DEBUG_COUNTER_INC(obj_newobj_slowpath); obj = wb_protected ? newobj_slowpath_wb_protected(klass, flags, objspace, cr, size_pool_idx) : newobj_slowpath_wb_unprotected(klass, flags, objspace, cr, size_pool_idx); } return obj; } static inline VALUE newobj_of(VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, int wb_protected, size_t alloc_size) { VALUE obj = newobj_of0(klass, flags, wb_protected, GET_RACTOR(), alloc_size); return newobj_fill(obj, v1, v2, v3); } static inline VALUE newobj_of_cr(rb_ractor_t *cr, VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3, int wb_protected, size_t alloc_size) { VALUE obj = newobj_of0(klass, flags, wb_protected, cr, alloc_size); return newobj_fill(obj, v1, v2, v3); } VALUE rb_wb_unprotected_newobj_of(VALUE klass, VALUE flags, size_t size) { GC_ASSERT((flags & FL_WB_PROTECTED) == 0); return newobj_of(klass, flags, 0, 0, 0, FALSE, size); } VALUE rb_wb_protected_newobj_of(VALUE klass, VALUE flags, size_t size) { GC_ASSERT((flags & FL_WB_PROTECTED) == 0); return newobj_of(klass, flags, 0, 0, 0, TRUE, size); } VALUE rb_ec_wb_protected_newobj_of(rb_execution_context_t *ec, VALUE klass, VALUE flags, size_t size) { GC_ASSERT((flags & FL_WB_PROTECTED) == 0); return newobj_of_cr(rb_ec_ractor_ptr(ec), klass, flags, 0, 0, 0, TRUE, size); } /* for compatibility */ VALUE rb_newobj(void) { return newobj_of(0, T_NONE, 0, 0, 0, FALSE, sizeof(RVALUE)); } static size_t rb_obj_embedded_size(uint32_t numiv) { return offsetof(struct RObject, as.ary) + (sizeof(VALUE) * numiv); } static VALUE rb_class_instance_allocate_internal(VALUE klass, VALUE flags, bool wb_protected) { GC_ASSERT((flags & RUBY_T_MASK) == T_OBJECT); GC_ASSERT(flags & ROBJECT_EMBED); uint32_t index_tbl_num_entries = RCLASS_EXT(klass)->max_iv_count; size_t size; #if USE_RVARGC size = rb_obj_embedded_size(index_tbl_num_entries); if (!rb_gc_size_allocatable_p(size)) { size = sizeof(struct RObject); } #else size = sizeof(struct RObject); #endif VALUE obj = newobj_of(klass, flags, 0, 0, 0, wb_protected, size); #if USE_RVARGC uint32_t capa = (uint32_t)((rb_gc_obj_slot_size(obj) - offsetof(struct RObject, as.ary)) / sizeof(VALUE)); ROBJECT(obj)->numiv = capa; #endif #if RUBY_DEBUG VALUE *ptr = ROBJECT_IVPTR(obj); for (size_t i = 0; i < ROBJECT_NUMIV(obj); i++) { ptr[i] = Qundef; } #endif return obj; } VALUE rb_newobj_of(VALUE klass, VALUE flags) { if ((flags & RUBY_T_MASK) == T_OBJECT) { return rb_class_instance_allocate_internal(klass, (flags | ROBJECT_EMBED) & ~FL_WB_PROTECTED, flags & FL_WB_PROTECTED); } else { return newobj_of(klass, flags & ~FL_WB_PROTECTED, 0, 0, 0, flags & FL_WB_PROTECTED, sizeof(RVALUE)); } } #define UNEXPECTED_NODE(func) \ rb_bug(#func"(): GC does not handle T_NODE 0x%x(%p) 0x%"PRIxVALUE, \ BUILTIN_TYPE(obj), (void*)(obj), RBASIC(obj)->flags) const char * rb_imemo_name(enum imemo_type type) { // put no default case to get a warning if an imemo type is missing switch (type) { #define IMEMO_NAME(x) case imemo_##x: return #x; IMEMO_NAME(env); IMEMO_NAME(cref); IMEMO_NAME(svar); IMEMO_NAME(throw_data); IMEMO_NAME(ifunc); IMEMO_NAME(memo); IMEMO_NAME(ment); IMEMO_NAME(iseq); IMEMO_NAME(tmpbuf); IMEMO_NAME(ast); IMEMO_NAME(parser_strterm); IMEMO_NAME(callinfo); IMEMO_NAME(callcache); IMEMO_NAME(constcache); #undef IMEMO_NAME } return "unknown"; } #undef rb_imemo_new VALUE rb_imemo_new(enum imemo_type type, VALUE v1, VALUE v2, VALUE v3, VALUE v0) { size_t size = sizeof(RVALUE); VALUE flags = T_IMEMO | (type << FL_USHIFT); return newobj_of(v0, flags, v1, v2, v3, TRUE, size); } static VALUE rb_imemo_tmpbuf_new(VALUE v1, VALUE v2, VALUE v3, VALUE v0) { size_t size = sizeof(RVALUE); VALUE flags = T_IMEMO | (imemo_tmpbuf << FL_USHIFT); return newobj_of(v0, flags, v1, v2, v3, FALSE, size); } static VALUE rb_imemo_tmpbuf_auto_free_maybe_mark_buffer(void *buf, size_t cnt) { return rb_imemo_tmpbuf_new((VALUE)buf, 0, (VALUE)cnt, 0); } rb_imemo_tmpbuf_t * rb_imemo_tmpbuf_parser_heap(void *buf, rb_imemo_tmpbuf_t *old_heap, size_t cnt) { return (rb_imemo_tmpbuf_t *)rb_imemo_tmpbuf_new((VALUE)buf, (VALUE)old_heap, (VALUE)cnt, 0); } static size_t imemo_memsize(VALUE obj) { size_t size = 0; switch (imemo_type(obj)) { case imemo_ment: size += sizeof(RANY(obj)->as.imemo.ment.def); break; case imemo_iseq: size += rb_iseq_memsize((rb_iseq_t *)obj); break; case imemo_env: size += RANY(obj)->as.imemo.env.env_size * sizeof(VALUE); break; case imemo_tmpbuf: size += RANY(obj)->as.imemo.alloc.cnt * sizeof(VALUE); break; case imemo_ast: size += rb_ast_memsize(&RANY(obj)->as.imemo.ast); break; case imemo_cref: case imemo_svar: case imemo_throw_data: case imemo_ifunc: case imemo_memo: case imemo_parser_strterm: break; default: /* unreachable */ break; } return size; } #if IMEMO_DEBUG VALUE rb_imemo_new_debug(enum imemo_type type, VALUE v1, VALUE v2, VALUE v3, VALUE v0, const char *file, int line) { VALUE memo = rb_imemo_new(type, v1, v2, v3, v0); fprintf(stderr, "memo %p (type: %d) @ %s:%d\n", (void *)memo, imemo_type(memo), file, line); return memo; } #endif VALUE rb_class_allocate_instance(VALUE klass) { return rb_class_instance_allocate_internal(klass, T_OBJECT | ROBJECT_EMBED, RGENGC_WB_PROTECTED_OBJECT); } static inline void rb_data_object_check(VALUE klass) { if (klass != rb_cObject && (rb_get_alloc_func(klass) == rb_class_allocate_instance)) { rb_undef_alloc_func(klass); rb_warn("undefining the allocator of T_DATA class %"PRIsVALUE, klass); } } VALUE rb_data_object_wrap(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree) { RUBY_ASSERT_ALWAYS(dfree != (RUBY_DATA_FUNC)1); if (klass) rb_data_object_check(klass); return newobj_of(klass, T_DATA, (VALUE)dmark, (VALUE)dfree, (VALUE)datap, FALSE, sizeof(RVALUE)); } VALUE rb_data_object_zalloc(VALUE klass, size_t size, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree) { VALUE obj = rb_data_object_wrap(klass, 0, dmark, dfree); DATA_PTR(obj) = xcalloc(1, size); return obj; } VALUE rb_data_typed_object_wrap(VALUE klass, void *datap, const rb_data_type_t *type) { RBIMPL_NONNULL_ARG(type); if (klass) rb_data_object_check(klass); return newobj_of(klass, T_DATA, (VALUE)type, (VALUE)1, (VALUE)datap, type->flags & RUBY_FL_WB_PROTECTED, sizeof(RVALUE)); } VALUE rb_data_typed_object_zalloc(VALUE klass, size_t size, const rb_data_type_t *type) { VALUE obj = rb_data_typed_object_wrap(klass, 0, type); DATA_PTR(obj) = xcalloc(1, size); return obj; } size_t rb_objspace_data_type_memsize(VALUE obj) { if (RTYPEDDATA_P(obj)) { const rb_data_type_t *type = RTYPEDDATA_TYPE(obj); const void *ptr = RTYPEDDATA_DATA(obj); if (ptr && type->function.dsize) { return type->function.dsize(ptr); } } return 0; } const char * rb_objspace_data_type_name(VALUE obj) { if (RTYPEDDATA_P(obj)) { return RTYPEDDATA_TYPE(obj)->wrap_struct_name; } else { return 0; } } static int ptr_in_page_body_p(const void *ptr, const void *memb) { struct heap_page *page = *(struct heap_page **)memb; uintptr_t p_body = (uintptr_t)GET_PAGE_BODY(page->start); if ((uintptr_t)ptr >= p_body) { return (uintptr_t)ptr < (p_body + HEAP_PAGE_SIZE) ? 0 : 1; } else { return -1; } } PUREFUNC(static inline struct heap_page * heap_page_for_ptr(rb_objspace_t *objspace, uintptr_t ptr);) static inline struct heap_page * heap_page_for_ptr(rb_objspace_t *objspace, uintptr_t ptr) { struct heap_page **res; if (ptr < (uintptr_t)heap_pages_lomem || ptr > (uintptr_t)heap_pages_himem) { return NULL; } res = bsearch((void *)ptr, heap_pages_sorted, (size_t)heap_allocated_pages, sizeof(struct heap_page *), ptr_in_page_body_p); if (res) { return *res; } else { return NULL; } } PUREFUNC(static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr);) static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr) { register uintptr_t p = (uintptr_t)ptr; register struct heap_page *page; RB_DEBUG_COUNTER_INC(gc_isptr_trial); if (p < heap_pages_lomem || p > heap_pages_himem) return FALSE; RB_DEBUG_COUNTER_INC(gc_isptr_range); if (p % BASE_SLOT_SIZE != 0) return FALSE; RB_DEBUG_COUNTER_INC(gc_isptr_align); page = heap_page_for_ptr(objspace, (uintptr_t)ptr); if (page) { RB_DEBUG_COUNTER_INC(gc_isptr_maybe); if (page->flags.in_tomb) { return FALSE; } else { if (p < page->start) return FALSE; if (p >= page->start + (page->total_slots * page->slot_size)) return FALSE; if ((NUM_IN_PAGE(p) * BASE_SLOT_SIZE) % page->slot_size != 0) return FALSE; return TRUE; } } return FALSE; } static enum rb_id_table_iterator_result free_const_entry_i(VALUE value, void *data) { rb_const_entry_t *ce = (rb_const_entry_t *)value; xfree(ce); return ID_TABLE_CONTINUE; } void rb_free_const_table(struct rb_id_table *tbl) { rb_id_table_foreach_values(tbl, free_const_entry_i, 0); rb_id_table_free(tbl); } // alive: if false, target pointers can be freed already. // To check it, we need objspace parameter. static void vm_ccs_free(struct rb_class_cc_entries *ccs, int alive, rb_objspace_t *objspace, VALUE klass) { if (ccs->entries) { for (int i=0; ilen; i++) { const struct rb_callcache *cc = ccs->entries[i].cc; if (!alive) { void *ptr = asan_unpoison_object_temporary((VALUE)cc); // ccs can be free'ed. if (is_pointer_to_heap(objspace, (void *)cc) && IMEMO_TYPE_P(cc, imemo_callcache) && cc->klass == klass) { // OK. maybe target cc. } else { if (ptr) { asan_poison_object((VALUE)cc); } continue; } if (ptr) { asan_poison_object((VALUE)cc); } } vm_cc_invalidate(cc); } ruby_xfree(ccs->entries); } ruby_xfree(ccs); } void rb_vm_ccs_free(struct rb_class_cc_entries *ccs) { RB_DEBUG_COUNTER_INC(ccs_free); vm_ccs_free(ccs, TRUE, NULL, Qundef); } struct cc_tbl_i_data { rb_objspace_t *objspace; VALUE klass; bool alive; }; static enum rb_id_table_iterator_result cc_table_mark_i(ID id, VALUE ccs_ptr, void *data_ptr) { struct cc_tbl_i_data *data = data_ptr; struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr; VM_ASSERT(vm_ccs_p(ccs)); VM_ASSERT(id == ccs->cme->called_id); if (METHOD_ENTRY_INVALIDATED(ccs->cme)) { rb_vm_ccs_free(ccs); return ID_TABLE_DELETE; } else { gc_mark(data->objspace, (VALUE)ccs->cme); for (int i=0; ilen; i++) { VM_ASSERT(data->klass == ccs->entries[i].cc->klass); VM_ASSERT(vm_cc_check_cme(ccs->entries[i].cc, ccs->cme)); gc_mark(data->objspace, (VALUE)ccs->entries[i].ci); gc_mark(data->objspace, (VALUE)ccs->entries[i].cc); } return ID_TABLE_CONTINUE; } } static void cc_table_mark(rb_objspace_t *objspace, VALUE klass) { struct rb_id_table *cc_tbl = RCLASS_CC_TBL(klass); if (cc_tbl) { struct cc_tbl_i_data data = { .objspace = objspace, .klass = klass, }; rb_id_table_foreach(cc_tbl, cc_table_mark_i, &data); } } static enum rb_id_table_iterator_result cc_table_free_i(VALUE ccs_ptr, void *data_ptr) { struct cc_tbl_i_data *data = data_ptr; struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr; VM_ASSERT(vm_ccs_p(ccs)); vm_ccs_free(ccs, data->alive, data->objspace, data->klass); return ID_TABLE_CONTINUE; } static void cc_table_free(rb_objspace_t *objspace, VALUE klass, bool alive) { struct rb_id_table *cc_tbl = RCLASS_CC_TBL(klass); if (cc_tbl) { struct cc_tbl_i_data data = { .objspace = objspace, .klass = klass, .alive = alive, }; rb_id_table_foreach_values(cc_tbl, cc_table_free_i, &data); rb_id_table_free(cc_tbl); } } static enum rb_id_table_iterator_result cvar_table_free_i(VALUE value, void * ctx) { xfree((void *) value); return ID_TABLE_CONTINUE; } void rb_cc_table_free(VALUE klass) { cc_table_free(&rb_objspace, klass, TRUE); } static inline void make_zombie(rb_objspace_t *objspace, VALUE obj, void (*dfree)(void *), void *data) { struct RZombie *zombie = RZOMBIE(obj); zombie->basic.flags = T_ZOMBIE | (zombie->basic.flags & FL_SEEN_OBJ_ID); zombie->dfree = dfree; zombie->data = data; VALUE prev, next = heap_pages_deferred_final; do { zombie->next = prev = next; next = RUBY_ATOMIC_VALUE_CAS(heap_pages_deferred_final, prev, obj); } while (next != prev); struct heap_page *page = GET_HEAP_PAGE(obj); page->final_slots++; heap_pages_final_slots++; } static inline void make_io_zombie(rb_objspace_t *objspace, VALUE obj) { rb_io_t *fptr = RANY(obj)->as.file.fptr; make_zombie(objspace, obj, rb_io_fptr_finalize_internal, fptr); } static void obj_free_object_id(rb_objspace_t *objspace, VALUE obj) { ASSERT_vm_locking(); st_data_t o = (st_data_t)obj, id; GC_ASSERT(FL_TEST(obj, FL_SEEN_OBJ_ID)); FL_UNSET(obj, FL_SEEN_OBJ_ID); if (st_delete(objspace->obj_to_id_tbl, &o, &id)) { GC_ASSERT(id); st_delete(objspace->id_to_obj_tbl, &id, NULL); } else { rb_bug("Object ID seen, but not in mapping table: %s\n", obj_info(obj)); } } static int obj_free(rb_objspace_t *objspace, VALUE obj) { RB_DEBUG_COUNTER_INC(obj_free); // RUBY_DEBUG_LOG("obj:%p (%s)", (void *)obj, obj_type_name(obj)); gc_event_hook(objspace, RUBY_INTERNAL_EVENT_FREEOBJ, obj); switch (BUILTIN_TYPE(obj)) { case T_NIL: case T_FIXNUM: case T_TRUE: case T_FALSE: rb_bug("obj_free() called for broken object"); break; default: break; } if (FL_TEST(obj, FL_EXIVAR)) { rb_free_generic_ivar((VALUE)obj); FL_UNSET(obj, FL_EXIVAR); } if (FL_TEST(obj, FL_SEEN_OBJ_ID) && !FL_TEST(obj, FL_FINALIZE)) { obj_free_object_id(objspace, obj); } if (RVALUE_WB_UNPROTECTED(obj)) CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj); #if RGENGC_CHECK_MODE #define CHECK(x) if (x(obj) != FALSE) rb_bug("obj_free: " #x "(%s) != FALSE", obj_info(obj)) CHECK(RVALUE_WB_UNPROTECTED); CHECK(RVALUE_MARKED); CHECK(RVALUE_MARKING); CHECK(RVALUE_UNCOLLECTIBLE); #undef CHECK #endif switch (BUILTIN_TYPE(obj)) { case T_OBJECT: if (RANY(obj)->as.basic.flags & ROBJECT_EMBED) { RB_DEBUG_COUNTER_INC(obj_obj_embed); } else if (ROBJ_TRANSIENT_P(obj)) { RB_DEBUG_COUNTER_INC(obj_obj_transient); } else { rb_shape_t *shape = rb_shape_get_shape_by_id(ROBJECT_SHAPE_ID(obj)); if (shape) { VALUE klass = RBASIC_CLASS(obj); // Increment max_iv_count if applicable, used to determine size pool allocation uint32_t num_of_ivs = shape->next_iv_index; if (RCLASS_EXT(klass)->max_iv_count < num_of_ivs) { RCLASS_EXT(klass)->max_iv_count = num_of_ivs; } } xfree(RANY(obj)->as.object.as.heap.ivptr); RB_DEBUG_COUNTER_INC(obj_obj_ptr); } break; case T_MODULE: case T_CLASS: rb_id_table_free(RCLASS_M_TBL(obj)); cc_table_free(objspace, obj, FALSE); if (RCLASS_IV_TBL(obj)) { st_free_table(RCLASS_IV_TBL(obj)); } if (RCLASS_CONST_TBL(obj)) { rb_free_const_table(RCLASS_CONST_TBL(obj)); } if (RCLASS_CVC_TBL(obj)) { rb_id_table_foreach_values(RCLASS_CVC_TBL(obj), cvar_table_free_i, NULL); rb_id_table_free(RCLASS_CVC_TBL(obj)); } rb_class_remove_subclass_head(obj); rb_class_remove_from_module_subclasses(obj); rb_class_remove_from_super_subclasses(obj); if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) { xfree(RCLASS_SUPERCLASSES(obj)); } #if !USE_RVARGC if (RCLASS_EXT(obj)) xfree(RCLASS_EXT(obj)); #endif (void)RB_DEBUG_COUNTER_INC_IF(obj_module_ptr, BUILTIN_TYPE(obj) == T_MODULE); (void)RB_DEBUG_COUNTER_INC_IF(obj_class_ptr, BUILTIN_TYPE(obj) == T_CLASS); break; case T_STRING: rb_str_free(obj); break; case T_ARRAY: rb_ary_free(obj); break; case T_HASH: #if USE_DEBUG_COUNTER switch (RHASH_SIZE(obj)) { case 0: RB_DEBUG_COUNTER_INC(obj_hash_empty); break; case 1: RB_DEBUG_COUNTER_INC(obj_hash_1); break; case 2: RB_DEBUG_COUNTER_INC(obj_hash_2); break; case 3: RB_DEBUG_COUNTER_INC(obj_hash_3); break; case 4: RB_DEBUG_COUNTER_INC(obj_hash_4); break; case 5: case 6: case 7: case 8: RB_DEBUG_COUNTER_INC(obj_hash_5_8); break; default: GC_ASSERT(RHASH_SIZE(obj) > 8); RB_DEBUG_COUNTER_INC(obj_hash_g8); } if (RHASH_AR_TABLE_P(obj)) { if (RHASH_AR_TABLE(obj) == NULL) { RB_DEBUG_COUNTER_INC(obj_hash_null); } else { RB_DEBUG_COUNTER_INC(obj_hash_ar); } } else { RB_DEBUG_COUNTER_INC(obj_hash_st); } #endif if (/* RHASH_AR_TABLE_P(obj) */ !FL_TEST_RAW(obj, RHASH_ST_TABLE_FLAG)) { struct ar_table_struct *tab = RHASH(obj)->as.ar; if (tab) { if (RHASH_TRANSIENT_P(obj)) { RB_DEBUG_COUNTER_INC(obj_hash_transient); } else { ruby_xfree(tab); } } } else { GC_ASSERT(RHASH_ST_TABLE_P(obj)); st_free_table(RHASH(obj)->as.st); } break; case T_REGEXP: if (RANY(obj)->as.regexp.ptr) { onig_free(RANY(obj)->as.regexp.ptr); RB_DEBUG_COUNTER_INC(obj_regexp_ptr); } break; case T_DATA: if (DATA_PTR(obj)) { int free_immediately = FALSE; void (*dfree)(void *); void *data = DATA_PTR(obj); if (RTYPEDDATA_P(obj)) { free_immediately = (RANY(obj)->as.typeddata.type->flags & RUBY_TYPED_FREE_IMMEDIATELY) != 0; dfree = RANY(obj)->as.typeddata.type->function.dfree; if (0 && free_immediately == 0) { /* to expose non-free-immediate T_DATA */ fprintf(stderr, "not immediate -> %s\n", RANY(obj)->as.typeddata.type->wrap_struct_name); } } else { dfree = RANY(obj)->as.data.dfree; } if (dfree) { if (dfree == RUBY_DEFAULT_FREE) { xfree(data); RB_DEBUG_COUNTER_INC(obj_data_xfree); } else if (free_immediately) { (*dfree)(data); RB_DEBUG_COUNTER_INC(obj_data_imm_free); } else { make_zombie(objspace, obj, dfree, data); RB_DEBUG_COUNTER_INC(obj_data_zombie); return FALSE; } } else { RB_DEBUG_COUNTER_INC(obj_data_empty); } } break; case T_MATCH: if (RANY(obj)->as.match.rmatch) { struct rmatch *rm = RANY(obj)->as.match.rmatch; #if USE_DEBUG_COUNTER if (rm->regs.num_regs >= 8) { RB_DEBUG_COUNTER_INC(obj_match_ge8); } else if (rm->regs.num_regs >= 4) { RB_DEBUG_COUNTER_INC(obj_match_ge4); } else if (rm->regs.num_regs >= 1) { RB_DEBUG_COUNTER_INC(obj_match_under4); } #endif onig_region_free(&rm->regs, 0); if (rm->char_offset) xfree(rm->char_offset); xfree(rm); RB_DEBUG_COUNTER_INC(obj_match_ptr); } break; case T_FILE: if (RANY(obj)->as.file.fptr) { make_io_zombie(objspace, obj); RB_DEBUG_COUNTER_INC(obj_file_ptr); return FALSE; } break; case T_RATIONAL: RB_DEBUG_COUNTER_INC(obj_rational); break; case T_COMPLEX: RB_DEBUG_COUNTER_INC(obj_complex); break; case T_MOVED: break; case T_ICLASS: /* Basically , T_ICLASS shares table with the module */ if (RICLASS_OWNS_M_TBL_P(obj)) { /* Method table is not shared for origin iclasses of classes */ rb_id_table_free(RCLASS_M_TBL(obj)); } if (RCLASS_CALLABLE_M_TBL(obj) != NULL) { rb_id_table_free(RCLASS_CALLABLE_M_TBL(obj)); } rb_class_remove_subclass_head(obj); cc_table_free(objspace, obj, FALSE); rb_class_remove_from_module_subclasses(obj); rb_class_remove_from_super_subclasses(obj); #if !USE_RVARGC xfree(RCLASS_EXT(obj)); #endif RB_DEBUG_COUNTER_INC(obj_iclass_ptr); break; case T_FLOAT: RB_DEBUG_COUNTER_INC(obj_float); break; case T_BIGNUM: if (!BIGNUM_EMBED_P(obj) && BIGNUM_DIGITS(obj)) { xfree(BIGNUM_DIGITS(obj)); RB_DEBUG_COUNTER_INC(obj_bignum_ptr); } else { RB_DEBUG_COUNTER_INC(obj_bignum_embed); } break; case T_NODE: UNEXPECTED_NODE(obj_free); break; case T_STRUCT: if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) || RANY(obj)->as.rstruct.as.heap.ptr == NULL) { RB_DEBUG_COUNTER_INC(obj_struct_embed); } else if (RSTRUCT_TRANSIENT_P(obj)) { RB_DEBUG_COUNTER_INC(obj_struct_transient); } else { xfree((void *)RANY(obj)->as.rstruct.as.heap.ptr); RB_DEBUG_COUNTER_INC(obj_struct_ptr); } break; case T_SYMBOL: { rb_gc_free_dsymbol(obj); RB_DEBUG_COUNTER_INC(obj_symbol); } break; case T_IMEMO: switch (imemo_type(obj)) { case imemo_ment: rb_free_method_entry(&RANY(obj)->as.imemo.ment); RB_DEBUG_COUNTER_INC(obj_imemo_ment); break; case imemo_iseq: rb_iseq_free(&RANY(obj)->as.imemo.iseq); RB_DEBUG_COUNTER_INC(obj_imemo_iseq); break; case imemo_env: GC_ASSERT(VM_ENV_ESCAPED_P(RANY(obj)->as.imemo.env.ep)); xfree((VALUE *)RANY(obj)->as.imemo.env.env); RB_DEBUG_COUNTER_INC(obj_imemo_env); break; case imemo_tmpbuf: xfree(RANY(obj)->as.imemo.alloc.ptr); RB_DEBUG_COUNTER_INC(obj_imemo_tmpbuf); break; case imemo_ast: rb_ast_free(&RANY(obj)->as.imemo.ast); RB_DEBUG_COUNTER_INC(obj_imemo_ast); break; case imemo_cref: RB_DEBUG_COUNTER_INC(obj_imemo_cref); break; case imemo_svar: RB_DEBUG_COUNTER_INC(obj_imemo_svar); break; case imemo_throw_data: RB_DEBUG_COUNTER_INC(obj_imemo_throw_data); break; case imemo_ifunc: RB_DEBUG_COUNTER_INC(obj_imemo_ifunc); break; case imemo_memo: RB_DEBUG_COUNTER_INC(obj_imemo_memo); break; case imemo_parser_strterm: RB_DEBUG_COUNTER_INC(obj_imemo_parser_strterm); break; case imemo_callinfo: RB_DEBUG_COUNTER_INC(obj_imemo_callinfo); break; case imemo_callcache: RB_DEBUG_COUNTER_INC(obj_imemo_callcache); break; case imemo_constcache: RB_DEBUG_COUNTER_INC(obj_imemo_constcache); break; } return TRUE; default: rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE, BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags); } if (FL_TEST(obj, FL_FINALIZE)) { make_zombie(objspace, obj, 0, 0); return FALSE; } else { return TRUE; } } #define OBJ_ID_INCREMENT (sizeof(RVALUE) / 2) #define OBJ_ID_INITIAL (OBJ_ID_INCREMENT * 2) static int object_id_cmp(st_data_t x, st_data_t y) { if (RB_BIGNUM_TYPE_P(x)) { return !rb_big_eql(x, y); } else { return x != y; } } static st_index_t object_id_hash(st_data_t n) { if (RB_BIGNUM_TYPE_P(n)) { return FIX2LONG(rb_big_hash(n)); } else { return st_numhash(n); } } static const struct st_hash_type object_id_hash_type = { object_id_cmp, object_id_hash, }; void Init_heap(void) { rb_objspace_t *objspace = &rb_objspace; #if defined(INIT_HEAP_PAGE_ALLOC_USE_MMAP) /* Need to determine if we can use mmap at runtime. */ heap_page_alloc_use_mmap = INIT_HEAP_PAGE_ALLOC_USE_MMAP; #endif objspace->next_object_id = INT2FIX(OBJ_ID_INITIAL); objspace->id_to_obj_tbl = st_init_table(&object_id_hash_type); objspace->obj_to_id_tbl = st_init_numtable(); #if RGENGC_ESTIMATE_OLDMALLOC objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min; #endif heap_add_pages(objspace, &size_pools[0], SIZE_POOL_EDEN_HEAP(&size_pools[0]), gc_params.heap_init_slots / HEAP_PAGE_OBJ_LIMIT); /* Give other size pools allocatable pages. */ for (int i = 1; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; int multiple = size_pool->slot_size / BASE_SLOT_SIZE; size_pool->allocatable_pages = gc_params.heap_init_slots * multiple / HEAP_PAGE_OBJ_LIMIT; } heap_pages_expand_sorted(objspace); init_mark_stack(&objspace->mark_stack); objspace->profile.invoke_time = getrusage_time(); finalizer_table = st_init_numtable(); } void Init_gc_stress(void) { rb_objspace_t *objspace = &rb_objspace; gc_stress_set(objspace, ruby_initial_gc_stress); } typedef int each_obj_callback(void *, void *, size_t, void *); static void objspace_each_objects(rb_objspace_t *objspace, each_obj_callback *callback, void *data, bool protected); static void objspace_reachable_objects_from_root(rb_objspace_t *, void (func)(const char *, VALUE, void *), void *); struct each_obj_data { rb_objspace_t *objspace; bool reenable_incremental; each_obj_callback *callback; void *data; struct heap_page **pages[SIZE_POOL_COUNT]; size_t pages_counts[SIZE_POOL_COUNT]; }; static VALUE objspace_each_objects_ensure(VALUE arg) { struct each_obj_data *data = (struct each_obj_data *)arg; rb_objspace_t *objspace = data->objspace; /* Reenable incremental GC */ if (data->reenable_incremental) { objspace->flags.dont_incremental = FALSE; } for (int i = 0; i < SIZE_POOL_COUNT; i++) { struct heap_page **pages = data->pages[i]; /* pages could be NULL if an error was raised during setup (e.g. * malloc failed due to out of memory). */ if (pages) { free(pages); } } return Qnil; } static VALUE objspace_each_objects_try(VALUE arg) { struct each_obj_data *data = (struct each_obj_data *)arg; rb_objspace_t *objspace = data->objspace; /* Copy pages from all size_pools to their respective buffers. */ for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; size_t size = size_mul_or_raise(SIZE_POOL_EDEN_HEAP(size_pool)->total_pages, sizeof(struct heap_page *), rb_eRuntimeError); struct heap_page **pages = malloc(size); if (!pages) rb_memerror(); /* Set up pages buffer by iterating over all pages in the current eden * heap. This will be a snapshot of the state of the heap before we * call the callback over each page that exists in this buffer. Thus it * is safe for the callback to allocate objects without possibly entering * an infinite loop. */ struct heap_page *page = 0; size_t pages_count = 0; ccan_list_for_each(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node) { pages[pages_count] = page; pages_count++; } data->pages[i] = pages; data->pages_counts[i] = pages_count; GC_ASSERT(pages_count == SIZE_POOL_EDEN_HEAP(size_pool)->total_pages); } for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; size_t pages_count = data->pages_counts[i]; struct heap_page **pages = data->pages[i]; struct heap_page *page = ccan_list_top(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, struct heap_page, page_node); for (size_t i = 0; i < pages_count; i++) { /* If we have reached the end of the linked list then there are no * more pages, so break. */ if (page == NULL) break; /* If this page does not match the one in the buffer, then move to * the next page in the buffer. */ if (pages[i] != page) continue; uintptr_t pstart = (uintptr_t)page->start; uintptr_t pend = pstart + (page->total_slots * size_pool->slot_size); if (!__asan_region_is_poisoned((void *)pstart, pend - pstart) && (*data->callback)((void *)pstart, (void *)pend, size_pool->slot_size, data->data)) { break; } page = ccan_list_next(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node); } } return Qnil; } /* * rb_objspace_each_objects() is special C API to walk through * Ruby object space. This C API is too difficult to use it. * To be frank, you should not use it. Or you need to read the * source code of this function and understand what this function does. * * 'callback' will be called several times (the number of heap page, * at current implementation) with: * vstart: a pointer to the first living object of the heap_page. * vend: a pointer to next to the valid heap_page area. * stride: a distance to next VALUE. * * If callback() returns non-zero, the iteration will be stopped. * * This is a sample callback code to iterate liveness objects: * * int * sample_callback(void *vstart, void *vend, int stride, void *data) { * VALUE v = (VALUE)vstart; * for (; v != (VALUE)vend; v += stride) { * if (RBASIC(v)->flags) { // liveness check * // do something with live object 'v' * } * return 0; // continue to iteration * } * * Note: 'vstart' is not a top of heap_page. This point the first * living object to grasp at least one object to avoid GC issue. * This means that you can not walk through all Ruby object page * including freed object page. * * Note: On this implementation, 'stride' is the same as sizeof(RVALUE). * However, there are possibilities to pass variable values with * 'stride' with some reasons. You must use stride instead of * use some constant value in the iteration. */ void rb_objspace_each_objects(each_obj_callback *callback, void *data) { objspace_each_objects(&rb_objspace, callback, data, TRUE); } static void objspace_each_objects(rb_objspace_t *objspace, each_obj_callback *callback, void *data, bool protected) { /* Disable incremental GC */ bool reenable_incremental = FALSE; if (protected) { reenable_incremental = !objspace->flags.dont_incremental; gc_rest(objspace); objspace->flags.dont_incremental = TRUE; } struct each_obj_data each_obj_data = { .objspace = objspace, .reenable_incremental = reenable_incremental, .callback = callback, .data = data, .pages = {NULL}, .pages_counts = {0}, }; rb_ensure(objspace_each_objects_try, (VALUE)&each_obj_data, objspace_each_objects_ensure, (VALUE)&each_obj_data); } void rb_objspace_each_objects_without_setup(each_obj_callback *callback, void *data) { objspace_each_objects(&rb_objspace, callback, data, FALSE); } struct os_each_struct { size_t num; VALUE of; }; static int internal_object_p(VALUE obj) { RVALUE *p = (RVALUE *)obj; void *ptr = asan_unpoison_object_temporary(obj); bool used_p = p->as.basic.flags; if (used_p) { switch (BUILTIN_TYPE(obj)) { case T_NODE: UNEXPECTED_NODE(internal_object_p); break; case T_NONE: case T_MOVED: case T_IMEMO: case T_ICLASS: case T_ZOMBIE: break; case T_CLASS: if (!p->as.basic.klass) break; if (FL_TEST(obj, FL_SINGLETON)) { return rb_singleton_class_internal_p(obj); } return 0; default: if (!p->as.basic.klass) break; return 0; } } if (ptr || ! used_p) { asan_poison_object(obj); } return 1; } int rb_objspace_internal_object_p(VALUE obj) { return internal_object_p(obj); } static int os_obj_of_i(void *vstart, void *vend, size_t stride, void *data) { struct os_each_struct *oes = (struct os_each_struct *)data; VALUE v = (VALUE)vstart; for (; v != (VALUE)vend; v += stride) { if (!internal_object_p(v)) { if (!oes->of || rb_obj_is_kind_of(v, oes->of)) { if (!rb_multi_ractor_p() || rb_ractor_shareable_p(v)) { rb_yield(v); oes->num++; } } } } return 0; } static VALUE os_obj_of(VALUE of) { struct os_each_struct oes; oes.num = 0; oes.of = of; rb_objspace_each_objects(os_obj_of_i, &oes); return SIZET2NUM(oes.num); } /* * call-seq: * ObjectSpace.each_object([module]) {|obj| ... } -> integer * ObjectSpace.each_object([module]) -> an_enumerator * * Calls the block once for each living, nonimmediate object in this * Ruby process. If module is specified, calls the block * for only those classes or modules that match (or are a subclass of) * module. Returns the number of objects found. Immediate * objects (Fixnums, Symbols * true, false, and nil) are * never returned. In the example below, #each_object returns both * the numbers we defined and several constants defined in the Math * module. * * If no block is given, an enumerator is returned instead. * * a = 102.7 * b = 95 # Won't be returned * c = 12345678987654321 * count = ObjectSpace.each_object(Numeric) {|x| p x } * puts "Total count: #{count}" * * produces: * * 12345678987654321 * 102.7 * 2.71828182845905 * 3.14159265358979 * 2.22044604925031e-16 * 1.7976931348623157e+308 * 2.2250738585072e-308 * Total count: 7 * */ static VALUE os_each_obj(int argc, VALUE *argv, VALUE os) { VALUE of; of = (!rb_check_arity(argc, 0, 1) ? 0 : argv[0]); RETURN_ENUMERATOR(os, 1, &of); return os_obj_of(of); } /* * call-seq: * ObjectSpace.undefine_finalizer(obj) * * Removes all finalizers for obj. * */ static VALUE undefine_final(VALUE os, VALUE obj) { return rb_undefine_finalizer(obj); } VALUE rb_undefine_finalizer(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; st_data_t data = obj; rb_check_frozen(obj); st_delete(finalizer_table, &data, 0); FL_UNSET(obj, FL_FINALIZE); return obj; } static void should_be_callable(VALUE block) { if (!rb_obj_respond_to(block, idCall, TRUE)) { rb_raise(rb_eArgError, "wrong type argument %"PRIsVALUE" (should be callable)", rb_obj_class(block)); } } static void should_be_finalizable(VALUE obj) { if (!FL_ABLE(obj)) { rb_raise(rb_eArgError, "cannot define finalizer for %s", rb_obj_classname(obj)); } rb_check_frozen(obj); } /* * call-seq: * ObjectSpace.define_finalizer(obj, aProc=proc()) * * Adds aProc as a finalizer, to be called after obj * was destroyed. The object ID of the obj will be passed * as an argument to aProc. If aProc is a lambda or * method, make sure it can be called with a single argument. * * The return value is an array [0, aProc]. * * The two recommended patterns are to either create the finaliser proc * in a non-instance method where it can safely capture the needed state, * or to use a custom callable object that stores the needed state * explicitly as instance variables. * * class Foo * def initialize(data_needed_for_finalization) * ObjectSpace.define_finalizer(self, self.class.create_finalizer(data_needed_for_finalization)) * end * * def self.create_finalizer(data_needed_for_finalization) * proc { * puts "finalizing #{data_needed_for_finalization}" * } * end * end * * class Bar * class Remover * def initialize(data_needed_for_finalization) * @data_needed_for_finalization = data_needed_for_finalization * end * * def call(id) * puts "finalizing #{@data_needed_for_finalization}" * end * end * * def initialize(data_needed_for_finalization) * ObjectSpace.define_finalizer(self, Remover.new(data_needed_for_finalization)) * end * end * * Note that if your finalizer references the object to be * finalized it will never be run on GC, although it will still be * run at exit. You will get a warning if you capture the object * to be finalized as the receiver of the finalizer. * * class CapturesSelf * def initialize(name) * ObjectSpace.define_finalizer(self, proc { * # this finalizer will only be run on exit * puts "finalizing #{name}" * }) * end * end * * Also note that finalization can be unpredictable and is never guaranteed * to be run except on exit. */ static VALUE define_final(int argc, VALUE *argv, VALUE os) { VALUE obj, block; rb_scan_args(argc, argv, "11", &obj, &block); should_be_finalizable(obj); if (argc == 1) { block = rb_block_proc(); } else { should_be_callable(block); } if (rb_callable_receiver(block) == obj) { rb_warn("finalizer references object to be finalized"); } return define_final0(obj, block); } static VALUE define_final0(VALUE obj, VALUE block) { rb_objspace_t *objspace = &rb_objspace; VALUE table; st_data_t data; RBASIC(obj)->flags |= FL_FINALIZE; if (st_lookup(finalizer_table, obj, &data)) { table = (VALUE)data; /* avoid duplicate block, table is usually small */ { long len = RARRAY_LEN(table); long i; for (i = 0; i < len; i++) { VALUE recv = RARRAY_AREF(table, i); if (rb_equal(recv, block)) { block = recv; goto end; } } } rb_ary_push(table, block); } else { table = rb_ary_new3(1, block); RBASIC_CLEAR_CLASS(table); st_add_direct(finalizer_table, obj, table); } end: block = rb_ary_new3(2, INT2FIX(0), block); OBJ_FREEZE(block); return block; } VALUE rb_define_finalizer(VALUE obj, VALUE block) { should_be_finalizable(obj); should_be_callable(block); return define_final0(obj, block); } void rb_gc_copy_finalizer(VALUE dest, VALUE obj) { rb_objspace_t *objspace = &rb_objspace; VALUE table; st_data_t data; if (!FL_TEST(obj, FL_FINALIZE)) return; if (st_lookup(finalizer_table, obj, &data)) { table = (VALUE)data; st_insert(finalizer_table, dest, table); } FL_SET(dest, FL_FINALIZE); } static VALUE run_single_final(VALUE cmd, VALUE objid) { return rb_check_funcall(cmd, idCall, 1, &objid); } static void warn_exception_in_finalizer(rb_execution_context_t *ec, VALUE final) { if (final != Qundef && !NIL_P(ruby_verbose)) { VALUE errinfo = ec->errinfo; rb_warn("Exception in finalizer %+"PRIsVALUE, final); rb_ec_error_print(ec, errinfo); } } static void run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table) { long i; enum ruby_tag_type state; volatile struct { VALUE errinfo; VALUE objid; VALUE final; rb_control_frame_t *cfp; long finished; } saved; rb_execution_context_t * volatile ec = GET_EC(); #define RESTORE_FINALIZER() (\ ec->cfp = saved.cfp, \ ec->errinfo = saved.errinfo) saved.errinfo = ec->errinfo; saved.objid = rb_obj_id(obj); saved.cfp = ec->cfp; saved.finished = 0; saved.final = Qundef; EC_PUSH_TAG(ec); state = EC_EXEC_TAG(); if (state != TAG_NONE) { ++saved.finished; /* skip failed finalizer */ warn_exception_in_finalizer(ec, ATOMIC_VALUE_EXCHANGE(saved.final, Qundef)); } for (i = saved.finished; RESTORE_FINALIZER(), idfree) { RZOMBIE(zombie)->dfree(RZOMBIE(zombie)->data); } key = (st_data_t)zombie; if (st_delete(finalizer_table, &key, &table)) { run_finalizer(objspace, zombie, (VALUE)table); } } static void finalize_list(rb_objspace_t *objspace, VALUE zombie) { while (zombie) { VALUE next_zombie; struct heap_page *page; asan_unpoison_object(zombie, false); next_zombie = RZOMBIE(zombie)->next; page = GET_HEAP_PAGE(zombie); run_final(objspace, zombie); RB_VM_LOCK_ENTER(); { GC_ASSERT(BUILTIN_TYPE(zombie) == T_ZOMBIE); if (FL_TEST(zombie, FL_SEEN_OBJ_ID)) { obj_free_object_id(objspace, zombie); } GC_ASSERT(heap_pages_final_slots > 0); GC_ASSERT(page->final_slots > 0); heap_pages_final_slots--; page->final_slots--; page->free_slots++; heap_page_add_freeobj(objspace, page, zombie); objspace->profile.total_freed_objects++; } RB_VM_LOCK_LEAVE(); zombie = next_zombie; } } static void finalize_deferred_heap_pages(rb_objspace_t *objspace) { VALUE zombie; while ((zombie = ATOMIC_VALUE_EXCHANGE(heap_pages_deferred_final, 0)) != 0) { finalize_list(objspace, zombie); } } static void finalize_deferred(rb_objspace_t *objspace) { rb_execution_context_t *ec = GET_EC(); ec->interrupt_mask |= PENDING_INTERRUPT_MASK; finalize_deferred_heap_pages(objspace); ec->interrupt_mask &= ~PENDING_INTERRUPT_MASK; } static void gc_finalize_deferred(void *dmy) { rb_objspace_t *objspace = dmy; if (ATOMIC_EXCHANGE(finalizing, 1)) return; finalize_deferred(objspace); ATOMIC_SET(finalizing, 0); } static void gc_finalize_deferred_register(rb_objspace_t *objspace) { if (rb_postponed_job_register_one(0, gc_finalize_deferred, objspace) == 0) { rb_bug("gc_finalize_deferred_register: can't register finalizer."); } } struct force_finalize_list { VALUE obj; VALUE table; struct force_finalize_list *next; }; static int force_chain_object(st_data_t key, st_data_t val, st_data_t arg) { struct force_finalize_list **prev = (struct force_finalize_list **)arg; struct force_finalize_list *curr = ALLOC(struct force_finalize_list); curr->obj = key; curr->table = val; curr->next = *prev; *prev = curr; return ST_CONTINUE; } bool rb_obj_is_main_ractor(VALUE gv); void rb_objspace_call_finalizer(rb_objspace_t *objspace) { size_t i; #if RGENGC_CHECK_MODE >= 2 gc_verify_internal_consistency(objspace); #endif gc_rest(objspace); if (ATOMIC_EXCHANGE(finalizing, 1)) return; /* run finalizers */ finalize_deferred(objspace); GC_ASSERT(heap_pages_deferred_final == 0); gc_rest(objspace); /* prohibit incremental GC */ objspace->flags.dont_incremental = 1; /* force to run finalizer */ while (finalizer_table->num_entries) { struct force_finalize_list *list = 0; st_foreach(finalizer_table, force_chain_object, (st_data_t)&list); while (list) { struct force_finalize_list *curr = list; st_data_t obj = (st_data_t)curr->obj; run_finalizer(objspace, curr->obj, curr->table); st_delete(finalizer_table, &obj, 0); list = curr->next; xfree(curr); } } /* prohibit GC because force T_DATA finalizers can break an object graph consistency */ dont_gc_on(); /* running data/file finalizers are part of garbage collection */ unsigned int lock_lev; gc_enter(objspace, gc_enter_event_finalizer, &lock_lev); /* run data/file object's finalizers */ for (i = 0; i < heap_allocated_pages; i++) { struct heap_page *page = heap_pages_sorted[i]; short stride = page->slot_size; uintptr_t p = (uintptr_t)page->start; uintptr_t pend = p + page->total_slots * stride; for (; p < pend; p += stride) { VALUE vp = (VALUE)p; void *poisoned = asan_unpoison_object_temporary(vp); switch (BUILTIN_TYPE(vp)) { case T_DATA: if (!DATA_PTR(p) || !RANY(p)->as.data.dfree) break; if (rb_obj_is_thread(vp)) break; if (rb_obj_is_mutex(vp)) break; if (rb_obj_is_fiber(vp)) break; if (rb_obj_is_main_ractor(vp)) break; if (RTYPEDDATA_P(vp)) { RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree; } RANY(p)->as.free.flags = 0; if (RANY(p)->as.data.dfree == RUBY_DEFAULT_FREE) { xfree(DATA_PTR(p)); } else if (RANY(p)->as.data.dfree) { make_zombie(objspace, vp, RANY(p)->as.data.dfree, RANY(p)->as.data.data); } break; case T_FILE: if (RANY(p)->as.file.fptr) { make_io_zombie(objspace, vp); } break; default: break; } if (poisoned) { GC_ASSERT(BUILTIN_TYPE(vp) == T_NONE); asan_poison_object(vp); } } } gc_exit(objspace, gc_enter_event_finalizer, &lock_lev); finalize_deferred_heap_pages(objspace); st_free_table(finalizer_table); finalizer_table = 0; ATOMIC_SET(finalizing, 0); } static inline int is_swept_object(rb_objspace_t *objspace, VALUE ptr) { struct heap_page *page = GET_HEAP_PAGE(ptr); return page->flags.before_sweep ? FALSE : TRUE; } /* garbage objects will be collected soon. */ static inline int is_garbage_object(rb_objspace_t *objspace, VALUE ptr) { if (!is_lazy_sweeping(objspace) || is_swept_object(objspace, ptr) || MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(ptr), ptr)) { return FALSE; } else { return TRUE; } } static inline int is_live_object(rb_objspace_t *objspace, VALUE ptr) { switch (BUILTIN_TYPE(ptr)) { case T_NONE: case T_MOVED: case T_ZOMBIE: return FALSE; default: break; } if (!is_garbage_object(objspace, ptr)) { return TRUE; } else { return FALSE; } } static inline int is_markable_object(rb_objspace_t *objspace, VALUE obj) { if (rb_special_const_p(obj)) return FALSE; /* special const is not markable */ check_rvalue_consistency(obj); return TRUE; } int rb_objspace_markable_object_p(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; return is_markable_object(objspace, obj) && is_live_object(objspace, obj); } int rb_objspace_garbage_object_p(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; return is_garbage_object(objspace, obj); } static VALUE id2ref_obj_tbl(rb_objspace_t *objspace, VALUE objid) { VALUE orig; if (st_lookup(objspace->id_to_obj_tbl, objid, &orig)) { return orig; } else { return Qundef; } } /* * call-seq: * ObjectSpace._id2ref(object_id) -> an_object * * Converts an object id to a reference to the object. May not be * called on an object id passed as a parameter to a finalizer. * * s = "I am a string" #=> "I am a string" * r = ObjectSpace._id2ref(s.object_id) #=> "I am a string" * r == s #=> true * * On multi-ractor mode, if the object is not shareable, it raises * RangeError. */ static VALUE id2ref(VALUE objid) { #if SIZEOF_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULONG(x) #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULL(x) #endif rb_objspace_t *objspace = &rb_objspace; VALUE ptr; VALUE orig; void *p0; objid = rb_to_int(objid); if (FIXNUM_P(objid) || rb_big_size(objid) <= SIZEOF_VOIDP) { ptr = NUM2PTR(objid); if (ptr == Qtrue) return Qtrue; if (ptr == Qfalse) return Qfalse; if (NIL_P(ptr)) return Qnil; if (FIXNUM_P(ptr)) return (VALUE)ptr; if (FLONUM_P(ptr)) return (VALUE)ptr; ptr = obj_id_to_ref(objid); if ((ptr % sizeof(RVALUE)) == (4 << 2)) { ID symid = ptr / sizeof(RVALUE); p0 = (void *)ptr; if (!rb_static_id_valid_p(symid)) rb_raise(rb_eRangeError, "%p is not symbol id value", p0); return ID2SYM(symid); } } if ((orig = id2ref_obj_tbl(objspace, objid)) != Qundef && is_live_object(objspace, orig)) { if (!rb_multi_ractor_p() || rb_ractor_shareable_p(orig)) { return orig; } else { rb_raise(rb_eRangeError, "%+"PRIsVALUE" is id of the unshareable object on multi-ractor", rb_int2str(objid, 10)); } } if (rb_int_ge(objid, objspace->next_object_id)) { rb_raise(rb_eRangeError, "%+"PRIsVALUE" is not id value", rb_int2str(objid, 10)); } else { rb_raise(rb_eRangeError, "%+"PRIsVALUE" is recycled object", rb_int2str(objid, 10)); } } static VALUE os_id2ref(VALUE os, VALUE objid) { return id2ref(objid); } static VALUE rb_find_object_id(VALUE obj, VALUE (*get_heap_object_id)(VALUE)) { if (STATIC_SYM_P(obj)) { return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG; } else if (FLONUM_P(obj)) { #if SIZEOF_LONG == SIZEOF_VOIDP return LONG2NUM((SIGNED_VALUE)obj); #else return LL2NUM((SIGNED_VALUE)obj); #endif } else if (SPECIAL_CONST_P(obj)) { return LONG2NUM((SIGNED_VALUE)obj); } return get_heap_object_id(obj); } static VALUE cached_object_id(VALUE obj) { VALUE id; rb_objspace_t *objspace = &rb_objspace; RB_VM_LOCK_ENTER(); if (st_lookup(objspace->obj_to_id_tbl, (st_data_t)obj, &id)) { GC_ASSERT(FL_TEST(obj, FL_SEEN_OBJ_ID)); } else { GC_ASSERT(!FL_TEST(obj, FL_SEEN_OBJ_ID)); id = objspace->next_object_id; objspace->next_object_id = rb_int_plus(id, INT2FIX(OBJ_ID_INCREMENT)); VALUE already_disabled = rb_gc_disable_no_rest(); st_insert(objspace->obj_to_id_tbl, (st_data_t)obj, (st_data_t)id); st_insert(objspace->id_to_obj_tbl, (st_data_t)id, (st_data_t)obj); if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace); FL_SET(obj, FL_SEEN_OBJ_ID); } RB_VM_LOCK_LEAVE(); return id; } static VALUE nonspecial_obj_id_(VALUE obj) { return nonspecial_obj_id(obj); } VALUE rb_memory_id(VALUE obj) { return rb_find_object_id(obj, nonspecial_obj_id_); } /* * Document-method: __id__ * Document-method: object_id * * call-seq: * obj.__id__ -> integer * obj.object_id -> integer * * Returns an integer identifier for +obj+. * * The same number will be returned on all calls to +object_id+ for a given * object, and no two active objects will share an id. * * Note: that some objects of builtin classes are reused for optimization. * This is the case for immediate values and frozen string literals. * * BasicObject implements +__id__+, Kernel implements +object_id+. * * Immediate values are not passed by reference but are passed by value: * +nil+, +true+, +false+, Fixnums, Symbols, and some Floats. * * Object.new.object_id == Object.new.object_id # => false * (21 * 2).object_id == (21 * 2).object_id # => true * "hello".object_id == "hello".object_id # => false * "hi".freeze.object_id == "hi".freeze.object_id # => true */ VALUE rb_obj_id(VALUE obj) { /* * 32-bit VALUE space * MSB ------------------------ LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol ssssssssssssssssssssssss00001110 * object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE)) * fixnum fffffffffffffffffffffffffffffff1 * * object_id space * LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4) * object oooooooooooooooooooooooooooooo0 o...o % A = 0 * fixnum fffffffffffffffffffffffffffffff1 bignum if required * * where A = sizeof(RVALUE)/4 * * sizeof(RVALUE) is * 20 if 32-bit, double is 4-byte aligned * 24 if 32-bit, double is 8-byte aligned * 40 if 64-bit */ return rb_find_object_id(obj, cached_object_id); } static enum rb_id_table_iterator_result cc_table_memsize_i(VALUE ccs_ptr, void *data_ptr) { size_t *total_size = data_ptr; struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr; *total_size += sizeof(*ccs); *total_size += sizeof(ccs->entries[0]) * ccs->capa; return ID_TABLE_CONTINUE; } static size_t cc_table_memsize(struct rb_id_table *cc_table) { size_t total = rb_id_table_memsize(cc_table); rb_id_table_foreach_values(cc_table, cc_table_memsize_i, &total); return total; } static size_t obj_memsize_of(VALUE obj, int use_all_types) { size_t size = 0; if (SPECIAL_CONST_P(obj)) { return 0; } if (FL_TEST(obj, FL_EXIVAR)) { size += rb_generic_ivar_memsize(obj); } switch (BUILTIN_TYPE(obj)) { case T_OBJECT: if (!(RBASIC(obj)->flags & ROBJECT_EMBED)) { size += ROBJECT_NUMIV(obj) * sizeof(VALUE); } break; case T_MODULE: case T_CLASS: if (RCLASS_EXT(obj)) { if (RCLASS_M_TBL(obj)) { size += rb_id_table_memsize(RCLASS_M_TBL(obj)); } if (RCLASS_IV_TBL(obj)) { size += st_memsize(RCLASS_IV_TBL(obj)); } if (RCLASS_CVC_TBL(obj)) { size += rb_id_table_memsize(RCLASS_CVC_TBL(obj)); } if (RCLASS_EXT(obj)->iv_tbl) { size += st_memsize(RCLASS_EXT(obj)->iv_tbl); } if (RCLASS_EXT(obj)->const_tbl) { size += rb_id_table_memsize(RCLASS_EXT(obj)->const_tbl); } if (RCLASS_CC_TBL(obj)) { size += cc_table_memsize(RCLASS_CC_TBL(obj)); } if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) { size += (RCLASS_SUPERCLASS_DEPTH(obj) + 1) * sizeof(VALUE); } #if !USE_RVARGC size += sizeof(rb_classext_t); #endif } break; case T_ICLASS: if (RICLASS_OWNS_M_TBL_P(obj)) { if (RCLASS_M_TBL(obj)) { size += rb_id_table_memsize(RCLASS_M_TBL(obj)); } } if (RCLASS_EXT(obj) && RCLASS_CC_TBL(obj)) { size += cc_table_memsize(RCLASS_CC_TBL(obj)); } break; case T_STRING: size += rb_str_memsize(obj); break; case T_ARRAY: size += rb_ary_memsize(obj); break; case T_HASH: if (RHASH_AR_TABLE_P(obj)) { if (RHASH_AR_TABLE(obj) != NULL) { size_t rb_hash_ar_table_size(void); size += rb_hash_ar_table_size(); } } else { VM_ASSERT(RHASH_ST_TABLE(obj) != NULL); size += st_memsize(RHASH_ST_TABLE(obj)); } break; case T_REGEXP: if (RREGEXP_PTR(obj)) { size += onig_memsize(RREGEXP_PTR(obj)); } break; case T_DATA: if (use_all_types) size += rb_objspace_data_type_memsize(obj); break; case T_MATCH: if (RMATCH(obj)->rmatch) { struct rmatch *rm = RMATCH(obj)->rmatch; size += onig_region_memsize(&rm->regs); size += sizeof(struct rmatch_offset) * rm->char_offset_num_allocated; size += sizeof(struct rmatch); } break; case T_FILE: if (RFILE(obj)->fptr) { size += rb_io_memsize(RFILE(obj)->fptr); } break; case T_RATIONAL: case T_COMPLEX: break; case T_IMEMO: size += imemo_memsize(obj); break; case T_FLOAT: case T_SYMBOL: break; case T_BIGNUM: if (!(RBASIC(obj)->flags & BIGNUM_EMBED_FLAG) && BIGNUM_DIGITS(obj)) { size += BIGNUM_LEN(obj) * sizeof(BDIGIT); } break; case T_NODE: UNEXPECTED_NODE(obj_memsize_of); break; case T_STRUCT: if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 && RSTRUCT(obj)->as.heap.ptr) { size += sizeof(VALUE) * RSTRUCT_LEN(obj); } break; case T_ZOMBIE: case T_MOVED: break; default: rb_bug("objspace/memsize_of(): unknown data type 0x%x(%p)", BUILTIN_TYPE(obj), (void*)obj); } return size + GET_HEAP_PAGE(obj)->slot_size; } size_t rb_obj_memsize_of(VALUE obj) { return obj_memsize_of(obj, TRUE); } static int set_zero(st_data_t key, st_data_t val, st_data_t arg) { VALUE k = (VALUE)key; VALUE hash = (VALUE)arg; rb_hash_aset(hash, k, INT2FIX(0)); return ST_CONTINUE; } static VALUE type_sym(size_t type) { switch (type) { #define COUNT_TYPE(t) case (t): return ID2SYM(rb_intern(#t)); break; COUNT_TYPE(T_NONE); COUNT_TYPE(T_OBJECT); COUNT_TYPE(T_CLASS); COUNT_TYPE(T_MODULE); COUNT_TYPE(T_FLOAT); COUNT_TYPE(T_STRING); COUNT_TYPE(T_REGEXP); COUNT_TYPE(T_ARRAY); COUNT_TYPE(T_HASH); COUNT_TYPE(T_STRUCT); COUNT_TYPE(T_BIGNUM); COUNT_TYPE(T_FILE); COUNT_TYPE(T_DATA); COUNT_TYPE(T_MATCH); COUNT_TYPE(T_COMPLEX); COUNT_TYPE(T_RATIONAL); COUNT_TYPE(T_NIL); COUNT_TYPE(T_TRUE); COUNT_TYPE(T_FALSE); COUNT_TYPE(T_SYMBOL); COUNT_TYPE(T_FIXNUM); COUNT_TYPE(T_IMEMO); COUNT_TYPE(T_UNDEF); COUNT_TYPE(T_NODE); COUNT_TYPE(T_ICLASS); COUNT_TYPE(T_ZOMBIE); COUNT_TYPE(T_MOVED); #undef COUNT_TYPE default: return SIZET2NUM(type); break; } } /* * call-seq: * ObjectSpace.count_objects([result_hash]) -> hash * * Counts all objects grouped by type. * * It returns a hash, such as: * { * :TOTAL=>10000, * :FREE=>3011, * :T_OBJECT=>6, * :T_CLASS=>404, * # ... * } * * The contents of the returned hash are implementation specific. * It may be changed in future. * * The keys starting with +:T_+ means live objects. * For example, +:T_ARRAY+ is the number of arrays. * +:FREE+ means object slots which is not used now. * +:TOTAL+ means sum of above. * * If the optional argument +result_hash+ is given, * it is overwritten and returned. This is intended to avoid probe effect. * * h = {} * ObjectSpace.count_objects(h) * puts h * # => { :TOTAL=>10000, :T_CLASS=>158280, :T_MODULE=>20672, :T_STRING=>527249 } * * This method is only expected to work on C Ruby. * */ static VALUE count_objects(int argc, VALUE *argv, VALUE os) { rb_objspace_t *objspace = &rb_objspace; size_t counts[T_MASK+1]; size_t freed = 0; size_t total = 0; size_t i; VALUE hash = Qnil; if (rb_check_arity(argc, 0, 1) == 1) { hash = argv[0]; if (!RB_TYPE_P(hash, T_HASH)) rb_raise(rb_eTypeError, "non-hash given"); } for (i = 0; i <= T_MASK; i++) { counts[i] = 0; } for (i = 0; i < heap_allocated_pages; i++) { struct heap_page *page = heap_pages_sorted[i]; short stride = page->slot_size; uintptr_t p = (uintptr_t)page->start; uintptr_t pend = p + page->total_slots * stride; for (;p < pend; p += stride) { VALUE vp = (VALUE)p; GC_ASSERT((NUM_IN_PAGE(vp) * BASE_SLOT_SIZE) % page->slot_size == 0); void *poisoned = asan_unpoison_object_temporary(vp); if (RANY(p)->as.basic.flags) { counts[BUILTIN_TYPE(vp)]++; } else { freed++; } if (poisoned) { GC_ASSERT(BUILTIN_TYPE(vp) == T_NONE); asan_poison_object(vp); } } total += page->total_slots; } if (NIL_P(hash)) { hash = rb_hash_new(); } else if (!RHASH_EMPTY_P(hash)) { rb_hash_stlike_foreach(hash, set_zero, hash); } rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total)); rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed)); for (i = 0; i <= T_MASK; i++) { VALUE type = type_sym(i); if (counts[i]) rb_hash_aset(hash, type, SIZET2NUM(counts[i])); } return hash; } /* ------------------------ Garbage Collection ------------------------ */ /* Sweeping */ static size_t objspace_available_slots(rb_objspace_t *objspace) { size_t total_slots = 0; for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; total_slots += SIZE_POOL_EDEN_HEAP(size_pool)->total_slots; total_slots += SIZE_POOL_TOMB_HEAP(size_pool)->total_slots; } return total_slots; } static size_t objspace_live_slots(rb_objspace_t *objspace) { return (objspace->total_allocated_objects - objspace->profile.total_freed_objects) - heap_pages_final_slots; } static size_t objspace_free_slots(rb_objspace_t *objspace) { return objspace_available_slots(objspace) - objspace_live_slots(objspace) - heap_pages_final_slots; } static void gc_setup_mark_bits(struct heap_page *page) { /* copy oldgen bitmap to mark bitmap */ memcpy(&page->mark_bits[0], &page->uncollectible_bits[0], HEAP_PAGE_BITMAP_SIZE); } static int gc_is_moveable_obj(rb_objspace_t *objspace, VALUE obj); static VALUE gc_move(rb_objspace_t *objspace, VALUE scan, VALUE free, size_t src_slot_size, size_t slot_size); #if defined(_WIN32) enum {HEAP_PAGE_LOCK = PAGE_NOACCESS, HEAP_PAGE_UNLOCK = PAGE_READWRITE}; static BOOL protect_page_body(struct heap_page_body *body, DWORD protect) { DWORD old_protect; return VirtualProtect(body, HEAP_PAGE_SIZE, protect, &old_protect) != 0; } #else enum {HEAP_PAGE_LOCK = PROT_NONE, HEAP_PAGE_UNLOCK = PROT_READ | PROT_WRITE}; #define protect_page_body(body, protect) !mprotect((body), HEAP_PAGE_SIZE, (protect)) #endif static void lock_page_body(rb_objspace_t *objspace, struct heap_page_body *body) { if (!protect_page_body(body, HEAP_PAGE_LOCK)) { rb_bug("Couldn't protect page %p, errno: %s", (void *)body, strerror(errno)); } else { gc_report(5, objspace, "Protecting page in move %p\n", (void *)body); } } static void unlock_page_body(rb_objspace_t *objspace, struct heap_page_body *body) { if (!protect_page_body(body, HEAP_PAGE_UNLOCK)) { rb_bug("Couldn't unprotect page %p, errno: %s", (void *)body, strerror(errno)); } else { gc_report(5, objspace, "Unprotecting page in move %p\n", (void *)body); } } static bool try_move(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *free_page, VALUE src) { struct heap_page *src_page = GET_HEAP_PAGE(src); if (!free_page) { return false; } /* We should return true if either src is successfully moved, or src is * unmoveable. A false return will cause the sweeping cursor to be * incremented to the next page, and src will attempt to move again */ if (gc_is_moveable_obj(objspace, src)) { GC_ASSERT(MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(src), src)); asan_unlock_freelist(free_page); VALUE dest = (VALUE)free_page->freelist; asan_lock_freelist(free_page); asan_unpoison_object(dest, false); if (!dest) { /* if we can't get something from the freelist then the page must be * full */ return false; } free_page->freelist = RANY(dest)->as.free.next; GC_ASSERT(RB_BUILTIN_TYPE(dest) == T_NONE); if (src_page->slot_size > free_page->slot_size) { objspace->rcompactor.moved_down_count_table[BUILTIN_TYPE(src)]++; } else if (free_page->slot_size > src_page->slot_size) { objspace->rcompactor.moved_up_count_table[BUILTIN_TYPE(src)]++; } objspace->rcompactor.moved_count_table[BUILTIN_TYPE(src)]++; objspace->rcompactor.total_moved++; gc_move(objspace, src, dest, src_page->slot_size, free_page->slot_size); gc_pin(objspace, src); free_page->free_slots--; } return true; } static void gc_unprotect_pages(rb_objspace_t *objspace, rb_heap_t *heap) { struct heap_page *cursor = heap->compact_cursor; while (cursor) { unlock_page_body(objspace, GET_PAGE_BODY(cursor->start)); cursor = ccan_list_next(&heap->pages, cursor, page_node); } } static void gc_update_references(rb_objspace_t * objspace); static void invalidate_moved_page(rb_objspace_t *objspace, struct heap_page *page); #ifndef GC_CAN_COMPILE_COMPACTION #if defined(__wasi__) /* WebAssembly doesn't support signals */ # define GC_CAN_COMPILE_COMPACTION 0 #else # define GC_CAN_COMPILE_COMPACTION 1 #endif #endif #if defined(__MINGW32__) || defined(_WIN32) # define GC_COMPACTION_SUPPORTED 1 #else /* If not MinGW, Windows, or does not have mmap, we cannot use mprotect for * the read barrier, so we must disable compaction. */ # define GC_COMPACTION_SUPPORTED (GC_CAN_COMPILE_COMPACTION && HEAP_PAGE_ALLOC_USE_MMAP) #endif #if GC_CAN_COMPILE_COMPACTION static void read_barrier_handler(uintptr_t original_address) { VALUE obj; rb_objspace_t * objspace = &rb_objspace; /* Calculate address aligned to slots. */ uintptr_t address = original_address - (original_address % BASE_SLOT_SIZE); obj = (VALUE)address; struct heap_page_body *page_body = GET_PAGE_BODY(obj); /* If the page_body is NULL, then mprotect cannot handle it and will crash * with "Cannot allocate memory". */ if (page_body == NULL) { rb_bug("read_barrier_handler: segmentation fault at %p", (void *)original_address); } RB_VM_LOCK_ENTER(); { unlock_page_body(objspace, page_body); objspace->profile.read_barrier_faults++; invalidate_moved_page(objspace, GET_HEAP_PAGE(obj)); } RB_VM_LOCK_LEAVE(); } #endif #if !GC_CAN_COMPILE_COMPACTION static void uninstall_handlers(void) { /* no-op */ } static void install_handlers(void) { /* no-op */ } #elif defined(_WIN32) static LPTOP_LEVEL_EXCEPTION_FILTER old_handler; typedef void (*signal_handler)(int); static signal_handler old_sigsegv_handler; static LONG WINAPI read_barrier_signal(EXCEPTION_POINTERS * info) { /* EXCEPTION_ACCESS_VIOLATION is what's raised by access to protected pages */ if (info->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION) { /* > The second array element specifies the virtual address of the inaccessible data. * https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-exception_record * * Use this address to invalidate the page */ read_barrier_handler((uintptr_t)info->ExceptionRecord->ExceptionInformation[1]); return EXCEPTION_CONTINUE_EXECUTION; } else { return EXCEPTION_CONTINUE_SEARCH; } } static void uninstall_handlers(void) { signal(SIGSEGV, old_sigsegv_handler); SetUnhandledExceptionFilter(old_handler); } static void install_handlers(void) { /* Remove SEGV handler so that the Unhandled Exception Filter handles it */ old_sigsegv_handler = signal(SIGSEGV, NULL); /* Unhandled Exception Filter has access to the violation address similar * to si_addr from sigaction */ old_handler = SetUnhandledExceptionFilter(read_barrier_signal); } #else static struct sigaction old_sigbus_handler; static struct sigaction old_sigsegv_handler; #ifdef HAVE_MACH_TASK_EXCEPTION_PORTS static exception_mask_t old_exception_masks[32]; static mach_port_t old_exception_ports[32]; static exception_behavior_t old_exception_behaviors[32]; static thread_state_flavor_t old_exception_flavors[32]; static mach_msg_type_number_t old_exception_count; static void disable_mach_bad_access_exc(void) { old_exception_count = sizeof(old_exception_masks) / sizeof(old_exception_masks[0]); task_swap_exception_ports( mach_task_self(), EXC_MASK_BAD_ACCESS, MACH_PORT_NULL, EXCEPTION_DEFAULT, 0, old_exception_masks, &old_exception_count, old_exception_ports, old_exception_behaviors, old_exception_flavors ); } static void restore_mach_bad_access_exc(void) { for (mach_msg_type_number_t i = 0; i < old_exception_count; i++) { task_set_exception_ports( mach_task_self(), old_exception_masks[i], old_exception_ports[i], old_exception_behaviors[i], old_exception_flavors[i] ); } } #endif static void read_barrier_signal(int sig, siginfo_t * info, void * data) { // setup SEGV/BUS handlers for errors struct sigaction prev_sigbus, prev_sigsegv; sigaction(SIGBUS, &old_sigbus_handler, &prev_sigbus); sigaction(SIGSEGV, &old_sigsegv_handler, &prev_sigsegv); // enable SIGBUS/SEGV sigset_t set, prev_set; sigemptyset(&set); sigaddset(&set, SIGBUS); sigaddset(&set, SIGSEGV); sigprocmask(SIG_UNBLOCK, &set, &prev_set); #ifdef HAVE_MACH_TASK_EXCEPTION_PORTS disable_mach_bad_access_exc(); #endif // run handler read_barrier_handler((uintptr_t)info->si_addr); // reset SEGV/BUS handlers #ifdef HAVE_MACH_TASK_EXCEPTION_PORTS restore_mach_bad_access_exc(); #endif sigaction(SIGBUS, &prev_sigbus, NULL); sigaction(SIGSEGV, &prev_sigsegv, NULL); sigprocmask(SIG_SETMASK, &prev_set, NULL); } static void uninstall_handlers(void) { #ifdef HAVE_MACH_TASK_EXCEPTION_PORTS restore_mach_bad_access_exc(); #endif sigaction(SIGBUS, &old_sigbus_handler, NULL); sigaction(SIGSEGV, &old_sigsegv_handler, NULL); } static void install_handlers(void) { struct sigaction action; memset(&action, 0, sizeof(struct sigaction)); sigemptyset(&action.sa_mask); action.sa_sigaction = read_barrier_signal; action.sa_flags = SA_SIGINFO | SA_ONSTACK; sigaction(SIGBUS, &action, &old_sigbus_handler); sigaction(SIGSEGV, &action, &old_sigsegv_handler); #ifdef HAVE_MACH_TASK_EXCEPTION_PORTS disable_mach_bad_access_exc(); #endif } #endif static void revert_stack_objects(VALUE stack_obj, void *ctx) { rb_objspace_t * objspace = (rb_objspace_t*)ctx; if (BUILTIN_TYPE(stack_obj) == T_MOVED) { /* For now we'll revert the whole page if the object made it to the * stack. I think we can change this to move just the one object * back though */ invalidate_moved_page(objspace, GET_HEAP_PAGE(stack_obj)); } } static void revert_machine_stack_references(rb_objspace_t *objspace, VALUE v) { if (is_pointer_to_heap(objspace, (void *)v)) { if (BUILTIN_TYPE(v) == T_MOVED) { /* For now we'll revert the whole page if the object made it to the * stack. I think we can change this to move just the one object * back though */ invalidate_moved_page(objspace, GET_HEAP_PAGE(v)); } } } static void each_machine_stack_value(const rb_execution_context_t *ec, void (*cb)(rb_objspace_t *, VALUE)); static void check_stack_for_moved(rb_objspace_t *objspace) { rb_execution_context_t *ec = GET_EC(); rb_vm_t *vm = rb_ec_vm_ptr(ec); rb_vm_each_stack_value(vm, revert_stack_objects, (void*)objspace); each_machine_stack_value(ec, revert_machine_stack_references); } static void gc_mode_transition(rb_objspace_t *objspace, enum gc_mode mode); static void gc_compact_finish(rb_objspace_t *objspace) { for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); gc_unprotect_pages(objspace, heap); } uninstall_handlers(); /* The mutator is allowed to run during incremental sweeping. T_MOVED * objects can get pushed on the stack and when the compaction process * finishes up, it may remove the read barrier before anything has a * chance to read from the T_MOVED address. To fix this, we scan the stack * then revert any moved objects that made it to the stack. */ check_stack_for_moved(objspace); gc_update_references(objspace); objspace->profile.compact_count++; for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); heap->compact_cursor = NULL; heap->free_pages = NULL; heap->compact_cursor_index = 0; } if (gc_prof_enabled(objspace)) { gc_profile_record *record = gc_prof_record(objspace); record->moved_objects = objspace->rcompactor.total_moved - record->moved_objects; } objspace->flags.during_compacting = FALSE; } struct gc_sweep_context { struct heap_page *page; int final_slots; int freed_slots; int empty_slots; }; static inline void gc_sweep_plane(rb_objspace_t *objspace, rb_heap_t *heap, uintptr_t p, bits_t bitset, struct gc_sweep_context *ctx) { struct heap_page * sweep_page = ctx->page; short slot_size = sweep_page->slot_size; short slot_bits = slot_size / BASE_SLOT_SIZE; GC_ASSERT(slot_bits > 0); do { VALUE vp = (VALUE)p; GC_ASSERT(vp % BASE_SLOT_SIZE == 0); asan_unpoison_object(vp, false); if (bitset & 1) { switch (BUILTIN_TYPE(vp)) { default: /* majority case */ gc_report(2, objspace, "page_sweep: free %p\n", (void *)p); #if RGENGC_CHECK_MODE if (!is_full_marking(objspace)) { if (RVALUE_OLD_P(vp)) rb_bug("page_sweep: %p - old while minor GC.", (void *)p); if (rgengc_remembered_sweep(objspace, vp)) rb_bug("page_sweep: %p - remembered.", (void *)p); } #endif if (obj_free(objspace, vp)) { // always add free slots back to the swept pages freelist, // so that if we're comapacting, we can re-use the slots (void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, BASE_SLOT_SIZE); heap_page_add_freeobj(objspace, sweep_page, vp); gc_report(3, objspace, "page_sweep: %s is added to freelist\n", obj_info(vp)); ctx->freed_slots++; } else { ctx->final_slots++; } break; case T_MOVED: if (objspace->flags.during_compacting) { /* The sweep cursor shouldn't have made it to any * T_MOVED slots while the compact flag is enabled. * The sweep cursor and compact cursor move in * opposite directions, and when they meet references will * get updated and "during_compacting" should get disabled */ rb_bug("T_MOVED shouldn't be seen until compaction is finished\n"); } gc_report(3, objspace, "page_sweep: %s is added to freelist\n", obj_info(vp)); ctx->empty_slots++; heap_page_add_freeobj(objspace, sweep_page, vp); break; case T_ZOMBIE: /* already counted */ break; case T_NONE: ctx->empty_slots++; /* already freed */ break; } } p += slot_size; bitset >>= slot_bits; } while (bitset); } static inline void gc_sweep_page(rb_objspace_t *objspace, rb_heap_t *heap, struct gc_sweep_context *ctx) { struct heap_page *sweep_page = ctx->page; GC_ASSERT(SIZE_POOL_EDEN_HEAP(sweep_page->size_pool) == heap); uintptr_t p; bits_t *bits, bitset; gc_report(2, objspace, "page_sweep: start.\n"); #if RGENGC_CHECK_MODE if (!objspace->flags.immediate_sweep) { GC_ASSERT(sweep_page->flags.before_sweep == TRUE); } #endif sweep_page->flags.before_sweep = FALSE; sweep_page->free_slots = 0; p = (uintptr_t)sweep_page->start; bits = sweep_page->mark_bits; int page_rvalue_count = sweep_page->total_slots * (sweep_page->slot_size / BASE_SLOT_SIZE); int out_of_range_bits = (NUM_IN_PAGE(p) + page_rvalue_count) % BITS_BITLENGTH; if (out_of_range_bits != 0) { // sizeof(RVALUE) == 64 bits[BITMAP_INDEX(p) + page_rvalue_count / BITS_BITLENGTH] |= ~(((bits_t)1 << out_of_range_bits) - 1); } /* The last bitmap plane may not be used if the last plane does not * have enough space for the slot_size. In that case, the last plane must * be skipped since none of the bits will be set. */ int bitmap_plane_count = CEILDIV(NUM_IN_PAGE(p) + page_rvalue_count, BITS_BITLENGTH); GC_ASSERT(bitmap_plane_count == HEAP_PAGE_BITMAP_LIMIT - 1 || bitmap_plane_count == HEAP_PAGE_BITMAP_LIMIT); // Skip out of range slots at the head of the page bitset = ~bits[0]; bitset >>= NUM_IN_PAGE(p); if (bitset) { gc_sweep_plane(objspace, heap, p, bitset, ctx); } p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE; for (int i = 1; i < bitmap_plane_count; i++) { bitset = ~bits[i]; if (bitset) { gc_sweep_plane(objspace, heap, p, bitset, ctx); } p += BITS_BITLENGTH * BASE_SLOT_SIZE; } if (!heap->compact_cursor) { gc_setup_mark_bits(sweep_page); } #if GC_PROFILE_MORE_DETAIL if (gc_prof_enabled(objspace)) { gc_profile_record *record = gc_prof_record(objspace); record->removing_objects += ctx->final_slots + ctx->freed_slots; record->empty_objects += ctx->empty_slots; } #endif if (0) fprintf(stderr, "gc_sweep_page(%"PRIdSIZE"): total_slots: %d, freed_slots: %d, empty_slots: %d, final_slots: %d\n", rb_gc_count(), sweep_page->total_slots, ctx->freed_slots, ctx->empty_slots, ctx->final_slots); sweep_page->free_slots += ctx->freed_slots + ctx->empty_slots; objspace->profile.total_freed_objects += ctx->freed_slots; if (heap_pages_deferred_final && !finalizing) { rb_thread_t *th = GET_THREAD(); if (th) { gc_finalize_deferred_register(objspace); } } #if RGENGC_CHECK_MODE short freelist_len = 0; asan_unlock_freelist(sweep_page); RVALUE *ptr = sweep_page->freelist; while (ptr) { freelist_len++; ptr = ptr->as.free.next; } asan_lock_freelist(sweep_page); if (freelist_len != sweep_page->free_slots) { rb_bug("inconsistent freelist length: expected %d but was %d", sweep_page->free_slots, freelist_len); } #endif gc_report(2, objspace, "page_sweep: end.\n"); } #if !USE_RVARGC /* allocate additional minimum page to work */ static void gc_heap_prepare_minimum_pages(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) { for (int i = 0; i < SIZE_POOL_COUNT; i++) { if (!heap->free_pages && heap_increment(objspace, size_pool, heap) == FALSE) { /* there is no free after page_sweep() */ size_pool_allocatable_pages_set(objspace, size_pool, 1); if (!heap_increment(objspace, size_pool, heap)) { /* can't allocate additional free objects */ rb_memerror(); } } } } #endif static const char * gc_mode_name(enum gc_mode mode) { switch (mode) { case gc_mode_none: return "none"; case gc_mode_marking: return "marking"; case gc_mode_sweeping: return "sweeping"; case gc_mode_compacting: return "compacting"; default: rb_bug("gc_mode_name: unknown mode: %d", (int)mode); } } static void gc_mode_transition(rb_objspace_t *objspace, enum gc_mode mode) { #if RGENGC_CHECK_MODE enum gc_mode prev_mode = gc_mode(objspace); switch (prev_mode) { case gc_mode_none: GC_ASSERT(mode == gc_mode_marking); break; case gc_mode_marking: GC_ASSERT(mode == gc_mode_sweeping); break; case gc_mode_sweeping: GC_ASSERT(mode == gc_mode_none || mode == gc_mode_compacting); break; case gc_mode_compacting: GC_ASSERT(mode == gc_mode_none); break; } #endif if (0) fprintf(stderr, "gc_mode_transition: %s->%s\n", gc_mode_name(gc_mode(objspace)), gc_mode_name(mode)); gc_mode_set(objspace, mode); } static void heap_page_freelist_append(struct heap_page *page, RVALUE *freelist) { if (freelist) { asan_unlock_freelist(page); if (page->freelist) { RVALUE *p = page->freelist; asan_unpoison_object((VALUE)p, false); while (p->as.free.next) { RVALUE *prev = p; p = p->as.free.next; asan_poison_object((VALUE)prev); asan_unpoison_object((VALUE)p, false); } p->as.free.next = freelist; asan_poison_object((VALUE)p); } else { page->freelist = freelist; } asan_lock_freelist(page); } } static void gc_sweep_start_heap(rb_objspace_t *objspace, rb_heap_t *heap) { heap->sweeping_page = ccan_list_top(&heap->pages, struct heap_page, page_node); heap->free_pages = NULL; #if GC_ENABLE_INCREMENTAL_MARK heap->pooled_pages = NULL; #endif if (!objspace->flags.immediate_sweep) { struct heap_page *page = NULL; ccan_list_for_each(&heap->pages, page, page_node) { page->flags.before_sweep = TRUE; } } } #if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 4 __attribute__((noinline)) #endif static void gc_sweep_start(rb_objspace_t *objspace) { gc_mode_transition(objspace, gc_mode_sweeping); #if GC_ENABLE_INCREMENTAL_MARK objspace->rincgc.pooled_slots = 0; #endif for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); gc_sweep_start_heap(objspace, heap); #if USE_RVARGC /* We should call gc_sweep_finish_size_pool for size pools with no pages. */ if (heap->sweeping_page == NULL) { GC_ASSERT(heap->total_pages == 0); GC_ASSERT(heap->total_slots == 0); gc_sweep_finish_size_pool(objspace, size_pool); } #endif } rb_ractor_t *r = NULL; ccan_list_for_each(&GET_VM()->ractor.set, r, vmlr_node) { rb_gc_ractor_newobj_cache_clear(&r->newobj_cache); } } #if USE_RVARGC static void gc_sweep_finish_size_pool(rb_objspace_t *objspace, rb_size_pool_t *size_pool) { rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); size_t total_slots = heap->total_slots + SIZE_POOL_TOMB_HEAP(size_pool)->total_slots; size_t total_pages = heap->total_pages + SIZE_POOL_TOMB_HEAP(size_pool)->total_pages; size_t swept_slots = size_pool->freed_slots + size_pool->empty_slots; size_t min_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_min_ratio); /* Some size pools may have very few pages (or even no pages). These size pools * should still have allocatable pages. */ if (min_free_slots < gc_params.heap_init_slots) { min_free_slots = gc_params.heap_init_slots; } /* If we don't have enough slots and we have pages on the tomb heap, move * pages from the tomb heap to the eden heap. This may prevent page * creation thrashing (frequently allocating and deallocting pages) and * GC thrashing (running GC more frequently than required). */ struct heap_page *resurrected_page; while (swept_slots < min_free_slots && (resurrected_page = heap_page_resurrect(objspace, size_pool))) { swept_slots += resurrected_page->free_slots; heap_add_page(objspace, size_pool, heap, resurrected_page); heap_add_freepage(heap, resurrected_page); } if (swept_slots < min_free_slots) { bool grow_heap = is_full_marking(objspace); if (!is_full_marking(objspace)) { /* The heap is a growth heap if it freed more slots than had empty * slots and used up all of its allocatable pages. */ bool is_growth_heap = (size_pool->empty_slots == 0 || size_pool->freed_slots > size_pool->empty_slots) && size_pool->allocatable_pages == 0; if (objspace->profile.count - objspace->rgengc.last_major_gc < RVALUE_OLD_AGE) { grow_heap = TRUE; } else if (is_growth_heap) { /* Only growth heaps are allowed to start a major GC. */ objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_NOFREE; size_pool->force_major_gc_count++; } } if (grow_heap) { size_t extend_page_count = heap_extend_pages(objspace, size_pool, swept_slots, total_slots, total_pages); if (extend_page_count > size_pool->allocatable_pages) { size_pool_allocatable_pages_set(objspace, size_pool, extend_page_count); } } } } #endif static void gc_sweep_finish(rb_objspace_t *objspace) { gc_report(1, objspace, "gc_sweep_finish\n"); gc_prof_set_heap_info(objspace); heap_pages_free_unused_pages(objspace); for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; /* if heap_pages has unused pages, then assign them to increment */ size_t tomb_pages = SIZE_POOL_TOMB_HEAP(size_pool)->total_pages; if (size_pool->allocatable_pages < tomb_pages) { size_pool->allocatable_pages = tomb_pages; } #if USE_RVARGC size_pool->freed_slots = 0; size_pool->empty_slots = 0; #if GC_ENABLE_INCREMENTAL_MARK if (!will_be_incremental_marking(objspace)) { rb_heap_t *eden_heap = SIZE_POOL_EDEN_HEAP(size_pool); struct heap_page *end_page = eden_heap->free_pages; if (end_page) { while (end_page->free_next) end_page = end_page->free_next; end_page->free_next = eden_heap->pooled_pages; } else { eden_heap->free_pages = eden_heap->pooled_pages; } eden_heap->pooled_pages = NULL; objspace->rincgc.pooled_slots = 0; } #endif #endif } heap_pages_expand_sorted(objspace); gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_SWEEP, 0); gc_mode_transition(objspace, gc_mode_none); } static int gc_sweep_step(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) { struct heap_page *sweep_page = heap->sweeping_page; int unlink_limit = GC_SWEEP_PAGES_FREEABLE_PER_STEP; #if GC_ENABLE_INCREMENTAL_MARK int swept_slots = 0; #if USE_RVARGC bool need_pool = TRUE; #else int need_pool = will_be_incremental_marking(objspace) ? TRUE : FALSE; #endif gc_report(2, objspace, "gc_sweep_step (need_pool: %d)\n", need_pool); #else gc_report(2, objspace, "gc_sweep_step\n"); #endif if (sweep_page == NULL) return FALSE; #if GC_ENABLE_LAZY_SWEEP gc_prof_sweep_timer_start(objspace); #endif do { RUBY_DEBUG_LOG("sweep_page:%p", (void *)sweep_page); struct gc_sweep_context ctx = { .page = sweep_page, .final_slots = 0, .freed_slots = 0, .empty_slots = 0, }; gc_sweep_page(objspace, heap, &ctx); int free_slots = ctx.freed_slots + ctx.empty_slots; heap->sweeping_page = ccan_list_next(&heap->pages, sweep_page, page_node); if (sweep_page->final_slots + free_slots == sweep_page->total_slots && heap_pages_freeable_pages > 0 && unlink_limit > 0) { heap_pages_freeable_pages--; unlink_limit--; /* there are no living objects -> move this page to tomb heap */ heap_unlink_page(objspace, heap, sweep_page); heap_add_page(objspace, size_pool, SIZE_POOL_TOMB_HEAP(size_pool), sweep_page); } else if (free_slots > 0) { #if USE_RVARGC size_pool->freed_slots += ctx.freed_slots; size_pool->empty_slots += ctx.empty_slots; #endif #if GC_ENABLE_INCREMENTAL_MARK if (need_pool) { heap_add_poolpage(objspace, heap, sweep_page); need_pool = FALSE; } else { heap_add_freepage(heap, sweep_page); swept_slots += free_slots; if (swept_slots > GC_INCREMENTAL_SWEEP_SLOT_COUNT) { break; } } #else heap_add_freepage(heap, sweep_page); break; #endif } else { sweep_page->free_next = NULL; } } while ((sweep_page = heap->sweeping_page)); if (!heap->sweeping_page) { #if USE_RVARGC gc_sweep_finish_size_pool(objspace, size_pool); #endif if (!has_sweeping_pages(objspace)) { gc_sweep_finish(objspace); } } #if GC_ENABLE_LAZY_SWEEP gc_prof_sweep_timer_stop(objspace); #endif return heap->free_pages != NULL; } static void gc_sweep_rest(rb_objspace_t *objspace) { for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; while (SIZE_POOL_EDEN_HEAP(size_pool)->sweeping_page) { gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); } } } static void gc_sweep_continue(rb_objspace_t *objspace, rb_size_pool_t *sweep_size_pool, rb_heap_t *heap) { GC_ASSERT(dont_gc_val() == FALSE); if (!GC_ENABLE_LAZY_SWEEP) return; unsigned int lock_lev; gc_enter(objspace, gc_enter_event_sweep_continue, &lock_lev); for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; if (!gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool))) { #if USE_RVARGC /* sweep_size_pool requires a free slot but sweeping did not yield any. */ if (size_pool == sweep_size_pool) { if (size_pool->allocatable_pages > 0) { heap_increment(objspace, size_pool, heap); } else { /* Not allowed to create a new page so finish sweeping. */ gc_sweep_rest(objspace); break; } } #endif } } gc_exit(objspace, gc_enter_event_sweep_continue, &lock_lev); } static void invalidate_moved_plane(rb_objspace_t *objspace, struct heap_page *page, uintptr_t p, bits_t bitset) { if (bitset) { do { if (bitset & 1) { VALUE forwarding_object = (VALUE)p; VALUE object; if (BUILTIN_TYPE(forwarding_object) == T_MOVED) { GC_ASSERT(MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(forwarding_object), forwarding_object)); GC_ASSERT(!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(forwarding_object), forwarding_object)); CLEAR_IN_BITMAP(GET_HEAP_PINNED_BITS(forwarding_object), forwarding_object); object = rb_gc_location(forwarding_object); gc_move(objspace, object, forwarding_object, GET_HEAP_PAGE(object)->slot_size, page->slot_size); /* forwarding_object is now our actual object, and "object" * is the free slot for the original page */ struct heap_page *orig_page = GET_HEAP_PAGE(object); orig_page->free_slots++; heap_page_add_freeobj(objspace, orig_page, object); GC_ASSERT(MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(forwarding_object), forwarding_object)); GC_ASSERT(BUILTIN_TYPE(forwarding_object) != T_MOVED); GC_ASSERT(BUILTIN_TYPE(forwarding_object) != T_NONE); } } p += BASE_SLOT_SIZE; bitset >>= 1; } while (bitset); } } static void invalidate_moved_page(rb_objspace_t *objspace, struct heap_page *page) { int i; bits_t *mark_bits, *pin_bits; bits_t bitset; mark_bits = page->mark_bits; pin_bits = page->pinned_bits; uintptr_t p = page->start; // Skip out of range slots at the head of the page bitset = pin_bits[0] & ~mark_bits[0]; bitset >>= NUM_IN_PAGE(p); invalidate_moved_plane(objspace, page, p, bitset); p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE; for (i=1; i < HEAP_PAGE_BITMAP_LIMIT; i++) { /* Moved objects are pinned but never marked. We reuse the pin bits * to indicate there is a moved object in this slot. */ bitset = pin_bits[i] & ~mark_bits[i]; invalidate_moved_plane(objspace, page, p, bitset); p += BITS_BITLENGTH * BASE_SLOT_SIZE; } } static void gc_compact_start(rb_objspace_t *objspace) { struct heap_page *page = NULL; gc_mode_transition(objspace, gc_mode_compacting); for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(&size_pools[i]); ccan_list_for_each(&heap->pages, page, page_node) { page->flags.before_sweep = TRUE; } heap->compact_cursor = ccan_list_tail(&heap->pages, struct heap_page, page_node); heap->compact_cursor_index = 0; } if (gc_prof_enabled(objspace)) { gc_profile_record *record = gc_prof_record(objspace); record->moved_objects = objspace->rcompactor.total_moved; } memset(objspace->rcompactor.considered_count_table, 0, T_MASK * sizeof(size_t)); memset(objspace->rcompactor.moved_count_table, 0, T_MASK * sizeof(size_t)); memset(objspace->rcompactor.moved_up_count_table, 0, T_MASK * sizeof(size_t)); memset(objspace->rcompactor.moved_down_count_table, 0, T_MASK * sizeof(size_t)); /* Set up read barrier for pages containing MOVED objects */ install_handlers(); } static void gc_sweep_compact(rb_objspace_t *objspace); static void gc_sweep(rb_objspace_t *objspace) { const unsigned int immediate_sweep = objspace->flags.immediate_sweep; gc_report(1, objspace, "gc_sweep: immediate: %d\n", immediate_sweep); gc_sweep_start(objspace); if (objspace->flags.during_compacting) { gc_sweep_compact(objspace); } if (immediate_sweep) { #if !GC_ENABLE_LAZY_SWEEP gc_prof_sweep_timer_start(objspace); #endif gc_sweep_rest(objspace); #if !GC_ENABLE_LAZY_SWEEP gc_prof_sweep_timer_stop(objspace); #endif } else { /* Sweep every size pool. */ for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; gc_sweep_step(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); } } #if !USE_RVARGC rb_size_pool_t *size_pool = &size_pools[0]; gc_heap_prepare_minimum_pages(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); #endif } /* Marking - Marking stack */ static stack_chunk_t * stack_chunk_alloc(void) { stack_chunk_t *res; res = malloc(sizeof(stack_chunk_t)); if (!res) rb_memerror(); return res; } static inline int is_mark_stack_empty(mark_stack_t *stack) { return stack->chunk == NULL; } static size_t mark_stack_size(mark_stack_t *stack) { size_t size = stack->index; stack_chunk_t *chunk = stack->chunk ? stack->chunk->next : NULL; while (chunk) { size += stack->limit; chunk = chunk->next; } return size; } static void add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk) { chunk->next = stack->cache; stack->cache = chunk; stack->cache_size++; } static void shrink_stack_chunk_cache(mark_stack_t *stack) { stack_chunk_t *chunk; if (stack->unused_cache_size > (stack->cache_size/2)) { chunk = stack->cache; stack->cache = stack->cache->next; stack->cache_size--; free(chunk); } stack->unused_cache_size = stack->cache_size; } static void push_mark_stack_chunk(mark_stack_t *stack) { stack_chunk_t *next; GC_ASSERT(stack->index == stack->limit); if (stack->cache_size > 0) { next = stack->cache; stack->cache = stack->cache->next; stack->cache_size--; if (stack->unused_cache_size > stack->cache_size) stack->unused_cache_size = stack->cache_size; } else { next = stack_chunk_alloc(); } next->next = stack->chunk; stack->chunk = next; stack->index = 0; } static void pop_mark_stack_chunk(mark_stack_t *stack) { stack_chunk_t *prev; prev = stack->chunk->next; GC_ASSERT(stack->index == 0); add_stack_chunk_cache(stack, stack->chunk); stack->chunk = prev; stack->index = stack->limit; } static void mark_stack_chunk_list_free(stack_chunk_t *chunk) { stack_chunk_t *next = NULL; while (chunk != NULL) { next = chunk->next; free(chunk); chunk = next; } } static void free_stack_chunks(mark_stack_t *stack) { mark_stack_chunk_list_free(stack->chunk); } static void mark_stack_free_cache(mark_stack_t *stack) { mark_stack_chunk_list_free(stack->cache); stack->cache_size = 0; stack->unused_cache_size = 0; } static void push_mark_stack(mark_stack_t *stack, VALUE data) { VALUE obj = data; switch (BUILTIN_TYPE(obj)) { case T_OBJECT: case T_CLASS: case T_MODULE: case T_FLOAT: case T_STRING: case T_REGEXP: case T_ARRAY: case T_HASH: case T_STRUCT: case T_BIGNUM: case T_FILE: case T_DATA: case T_MATCH: case T_COMPLEX: case T_RATIONAL: case T_TRUE: case T_FALSE: case T_SYMBOL: case T_IMEMO: case T_ICLASS: if (stack->index == stack->limit) { push_mark_stack_chunk(stack); } stack->chunk->data[stack->index++] = data; return; case T_NONE: case T_NIL: case T_FIXNUM: case T_MOVED: case T_ZOMBIE: case T_UNDEF: case T_MASK: rb_bug("push_mark_stack() called for broken object"); break; case T_NODE: UNEXPECTED_NODE(push_mark_stack); break; } rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s", BUILTIN_TYPE(obj), (void *)data, is_pointer_to_heap(&rb_objspace, (void *)data) ? "corrupted object" : "non object"); } static int pop_mark_stack(mark_stack_t *stack, VALUE *data) { if (is_mark_stack_empty(stack)) { return FALSE; } if (stack->index == 1) { *data = stack->chunk->data[--stack->index]; pop_mark_stack_chunk(stack); } else { *data = stack->chunk->data[--stack->index]; } return TRUE; } static void init_mark_stack(mark_stack_t *stack) { int i; MEMZERO(stack, mark_stack_t, 1); stack->index = stack->limit = STACK_CHUNK_SIZE; for (i=0; i < 4; i++) { add_stack_chunk_cache(stack, stack_chunk_alloc()); } stack->unused_cache_size = stack->cache_size; } /* Marking */ #define SET_STACK_END SET_MACHINE_STACK_END(&ec->machine.stack_end) #define STACK_START (ec->machine.stack_start) #define STACK_END (ec->machine.stack_end) #define STACK_LEVEL_MAX (ec->machine.stack_maxsize/sizeof(VALUE)) #if STACK_GROW_DIRECTION < 0 # define STACK_LENGTH (size_t)(STACK_START - STACK_END) #elif STACK_GROW_DIRECTION > 0 # define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1) #else # define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \ : (size_t)(STACK_END - STACK_START + 1)) #endif #if !STACK_GROW_DIRECTION int ruby_stack_grow_direction; int ruby_get_stack_grow_direction(volatile VALUE *addr) { VALUE *end; SET_MACHINE_STACK_END(&end); if (end > addr) return ruby_stack_grow_direction = 1; return ruby_stack_grow_direction = -1; } #endif size_t ruby_stack_length(VALUE **p) { rb_execution_context_t *ec = GET_EC(); SET_STACK_END; if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END); return STACK_LENGTH; } #define PREVENT_STACK_OVERFLOW 1 #ifndef PREVENT_STACK_OVERFLOW #if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)) # define PREVENT_STACK_OVERFLOW 1 #else # define PREVENT_STACK_OVERFLOW 0 #endif #endif #if PREVENT_STACK_OVERFLOW && !defined(__EMSCRIPTEN__) static int stack_check(rb_execution_context_t *ec, int water_mark) { SET_STACK_END; size_t length = STACK_LENGTH; size_t maximum_length = STACK_LEVEL_MAX - water_mark; return length > maximum_length; } #else #define stack_check(ec, water_mark) FALSE #endif #define STACKFRAME_FOR_CALL_CFUNC 2048 MJIT_FUNC_EXPORTED int rb_ec_stack_check(rb_execution_context_t *ec) { return stack_check(ec, STACKFRAME_FOR_CALL_CFUNC); } int ruby_stack_check(void) { return stack_check(GET_EC(), STACKFRAME_FOR_CALL_CFUNC); } ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS(static void each_location(rb_objspace_t *objspace, register const VALUE *x, register long n, void (*cb)(rb_objspace_t *, VALUE))); static void each_location(rb_objspace_t *objspace, register const VALUE *x, register long n, void (*cb)(rb_objspace_t *, VALUE)) { VALUE v; while (n--) { v = *x; cb(objspace, v); x++; } } static void gc_mark_locations(rb_objspace_t *objspace, const VALUE *start, const VALUE *end, void (*cb)(rb_objspace_t *, VALUE)) { long n; if (end <= start) return; n = end - start; each_location(objspace, start, n, cb); } void rb_gc_mark_locations(const VALUE *start, const VALUE *end) { gc_mark_locations(&rb_objspace, start, end, gc_mark_maybe); } static void gc_mark_values(rb_objspace_t *objspace, long n, const VALUE *values) { long i; for (i=0; inum_entries == 0) return; st_foreach(tbl, mark_value, (st_data_t)objspace); } static void mark_tbl(rb_objspace_t *objspace, st_table *tbl) { if (!tbl || tbl->num_entries == 0) return; st_foreach(tbl, mark_value_pin, (st_data_t)objspace); } static int mark_key(st_data_t key, st_data_t value, st_data_t data) { rb_objspace_t *objspace = (rb_objspace_t *)data; gc_mark_and_pin(objspace, (VALUE)key); return ST_CONTINUE; } static void mark_set(rb_objspace_t *objspace, st_table *tbl) { if (!tbl) return; st_foreach(tbl, mark_key, (st_data_t)objspace); } static int pin_value(st_data_t key, st_data_t value, st_data_t data) { rb_objspace_t *objspace = (rb_objspace_t *)data; gc_mark_and_pin(objspace, (VALUE)value); return ST_CONTINUE; } static void mark_finalizer_tbl(rb_objspace_t *objspace, st_table *tbl) { if (!tbl) return; st_foreach(tbl, pin_value, (st_data_t)objspace); } void rb_mark_set(st_table *tbl) { mark_set(&rb_objspace, tbl); } static int mark_keyvalue(st_data_t key, st_data_t value, st_data_t data) { rb_objspace_t *objspace = (rb_objspace_t *)data; gc_mark(objspace, (VALUE)key); gc_mark(objspace, (VALUE)value); return ST_CONTINUE; } static int pin_key_pin_value(st_data_t key, st_data_t value, st_data_t data) { rb_objspace_t *objspace = (rb_objspace_t *)data; gc_mark_and_pin(objspace, (VALUE)key); gc_mark_and_pin(objspace, (VALUE)value); return ST_CONTINUE; } static int pin_key_mark_value(st_data_t key, st_data_t value, st_data_t data) { rb_objspace_t *objspace = (rb_objspace_t *)data; gc_mark_and_pin(objspace, (VALUE)key); gc_mark(objspace, (VALUE)value); return ST_CONTINUE; } static void mark_hash(rb_objspace_t *objspace, VALUE hash) { if (rb_hash_compare_by_id_p(hash)) { rb_hash_stlike_foreach(hash, pin_key_mark_value, (st_data_t)objspace); } else { rb_hash_stlike_foreach(hash, mark_keyvalue, (st_data_t)objspace); } if (RHASH_AR_TABLE_P(hash)) { if (LIKELY(during_gc) && RHASH_TRANSIENT_P(hash)) { rb_transient_heap_mark(hash, RHASH_AR_TABLE(hash)); } } else { VM_ASSERT(!RHASH_TRANSIENT_P(hash)); } gc_mark(objspace, RHASH(hash)->ifnone); } static void mark_st(rb_objspace_t *objspace, st_table *tbl) { if (!tbl) return; st_foreach(tbl, pin_key_pin_value, (st_data_t)objspace); } void rb_mark_hash(st_table *tbl) { mark_st(&rb_objspace, tbl); } static void mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me) { const rb_method_definition_t *def = me->def; gc_mark(objspace, me->owner); gc_mark(objspace, me->defined_class); if (def) { switch (def->type) { case VM_METHOD_TYPE_ISEQ: if (def->body.iseq.iseqptr) gc_mark(objspace, (VALUE)def->body.iseq.iseqptr); gc_mark(objspace, (VALUE)def->body.iseq.cref); if (def->iseq_overload && me->defined_class) { // it can be a key of "overloaded_cme" table // so it should be pinned. gc_mark_and_pin(objspace, (VALUE)me); } break; case VM_METHOD_TYPE_ATTRSET: case VM_METHOD_TYPE_IVAR: gc_mark(objspace, def->body.attr.location); break; case VM_METHOD_TYPE_BMETHOD: gc_mark(objspace, def->body.bmethod.proc); if (def->body.bmethod.hooks) rb_hook_list_mark(def->body.bmethod.hooks); break; case VM_METHOD_TYPE_ALIAS: gc_mark(objspace, (VALUE)def->body.alias.original_me); return; case VM_METHOD_TYPE_REFINED: gc_mark(objspace, (VALUE)def->body.refined.orig_me); gc_mark(objspace, (VALUE)def->body.refined.owner); break; case VM_METHOD_TYPE_CFUNC: case VM_METHOD_TYPE_ZSUPER: case VM_METHOD_TYPE_MISSING: case VM_METHOD_TYPE_OPTIMIZED: case VM_METHOD_TYPE_UNDEF: case VM_METHOD_TYPE_NOTIMPLEMENTED: break; } } } static enum rb_id_table_iterator_result mark_method_entry_i(VALUE me, void *data) { rb_objspace_t *objspace = (rb_objspace_t *)data; gc_mark(objspace, me); return ID_TABLE_CONTINUE; } static void mark_m_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl) { if (tbl) { rb_id_table_foreach_values(tbl, mark_method_entry_i, objspace); } } static enum rb_id_table_iterator_result mark_const_entry_i(VALUE value, void *data) { const rb_const_entry_t *ce = (const rb_const_entry_t *)value; rb_objspace_t *objspace = data; gc_mark(objspace, ce->value); gc_mark(objspace, ce->file); return ID_TABLE_CONTINUE; } static void mark_const_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl) { if (!tbl) return; rb_id_table_foreach_values(tbl, mark_const_entry_i, objspace); } #if STACK_GROW_DIRECTION < 0 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START) #elif STACK_GROW_DIRECTION > 0 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix)) #else #define GET_STACK_BOUNDS(start, end, appendix) \ ((STACK_END < STACK_START) ? \ ((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix))) #endif static void each_stack_location(rb_objspace_t *objspace, const rb_execution_context_t *ec, const VALUE *stack_start, const VALUE *stack_end, void (*cb)(rb_objspace_t *, VALUE)); #if defined(__wasm__) static VALUE *rb_stack_range_tmp[2]; static void rb_mark_locations(void *begin, void *end) { rb_stack_range_tmp[0] = begin; rb_stack_range_tmp[1] = end; } # if defined(__EMSCRIPTEN__) static void mark_current_machine_context(rb_objspace_t *objspace, rb_execution_context_t *ec) { emscripten_scan_stack(rb_mark_locations); each_stack_location(objspace, ec, rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe); emscripten_scan_registers(rb_mark_locations); each_stack_location(objspace, ec, rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe); } # else // use Asyncify version static void mark_current_machine_context(rb_objspace_t *objspace, rb_execution_context_t *ec) { rb_wasm_scan_stack(rb_mark_locations); each_stack_location(objspace, ec, rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe); rb_wasm_scan_locals(rb_mark_locations); each_stack_location(objspace, ec, rb_stack_range_tmp[0], rb_stack_range_tmp[1], gc_mark_maybe); } # endif #else // !defined(__wasm__) static void mark_current_machine_context(rb_objspace_t *objspace, rb_execution_context_t *ec) { union { rb_jmp_buf j; VALUE v[sizeof(rb_jmp_buf) / (sizeof(VALUE))]; } save_regs_gc_mark; VALUE *stack_start, *stack_end; FLUSH_REGISTER_WINDOWS; memset(&save_regs_gc_mark, 0, sizeof(save_regs_gc_mark)); /* This assumes that all registers are saved into the jmp_buf (and stack) */ rb_setjmp(save_regs_gc_mark.j); /* SET_STACK_END must be called in this function because * the stack frame of this function may contain * callee save registers and they should be marked. */ SET_STACK_END; GET_STACK_BOUNDS(stack_start, stack_end, 1); each_location(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v), gc_mark_maybe); each_stack_location(objspace, ec, stack_start, stack_end, gc_mark_maybe); } #endif static void each_machine_stack_value(const rb_execution_context_t *ec, void (*cb)(rb_objspace_t *, VALUE)) { rb_objspace_t *objspace = &rb_objspace; VALUE *stack_start, *stack_end; GET_STACK_BOUNDS(stack_start, stack_end, 0); each_stack_location(objspace, ec, stack_start, stack_end, cb); } void rb_gc_mark_machine_stack(const rb_execution_context_t *ec) { each_machine_stack_value(ec, gc_mark_maybe); } static void each_stack_location(rb_objspace_t *objspace, const rb_execution_context_t *ec, const VALUE *stack_start, const VALUE *stack_end, void (*cb)(rb_objspace_t *, VALUE)) { gc_mark_locations(objspace, stack_start, stack_end, cb); #if defined(__mc68000__) gc_mark_locations(objspace, (VALUE*)((char*)stack_start + 2), (VALUE*)((char*)stack_end - 2), cb); #endif } void rb_mark_tbl(st_table *tbl) { mark_tbl(&rb_objspace, tbl); } void rb_mark_tbl_no_pin(st_table *tbl) { mark_tbl_no_pin(&rb_objspace, tbl); } static void gc_mark_maybe(rb_objspace_t *objspace, VALUE obj) { (void)VALGRIND_MAKE_MEM_DEFINED(&obj, sizeof(obj)); if (is_pointer_to_heap(objspace, (void *)obj)) { void *ptr = asan_unpoison_object_temporary(obj); /* Garbage can live on the stack, so do not mark or pin */ switch (BUILTIN_TYPE(obj)) { case T_ZOMBIE: case T_NONE: break; default: gc_mark_and_pin(objspace, obj); break; } if (ptr) { GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE); asan_poison_object(obj); } } } void rb_gc_mark_maybe(VALUE obj) { gc_mark_maybe(&rb_objspace, obj); } static inline int gc_mark_set(rb_objspace_t *objspace, VALUE obj) { ASSERT_vm_locking(); if (RVALUE_MARKED(obj)) return 0; MARK_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj); return 1; } static int gc_remember_unprotected(rb_objspace_t *objspace, VALUE obj) { struct heap_page *page = GET_HEAP_PAGE(obj); bits_t *uncollectible_bits = &page->uncollectible_bits[0]; if (!MARKED_IN_BITMAP(uncollectible_bits, obj)) { page->flags.has_uncollectible_shady_objects = TRUE; MARK_IN_BITMAP(uncollectible_bits, obj); objspace->rgengc.uncollectible_wb_unprotected_objects++; #if RGENGC_PROFILE > 0 objspace->profile.total_remembered_shady_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.remembered_shady_object_count_types[BUILTIN_TYPE(obj)]++; #endif #endif return TRUE; } else { return FALSE; } } static void rgengc_check_relation(rb_objspace_t *objspace, VALUE obj) { const VALUE old_parent = objspace->rgengc.parent_object; if (old_parent) { /* parent object is old */ if (RVALUE_WB_UNPROTECTED(obj)) { if (gc_remember_unprotected(objspace, obj)) { gc_report(2, objspace, "relation: (O->S) %s -> %s\n", obj_info(old_parent), obj_info(obj)); } } else { if (!RVALUE_OLD_P(obj)) { if (RVALUE_MARKED(obj)) { /* An object pointed from an OLD object should be OLD. */ gc_report(2, objspace, "relation: (O->unmarked Y) %s -> %s\n", obj_info(old_parent), obj_info(obj)); RVALUE_AGE_SET_OLD(objspace, obj); if (is_incremental_marking(objspace)) { if (!RVALUE_MARKING(obj)) { gc_grey(objspace, obj); } } else { rgengc_remember(objspace, obj); } } else { gc_report(2, objspace, "relation: (O->Y) %s -> %s\n", obj_info(old_parent), obj_info(obj)); RVALUE_AGE_SET_CANDIDATE(objspace, obj); } } } } GC_ASSERT(old_parent == objspace->rgengc.parent_object); } static void gc_grey(rb_objspace_t *objspace, VALUE obj) { #if RGENGC_CHECK_MODE if (RVALUE_MARKED(obj) == FALSE) rb_bug("gc_grey: %s is not marked.", obj_info(obj)); if (RVALUE_MARKING(obj) == TRUE) rb_bug("gc_grey: %s is marking/remembered.", obj_info(obj)); #endif #if GC_ENABLE_INCREMENTAL_MARK if (is_incremental_marking(objspace)) { MARK_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj); } #endif push_mark_stack(&objspace->mark_stack, obj); } static void gc_aging(rb_objspace_t *objspace, VALUE obj) { struct heap_page *page = GET_HEAP_PAGE(obj); GC_ASSERT(RVALUE_MARKING(obj) == FALSE); check_rvalue_consistency(obj); if (!RVALUE_PAGE_WB_UNPROTECTED(page, obj)) { if (!RVALUE_OLD_P(obj)) { gc_report(3, objspace, "gc_aging: YOUNG: %s\n", obj_info(obj)); RVALUE_AGE_INC(objspace, obj); } else if (is_full_marking(objspace)) { GC_ASSERT(RVALUE_PAGE_UNCOLLECTIBLE(page, obj) == FALSE); RVALUE_PAGE_OLD_UNCOLLECTIBLE_SET(objspace, page, obj); } } check_rvalue_consistency(obj); objspace->marked_slots++; } NOINLINE(static void gc_mark_ptr(rb_objspace_t *objspace, VALUE obj)); static void reachable_objects_from_callback(VALUE obj); static void gc_mark_ptr(rb_objspace_t *objspace, VALUE obj) { if (LIKELY(during_gc)) { rgengc_check_relation(objspace, obj); if (!gc_mark_set(objspace, obj)) return; /* already marked */ if (0) { // for debug GC marking miss if (objspace->rgengc.parent_object) { RUBY_DEBUG_LOG("%p (%s) parent:%p (%s)", (void *)obj, obj_type_name(obj), (void *)objspace->rgengc.parent_object, obj_type_name(objspace->rgengc.parent_object)); } else { RUBY_DEBUG_LOG("%p (%s)", (void *)obj, obj_type_name(obj)); } } if (UNLIKELY(RB_TYPE_P(obj, T_NONE))) { rp(obj); rb_bug("try to mark T_NONE object"); /* check here will help debugging */ } gc_aging(objspace, obj); gc_grey(objspace, obj); } else { reachable_objects_from_callback(obj); } } static inline void gc_pin(rb_objspace_t *objspace, VALUE obj) { GC_ASSERT(is_markable_object(objspace, obj)); if (UNLIKELY(objspace->flags.during_compacting)) { if (LIKELY(during_gc)) { MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), obj); } } } static inline void gc_mark_and_pin(rb_objspace_t *objspace, VALUE obj) { if (!is_markable_object(objspace, obj)) return; gc_pin(objspace, obj); gc_mark_ptr(objspace, obj); } static inline void gc_mark(rb_objspace_t *objspace, VALUE obj) { if (!is_markable_object(objspace, obj)) return; gc_mark_ptr(objspace, obj); } void rb_gc_mark_movable(VALUE ptr) { gc_mark(&rb_objspace, ptr); } void rb_gc_mark(VALUE ptr) { gc_mark_and_pin(&rb_objspace, ptr); } /* CAUTION: THIS FUNCTION ENABLE *ONLY BEFORE* SWEEPING. * This function is only for GC_END_MARK timing. */ int rb_objspace_marked_object_p(VALUE obj) { return RVALUE_MARKED(obj) ? TRUE : FALSE; } static inline void gc_mark_set_parent(rb_objspace_t *objspace, VALUE obj) { if (RVALUE_OLD_P(obj)) { objspace->rgengc.parent_object = obj; } else { objspace->rgengc.parent_object = Qfalse; } } static void gc_mark_imemo(rb_objspace_t *objspace, VALUE obj) { switch (imemo_type(obj)) { case imemo_env: { const rb_env_t *env = (const rb_env_t *)obj; if (LIKELY(env->ep)) { // just after newobj() can be NULL here. GC_ASSERT(env->ep[VM_ENV_DATA_INDEX_ENV] == obj); GC_ASSERT(VM_ENV_ESCAPED_P(env->ep)); gc_mark_values(objspace, (long)env->env_size, env->env); VM_ENV_FLAGS_SET(env->ep, VM_ENV_FLAG_WB_REQUIRED); gc_mark(objspace, (VALUE)rb_vm_env_prev_env(env)); gc_mark(objspace, (VALUE)env->iseq); } } return; case imemo_cref: gc_mark(objspace, RANY(obj)->as.imemo.cref.klass_or_self); gc_mark(objspace, (VALUE)RANY(obj)->as.imemo.cref.next); gc_mark(objspace, RANY(obj)->as.imemo.cref.refinements); return; case imemo_svar: gc_mark(objspace, RANY(obj)->as.imemo.svar.cref_or_me); gc_mark(objspace, RANY(obj)->as.imemo.svar.lastline); gc_mark(objspace, RANY(obj)->as.imemo.svar.backref); gc_mark(objspace, RANY(obj)->as.imemo.svar.others); return; case imemo_throw_data: gc_mark(objspace, RANY(obj)->as.imemo.throw_data.throw_obj); return; case imemo_ifunc: gc_mark_maybe(objspace, (VALUE)RANY(obj)->as.imemo.ifunc.data); return; case imemo_memo: gc_mark(objspace, RANY(obj)->as.imemo.memo.v1); gc_mark(objspace, RANY(obj)->as.imemo.memo.v2); gc_mark_maybe(objspace, RANY(obj)->as.imemo.memo.u3.value); return; case imemo_ment: mark_method_entry(objspace, &RANY(obj)->as.imemo.ment); return; case imemo_iseq: rb_iseq_mark((rb_iseq_t *)obj); return; case imemo_tmpbuf: { const rb_imemo_tmpbuf_t *m = &RANY(obj)->as.imemo.alloc; do { rb_gc_mark_locations(m->ptr, m->ptr + m->cnt); } while ((m = m->next) != NULL); } return; case imemo_ast: rb_ast_mark(&RANY(obj)->as.imemo.ast); return; case imemo_parser_strterm: rb_strterm_mark(obj); return; case imemo_callinfo: return; case imemo_callcache: { const struct rb_callcache *cc = (const struct rb_callcache *)obj; // should not mark klass here gc_mark(objspace, (VALUE)vm_cc_cme(cc)); } return; case imemo_constcache: { const struct iseq_inline_constant_cache_entry *ice = (struct iseq_inline_constant_cache_entry *)obj; gc_mark(objspace, ice->value); } return; #if VM_CHECK_MODE > 0 default: VM_UNREACHABLE(gc_mark_imemo); #endif } } static void gc_mark_children(rb_objspace_t *objspace, VALUE obj) { register RVALUE *any = RANY(obj); gc_mark_set_parent(objspace, obj); if (FL_TEST(obj, FL_EXIVAR)) { rb_mark_generic_ivar(obj); } switch (BUILTIN_TYPE(obj)) { case T_FLOAT: case T_BIGNUM: case T_SYMBOL: /* Not immediates, but does not have references and singleton * class */ return; case T_NIL: case T_FIXNUM: rb_bug("rb_gc_mark() called for broken object"); break; case T_NODE: UNEXPECTED_NODE(rb_gc_mark); break; case T_IMEMO: gc_mark_imemo(objspace, obj); return; default: break; } gc_mark(objspace, any->as.basic.klass); switch (BUILTIN_TYPE(obj)) { case T_CLASS: case T_MODULE: if (RCLASS_SUPER(obj)) { gc_mark(objspace, RCLASS_SUPER(obj)); } if (!RCLASS_EXT(obj)) break; mark_m_tbl(objspace, RCLASS_M_TBL(obj)); cc_table_mark(objspace, obj); mark_tbl_no_pin(objspace, RCLASS_IV_TBL(obj)); mark_const_tbl(objspace, RCLASS_CONST_TBL(obj)); break; case T_ICLASS: if (RICLASS_OWNS_M_TBL_P(obj)) { mark_m_tbl(objspace, RCLASS_M_TBL(obj)); } if (RCLASS_SUPER(obj)) { gc_mark(objspace, RCLASS_SUPER(obj)); } if (!RCLASS_EXT(obj)) break; if (RCLASS_INCLUDER(obj)) { gc_mark(objspace, RCLASS_INCLUDER(obj)); } mark_m_tbl(objspace, RCLASS_CALLABLE_M_TBL(obj)); cc_table_mark(objspace, obj); break; case T_ARRAY: if (ARY_SHARED_P(obj)) { VALUE root = ARY_SHARED_ROOT(obj); gc_mark(objspace, root); } else { long i, len = RARRAY_LEN(obj); const VALUE *ptr = RARRAY_CONST_PTR_TRANSIENT(obj); for (i=0; i < len; i++) { gc_mark(objspace, ptr[i]); } if (LIKELY(during_gc)) { if (!ARY_EMBED_P(obj) && RARRAY_TRANSIENT_P(obj)) { rb_transient_heap_mark(obj, ptr); } } } break; case T_HASH: mark_hash(objspace, obj); break; case T_STRING: if (STR_SHARED_P(obj)) { gc_mark(objspace, any->as.string.as.heap.aux.shared); } break; case T_DATA: { void *const ptr = DATA_PTR(obj); if (ptr) { RUBY_DATA_FUNC mark_func = RTYPEDDATA_P(obj) ? any->as.typeddata.type->function.dmark : any->as.data.dmark; if (mark_func) (*mark_func)(ptr); } } break; case T_OBJECT: { const VALUE * const ptr = ROBJECT_IVPTR(obj); uint32_t i, len = ROBJECT_IV_COUNT(obj); for (i = 0; i < len; i++) { gc_mark(objspace, ptr[i]); } if (LIKELY(during_gc) && ROBJ_TRANSIENT_P(obj)) { rb_transient_heap_mark(obj, ptr); } } break; case T_FILE: if (any->as.file.fptr) { gc_mark(objspace, any->as.file.fptr->self); gc_mark(objspace, any->as.file.fptr->pathv); gc_mark(objspace, any->as.file.fptr->tied_io_for_writing); gc_mark(objspace, any->as.file.fptr->writeconv_asciicompat); gc_mark(objspace, any->as.file.fptr->writeconv_pre_ecopts); gc_mark(objspace, any->as.file.fptr->encs.ecopts); gc_mark(objspace, any->as.file.fptr->write_lock); gc_mark(objspace, any->as.file.fptr->timeout); } break; case T_REGEXP: gc_mark(objspace, any->as.regexp.src); break; case T_MATCH: gc_mark(objspace, any->as.match.regexp); if (any->as.match.str) { gc_mark(objspace, any->as.match.str); } break; case T_RATIONAL: gc_mark(objspace, any->as.rational.num); gc_mark(objspace, any->as.rational.den); break; case T_COMPLEX: gc_mark(objspace, any->as.complex.real); gc_mark(objspace, any->as.complex.imag); break; case T_STRUCT: { long i; const long len = RSTRUCT_LEN(obj); const VALUE * const ptr = RSTRUCT_CONST_PTR(obj); for (i=0; i not incremental (do all) * incremental: n -> mark at most `n' objects */ static inline int gc_mark_stacked_objects(rb_objspace_t *objspace, int incremental, size_t count) { mark_stack_t *mstack = &objspace->mark_stack; VALUE obj; #if GC_ENABLE_INCREMENTAL_MARK size_t marked_slots_at_the_beginning = objspace->marked_slots; size_t popped_count = 0; #endif while (pop_mark_stack(mstack, &obj)) { if (obj == Qundef) continue; /* skip */ if (RGENGC_CHECK_MODE && !RVALUE_MARKED(obj)) { rb_bug("gc_mark_stacked_objects: %s is not marked.", obj_info(obj)); } gc_mark_children(objspace, obj); #if GC_ENABLE_INCREMENTAL_MARK if (incremental) { if (RGENGC_CHECK_MODE && !RVALUE_MARKING(obj)) { rb_bug("gc_mark_stacked_objects: incremental, but marking bit is 0"); } CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS(obj), obj); popped_count++; if (popped_count + (objspace->marked_slots - marked_slots_at_the_beginning) > count) { break; } } else { /* just ignore marking bits */ } #endif } if (RGENGC_CHECK_MODE >= 3) gc_verify_internal_consistency(objspace); if (is_mark_stack_empty(mstack)) { shrink_stack_chunk_cache(mstack); return TRUE; } else { return FALSE; } } static int gc_mark_stacked_objects_incremental(rb_objspace_t *objspace, size_t count) { return gc_mark_stacked_objects(objspace, TRUE, count); } static int gc_mark_stacked_objects_all(rb_objspace_t *objspace) { return gc_mark_stacked_objects(objspace, FALSE, 0); } #if PRINT_ROOT_TICKS #define MAX_TICKS 0x100 static tick_t mark_ticks[MAX_TICKS]; static const char *mark_ticks_categories[MAX_TICKS]; static void show_mark_ticks(void) { int i; fprintf(stderr, "mark ticks result:\n"); for (i=0; irgengc.parent_object = Qfalse; #if PRINT_ROOT_TICKS #define MARK_CHECKPOINT_PRINT_TICK(category) do { \ if (prev_category) { \ tick_t t = tick(); \ mark_ticks[tick_count] = t - start_tick; \ mark_ticks_categories[tick_count] = prev_category; \ tick_count++; \ } \ prev_category = category; \ start_tick = tick(); \ } while (0) #else /* PRINT_ROOT_TICKS */ #define MARK_CHECKPOINT_PRINT_TICK(category) #endif #define MARK_CHECKPOINT(category) do { \ if (categoryp) *categoryp = category; \ MARK_CHECKPOINT_PRINT_TICK(category); \ } while (0) MARK_CHECKPOINT("vm"); SET_STACK_END; rb_vm_mark(vm); if (vm->self) gc_mark(objspace, vm->self); MARK_CHECKPOINT("finalizers"); mark_finalizer_tbl(objspace, finalizer_table); MARK_CHECKPOINT("machine_context"); mark_current_machine_context(objspace, ec); /* mark protected global variables */ MARK_CHECKPOINT("global_list"); for (list = global_list; list; list = list->next) { gc_mark_maybe(objspace, *list->varptr); } MARK_CHECKPOINT("end_proc"); rb_mark_end_proc(); MARK_CHECKPOINT("global_tbl"); rb_gc_mark_global_tbl(); MARK_CHECKPOINT("object_id"); rb_gc_mark(objspace->next_object_id); mark_tbl_no_pin(objspace, objspace->obj_to_id_tbl); /* Only mark ids */ if (stress_to_class) rb_gc_mark(stress_to_class); MARK_CHECKPOINT("finish"); #undef MARK_CHECKPOINT } #if RGENGC_CHECK_MODE >= 4 #define MAKE_ROOTSIG(obj) (((VALUE)(obj) << 1) | 0x01) #define IS_ROOTSIG(obj) ((VALUE)(obj) & 0x01) #define GET_ROOTSIG(obj) ((const char *)((VALUE)(obj) >> 1)) struct reflist { VALUE *list; int pos; int size; }; static struct reflist * reflist_create(VALUE obj) { struct reflist *refs = xmalloc(sizeof(struct reflist)); refs->size = 1; refs->list = ALLOC_N(VALUE, refs->size); refs->list[0] = obj; refs->pos = 1; return refs; } static void reflist_destruct(struct reflist *refs) { xfree(refs->list); xfree(refs); } static void reflist_add(struct reflist *refs, VALUE obj) { if (refs->pos == refs->size) { refs->size *= 2; SIZED_REALLOC_N(refs->list, VALUE, refs->size, refs->size/2); } refs->list[refs->pos++] = obj; } static void reflist_dump(struct reflist *refs) { int i; for (i=0; ipos; i++) { VALUE obj = refs->list[i]; if (IS_ROOTSIG(obj)) { /* root */ fprintf(stderr, "", GET_ROOTSIG(obj)); } else { fprintf(stderr, "<%s>", obj_info(obj)); } if (i+1 < refs->pos) fprintf(stderr, ", "); } } static int reflist_referred_from_machine_context(struct reflist *refs) { int i; for (i=0; ipos; i++) { VALUE obj = refs->list[i]; if (IS_ROOTSIG(obj) && strcmp(GET_ROOTSIG(obj), "machine_context") == 0) return 1; } return 0; } struct allrefs { rb_objspace_t *objspace; /* a -> obj1 * b -> obj1 * c -> obj1 * c -> obj2 * d -> obj3 * #=> {obj1 => [a, b, c], obj2 => [c, d]} */ struct st_table *references; const char *category; VALUE root_obj; mark_stack_t mark_stack; }; static int allrefs_add(struct allrefs *data, VALUE obj) { struct reflist *refs; st_data_t r; if (st_lookup(data->references, obj, &r)) { refs = (struct reflist *)r; reflist_add(refs, data->root_obj); return 0; } else { refs = reflist_create(data->root_obj); st_insert(data->references, obj, (st_data_t)refs); return 1; } } static void allrefs_i(VALUE obj, void *ptr) { struct allrefs *data = (struct allrefs *)ptr; if (allrefs_add(data, obj)) { push_mark_stack(&data->mark_stack, obj); } } static void allrefs_roots_i(VALUE obj, void *ptr) { struct allrefs *data = (struct allrefs *)ptr; if (strlen(data->category) == 0) rb_bug("!!!"); data->root_obj = MAKE_ROOTSIG(data->category); if (allrefs_add(data, obj)) { push_mark_stack(&data->mark_stack, obj); } } #define PUSH_MARK_FUNC_DATA(v) do { \ struct gc_mark_func_data_struct *prev_mark_func_data = GET_RACTOR()->mfd; \ GET_RACTOR()->mfd = (v); #define POP_MARK_FUNC_DATA() GET_RACTOR()->mfd = prev_mark_func_data;} while (0) static st_table * objspace_allrefs(rb_objspace_t *objspace) { struct allrefs data; struct gc_mark_func_data_struct mfd; VALUE obj; int prev_dont_gc = dont_gc_val(); dont_gc_on(); data.objspace = objspace; data.references = st_init_numtable(); init_mark_stack(&data.mark_stack); mfd.mark_func = allrefs_roots_i; mfd.data = &data; /* traverse root objects */ PUSH_MARK_FUNC_DATA(&mfd); GET_RACTOR()->mfd = &mfd; gc_mark_roots(objspace, &data.category); POP_MARK_FUNC_DATA(); /* traverse rest objects reachable from root objects */ while (pop_mark_stack(&data.mark_stack, &obj)) { rb_objspace_reachable_objects_from(data.root_obj = obj, allrefs_i, &data); } free_stack_chunks(&data.mark_stack); dont_gc_set(prev_dont_gc); return data.references; } static int objspace_allrefs_destruct_i(st_data_t key, st_data_t value, st_data_t ptr) { struct reflist *refs = (struct reflist *)value; reflist_destruct(refs); return ST_CONTINUE; } static void objspace_allrefs_destruct(struct st_table *refs) { st_foreach(refs, objspace_allrefs_destruct_i, 0); st_free_table(refs); } #if RGENGC_CHECK_MODE >= 5 static int allrefs_dump_i(st_data_t k, st_data_t v, st_data_t ptr) { VALUE obj = (VALUE)k; struct reflist *refs = (struct reflist *)v; fprintf(stderr, "[allrefs_dump_i] %s <- ", obj_info(obj)); reflist_dump(refs); fprintf(stderr, "\n"); return ST_CONTINUE; } static void allrefs_dump(rb_objspace_t *objspace) { VALUE size = objspace->rgengc.allrefs_table->num_entries; fprintf(stderr, "[all refs] (size: %"PRIuVALUE")\n", size); st_foreach(objspace->rgengc.allrefs_table, allrefs_dump_i, 0); } #endif static int gc_check_after_marks_i(st_data_t k, st_data_t v, st_data_t ptr) { VALUE obj = k; struct reflist *refs = (struct reflist *)v; rb_objspace_t *objspace = (rb_objspace_t *)ptr; /* object should be marked or oldgen */ if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj)) { fprintf(stderr, "gc_check_after_marks_i: %s is not marked and not oldgen.\n", obj_info(obj)); fprintf(stderr, "gc_check_after_marks_i: %p is referred from ", (void *)obj); reflist_dump(refs); if (reflist_referred_from_machine_context(refs)) { fprintf(stderr, " (marked from machine stack).\n"); /* marked from machine context can be false positive */ } else { objspace->rgengc.error_count++; fprintf(stderr, "\n"); } } return ST_CONTINUE; } static void gc_marks_check(rb_objspace_t *objspace, st_foreach_callback_func *checker_func, const char *checker_name) { size_t saved_malloc_increase = objspace->malloc_params.increase; #if RGENGC_ESTIMATE_OLDMALLOC size_t saved_oldmalloc_increase = objspace->rgengc.oldmalloc_increase; #endif VALUE already_disabled = rb_objspace_gc_disable(objspace); objspace->rgengc.allrefs_table = objspace_allrefs(objspace); if (checker_func) { st_foreach(objspace->rgengc.allrefs_table, checker_func, (st_data_t)objspace); } if (objspace->rgengc.error_count > 0) { #if RGENGC_CHECK_MODE >= 5 allrefs_dump(objspace); #endif if (checker_name) rb_bug("%s: GC has problem.", checker_name); } objspace_allrefs_destruct(objspace->rgengc.allrefs_table); objspace->rgengc.allrefs_table = 0; if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace); objspace->malloc_params.increase = saved_malloc_increase; #if RGENGC_ESTIMATE_OLDMALLOC objspace->rgengc.oldmalloc_increase = saved_oldmalloc_increase; #endif } #endif /* RGENGC_CHECK_MODE >= 4 */ struct verify_internal_consistency_struct { rb_objspace_t *objspace; int err_count; size_t live_object_count; size_t zombie_object_count; VALUE parent; size_t old_object_count; size_t remembered_shady_count; }; static void check_generation_i(const VALUE child, void *ptr) { struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr; const VALUE parent = data->parent; if (RGENGC_CHECK_MODE) GC_ASSERT(RVALUE_OLD_P(parent)); if (!RVALUE_OLD_P(child)) { if (!RVALUE_REMEMBERED(parent) && !RVALUE_REMEMBERED(child) && !RVALUE_UNCOLLECTIBLE(child)) { fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (O->Y) %s -> %s\n", obj_info(parent), obj_info(child)); data->err_count++; } } } static void check_color_i(const VALUE child, void *ptr) { struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr; const VALUE parent = data->parent; if (!RVALUE_WB_UNPROTECTED(parent) && RVALUE_WHITE_P(child)) { fprintf(stderr, "verify_internal_consistency_reachable_i: WB miss (B->W) - %s -> %s\n", obj_info(parent), obj_info(child)); data->err_count++; } } static void check_children_i(const VALUE child, void *ptr) { struct verify_internal_consistency_struct *data = (struct verify_internal_consistency_struct *)ptr; if (check_rvalue_consistency_force(child, FALSE) != 0) { fprintf(stderr, "check_children_i: %s has error (referenced from %s)", obj_info(child), obj_info(data->parent)); rb_print_backtrace(); /* C backtrace will help to debug */ data->err_count++; } } static int verify_internal_consistency_i(void *page_start, void *page_end, size_t stride, struct verify_internal_consistency_struct *data) { VALUE obj; rb_objspace_t *objspace = data->objspace; for (obj = (VALUE)page_start; obj != (VALUE)page_end; obj += stride) { void *poisoned = asan_unpoison_object_temporary(obj); if (is_live_object(objspace, obj)) { /* count objects */ data->live_object_count++; data->parent = obj; /* Normally, we don't expect T_MOVED objects to be in the heap. * But they can stay alive on the stack, */ if (!gc_object_moved_p(objspace, obj)) { /* moved slots don't have children */ rb_objspace_reachable_objects_from(obj, check_children_i, (void *)data); } /* check health of children */ if (RVALUE_OLD_P(obj)) data->old_object_count++; if (RVALUE_WB_UNPROTECTED(obj) && RVALUE_UNCOLLECTIBLE(obj)) data->remembered_shady_count++; if (!is_marking(objspace) && RVALUE_OLD_P(obj)) { /* reachable objects from an oldgen object should be old or (young with remember) */ data->parent = obj; rb_objspace_reachable_objects_from(obj, check_generation_i, (void *)data); } if (is_incremental_marking(objspace)) { if (RVALUE_BLACK_P(obj)) { /* reachable objects from black objects should be black or grey objects */ data->parent = obj; rb_objspace_reachable_objects_from(obj, check_color_i, (void *)data); } } } else { if (BUILTIN_TYPE(obj) == T_ZOMBIE) { GC_ASSERT((RBASIC(obj)->flags & ~FL_SEEN_OBJ_ID) == T_ZOMBIE); data->zombie_object_count++; } } if (poisoned) { GC_ASSERT(BUILTIN_TYPE(obj) == T_NONE); asan_poison_object(obj); } } return 0; } static int gc_verify_heap_page(rb_objspace_t *objspace, struct heap_page *page, VALUE obj) { unsigned int has_remembered_shady = FALSE; unsigned int has_remembered_old = FALSE; int remembered_old_objects = 0; int free_objects = 0; int zombie_objects = 0; short slot_size = page->slot_size; uintptr_t start = (uintptr_t)page->start; uintptr_t end = start + page->total_slots * slot_size; for (uintptr_t ptr = start; ptr < end; ptr += slot_size) { VALUE val = (VALUE)ptr; void *poisoned = asan_unpoison_object_temporary(val); enum ruby_value_type type = BUILTIN_TYPE(val); if (type == T_NONE) free_objects++; if (type == T_ZOMBIE) zombie_objects++; if (RVALUE_PAGE_UNCOLLECTIBLE(page, val) && RVALUE_PAGE_WB_UNPROTECTED(page, val)) { has_remembered_shady = TRUE; } if (RVALUE_PAGE_MARKING(page, val)) { has_remembered_old = TRUE; remembered_old_objects++; } if (poisoned) { GC_ASSERT(BUILTIN_TYPE(val) == T_NONE); asan_poison_object(val); } } if (!is_incremental_marking(objspace) && page->flags.has_remembered_objects == FALSE && has_remembered_old == TRUE) { for (uintptr_t ptr = start; ptr < end; ptr += slot_size) { VALUE val = (VALUE)ptr; if (RVALUE_PAGE_MARKING(page, val)) { fprintf(stderr, "marking -> %s\n", obj_info(val)); } } rb_bug("page %p's has_remembered_objects should be false, but there are remembered old objects (%d). %s", (void *)page, remembered_old_objects, obj ? obj_info(obj) : ""); } if (page->flags.has_uncollectible_shady_objects == FALSE && has_remembered_shady == TRUE) { rb_bug("page %p's has_remembered_shady should be false, but there are remembered shady objects. %s", (void *)page, obj ? obj_info(obj) : ""); } if (0) { /* free_slots may not equal to free_objects */ if (page->free_slots != free_objects) { rb_bug("page %p's free_slots should be %d, but %d\n", (void *)page, page->free_slots, free_objects); } } if (page->final_slots != zombie_objects) { rb_bug("page %p's final_slots should be %d, but %d\n", (void *)page, page->final_slots, zombie_objects); } return remembered_old_objects; } static int gc_verify_heap_pages_(rb_objspace_t *objspace, struct ccan_list_head *head) { int remembered_old_objects = 0; struct heap_page *page = 0; ccan_list_for_each(head, page, page_node) { asan_unlock_freelist(page); RVALUE *p = page->freelist; while (p) { VALUE vp = (VALUE)p; VALUE prev = vp; asan_unpoison_object(vp, false); if (BUILTIN_TYPE(vp) != T_NONE) { fprintf(stderr, "freelist slot expected to be T_NONE but was: %s\n", obj_info(vp)); } p = p->as.free.next; asan_poison_object(prev); } asan_lock_freelist(page); if (page->flags.has_remembered_objects == FALSE) { remembered_old_objects += gc_verify_heap_page(objspace, page, Qfalse); } } return remembered_old_objects; } static int gc_verify_heap_pages(rb_objspace_t *objspace) { int remembered_old_objects = 0; for (int i = 0; i < SIZE_POOL_COUNT; i++) { remembered_old_objects += gc_verify_heap_pages_(objspace, &(SIZE_POOL_EDEN_HEAP(&size_pools[i])->pages)); remembered_old_objects += gc_verify_heap_pages_(objspace, &(SIZE_POOL_TOMB_HEAP(&size_pools[i])->pages)); } return remembered_old_objects; } /* * call-seq: * GC.verify_internal_consistency -> nil * * Verify internal consistency. * * This method is implementation specific. * Now this method checks generational consistency * if RGenGC is supported. */ static VALUE gc_verify_internal_consistency_m(VALUE dummy) { gc_verify_internal_consistency(&rb_objspace); return Qnil; } static void gc_verify_internal_consistency_(rb_objspace_t *objspace) { struct verify_internal_consistency_struct data = {0}; data.objspace = objspace; gc_report(5, objspace, "gc_verify_internal_consistency: start\n"); /* check relations */ for (size_t i = 0; i < heap_allocated_pages; i++) { struct heap_page *page = heap_pages_sorted[i]; short slot_size = page->slot_size; uintptr_t start = (uintptr_t)page->start; uintptr_t end = start + page->total_slots * slot_size; verify_internal_consistency_i((void *)start, (void *)end, slot_size, &data); } if (data.err_count != 0) { #if RGENGC_CHECK_MODE >= 5 objspace->rgengc.error_count = data.err_count; gc_marks_check(objspace, NULL, NULL); allrefs_dump(objspace); #endif rb_bug("gc_verify_internal_consistency: found internal inconsistency."); } /* check heap_page status */ gc_verify_heap_pages(objspace); /* check counters */ if (!is_lazy_sweeping(objspace) && !finalizing && ruby_single_main_ractor != NULL) { if (objspace_live_slots(objspace) != data.live_object_count) { fprintf(stderr, "heap_pages_final_slots: %"PRIdSIZE", " "objspace->profile.total_freed_objects: %"PRIdSIZE"\n", heap_pages_final_slots, objspace->profile.total_freed_objects); rb_bug("inconsistent live slot number: expect %"PRIuSIZE", but %"PRIuSIZE".", objspace_live_slots(objspace), data.live_object_count); } } if (!is_marking(objspace)) { if (objspace->rgengc.old_objects != data.old_object_count) { rb_bug("inconsistent old slot number: expect %"PRIuSIZE", but %"PRIuSIZE".", objspace->rgengc.old_objects, data.old_object_count); } if (objspace->rgengc.uncollectible_wb_unprotected_objects != data.remembered_shady_count) { rb_bug("inconsistent number of wb unprotected objects: expect %"PRIuSIZE", but %"PRIuSIZE".", objspace->rgengc.uncollectible_wb_unprotected_objects, data.remembered_shady_count); } } if (!finalizing) { size_t list_count = 0; { VALUE z = heap_pages_deferred_final; while (z) { list_count++; z = RZOMBIE(z)->next; } } if (heap_pages_final_slots != data.zombie_object_count || heap_pages_final_slots != list_count) { rb_bug("inconsistent finalizing object count:\n" " expect %"PRIuSIZE"\n" " but %"PRIuSIZE" zombies\n" " heap_pages_deferred_final list has %"PRIuSIZE" items.", heap_pages_final_slots, data.zombie_object_count, list_count); } } gc_report(5, objspace, "gc_verify_internal_consistency: OK\n"); } static void gc_verify_internal_consistency(rb_objspace_t *objspace) { RB_VM_LOCK_ENTER(); { rb_vm_barrier(); // stop other ractors unsigned int prev_during_gc = during_gc; during_gc = FALSE; // stop gc here { gc_verify_internal_consistency_(objspace); } during_gc = prev_during_gc; } RB_VM_LOCK_LEAVE(); } void rb_gc_verify_internal_consistency(void) { gc_verify_internal_consistency(&rb_objspace); } static VALUE gc_verify_transient_heap_internal_consistency(VALUE dmy) { rb_transient_heap_verify(); return Qnil; } #if GC_ENABLE_INCREMENTAL_MARK static void heap_move_pooled_pages_to_free_pages(rb_heap_t *heap) { if (heap->pooled_pages) { if (heap->free_pages) { struct heap_page *free_pages_tail = heap->free_pages; while (free_pages_tail->free_next) { free_pages_tail = free_pages_tail->free_next; } free_pages_tail->free_next = heap->pooled_pages; } else { heap->free_pages = heap->pooled_pages; } heap->pooled_pages = NULL; } } #endif /* marks */ static void gc_marks_start(rb_objspace_t *objspace, int full_mark) { /* start marking */ gc_report(1, objspace, "gc_marks_start: (%s)\n", full_mark ? "full" : "minor"); gc_mode_transition(objspace, gc_mode_marking); if (full_mark) { #if GC_ENABLE_INCREMENTAL_MARK size_t incremental_marking_steps = (objspace->rincgc.pooled_slots / INCREMENTAL_MARK_STEP_ALLOCATIONS) + 1; objspace->rincgc.step_slots = (objspace->marked_slots * 2) / incremental_marking_steps; if (0) fprintf(stderr, "objspace->marked_slots: %"PRIdSIZE", " "objspace->rincgc.pooled_page_num: %"PRIdSIZE", " "objspace->rincgc.step_slots: %"PRIdSIZE", \n", objspace->marked_slots, objspace->rincgc.pooled_slots, objspace->rincgc.step_slots); #endif objspace->flags.during_minor_gc = FALSE; if (ruby_enable_autocompact) { objspace->flags.during_compacting |= TRUE; } objspace->profile.major_gc_count++; objspace->rgengc.uncollectible_wb_unprotected_objects = 0; objspace->rgengc.old_objects = 0; objspace->rgengc.last_major_gc = objspace->profile.count; objspace->marked_slots = 0; for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); rgengc_mark_and_rememberset_clear(objspace, heap); heap_move_pooled_pages_to_free_pages(heap); } } else { objspace->flags.during_minor_gc = TRUE; objspace->marked_slots = objspace->rgengc.old_objects + objspace->rgengc.uncollectible_wb_unprotected_objects; /* uncollectible objects are marked already */ objspace->profile.minor_gc_count++; for (int i = 0; i < SIZE_POOL_COUNT; i++) { rgengc_rememberset_mark(objspace, SIZE_POOL_EDEN_HEAP(&size_pools[i])); } } gc_mark_roots(objspace, NULL); gc_report(1, objspace, "gc_marks_start: (%s) end, stack in %"PRIdSIZE"\n", full_mark ? "full" : "minor", mark_stack_size(&objspace->mark_stack)); } #if GC_ENABLE_INCREMENTAL_MARK static inline void gc_marks_wb_unprotected_objects_plane(rb_objspace_t *objspace, uintptr_t p, bits_t bits) { if (bits) { do { if (bits & 1) { gc_report(2, objspace, "gc_marks_wb_unprotected_objects: marked shady: %s\n", obj_info((VALUE)p)); GC_ASSERT(RVALUE_WB_UNPROTECTED((VALUE)p)); GC_ASSERT(RVALUE_MARKED((VALUE)p)); gc_mark_children(objspace, (VALUE)p); } p += BASE_SLOT_SIZE; bits >>= 1; } while (bits); } } static void gc_marks_wb_unprotected_objects(rb_objspace_t *objspace, rb_heap_t *heap) { struct heap_page *page = 0; ccan_list_for_each(&heap->pages, page, page_node) { bits_t *mark_bits = page->mark_bits; bits_t *wbun_bits = page->wb_unprotected_bits; uintptr_t p = page->start; size_t j; bits_t bits = mark_bits[0] & wbun_bits[0]; bits >>= NUM_IN_PAGE(p); gc_marks_wb_unprotected_objects_plane(objspace, p, bits); p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE; for (j=1; jmark_stack) == 0) { rb_bug("gc_marks_finish: mark stack is not empty (%"PRIdSIZE").", mark_stack_size(&objspace->mark_stack)); } gc_mark_roots(objspace, 0); while (gc_mark_stacked_objects_incremental(objspace, INT_MAX) == false); #if RGENGC_CHECK_MODE >= 2 if (gc_verify_heap_pages(objspace) != 0) { rb_bug("gc_marks_finish (incremental): there are remembered old objects."); } #endif objspace->flags.during_incremental_marking = FALSE; /* check children of all marked wb-unprotected objects */ for (int i = 0; i < SIZE_POOL_COUNT; i++) { gc_marks_wb_unprotected_objects(objspace, SIZE_POOL_EDEN_HEAP(&size_pools[i])); } } #endif /* GC_ENABLE_INCREMENTAL_MARK */ #if RGENGC_CHECK_MODE >= 2 gc_verify_internal_consistency(objspace); #endif if (is_full_marking(objspace)) { /* See the comment about RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR */ const double r = gc_params.oldobject_limit_factor; objspace->rgengc.uncollectible_wb_unprotected_objects_limit = (size_t)(objspace->rgengc.uncollectible_wb_unprotected_objects * r); objspace->rgengc.old_objects_limit = (size_t)(objspace->rgengc.old_objects * r); } #if RGENGC_CHECK_MODE >= 4 during_gc = FALSE; gc_marks_check(objspace, gc_check_after_marks_i, "after_marks"); during_gc = TRUE; #endif { /* decide full GC is needed or not */ size_t total_slots = heap_allocatable_slots(objspace) + heap_eden_total_slots(objspace); size_t sweep_slots = total_slots - objspace->marked_slots; /* will be swept slots */ size_t max_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_max_ratio); size_t min_free_slots = (size_t)(total_slots * gc_params.heap_free_slots_min_ratio); int full_marking = is_full_marking(objspace); const int r_cnt = GET_VM()->ractor.cnt; const int r_mul = r_cnt > 8 ? 8 : r_cnt; // upto 8 GC_ASSERT(heap_eden_total_slots(objspace) >= objspace->marked_slots); /* setup free-able page counts */ if (max_free_slots < gc_params.heap_init_slots * r_mul) { max_free_slots = gc_params.heap_init_slots * r_mul; } if (sweep_slots > max_free_slots) { heap_pages_freeable_pages = (sweep_slots - max_free_slots) / HEAP_PAGE_OBJ_LIMIT; } else { heap_pages_freeable_pages = 0; } /* check free_min */ if (min_free_slots < gc_params.heap_free_slots * r_mul) { min_free_slots = gc_params.heap_free_slots * r_mul; } if (sweep_slots < min_free_slots) { if (!full_marking) { if (objspace->profile.count - objspace->rgengc.last_major_gc < RVALUE_OLD_AGE) { full_marking = TRUE; /* do not update last_major_gc, because full marking is not done. */ /* goto increment; */ } else { gc_report(1, objspace, "gc_marks_finish: next is full GC!!)\n"); objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_NOFREE; } } #if !USE_RVARGC if (full_marking) { /* increment: */ gc_report(1, objspace, "gc_marks_finish: heap_set_increment!!\n"); rb_size_pool_t *size_pool = &size_pools[0]; size_pool_allocatable_pages_set(objspace, size_pool, heap_extend_pages(objspace, size_pool, sweep_slots, total_slots, heap_allocated_pages + heap_allocatable_pages(objspace))); heap_increment(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); } #endif } if (full_marking) { /* See the comment about RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR */ const double r = gc_params.oldobject_limit_factor; objspace->rgengc.uncollectible_wb_unprotected_objects_limit = (size_t)(objspace->rgengc.uncollectible_wb_unprotected_objects * r); objspace->rgengc.old_objects_limit = (size_t)(objspace->rgengc.old_objects * r); } if (objspace->rgengc.uncollectible_wb_unprotected_objects > objspace->rgengc.uncollectible_wb_unprotected_objects_limit) { objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_SHADY; } if (objspace->rgengc.old_objects > objspace->rgengc.old_objects_limit) { objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_OLDGEN; } if (RGENGC_FORCE_MAJOR_GC) { objspace->rgengc.need_major_gc = GPR_FLAG_MAJOR_BY_FORCE; } gc_report(1, objspace, "gc_marks_finish (marks %"PRIdSIZE" objects, " "old %"PRIdSIZE" objects, total %"PRIdSIZE" slots, " "sweep %"PRIdSIZE" slots, increment: %"PRIdSIZE", next GC: %s)\n", objspace->marked_slots, objspace->rgengc.old_objects, heap_eden_total_slots(objspace), sweep_slots, heap_allocatable_pages(objspace), objspace->rgengc.need_major_gc ? "major" : "minor"); } rb_transient_heap_finish_marking(); rb_ractor_finish_marking(); gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END_MARK, 0); } #if GC_ENABLE_INCREMENTAL_MARK static void gc_marks_step(rb_objspace_t *objspace, size_t slots) { GC_ASSERT(is_marking(objspace)); if (gc_mark_stacked_objects_incremental(objspace, slots)) { gc_marks_finish(objspace); gc_sweep(objspace); } if (0) fprintf(stderr, "objspace->marked_slots: %"PRIdSIZE"\n", objspace->marked_slots); } #endif static bool gc_compact_heap_cursors_met_p(rb_heap_t *heap) { return heap->sweeping_page == heap->compact_cursor; } static rb_size_pool_t * gc_compact_destination_pool(rb_objspace_t *objspace, rb_size_pool_t *src_pool, VALUE src) { size_t obj_size; switch (BUILTIN_TYPE(src)) { case T_ARRAY: obj_size = rb_ary_size_as_embedded(src); break; case T_OBJECT: obj_size = rb_obj_embedded_size(ROBJECT_NUMIV(src)); break; case T_STRING: obj_size = rb_str_size_as_embedded(src); break; default: return src_pool; } if (rb_gc_size_allocatable_p(obj_size)){ return &size_pools[size_pool_idx_for_size(obj_size)]; } else { return &size_pools[0]; } } static bool gc_compact_move(rb_objspace_t *objspace, rb_heap_t *heap, rb_size_pool_t *size_pool, VALUE src) { GC_ASSERT(BUILTIN_TYPE(src) != T_MOVED); rb_heap_t *dheap = SIZE_POOL_EDEN_HEAP(gc_compact_destination_pool(objspace, size_pool, src)); if (gc_compact_heap_cursors_met_p(dheap)) { return dheap != heap; } while (!try_move(objspace, dheap, dheap->free_pages, src)) { struct gc_sweep_context ctx = { .page = dheap->sweeping_page, .final_slots = 0, .freed_slots = 0, .empty_slots = 0, }; /* The page of src could be partially compacted, so it may contain * T_MOVED. Sweeping a page may read objects on this page, so we * need to lock the page. */ lock_page_body(objspace, GET_PAGE_BODY(src)); gc_sweep_page(objspace, dheap, &ctx); unlock_page_body(objspace, GET_PAGE_BODY(src)); if (dheap->sweeping_page->free_slots > 0) { heap_add_freepage(dheap, dheap->sweeping_page); }; dheap->sweeping_page = ccan_list_next(&dheap->pages, dheap->sweeping_page, page_node); if (gc_compact_heap_cursors_met_p(dheap)) { return false; } } return true; } static bool gc_compact_plane(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, uintptr_t p, bits_t bitset, struct heap_page *page) { short slot_size = page->slot_size; short slot_bits = slot_size / BASE_SLOT_SIZE; GC_ASSERT(slot_bits > 0); do { VALUE vp = (VALUE)p; GC_ASSERT(vp % sizeof(RVALUE) == 0); if (bitset & 1) { objspace->rcompactor.considered_count_table[BUILTIN_TYPE(vp)]++; if (!gc_compact_move(objspace, heap, size_pool, vp)) { //the cursors met. bubble up return false; } } p += slot_size; bitset >>= slot_bits; } while (bitset); return true; } // Iterate up all the objects in page, moving them to where they want to go static bool gc_compact_page(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap, struct heap_page *page) { GC_ASSERT(page == heap->compact_cursor); bits_t *mark_bits, *pin_bits; bits_t bitset; uintptr_t p = page->start; mark_bits = page->mark_bits; pin_bits = page->pinned_bits; // objects that can be moved are marked and not pinned bitset = (mark_bits[0] & ~pin_bits[0]); bitset >>= NUM_IN_PAGE(p); if (bitset) { if (!gc_compact_plane(objspace, size_pool, heap, (uintptr_t)p, bitset, page)) return false; } p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE; for (int j = 1; j < HEAP_PAGE_BITMAP_LIMIT; j++) { bitset = (mark_bits[j] & ~pin_bits[j]); if (bitset) { if (!gc_compact_plane(objspace, size_pool, heap, (uintptr_t)p, bitset, page)) return false; } p += BITS_BITLENGTH * BASE_SLOT_SIZE; } return true; } static bool gc_compact_all_compacted_p(rb_objspace_t *objspace) { for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); if (heap->total_pages > 0 && !gc_compact_heap_cursors_met_p(heap)) { return false; } } return true; } static void gc_sweep_compact(rb_objspace_t *objspace) { gc_compact_start(objspace); #if RGENGC_CHECK_MODE >= 2 gc_verify_internal_consistency(objspace); #endif while (!gc_compact_all_compacted_p(objspace)) { for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); if (gc_compact_heap_cursors_met_p(heap)) { continue; } struct heap_page *start_page = heap->compact_cursor; if (!gc_compact_page(objspace, size_pool, heap, start_page)) { lock_page_body(objspace, GET_PAGE_BODY(start_page->start)); continue; } // If we get here, we've finished moving all objects on the compact_cursor page // So we can lock it and move the cursor on to the next one. lock_page_body(objspace, GET_PAGE_BODY(start_page->start)); heap->compact_cursor = ccan_list_prev(&heap->pages, heap->compact_cursor, page_node); } } gc_compact_finish(objspace); #if RGENGC_CHECK_MODE >= 2 gc_verify_internal_consistency(objspace); #endif } static void gc_marks_rest(rb_objspace_t *objspace) { gc_report(1, objspace, "gc_marks_rest\n"); #if GC_ENABLE_INCREMENTAL_MARK for (int i = 0; i < SIZE_POOL_COUNT; i++) { SIZE_POOL_EDEN_HEAP(&size_pools[i])->pooled_pages = NULL; } #endif if (is_incremental_marking(objspace)) { while (gc_mark_stacked_objects_incremental(objspace, INT_MAX) == FALSE); } else { gc_mark_stacked_objects_all(objspace); } gc_marks_finish(objspace); /* move to sweep */ gc_sweep(objspace); } static void gc_marks_continue(rb_objspace_t *objspace, rb_size_pool_t *size_pool, rb_heap_t *heap) { GC_ASSERT(dont_gc_val() == FALSE); #if GC_ENABLE_INCREMENTAL_MARK unsigned int lock_lev; gc_enter(objspace, gc_enter_event_mark_continue, &lock_lev); if (heap->free_pages) { gc_report(2, objspace, "gc_marks_continue: has pooled pages"); gc_marks_step(objspace, objspace->rincgc.step_slots); } else { gc_report(2, objspace, "gc_marks_continue: no more pooled pages (stack depth: %"PRIdSIZE").\n", mark_stack_size(&objspace->mark_stack)); gc_marks_rest(objspace); } gc_exit(objspace, gc_enter_event_mark_continue, &lock_lev); #endif } static void gc_marks(rb_objspace_t *objspace, int full_mark) { gc_prof_mark_timer_start(objspace); /* setup marking */ gc_marks_start(objspace, full_mark); if (!is_incremental_marking(objspace)) { gc_marks_rest(objspace); } #if RGENGC_PROFILE > 0 if (gc_prof_record(objspace)) { gc_profile_record *record = gc_prof_record(objspace); record->old_objects = objspace->rgengc.old_objects; } #endif gc_prof_mark_timer_stop(objspace); } /* RGENGC */ static void gc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...) { if (level <= RGENGC_DEBUG) { char buf[1024]; FILE *out = stderr; va_list args; const char *status = " "; if (during_gc) { status = is_full_marking(objspace) ? "+" : "-"; } else { if (is_lazy_sweeping(objspace)) { status = "S"; } if (is_incremental_marking(objspace)) { status = "M"; } } va_start(args, fmt); vsnprintf(buf, 1024, fmt, args); va_end(args); fprintf(out, "%s|", status); fputs(buf, out); } } /* bit operations */ static int rgengc_remembersetbits_get(rb_objspace_t *objspace, VALUE obj) { return RVALUE_REMEMBERED(obj); } static int rgengc_remembersetbits_set(rb_objspace_t *objspace, VALUE obj) { struct heap_page *page = GET_HEAP_PAGE(obj); bits_t *bits = &page->marking_bits[0]; GC_ASSERT(!is_incremental_marking(objspace)); if (MARKED_IN_BITMAP(bits, obj)) { return FALSE; } else { page->flags.has_remembered_objects = TRUE; MARK_IN_BITMAP(bits, obj); return TRUE; } } /* wb, etc */ /* return FALSE if already remembered */ static int rgengc_remember(rb_objspace_t *objspace, VALUE obj) { gc_report(6, objspace, "rgengc_remember: %s %s\n", obj_info(obj), rgengc_remembersetbits_get(objspace, obj) ? "was already remembered" : "is remembered now"); check_rvalue_consistency(obj); if (RGENGC_CHECK_MODE) { if (RVALUE_WB_UNPROTECTED(obj)) rb_bug("rgengc_remember: %s is not wb protected.", obj_info(obj)); } #if RGENGC_PROFILE > 0 if (!rgengc_remembered(objspace, obj)) { if (RVALUE_WB_UNPROTECTED(obj) == 0) { objspace->profile.total_remembered_normal_object_count++; #if RGENGC_PROFILE >= 2 objspace->profile.remembered_normal_object_count_types[BUILTIN_TYPE(obj)]++; #endif } } #endif /* RGENGC_PROFILE > 0 */ return rgengc_remembersetbits_set(objspace, obj); } static int rgengc_remembered_sweep(rb_objspace_t *objspace, VALUE obj) { int result = rgengc_remembersetbits_get(objspace, obj); check_rvalue_consistency(obj); return result; } static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj) { gc_report(6, objspace, "rgengc_remembered: %s\n", obj_info(obj)); return rgengc_remembered_sweep(objspace, obj); } #ifndef PROFILE_REMEMBERSET_MARK #define PROFILE_REMEMBERSET_MARK 0 #endif static inline void rgengc_rememberset_mark_plane(rb_objspace_t *objspace, uintptr_t p, bits_t bitset) { if (bitset) { do { if (bitset & 1) { VALUE obj = (VALUE)p; gc_report(2, objspace, "rgengc_rememberset_mark: mark %s\n", obj_info(obj)); GC_ASSERT(RVALUE_UNCOLLECTIBLE(obj)); GC_ASSERT(RVALUE_OLD_P(obj) || RVALUE_WB_UNPROTECTED(obj)); gc_mark_children(objspace, obj); } p += BASE_SLOT_SIZE; bitset >>= 1; } while (bitset); } } static void rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap) { size_t j; struct heap_page *page = 0; #if PROFILE_REMEMBERSET_MARK int has_old = 0, has_shady = 0, has_both = 0, skip = 0; #endif gc_report(1, objspace, "rgengc_rememberset_mark: start\n"); ccan_list_for_each(&heap->pages, page, page_node) { if (page->flags.has_remembered_objects | page->flags.has_uncollectible_shady_objects) { uintptr_t p = page->start; bits_t bitset, bits[HEAP_PAGE_BITMAP_LIMIT]; bits_t *marking_bits = page->marking_bits; bits_t *uncollectible_bits = page->uncollectible_bits; bits_t *wb_unprotected_bits = page->wb_unprotected_bits; #if PROFILE_REMEMBERSET_MARK if (page->flags.has_remembered_objects && page->flags.has_uncollectible_shady_objects) has_both++; else if (page->flags.has_remembered_objects) has_old++; else if (page->flags.has_uncollectible_shady_objects) has_shady++; #endif for (j=0; jflags.has_remembered_objects = FALSE; bitset = bits[0]; bitset >>= NUM_IN_PAGE(p); rgengc_rememberset_mark_plane(objspace, p, bitset); p += (BITS_BITLENGTH - NUM_IN_PAGE(p)) * BASE_SLOT_SIZE; for (j=1; j < HEAP_PAGE_BITMAP_LIMIT; j++) { bitset = bits[j]; rgengc_rememberset_mark_plane(objspace, p, bitset); p += BITS_BITLENGTH * BASE_SLOT_SIZE; } } #if PROFILE_REMEMBERSET_MARK else { skip++; } #endif } #if PROFILE_REMEMBERSET_MARK fprintf(stderr, "%d\t%d\t%d\t%d\n", has_both, has_old, has_shady, skip); #endif gc_report(1, objspace, "rgengc_rememberset_mark: finished\n"); } static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap) { struct heap_page *page = 0; ccan_list_for_each(&heap->pages, page, page_node) { memset(&page->mark_bits[0], 0, HEAP_PAGE_BITMAP_SIZE); memset(&page->uncollectible_bits[0], 0, HEAP_PAGE_BITMAP_SIZE); memset(&page->marking_bits[0], 0, HEAP_PAGE_BITMAP_SIZE); memset(&page->pinned_bits[0], 0, HEAP_PAGE_BITMAP_SIZE); page->flags.has_uncollectible_shady_objects = FALSE; page->flags.has_remembered_objects = FALSE; } } /* RGENGC: APIs */ NOINLINE(static void gc_writebarrier_generational(VALUE a, VALUE b, rb_objspace_t *objspace)); static void gc_writebarrier_generational(VALUE a, VALUE b, rb_objspace_t *objspace) { if (RGENGC_CHECK_MODE) { if (!RVALUE_OLD_P(a)) rb_bug("gc_writebarrier_generational: %s is not an old object.", obj_info(a)); if ( RVALUE_OLD_P(b)) rb_bug("gc_writebarrier_generational: %s is an old object.", obj_info(b)); if (is_incremental_marking(objspace)) rb_bug("gc_writebarrier_generational: called while incremental marking: %s -> %s", obj_info(a), obj_info(b)); } #if 1 /* mark `a' and remember (default behavior) */ if (!rgengc_remembered(objspace, a)) { RB_VM_LOCK_ENTER_NO_BARRIER(); { rgengc_remember(objspace, a); } RB_VM_LOCK_LEAVE_NO_BARRIER(); gc_report(1, objspace, "gc_writebarrier_generational: %s (remembered) -> %s\n", obj_info(a), obj_info(b)); } #else /* mark `b' and remember */ MARK_IN_BITMAP(GET_HEAP_MARK_BITS(b), b); if (RVALUE_WB_UNPROTECTED(b)) { gc_remember_unprotected(objspace, b); } else { RVALUE_AGE_SET_OLD(objspace, b); rgengc_remember(objspace, b); } gc_report(1, objspace, "gc_writebarrier_generational: %s -> %s (remembered)\n", obj_info(a), obj_info(b)); #endif check_rvalue_consistency(a); check_rvalue_consistency(b); } #if GC_ENABLE_INCREMENTAL_MARK static void gc_mark_from(rb_objspace_t *objspace, VALUE obj, VALUE parent) { gc_mark_set_parent(objspace, parent); rgengc_check_relation(objspace, obj); if (gc_mark_set(objspace, obj) == FALSE) return; gc_aging(objspace, obj); gc_grey(objspace, obj); } NOINLINE(static void gc_writebarrier_incremental(VALUE a, VALUE b, rb_objspace_t *objspace)); static void gc_writebarrier_incremental(VALUE a, VALUE b, rb_objspace_t *objspace) { gc_report(2, objspace, "gc_writebarrier_incremental: [LG] %p -> %s\n", (void *)a, obj_info(b)); if (RVALUE_BLACK_P(a)) { if (RVALUE_WHITE_P(b)) { if (!RVALUE_WB_UNPROTECTED(a)) { gc_report(2, objspace, "gc_writebarrier_incremental: [IN] %p -> %s\n", (void *)a, obj_info(b)); gc_mark_from(objspace, b, a); } } else if (RVALUE_OLD_P(a) && !RVALUE_OLD_P(b)) { if (!RVALUE_WB_UNPROTECTED(b)) { gc_report(1, objspace, "gc_writebarrier_incremental: [GN] %p -> %s\n", (void *)a, obj_info(b)); RVALUE_AGE_SET_OLD(objspace, b); if (RVALUE_BLACK_P(b)) { gc_grey(objspace, b); } } else { gc_report(1, objspace, "gc_writebarrier_incremental: [LL] %p -> %s\n", (void *)a, obj_info(b)); gc_remember_unprotected(objspace, b); } } if (UNLIKELY(objspace->flags.during_compacting)) { MARK_IN_BITMAP(GET_HEAP_PINNED_BITS(b), b); } } } #else #define gc_writebarrier_incremental(a, b, objspace) #endif void rb_gc_writebarrier(VALUE a, VALUE b) { rb_objspace_t *objspace = &rb_objspace; if (RGENGC_CHECK_MODE) { if (SPECIAL_CONST_P(a)) rb_bug("rb_gc_writebarrier: a is special const: %"PRIxVALUE, a); if (SPECIAL_CONST_P(b)) rb_bug("rb_gc_writebarrier: b is special const: %"PRIxVALUE, b); } retry: if (!is_incremental_marking(objspace)) { if (!RVALUE_OLD_P(a) || RVALUE_OLD_P(b)) { // do nothing } else { gc_writebarrier_generational(a, b, objspace); } } else { bool retry = false; /* slow path */ RB_VM_LOCK_ENTER_NO_BARRIER(); { if (is_incremental_marking(objspace)) { gc_writebarrier_incremental(a, b, objspace); } else { retry = true; } } RB_VM_LOCK_LEAVE_NO_BARRIER(); if (retry) goto retry; } return; } void rb_gc_writebarrier_unprotect(VALUE obj) { if (RVALUE_WB_UNPROTECTED(obj)) { return; } else { rb_objspace_t *objspace = &rb_objspace; gc_report(2, objspace, "rb_gc_writebarrier_unprotect: %s %s\n", obj_info(obj), rgengc_remembered(objspace, obj) ? " (already remembered)" : ""); RB_VM_LOCK_ENTER_NO_BARRIER(); { if (RVALUE_OLD_P(obj)) { gc_report(1, objspace, "rb_gc_writebarrier_unprotect: %s\n", obj_info(obj)); RVALUE_DEMOTE(objspace, obj); gc_mark_set(objspace, obj); gc_remember_unprotected(objspace, obj); #if RGENGC_PROFILE objspace->profile.total_shade_operation_count++; #if RGENGC_PROFILE >= 2 objspace->profile.shade_operation_count_types[BUILTIN_TYPE(obj)]++; #endif /* RGENGC_PROFILE >= 2 */ #endif /* RGENGC_PROFILE */ } else { RVALUE_AGE_RESET(obj); } RB_DEBUG_COUNTER_INC(obj_wb_unprotect); MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(obj), obj); } RB_VM_LOCK_LEAVE_NO_BARRIER(); } } /* * remember `obj' if needed. */ MJIT_FUNC_EXPORTED void rb_gc_writebarrier_remember(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; gc_report(1, objspace, "rb_gc_writebarrier_remember: %s\n", obj_info(obj)); if (is_incremental_marking(objspace)) { if (RVALUE_BLACK_P(obj)) { gc_grey(objspace, obj); } } else { if (RVALUE_OLD_P(obj)) { rgengc_remember(objspace, obj); } } } static st_table *rgengc_unprotect_logging_table; static int rgengc_unprotect_logging_exit_func_i(st_data_t key, st_data_t val, st_data_t arg) { fprintf(stderr, "%s\t%"PRIuVALUE"\n", (char *)key, (VALUE)val); return ST_CONTINUE; } static void rgengc_unprotect_logging_exit_func(void) { st_foreach(rgengc_unprotect_logging_table, rgengc_unprotect_logging_exit_func_i, 0); } void rb_gc_unprotect_logging(void *objptr, const char *filename, int line) { VALUE obj = (VALUE)objptr; if (rgengc_unprotect_logging_table == 0) { rgengc_unprotect_logging_table = st_init_strtable(); atexit(rgengc_unprotect_logging_exit_func); } if (RVALUE_WB_UNPROTECTED(obj) == 0) { char buff[0x100]; st_data_t cnt = 1; char *ptr = buff; snprintf(ptr, 0x100 - 1, "%s|%s:%d", obj_info(obj), filename, line); if (st_lookup(rgengc_unprotect_logging_table, (st_data_t)ptr, &cnt)) { cnt++; } else { ptr = (strdup)(buff); if (!ptr) rb_memerror(); } st_insert(rgengc_unprotect_logging_table, (st_data_t)ptr, cnt); } } void rb_copy_wb_protected_attribute(VALUE dest, VALUE obj) { rb_objspace_t *objspace = &rb_objspace; if (RVALUE_WB_UNPROTECTED(obj) && !RVALUE_WB_UNPROTECTED(dest)) { if (!RVALUE_OLD_P(dest)) { MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS(dest), dest); RVALUE_AGE_RESET_RAW(dest); } else { RVALUE_DEMOTE(objspace, dest); } } check_rvalue_consistency(dest); } /* RGENGC analysis information */ VALUE rb_obj_rgengc_writebarrier_protected_p(VALUE obj) { return RBOOL(!RVALUE_WB_UNPROTECTED(obj)); } VALUE rb_obj_rgengc_promoted_p(VALUE obj) { return RBOOL(OBJ_PROMOTED(obj)); } size_t rb_obj_gc_flags(VALUE obj, ID* flags, size_t max) { size_t n = 0; static ID ID_marked; static ID ID_wb_protected, ID_old, ID_marking, ID_uncollectible, ID_pinned; if (!ID_marked) { #define I(s) ID_##s = rb_intern(#s); I(marked); I(wb_protected); I(old); I(marking); I(uncollectible); I(pinned); #undef I } if (RVALUE_WB_UNPROTECTED(obj) == 0 && nincremental_mark_step_allocated_slots = 0; #endif for (size_t size_pool_idx = 0; size_pool_idx < SIZE_POOL_COUNT; size_pool_idx++) { rb_ractor_newobj_size_pool_cache_t *cache = &newobj_cache->size_pool_caches[size_pool_idx]; struct heap_page *page = cache->using_page; RVALUE *freelist = cache->freelist; RUBY_DEBUG_LOG("ractor using_page:%p freelist:%p", (void *)page, (void *)freelist); heap_page_freelist_append(page, freelist); cache->using_page = NULL; cache->freelist = NULL; } } void rb_gc_force_recycle(VALUE obj) { /* no-op */ } #ifndef MARK_OBJECT_ARY_BUCKET_SIZE #define MARK_OBJECT_ARY_BUCKET_SIZE 1024 #endif void rb_gc_register_mark_object(VALUE obj) { if (!is_pointer_to_heap(&rb_objspace, (void *)obj)) return; RB_VM_LOCK_ENTER(); { VALUE ary_ary = GET_VM()->mark_object_ary; VALUE ary = rb_ary_last(0, 0, ary_ary); if (NIL_P(ary) || RARRAY_LEN(ary) >= MARK_OBJECT_ARY_BUCKET_SIZE) { ary = rb_ary_hidden_new(MARK_OBJECT_ARY_BUCKET_SIZE); rb_ary_push(ary_ary, ary); } rb_ary_push(ary, obj); } RB_VM_LOCK_LEAVE(); } void rb_gc_register_address(VALUE *addr) { rb_objspace_t *objspace = &rb_objspace; struct gc_list *tmp; tmp = ALLOC(struct gc_list); tmp->next = global_list; tmp->varptr = addr; global_list = tmp; } void rb_gc_unregister_address(VALUE *addr) { rb_objspace_t *objspace = &rb_objspace; struct gc_list *tmp = global_list; if (tmp->varptr == addr) { global_list = tmp->next; xfree(tmp); return; } while (tmp->next) { if (tmp->next->varptr == addr) { struct gc_list *t = tmp->next; tmp->next = tmp->next->next; xfree(t); break; } tmp = tmp->next; } } void rb_global_variable(VALUE *var) { rb_gc_register_address(var); } #define GC_NOTIFY 0 enum { gc_stress_no_major, gc_stress_no_immediate_sweep, gc_stress_full_mark_after_malloc, gc_stress_max }; #define gc_stress_full_mark_after_malloc_p() \ (FIXNUM_P(ruby_gc_stress_mode) && (FIX2LONG(ruby_gc_stress_mode) & (1<free_pages) { if (!heap_increment(objspace, size_pool, heap)) { size_pool_allocatable_pages_set(objspace, size_pool, 1); heap_increment(objspace, size_pool, heap); } } } static int ready_to_gc(rb_objspace_t *objspace) { if (dont_gc_val() || during_gc || ruby_disable_gc) { for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; heap_ready_to_gc(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool)); } return FALSE; } else { return TRUE; } } static void gc_reset_malloc_info(rb_objspace_t *objspace, bool full_mark) { gc_prof_set_malloc_info(objspace); { size_t inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0); size_t old_limit = malloc_limit; if (inc > malloc_limit) { malloc_limit = (size_t)(inc * gc_params.malloc_limit_growth_factor); if (malloc_limit > gc_params.malloc_limit_max) { malloc_limit = gc_params.malloc_limit_max; } } else { malloc_limit = (size_t)(malloc_limit * 0.98); /* magic number */ if (malloc_limit < gc_params.malloc_limit_min) { malloc_limit = gc_params.malloc_limit_min; } } if (0) { if (old_limit != malloc_limit) { fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: %"PRIuSIZE" -> %"PRIuSIZE"\n", rb_gc_count(), old_limit, malloc_limit); } else { fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: not changed (%"PRIuSIZE")\n", rb_gc_count(), malloc_limit); } } } /* reset oldmalloc info */ #if RGENGC_ESTIMATE_OLDMALLOC if (!full_mark) { if (objspace->rgengc.oldmalloc_increase > objspace->rgengc.oldmalloc_increase_limit) { objspace->rgengc.need_major_gc |= GPR_FLAG_MAJOR_BY_OLDMALLOC; objspace->rgengc.oldmalloc_increase_limit = (size_t)(objspace->rgengc.oldmalloc_increase_limit * gc_params.oldmalloc_limit_growth_factor); if (objspace->rgengc.oldmalloc_increase_limit > gc_params.oldmalloc_limit_max) { objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_max; } } if (0) fprintf(stderr, "%"PRIdSIZE"\t%d\t%"PRIuSIZE"\t%"PRIuSIZE"\t%"PRIdSIZE"\n", rb_gc_count(), objspace->rgengc.need_major_gc, objspace->rgengc.oldmalloc_increase, objspace->rgengc.oldmalloc_increase_limit, gc_params.oldmalloc_limit_max); } else { /* major GC */ objspace->rgengc.oldmalloc_increase = 0; if ((objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_BY_OLDMALLOC) == 0) { objspace->rgengc.oldmalloc_increase_limit = (size_t)(objspace->rgengc.oldmalloc_increase_limit / ((gc_params.oldmalloc_limit_growth_factor - 1)/10 + 1)); if (objspace->rgengc.oldmalloc_increase_limit < gc_params.oldmalloc_limit_min) { objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min; } } } #endif } static int garbage_collect(rb_objspace_t *objspace, unsigned int reason) { int ret; RB_VM_LOCK_ENTER(); { #if GC_PROFILE_MORE_DETAIL objspace->profile.prepare_time = getrusage_time(); #endif gc_rest(objspace); #if GC_PROFILE_MORE_DETAIL objspace->profile.prepare_time = getrusage_time() - objspace->profile.prepare_time; #endif ret = gc_start(objspace, reason); } RB_VM_LOCK_LEAVE(); return ret; } static int gc_start(rb_objspace_t *objspace, unsigned int reason) { unsigned int do_full_mark = !!(reason & GPR_FLAG_FULL_MARK); #if GC_ENABLE_INCREMENTAL_MARK unsigned int immediate_mark = reason & GPR_FLAG_IMMEDIATE_MARK; #endif /* reason may be clobbered, later, so keep set immediate_sweep here */ objspace->flags.immediate_sweep = !!(reason & GPR_FLAG_IMMEDIATE_SWEEP); /* Explicitly enable compaction (GC.compact) */ if (do_full_mark && ruby_enable_autocompact) { objspace->flags.during_compacting = TRUE; } else { objspace->flags.during_compacting = !!(reason & GPR_FLAG_COMPACT); } if (!heap_allocated_pages) return FALSE; /* heap is not ready */ if (!(reason & GPR_FLAG_METHOD) && !ready_to_gc(objspace)) return TRUE; /* GC is not allowed */ GC_ASSERT(gc_mode(objspace) == gc_mode_none); GC_ASSERT(!is_lazy_sweeping(objspace)); GC_ASSERT(!is_incremental_marking(objspace)); unsigned int lock_lev; gc_enter(objspace, gc_enter_event_start, &lock_lev); #if RGENGC_CHECK_MODE >= 2 gc_verify_internal_consistency(objspace); #endif if (ruby_gc_stressful) { int flag = FIXNUM_P(ruby_gc_stress_mode) ? FIX2INT(ruby_gc_stress_mode) : 0; if ((flag & (1<flags.immediate_sweep = !(flag & (1<rgengc.need_major_gc) { reason |= objspace->rgengc.need_major_gc; do_full_mark = TRUE; } else if (RGENGC_FORCE_MAJOR_GC) { reason = GPR_FLAG_MAJOR_BY_FORCE; do_full_mark = TRUE; } objspace->rgengc.need_major_gc = GPR_FLAG_NONE; } if (do_full_mark && (reason & GPR_FLAG_MAJOR_MASK) == 0) { reason |= GPR_FLAG_MAJOR_BY_FORCE; /* GC by CAPI, METHOD, and so on. */ } #if GC_ENABLE_INCREMENTAL_MARK if (!GC_ENABLE_INCREMENTAL_MARK || objspace->flags.dont_incremental || immediate_mark) { objspace->flags.during_incremental_marking = FALSE; } else { objspace->flags.during_incremental_marking = do_full_mark; } #endif if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_incremental) { objspace->flags.immediate_sweep = TRUE; } if (objspace->flags.immediate_sweep) reason |= GPR_FLAG_IMMEDIATE_SWEEP; gc_report(1, objspace, "gc_start(reason: %x) => %u, %d, %d\n", reason, do_full_mark, !is_incremental_marking(objspace), objspace->flags.immediate_sweep); #if USE_DEBUG_COUNTER RB_DEBUG_COUNTER_INC(gc_count); if (reason & GPR_FLAG_MAJOR_MASK) { (void)RB_DEBUG_COUNTER_INC_IF(gc_major_nofree, reason & GPR_FLAG_MAJOR_BY_NOFREE); (void)RB_DEBUG_COUNTER_INC_IF(gc_major_oldgen, reason & GPR_FLAG_MAJOR_BY_OLDGEN); (void)RB_DEBUG_COUNTER_INC_IF(gc_major_shady, reason & GPR_FLAG_MAJOR_BY_SHADY); (void)RB_DEBUG_COUNTER_INC_IF(gc_major_force, reason & GPR_FLAG_MAJOR_BY_FORCE); #if RGENGC_ESTIMATE_OLDMALLOC (void)RB_DEBUG_COUNTER_INC_IF(gc_major_oldmalloc, reason & GPR_FLAG_MAJOR_BY_OLDMALLOC); #endif } else { (void)RB_DEBUG_COUNTER_INC_IF(gc_minor_newobj, reason & GPR_FLAG_NEWOBJ); (void)RB_DEBUG_COUNTER_INC_IF(gc_minor_malloc, reason & GPR_FLAG_MALLOC); (void)RB_DEBUG_COUNTER_INC_IF(gc_minor_method, reason & GPR_FLAG_METHOD); (void)RB_DEBUG_COUNTER_INC_IF(gc_minor_capi, reason & GPR_FLAG_CAPI); (void)RB_DEBUG_COUNTER_INC_IF(gc_minor_stress, reason & GPR_FLAG_STRESS); } #endif objspace->profile.count++; objspace->profile.latest_gc_info = reason; objspace->profile.total_allocated_objects_at_gc_start = objspace->total_allocated_objects; objspace->profile.heap_used_at_gc_start = heap_allocated_pages; gc_prof_setup_new_record(objspace, reason); gc_reset_malloc_info(objspace, do_full_mark); rb_transient_heap_start_marking(do_full_mark); gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_START, 0 /* TODO: pass minor/immediate flag? */); GC_ASSERT(during_gc); gc_prof_timer_start(objspace); { gc_marks(objspace, do_full_mark); } gc_prof_timer_stop(objspace); gc_exit(objspace, gc_enter_event_start, &lock_lev); return TRUE; } static void gc_rest(rb_objspace_t *objspace) { int marking = is_incremental_marking(objspace); int sweeping = is_lazy_sweeping(objspace); if (marking || sweeping) { unsigned int lock_lev; gc_enter(objspace, gc_enter_event_rest, &lock_lev); if (RGENGC_CHECK_MODE >= 2) gc_verify_internal_consistency(objspace); if (is_incremental_marking(objspace)) { gc_marks_rest(objspace); } if (is_lazy_sweeping(objspace)) { gc_sweep_rest(objspace); } gc_exit(objspace, gc_enter_event_rest, &lock_lev); } } struct objspace_and_reason { rb_objspace_t *objspace; unsigned int reason; }; static void gc_current_status_fill(rb_objspace_t *objspace, char *buff) { int i = 0; if (is_marking(objspace)) { buff[i++] = 'M'; if (is_full_marking(objspace)) buff[i++] = 'F'; #if GC_ENABLE_INCREMENTAL_MARK if (is_incremental_marking(objspace)) buff[i++] = 'I'; #endif } else if (is_sweeping(objspace)) { buff[i++] = 'S'; if (is_lazy_sweeping(objspace)) buff[i++] = 'L'; } else { buff[i++] = 'N'; } buff[i] = '\0'; } static const char * gc_current_status(rb_objspace_t *objspace) { static char buff[0x10]; gc_current_status_fill(objspace, buff); return buff; } #if PRINT_ENTER_EXIT_TICK static tick_t last_exit_tick; static tick_t enter_tick; static int enter_count = 0; static char last_gc_status[0x10]; static inline void gc_record(rb_objspace_t *objspace, int direction, const char *event) { if (direction == 0) { /* enter */ enter_count++; enter_tick = tick(); gc_current_status_fill(objspace, last_gc_status); } else { /* exit */ tick_t exit_tick = tick(); char current_gc_status[0x10]; gc_current_status_fill(objspace, current_gc_status); #if 1 /* [last mutator time] [gc time] [event] */ fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n", enter_tick - last_exit_tick, exit_tick - enter_tick, event, last_gc_status, current_gc_status, (objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-'); last_exit_tick = exit_tick; #else /* [enter_tick] [gc time] [event] */ fprintf(stderr, "%"PRItick"\t%"PRItick"\t%s\t[%s->%s|%c]\n", enter_tick, exit_tick - enter_tick, event, last_gc_status, current_gc_status, (objspace->profile.latest_gc_info & GPR_FLAG_MAJOR_MASK) ? '+' : '-'); #endif } } #else /* PRINT_ENTER_EXIT_TICK */ static inline void gc_record(rb_objspace_t *objspace, int direction, const char *event) { /* null */ } #endif /* PRINT_ENTER_EXIT_TICK */ static const char * gc_enter_event_cstr(enum gc_enter_event event) { switch (event) { case gc_enter_event_start: return "start"; case gc_enter_event_mark_continue: return "mark_continue"; case gc_enter_event_sweep_continue: return "sweep_continue"; case gc_enter_event_rest: return "rest"; case gc_enter_event_finalizer: return "finalizer"; case gc_enter_event_rb_memerror: return "rb_memerror"; } return NULL; } static void gc_enter_count(enum gc_enter_event event) { switch (event) { case gc_enter_event_start: RB_DEBUG_COUNTER_INC(gc_enter_start); break; case gc_enter_event_mark_continue: RB_DEBUG_COUNTER_INC(gc_enter_mark_continue); break; case gc_enter_event_sweep_continue: RB_DEBUG_COUNTER_INC(gc_enter_sweep_continue); break; case gc_enter_event_rest: RB_DEBUG_COUNTER_INC(gc_enter_rest); break; case gc_enter_event_finalizer: RB_DEBUG_COUNTER_INC(gc_enter_finalizer); break; case gc_enter_event_rb_memerror: /* nothing */ break; } } #ifndef MEASURE_GC #define MEASURE_GC (objspace->flags.measure_gc) #endif static bool gc_enter_event_measure_p(rb_objspace_t *objspace, enum gc_enter_event event) { if (!MEASURE_GC) return false; switch (event) { case gc_enter_event_start: case gc_enter_event_mark_continue: case gc_enter_event_sweep_continue: case gc_enter_event_rest: return true; default: // case gc_enter_event_finalizer: // case gc_enter_event_rb_memerror: return false; } } static bool current_process_time(struct timespec *ts); static void gc_enter_clock(rb_objspace_t *objspace, enum gc_enter_event event) { if (gc_enter_event_measure_p(objspace, event)) { if (!current_process_time(&objspace->profile.start_time)) { objspace->profile.start_time.tv_sec = 0; objspace->profile.start_time.tv_nsec = 0; } } } static void gc_exit_clock(rb_objspace_t *objspace, enum gc_enter_event event) { if (gc_enter_event_measure_p(objspace, event)) { struct timespec end_time; if ((objspace->profile.start_time.tv_sec > 0 || objspace->profile.start_time.tv_nsec > 0) && current_process_time(&end_time)) { if (end_time.tv_sec < objspace->profile.start_time.tv_sec) { return; // ignore } else { uint64_t ns = (uint64_t)(end_time.tv_sec - objspace->profile.start_time.tv_sec) * (1000 * 1000 * 1000) + (end_time.tv_nsec - objspace->profile.start_time.tv_nsec); objspace->profile.total_time_ns += ns; } } } } static inline void gc_enter(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev) { RB_VM_LOCK_ENTER_LEV(lock_lev); gc_enter_clock(objspace, event); switch (event) { case gc_enter_event_rest: if (!is_marking(objspace)) break; // fall through case gc_enter_event_start: case gc_enter_event_mark_continue: // stop other ractors rb_vm_barrier(); break; default: break; } gc_enter_count(event); if (UNLIKELY(during_gc != 0)) rb_bug("during_gc != 0"); if (RGENGC_CHECK_MODE >= 3) gc_verify_internal_consistency(objspace); during_gc = TRUE; RUBY_DEBUG_LOG("%s (%s)",gc_enter_event_cstr(event), gc_current_status(objspace)); gc_report(1, objspace, "gc_enter: %s [%s]\n", gc_enter_event_cstr(event), gc_current_status(objspace)); gc_record(objspace, 0, gc_enter_event_cstr(event)); gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_ENTER, 0); /* TODO: which parameter should be passed? */ } static inline void gc_exit(rb_objspace_t *objspace, enum gc_enter_event event, unsigned int *lock_lev) { GC_ASSERT(during_gc != 0); gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_EXIT, 0); /* TODO: which parameter should be passsed? */ gc_record(objspace, 1, gc_enter_event_cstr(event)); RUBY_DEBUG_LOG("%s (%s)", gc_enter_event_cstr(event), gc_current_status(objspace)); gc_report(1, objspace, "gc_exit: %s [%s]\n", gc_enter_event_cstr(event), gc_current_status(objspace)); during_gc = FALSE; gc_exit_clock(objspace, event); RB_VM_LOCK_LEAVE_LEV(lock_lev); #if RGENGC_CHECK_MODE >= 2 if (event == gc_enter_event_sweep_continue && gc_mode(objspace) == gc_mode_none) { GC_ASSERT(!during_gc); // sweep finished gc_verify_internal_consistency(objspace); } #endif } static void * gc_with_gvl(void *ptr) { struct objspace_and_reason *oar = (struct objspace_and_reason *)ptr; return (void *)(VALUE)garbage_collect(oar->objspace, oar->reason); } static int garbage_collect_with_gvl(rb_objspace_t *objspace, unsigned int reason) { if (dont_gc_val()) return TRUE; if (ruby_thread_has_gvl_p()) { return garbage_collect(objspace, reason); } else { if (ruby_native_thread_p()) { struct objspace_and_reason oar; oar.objspace = objspace; oar.reason = reason; return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)&oar); } else { /* no ruby thread */ fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } } } static VALUE gc_start_internal(rb_execution_context_t *ec, VALUE self, VALUE full_mark, VALUE immediate_mark, VALUE immediate_sweep, VALUE compact) { rb_objspace_t *objspace = &rb_objspace; unsigned int reason = (GPR_FLAG_FULL_MARK | GPR_FLAG_IMMEDIATE_MARK | GPR_FLAG_IMMEDIATE_SWEEP | GPR_FLAG_METHOD); /* For now, compact implies full mark / sweep, so ignore other flags */ if (RTEST(compact)) { GC_ASSERT(GC_COMPACTION_SUPPORTED); reason |= GPR_FLAG_COMPACT; } else { if (!RTEST(full_mark)) reason &= ~GPR_FLAG_FULL_MARK; if (!RTEST(immediate_mark)) reason &= ~GPR_FLAG_IMMEDIATE_MARK; if (!RTEST(immediate_sweep)) reason &= ~GPR_FLAG_IMMEDIATE_SWEEP; } garbage_collect(objspace, reason); gc_finalize_deferred(objspace); return Qnil; } static int gc_is_moveable_obj(rb_objspace_t *objspace, VALUE obj) { GC_ASSERT(!SPECIAL_CONST_P(obj)); switch (BUILTIN_TYPE(obj)) { case T_NONE: case T_NIL: case T_MOVED: case T_ZOMBIE: return FALSE; case T_SYMBOL: if (DYNAMIC_SYM_P(obj) && (RSYMBOL(obj)->id & ~ID_SCOPE_MASK)) { return FALSE; } /* fall through */ case T_STRING: case T_OBJECT: case T_FLOAT: case T_IMEMO: case T_ARRAY: case T_BIGNUM: case T_ICLASS: case T_MODULE: case T_REGEXP: case T_DATA: case T_MATCH: case T_STRUCT: case T_HASH: case T_FILE: case T_COMPLEX: case T_RATIONAL: case T_NODE: case T_CLASS: if (FL_TEST(obj, FL_FINALIZE)) { /* The finalizer table is a numtable. It looks up objects by address. * We can't mark the keys in the finalizer table because that would * prevent the objects from being collected. This check prevents * objects that are keys in the finalizer table from being moved * without directly pinning them. */ if (st_is_member(finalizer_table, obj)) { return FALSE; } } GC_ASSERT(RVALUE_MARKED(obj)); GC_ASSERT(!RVALUE_PINNED(obj)); return TRUE; default: rb_bug("gc_is_moveable_obj: unreachable (%d)", (int)BUILTIN_TYPE(obj)); break; } return FALSE; } static VALUE gc_move(rb_objspace_t *objspace, VALUE scan, VALUE free, size_t src_slot_size, size_t slot_size) { int marked; int wb_unprotected; int uncollectible; int marking; RVALUE *dest = (RVALUE *)free; RVALUE *src = (RVALUE *)scan; gc_report(4, objspace, "Moving object: %p -> %p\n", (void*)scan, (void *)free); GC_ASSERT(BUILTIN_TYPE(scan) != T_NONE); GC_ASSERT(!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(free), free)); /* Save off bits for current object. */ marked = rb_objspace_marked_object_p((VALUE)src); wb_unprotected = RVALUE_WB_UNPROTECTED((VALUE)src); uncollectible = RVALUE_UNCOLLECTIBLE((VALUE)src); marking = RVALUE_MARKING((VALUE)src); /* Clear bits for eventual T_MOVED */ CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)src), (VALUE)src); CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)src), (VALUE)src); CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)src), (VALUE)src); CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS((VALUE)src), (VALUE)src); if (FL_TEST((VALUE)src, FL_EXIVAR)) { /* Same deal as below. Generic ivars are held in st tables. * Resizing the table could cause a GC to happen and we can't allow it */ VALUE already_disabled = rb_gc_disable_no_rest(); rb_mv_generic_ivar((VALUE)src, (VALUE)dest); if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace); } st_data_t srcid = (st_data_t)src, id; /* If the source object's object_id has been seen, we need to update * the object to object id mapping. */ if (st_lookup(objspace->obj_to_id_tbl, srcid, &id)) { gc_report(4, objspace, "Moving object with seen id: %p -> %p\n", (void *)src, (void *)dest); /* inserting in the st table can cause the GC to run. We need to * prevent re-entry in to the GC since `gc_move` is running in the GC, * so temporarily disable the GC around the st table mutation */ VALUE already_disabled = rb_gc_disable_no_rest(); st_delete(objspace->obj_to_id_tbl, &srcid, 0); st_insert(objspace->obj_to_id_tbl, (st_data_t)dest, id); if (already_disabled == Qfalse) rb_objspace_gc_enable(objspace); } /* Move the object */ memcpy(dest, src, MIN(src_slot_size, slot_size)); memset(src, 0, src_slot_size); /* Set bits for object in new location */ if (marking) { MARK_IN_BITMAP(GET_HEAP_MARKING_BITS((VALUE)dest), (VALUE)dest); } else { CLEAR_IN_BITMAP(GET_HEAP_MARKING_BITS((VALUE)dest), (VALUE)dest); } if (marked) { MARK_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)dest), (VALUE)dest); } else { CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS((VALUE)dest), (VALUE)dest); } if (wb_unprotected) { MARK_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)dest), (VALUE)dest); } else { CLEAR_IN_BITMAP(GET_HEAP_WB_UNPROTECTED_BITS((VALUE)dest), (VALUE)dest); } if (uncollectible) { MARK_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)dest), (VALUE)dest); } else { CLEAR_IN_BITMAP(GET_HEAP_UNCOLLECTIBLE_BITS((VALUE)dest), (VALUE)dest); } /* Assign forwarding address */ src->as.moved.flags = T_MOVED; src->as.moved.dummy = Qundef; src->as.moved.destination = (VALUE)dest; GC_ASSERT(BUILTIN_TYPE((VALUE)dest) != T_NONE); return (VALUE)src; } #if GC_CAN_COMPILE_COMPACTION static int compare_free_slots(const void *left, const void *right, void *dummy) { struct heap_page *left_page; struct heap_page *right_page; left_page = *(struct heap_page * const *)left; right_page = *(struct heap_page * const *)right; return left_page->free_slots - right_page->free_slots; } static void gc_sort_heap_by_empty_slots(rb_objspace_t *objspace) { for (int j = 0; j < SIZE_POOL_COUNT; j++) { rb_size_pool_t *size_pool = &size_pools[j]; size_t total_pages = SIZE_POOL_EDEN_HEAP(size_pool)->total_pages; size_t size = size_mul_or_raise(total_pages, sizeof(struct heap_page *), rb_eRuntimeError); struct heap_page *page = 0, **page_list = malloc(size); size_t i = 0; SIZE_POOL_EDEN_HEAP(size_pool)->free_pages = NULL; ccan_list_for_each(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, page, page_node) { page_list[i++] = page; GC_ASSERT(page); } GC_ASSERT((size_t)i == total_pages); /* Sort the heap so "filled pages" are first. `heap_add_page` adds to the * head of the list, so empty pages will end up at the start of the heap */ ruby_qsort(page_list, total_pages, sizeof(struct heap_page *), compare_free_slots, NULL); /* Reset the eden heap */ ccan_list_head_init(&SIZE_POOL_EDEN_HEAP(size_pool)->pages); for (i = 0; i < total_pages; i++) { ccan_list_add(&SIZE_POOL_EDEN_HEAP(size_pool)->pages, &page_list[i]->page_node); if (page_list[i]->free_slots != 0) { heap_add_freepage(SIZE_POOL_EDEN_HEAP(size_pool), page_list[i]); } } free(page_list); } } #endif static void gc_ref_update_array(rb_objspace_t * objspace, VALUE v) { if (ARY_SHARED_P(v)) { #if USE_RVARGC VALUE old_root = RARRAY(v)->as.heap.aux.shared_root; #endif UPDATE_IF_MOVED(objspace, RARRAY(v)->as.heap.aux.shared_root); #if USE_RVARGC VALUE new_root = RARRAY(v)->as.heap.aux.shared_root; // If the root is embedded and its location has changed if (ARY_EMBED_P(new_root) && new_root != old_root) { size_t offset = (size_t)(RARRAY(v)->as.heap.ptr - RARRAY(old_root)->as.ary); GC_ASSERT(RARRAY(v)->as.heap.ptr >= RARRAY(old_root)->as.ary); RARRAY(v)->as.heap.ptr = RARRAY(new_root)->as.ary + offset; } #endif } else { long len = RARRAY_LEN(v); if (len > 0) { VALUE *ptr = (VALUE *)RARRAY_CONST_PTR_TRANSIENT(v); for (long i = 0; i < len; i++) { UPDATE_IF_MOVED(objspace, ptr[i]); } } #if USE_RVARGC if ((size_t)GET_HEAP_PAGE(v)->slot_size >= rb_ary_size_as_embedded(v)) { if (rb_ary_embeddable_p(v)) { rb_ary_make_embedded(v); } } #endif } } static void gc_ref_update_object(rb_objspace_t *objspace, VALUE v) { VALUE *ptr = ROBJECT_IVPTR(v); uint32_t numiv = ROBJECT_NUMIV(v); #if USE_RVARGC size_t slot_size = rb_gc_obj_slot_size(v); size_t embed_size = rb_obj_embedded_size(numiv); if (slot_size >= embed_size && !RB_FL_TEST_RAW(v, ROBJECT_EMBED)) { // Object can be re-embedded memcpy(ROBJECT(v)->as.ary, ptr, sizeof(VALUE) * numiv); RB_FL_SET_RAW(v, ROBJECT_EMBED); if (ROBJ_TRANSIENT_P(v)) { ROBJ_TRANSIENT_UNSET(v); } else { xfree(ptr); } ptr = ROBJECT(v)->as.ary; uint32_t capa = (uint32_t)((slot_size - offsetof(struct RObject, as.ary)) / sizeof(VALUE)); ROBJECT(v)->numiv = capa; } #endif for (uint32_t i = 0; i < ROBJECT_IV_COUNT(v); i++) { UPDATE_IF_MOVED(objspace, ptr[i]); } } static int hash_replace_ref(st_data_t *key, st_data_t *value, st_data_t argp, int existing) { rb_objspace_t *objspace = (rb_objspace_t *)argp; if (gc_object_moved_p(objspace, (VALUE)*key)) { *key = rb_gc_location((VALUE)*key); } if (gc_object_moved_p(objspace, (VALUE)*value)) { *value = rb_gc_location((VALUE)*value); } return ST_CONTINUE; } static int hash_foreach_replace(st_data_t key, st_data_t value, st_data_t argp, int error) { rb_objspace_t *objspace; objspace = (rb_objspace_t *)argp; if (gc_object_moved_p(objspace, (VALUE)key)) { return ST_REPLACE; } if (gc_object_moved_p(objspace, (VALUE)value)) { return ST_REPLACE; } return ST_CONTINUE; } static int hash_replace_ref_value(st_data_t *key, st_data_t *value, st_data_t argp, int existing) { rb_objspace_t *objspace = (rb_objspace_t *)argp; if (gc_object_moved_p(objspace, (VALUE)*value)) { *value = rb_gc_location((VALUE)*value); } return ST_CONTINUE; } static int hash_foreach_replace_value(st_data_t key, st_data_t value, st_data_t argp, int error) { rb_objspace_t *objspace; objspace = (rb_objspace_t *)argp; if (gc_object_moved_p(objspace, (VALUE)value)) { return ST_REPLACE; } return ST_CONTINUE; } static void gc_update_tbl_refs(rb_objspace_t * objspace, st_table *tbl) { if (!tbl || tbl->num_entries == 0) return; if (st_foreach_with_replace(tbl, hash_foreach_replace_value, hash_replace_ref_value, (st_data_t)objspace)) { rb_raise(rb_eRuntimeError, "hash modified during iteration"); } } static void gc_update_table_refs(rb_objspace_t * objspace, st_table *tbl) { if (!tbl || tbl->num_entries == 0) return; if (st_foreach_with_replace(tbl, hash_foreach_replace, hash_replace_ref, (st_data_t)objspace)) { rb_raise(rb_eRuntimeError, "hash modified during iteration"); } } /* Update MOVED references in an st_table */ void rb_gc_update_tbl_refs(st_table *ptr) { rb_objspace_t *objspace = &rb_objspace; gc_update_table_refs(objspace, ptr); } static void gc_ref_update_hash(rb_objspace_t * objspace, VALUE v) { rb_hash_stlike_foreach_with_replace(v, hash_foreach_replace, hash_replace_ref, (st_data_t)objspace); } static void gc_ref_update_method_entry(rb_objspace_t *objspace, rb_method_entry_t *me) { rb_method_definition_t *def = me->def; UPDATE_IF_MOVED(objspace, me->owner); UPDATE_IF_MOVED(objspace, me->defined_class); if (def) { switch (def->type) { case VM_METHOD_TYPE_ISEQ: if (def->body.iseq.iseqptr) { TYPED_UPDATE_IF_MOVED(objspace, rb_iseq_t *, def->body.iseq.iseqptr); } TYPED_UPDATE_IF_MOVED(objspace, rb_cref_t *, def->body.iseq.cref); break; case VM_METHOD_TYPE_ATTRSET: case VM_METHOD_TYPE_IVAR: UPDATE_IF_MOVED(objspace, def->body.attr.location); break; case VM_METHOD_TYPE_BMETHOD: UPDATE_IF_MOVED(objspace, def->body.bmethod.proc); break; case VM_METHOD_TYPE_ALIAS: TYPED_UPDATE_IF_MOVED(objspace, struct rb_method_entry_struct *, def->body.alias.original_me); return; case VM_METHOD_TYPE_REFINED: TYPED_UPDATE_IF_MOVED(objspace, struct rb_method_entry_struct *, def->body.refined.orig_me); UPDATE_IF_MOVED(objspace, def->body.refined.owner); break; case VM_METHOD_TYPE_CFUNC: case VM_METHOD_TYPE_ZSUPER: case VM_METHOD_TYPE_MISSING: case VM_METHOD_TYPE_OPTIMIZED: case VM_METHOD_TYPE_UNDEF: case VM_METHOD_TYPE_NOTIMPLEMENTED: break; } } } static void gc_update_values(rb_objspace_t *objspace, long n, VALUE *values) { long i; for (i=0; iep)) { // just after newobj() can be NULL here. TYPED_UPDATE_IF_MOVED(objspace, rb_iseq_t *, env->iseq); UPDATE_IF_MOVED(objspace, env->ep[VM_ENV_DATA_INDEX_ENV]); gc_update_values(objspace, (long)env->env_size, (VALUE *)env->env); } } break; case imemo_cref: UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.cref.klass_or_self); TYPED_UPDATE_IF_MOVED(objspace, struct rb_cref_struct *, RANY(obj)->as.imemo.cref.next); UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.cref.refinements); break; case imemo_svar: UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.cref_or_me); UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.lastline); UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.backref); UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.svar.others); break; case imemo_throw_data: UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.throw_data.throw_obj); break; case imemo_ifunc: break; case imemo_memo: UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.memo.v1); UPDATE_IF_MOVED(objspace, RANY(obj)->as.imemo.memo.v2); break; case imemo_ment: gc_ref_update_method_entry(objspace, &RANY(obj)->as.imemo.ment); break; case imemo_iseq: rb_iseq_update_references((rb_iseq_t *)obj); break; case imemo_ast: rb_ast_update_references((rb_ast_t *)obj); break; case imemo_callcache: { const struct rb_callcache *cc = (const struct rb_callcache *)obj; if (cc->klass) { UPDATE_IF_MOVED(objspace, cc->klass); if (!is_live_object(objspace, cc->klass)) { *((VALUE *)(&cc->klass)) = (VALUE)0; } } if (cc->cme_) { TYPED_UPDATE_IF_MOVED(objspace, struct rb_callable_method_entry_struct *, cc->cme_); if (!is_live_object(objspace, (VALUE)cc->cme_)) { *((struct rb_callable_method_entry_struct **)(&cc->cme_)) = (struct rb_callable_method_entry_struct *)0; } } } break; case imemo_constcache: { const struct iseq_inline_constant_cache_entry *ice = (struct iseq_inline_constant_cache_entry *)obj; UPDATE_IF_MOVED(objspace, ice->value); } break; case imemo_parser_strterm: case imemo_tmpbuf: case imemo_callinfo: break; default: rb_bug("not reachable %d", imemo_type(obj)); break; } } static enum rb_id_table_iterator_result check_id_table_move(VALUE value, void *data) { rb_objspace_t *objspace = (rb_objspace_t *)data; if (gc_object_moved_p(objspace, (VALUE)value)) { return ID_TABLE_REPLACE; } return ID_TABLE_CONTINUE; } /* Returns the new location of an object, if it moved. Otherwise returns * the existing location. */ VALUE rb_gc_location(VALUE value) { VALUE destination; if (!SPECIAL_CONST_P(value)) { void *poisoned = asan_unpoison_object_temporary(value); if (BUILTIN_TYPE(value) == T_MOVED) { destination = (VALUE)RMOVED(value)->destination; GC_ASSERT(BUILTIN_TYPE(destination) != T_NONE); } else { destination = value; } /* Re-poison slot if it's not the one we want */ if (poisoned) { GC_ASSERT(BUILTIN_TYPE(value) == T_NONE); asan_poison_object(value); } } else { destination = value; } return destination; } static enum rb_id_table_iterator_result update_id_table(VALUE *value, void *data, int existing) { rb_objspace_t *objspace = (rb_objspace_t *)data; if (gc_object_moved_p(objspace, (VALUE)*value)) { *value = rb_gc_location((VALUE)*value); } return ID_TABLE_CONTINUE; } static void update_m_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl) { if (tbl) { rb_id_table_foreach_values_with_replace(tbl, check_id_table_move, update_id_table, objspace); } } static enum rb_id_table_iterator_result update_cc_tbl_i(VALUE ccs_ptr, void *data) { rb_objspace_t *objspace = (rb_objspace_t *)data; struct rb_class_cc_entries *ccs = (struct rb_class_cc_entries *)ccs_ptr; VM_ASSERT(vm_ccs_p(ccs)); if (gc_object_moved_p(objspace, (VALUE)ccs->cme)) { ccs->cme = (const rb_callable_method_entry_t *)rb_gc_location((VALUE)ccs->cme); } for (int i=0; ilen; i++) { if (gc_object_moved_p(objspace, (VALUE)ccs->entries[i].ci)) { ccs->entries[i].ci = (struct rb_callinfo *)rb_gc_location((VALUE)ccs->entries[i].ci); } if (gc_object_moved_p(objspace, (VALUE)ccs->entries[i].cc)) { ccs->entries[i].cc = (struct rb_callcache *)rb_gc_location((VALUE)ccs->entries[i].cc); } } // do not replace return ID_TABLE_CONTINUE; } static void update_cc_tbl(rb_objspace_t *objspace, VALUE klass) { struct rb_id_table *tbl = RCLASS_CC_TBL(klass); if (tbl) { rb_id_table_foreach_values(tbl, update_cc_tbl_i, objspace); } } static enum rb_id_table_iterator_result update_cvc_tbl_i(VALUE cvc_entry, void *data) { struct rb_cvar_class_tbl_entry *entry; entry = (struct rb_cvar_class_tbl_entry *)cvc_entry; entry->class_value = rb_gc_location(entry->class_value); return ID_TABLE_CONTINUE; } static void update_cvc_tbl(rb_objspace_t *objspace, VALUE klass) { struct rb_id_table *tbl = RCLASS_CVC_TBL(klass); if (tbl) { rb_id_table_foreach_values(tbl, update_cvc_tbl_i, objspace); } } static enum rb_id_table_iterator_result update_const_table(VALUE value, void *data) { rb_const_entry_t *ce = (rb_const_entry_t *)value; rb_objspace_t * objspace = (rb_objspace_t *)data; if (gc_object_moved_p(objspace, ce->value)) { ce->value = rb_gc_location(ce->value); } if (gc_object_moved_p(objspace, ce->file)) { ce->file = rb_gc_location(ce->file); } return ID_TABLE_CONTINUE; } static void update_const_tbl(rb_objspace_t *objspace, struct rb_id_table *tbl) { if (!tbl) return; rb_id_table_foreach_values(tbl, update_const_table, objspace); } static void update_subclass_entries(rb_objspace_t *objspace, rb_subclass_entry_t *entry) { while (entry) { UPDATE_IF_MOVED(objspace, entry->klass); entry = entry->next; } } static void update_class_ext(rb_objspace_t *objspace, rb_classext_t *ext) { UPDATE_IF_MOVED(objspace, ext->origin_); UPDATE_IF_MOVED(objspace, ext->includer); UPDATE_IF_MOVED(objspace, ext->refined_class); update_subclass_entries(objspace, ext->subclasses); } static void update_superclasses(rb_objspace_t *objspace, VALUE obj) { if (FL_TEST_RAW(obj, RCLASS_SUPERCLASSES_INCLUDE_SELF)) { for (size_t i = 0; i < RCLASS_SUPERCLASS_DEPTH(obj) + 1; i++) { UPDATE_IF_MOVED(objspace, RCLASS_SUPERCLASSES(obj)[i]); } } } static void gc_update_object_references(rb_objspace_t *objspace, VALUE obj) { RVALUE *any = RANY(obj); gc_report(4, objspace, "update-refs: %p ->\n", (void *)obj); switch (BUILTIN_TYPE(obj)) { case T_CLASS: case T_MODULE: if (RCLASS_SUPER((VALUE)obj)) { UPDATE_IF_MOVED(objspace, RCLASS(obj)->super); } if (!RCLASS_EXT(obj)) break; update_m_tbl(objspace, RCLASS_M_TBL(obj)); update_cc_tbl(objspace, obj); update_cvc_tbl(objspace, obj); update_superclasses(objspace, obj); gc_update_tbl_refs(objspace, RCLASS_IV_TBL(obj)); update_class_ext(objspace, RCLASS_EXT(obj)); update_const_tbl(objspace, RCLASS_CONST_TBL(obj)); break; case T_ICLASS: if (FL_TEST(obj, RICLASS_IS_ORIGIN) && !FL_TEST(obj, RICLASS_ORIGIN_SHARED_MTBL)) { update_m_tbl(objspace, RCLASS_M_TBL(obj)); } if (RCLASS_SUPER((VALUE)obj)) { UPDATE_IF_MOVED(objspace, RCLASS(obj)->super); } if (!RCLASS_EXT(obj)) break; if (RCLASS_IV_TBL(obj)) { gc_update_tbl_refs(objspace, RCLASS_IV_TBL(obj)); } update_class_ext(objspace, RCLASS_EXT(obj)); update_m_tbl(objspace, RCLASS_CALLABLE_M_TBL(obj)); update_cc_tbl(objspace, obj); break; case T_IMEMO: gc_ref_update_imemo(objspace, obj); return; case T_NIL: case T_FIXNUM: case T_NODE: case T_MOVED: case T_NONE: /* These can't move */ return; case T_ARRAY: gc_ref_update_array(objspace, obj); break; case T_HASH: gc_ref_update_hash(objspace, obj); UPDATE_IF_MOVED(objspace, any->as.hash.ifnone); break; case T_STRING: { #if USE_RVARGC #endif if (STR_SHARED_P(obj)) { #if USE_RVARGC VALUE old_root = any->as.string.as.heap.aux.shared; #endif UPDATE_IF_MOVED(objspace, any->as.string.as.heap.aux.shared); #if USE_RVARGC VALUE new_root = any->as.string.as.heap.aux.shared; rb_str_update_shared_ary(obj, old_root, new_root); // if, after move the string is not embedded, and can fit in the // slot it's been placed in, then re-embed it if ((size_t)GET_HEAP_PAGE(obj)->slot_size >= rb_str_size_as_embedded(obj)) { if (!STR_EMBED_P(obj) && rb_str_reembeddable_p(obj)) { rb_str_make_embedded(obj); } } #endif } break; } case T_DATA: /* Call the compaction callback, if it exists */ { void *const ptr = DATA_PTR(obj); if (ptr) { if (RTYPEDDATA_P(obj)) { RUBY_DATA_FUNC compact_func = any->as.typeddata.type->function.dcompact; if (compact_func) (*compact_func)(ptr); } } } break; case T_OBJECT: gc_ref_update_object(objspace, obj); break; case T_FILE: if (any->as.file.fptr) { UPDATE_IF_MOVED(objspace, any->as.file.fptr->self); UPDATE_IF_MOVED(objspace, any->as.file.fptr->pathv); UPDATE_IF_MOVED(objspace, any->as.file.fptr->tied_io_for_writing); UPDATE_IF_MOVED(objspace, any->as.file.fptr->writeconv_asciicompat); UPDATE_IF_MOVED(objspace, any->as.file.fptr->writeconv_pre_ecopts); UPDATE_IF_MOVED(objspace, any->as.file.fptr->encs.ecopts); UPDATE_IF_MOVED(objspace, any->as.file.fptr->write_lock); } break; case T_REGEXP: UPDATE_IF_MOVED(objspace, any->as.regexp.src); break; case T_SYMBOL: if (DYNAMIC_SYM_P((VALUE)any)) { UPDATE_IF_MOVED(objspace, RSYMBOL(any)->fstr); } break; case T_FLOAT: case T_BIGNUM: break; case T_MATCH: UPDATE_IF_MOVED(objspace, any->as.match.regexp); if (any->as.match.str) { UPDATE_IF_MOVED(objspace, any->as.match.str); } break; case T_RATIONAL: UPDATE_IF_MOVED(objspace, any->as.rational.num); UPDATE_IF_MOVED(objspace, any->as.rational.den); break; case T_COMPLEX: UPDATE_IF_MOVED(objspace, any->as.complex.real); UPDATE_IF_MOVED(objspace, any->as.complex.imag); break; case T_STRUCT: { long i, len = RSTRUCT_LEN(obj); VALUE *ptr = (VALUE *)RSTRUCT_CONST_PTR(obj); for (i = 0; i < len; i++) { UPDATE_IF_MOVED(objspace, ptr[i]); } } break; default: #if GC_DEBUG rb_gcdebug_print_obj_condition((VALUE)obj); rb_obj_info_dump(obj); rb_bug("unreachable"); #endif break; } UPDATE_IF_MOVED(objspace, RBASIC(obj)->klass); gc_report(4, objspace, "update-refs: %p <-\n", (void *)obj); } static int gc_ref_update(void *vstart, void *vend, size_t stride, rb_objspace_t * objspace, struct heap_page *page) { VALUE v = (VALUE)vstart; asan_unlock_freelist(page); asan_lock_freelist(page); page->flags.has_uncollectible_shady_objects = FALSE; page->flags.has_remembered_objects = FALSE; /* For each object on the page */ for (; v != (VALUE)vend; v += stride) { void *poisoned = asan_unpoison_object_temporary(v); switch (BUILTIN_TYPE(v)) { case T_NONE: case T_MOVED: case T_ZOMBIE: break; default: if (RVALUE_WB_UNPROTECTED(v)) { page->flags.has_uncollectible_shady_objects = TRUE; } if (RVALUE_PAGE_MARKING(page, v)) { page->flags.has_remembered_objects = TRUE; } if (page->flags.before_sweep) { if (RVALUE_MARKED(v)) { gc_update_object_references(objspace, v); } } else { gc_update_object_references(objspace, v); } } if (poisoned) { asan_poison_object(v); } } return 0; } extern rb_symbols_t ruby_global_symbols; #define global_symbols ruby_global_symbols static void gc_update_references(rb_objspace_t *objspace) { rb_execution_context_t *ec = GET_EC(); rb_vm_t *vm = rb_ec_vm_ptr(ec); struct heap_page *page = NULL; for (int i = 0; i < SIZE_POOL_COUNT; i++) { bool should_set_mark_bits = TRUE; rb_size_pool_t *size_pool = &size_pools[i]; rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); ccan_list_for_each(&heap->pages, page, page_node) { uintptr_t start = (uintptr_t)page->start; uintptr_t end = start + (page->total_slots * size_pool->slot_size); gc_ref_update((void *)start, (void *)end, size_pool->slot_size, objspace, page); if (page == heap->sweeping_page) { should_set_mark_bits = FALSE; } if (should_set_mark_bits) { gc_setup_mark_bits(page); } } } rb_vm_update_references(vm); rb_transient_heap_update_references(); rb_gc_update_global_tbl(); global_symbols.ids = rb_gc_location(global_symbols.ids); global_symbols.dsymbol_fstr_hash = rb_gc_location(global_symbols.dsymbol_fstr_hash); gc_update_tbl_refs(objspace, objspace->obj_to_id_tbl); gc_update_table_refs(objspace, objspace->id_to_obj_tbl); gc_update_table_refs(objspace, global_symbols.str_sym); gc_update_table_refs(objspace, finalizer_table); } #if GC_CAN_COMPILE_COMPACTION /* * call-seq: * GC.latest_compact_info -> {:considered=>{:T_CLASS=>11}, :moved=>{:T_CLASS=>11}} * * Returns information about object moved in the most recent GC compaction. * * The returned hash has two keys :considered and :moved. The hash for * :considered lists the number of objects that were considered for movement * by the compactor, and the :moved hash lists the number of objects that * were actually moved. Some objects can't be moved (maybe they were pinned) * so these numbers can be used to calculate compaction efficiency. */ static VALUE gc_compact_stats(VALUE self) { size_t i; rb_objspace_t *objspace = &rb_objspace; VALUE h = rb_hash_new(); VALUE considered = rb_hash_new(); VALUE moved = rb_hash_new(); VALUE moved_up = rb_hash_new(); VALUE moved_down = rb_hash_new(); for (i=0; ircompactor.considered_count_table[i]) { rb_hash_aset(considered, type_sym(i), SIZET2NUM(objspace->rcompactor.considered_count_table[i])); } if (objspace->rcompactor.moved_count_table[i]) { rb_hash_aset(moved, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_count_table[i])); } if (objspace->rcompactor.moved_up_count_table[i]) { rb_hash_aset(moved_up, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_up_count_table[i])); } if (objspace->rcompactor.moved_down_count_table[i]) { rb_hash_aset(moved_down, type_sym(i), SIZET2NUM(objspace->rcompactor.moved_down_count_table[i])); } } rb_hash_aset(h, ID2SYM(rb_intern("considered")), considered); rb_hash_aset(h, ID2SYM(rb_intern("moved")), moved); rb_hash_aset(h, ID2SYM(rb_intern("moved_up")), moved_up); rb_hash_aset(h, ID2SYM(rb_intern("moved_down")), moved_down); return h; } #else # define gc_compact_stats rb_f_notimplement #endif #if GC_CAN_COMPILE_COMPACTION static void root_obj_check_moved_i(const char *category, VALUE obj, void *data) { if (gc_object_moved_p(&rb_objspace, obj)) { rb_bug("ROOT %s points to MOVED: %p -> %s\n", category, (void *)obj, obj_info(rb_gc_location(obj))); } } static void reachable_object_check_moved_i(VALUE ref, void *data) { VALUE parent = (VALUE)data; if (gc_object_moved_p(&rb_objspace, ref)) { rb_bug("Object %s points to MOVED: %p -> %s\n", obj_info(parent), (void *)ref, obj_info(rb_gc_location(ref))); } } static int heap_check_moved_i(void *vstart, void *vend, size_t stride, void *data) { VALUE v = (VALUE)vstart; for (; v != (VALUE)vend; v += stride) { if (gc_object_moved_p(&rb_objspace, v)) { /* Moved object still on the heap, something may have a reference. */ } else { void *poisoned = asan_unpoison_object_temporary(v); switch (BUILTIN_TYPE(v)) { case T_NONE: case T_ZOMBIE: break; default: if (!rb_objspace_garbage_object_p(v)) { rb_objspace_reachable_objects_from(v, reachable_object_check_moved_i, (void *)v); } } if (poisoned) { GC_ASSERT(BUILTIN_TYPE(v) == T_NONE); asan_poison_object(v); } } } return 0; } /* * call-seq: * GC.compact * * This function compacts objects together in Ruby's heap. It eliminates * unused space (or fragmentation) in the heap by moving objects in to that * unused space. This function returns a hash which contains statistics about * which objects were moved. See `GC.latest_gc_info` for details about * compaction statistics. * * This method is implementation specific and not expected to be implemented * in any implementation besides MRI. * * To test whether GC compaction is supported, use the idiom: * * GC.respond_to?(:compact) */ static VALUE gc_compact(VALUE self) { /* Run GC with compaction enabled */ gc_start_internal(NULL, self, Qtrue, Qtrue, Qtrue, Qtrue); return gc_compact_stats(self); } #else # define gc_compact rb_f_notimplement #endif #if GC_CAN_COMPILE_COMPACTION static VALUE gc_verify_compaction_references(rb_execution_context_t *ec, VALUE self, VALUE double_heap, VALUE expand_heap, VALUE toward_empty) { rb_objspace_t *objspace = &rb_objspace; /* Clear the heap. */ gc_start_internal(NULL, self, Qtrue, Qtrue, Qtrue, Qfalse); size_t growth_slots = gc_params.heap_init_slots; if (RTEST(double_heap)) { rb_warn("double_heap is deprecated, please use expand_heap instead"); } RB_VM_LOCK_ENTER(); { gc_rest(objspace); /* if both double_heap and expand_heap are set, expand_heap takes precedence */ if (RTEST(double_heap) || RTEST(expand_heap)) { for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; rb_heap_t *heap = SIZE_POOL_EDEN_HEAP(size_pool); if (RTEST(expand_heap)) { size_t required_pages = growth_slots / size_pool->slot_size; heap_add_pages(objspace, size_pool, heap, MAX(required_pages, heap->total_pages)); } else { heap_add_pages(objspace, size_pool, heap, heap->total_pages); } } } if (RTEST(toward_empty)) { gc_sort_heap_by_empty_slots(objspace); } } RB_VM_LOCK_LEAVE(); gc_start_internal(NULL, self, Qtrue, Qtrue, Qtrue, Qtrue); objspace_reachable_objects_from_root(objspace, root_obj_check_moved_i, NULL); objspace_each_objects(objspace, heap_check_moved_i, NULL, TRUE); return gc_compact_stats(self); } #else # define gc_verify_compaction_references (rb_builtin_arity3_function_type)rb_f_notimplement #endif VALUE rb_gc_start(void) { rb_gc(); return Qnil; } void rb_gc(void) { rb_objspace_t *objspace = &rb_objspace; unsigned int reason = GPR_DEFAULT_REASON; garbage_collect(objspace, reason); } int rb_during_gc(void) { rb_objspace_t *objspace = &rb_objspace; return during_gc; } #if RGENGC_PROFILE >= 2 static const char *type_name(int type, VALUE obj); static void gc_count_add_each_types(VALUE hash, const char *name, const size_t *types) { VALUE result = rb_hash_new_with_size(T_MASK); int i; for (i=0; iprofile.latest_gc_info; if (SYMBOL_P(hash_or_key)) { key = hash_or_key; } else if (RB_TYPE_P(hash_or_key, T_HASH)) { hash = hash_or_key; } else { rb_raise(rb_eTypeError, "non-hash or symbol given"); } if (NIL_P(sym_major_by)) { #define S(s) sym_##s = ID2SYM(rb_intern_const(#s)) S(major_by); S(gc_by); S(immediate_sweep); S(have_finalizer); S(state); S(stress); S(nofree); S(oldgen); S(shady); S(force); #if RGENGC_ESTIMATE_OLDMALLOC S(oldmalloc); #endif S(newobj); S(malloc); S(method); S(capi); S(none); S(marking); S(sweeping); #undef S } #define SET(name, attr) \ if (key == sym_##name) \ return (attr); \ else if (hash != Qnil) \ rb_hash_aset(hash, sym_##name, (attr)); major_by = (flags & GPR_FLAG_MAJOR_BY_NOFREE) ? sym_nofree : (flags & GPR_FLAG_MAJOR_BY_OLDGEN) ? sym_oldgen : (flags & GPR_FLAG_MAJOR_BY_SHADY) ? sym_shady : (flags & GPR_FLAG_MAJOR_BY_FORCE) ? sym_force : #if RGENGC_ESTIMATE_OLDMALLOC (flags & GPR_FLAG_MAJOR_BY_OLDMALLOC) ? sym_oldmalloc : #endif Qnil; SET(major_by, major_by); SET(gc_by, (flags & GPR_FLAG_NEWOBJ) ? sym_newobj : (flags & GPR_FLAG_MALLOC) ? sym_malloc : (flags & GPR_FLAG_METHOD) ? sym_method : (flags & GPR_FLAG_CAPI) ? sym_capi : (flags & GPR_FLAG_STRESS) ? sym_stress : Qnil ); SET(have_finalizer, RBOOL(flags & GPR_FLAG_HAVE_FINALIZE)); SET(immediate_sweep, RBOOL(flags & GPR_FLAG_IMMEDIATE_SWEEP)); if (orig_flags == 0) { SET(state, gc_mode(objspace) == gc_mode_none ? sym_none : gc_mode(objspace) == gc_mode_marking ? sym_marking : sym_sweeping); } #undef SET if (!NIL_P(key)) {/* matched key should return above */ rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key)); } return hash; } VALUE rb_gc_latest_gc_info(VALUE key) { rb_objspace_t *objspace = &rb_objspace; return gc_info_decode(objspace, key, 0); } static VALUE gc_latest_gc_info(rb_execution_context_t *ec, VALUE self, VALUE arg) { rb_objspace_t *objspace = &rb_objspace; if (NIL_P(arg)) { arg = rb_hash_new(); } else if (!SYMBOL_P(arg) && !RB_TYPE_P(arg, T_HASH)) { rb_raise(rb_eTypeError, "non-hash or symbol given"); } return gc_info_decode(objspace, arg, 0); } enum gc_stat_sym { gc_stat_sym_count, gc_stat_sym_time, gc_stat_sym_heap_allocated_pages, gc_stat_sym_heap_sorted_length, gc_stat_sym_heap_allocatable_pages, gc_stat_sym_heap_available_slots, gc_stat_sym_heap_live_slots, gc_stat_sym_heap_free_slots, gc_stat_sym_heap_final_slots, gc_stat_sym_heap_marked_slots, gc_stat_sym_heap_eden_pages, gc_stat_sym_heap_tomb_pages, gc_stat_sym_total_allocated_pages, gc_stat_sym_total_freed_pages, gc_stat_sym_total_allocated_objects, gc_stat_sym_total_freed_objects, gc_stat_sym_malloc_increase_bytes, gc_stat_sym_malloc_increase_bytes_limit, gc_stat_sym_minor_gc_count, gc_stat_sym_major_gc_count, gc_stat_sym_compact_count, gc_stat_sym_read_barrier_faults, gc_stat_sym_total_moved_objects, gc_stat_sym_remembered_wb_unprotected_objects, gc_stat_sym_remembered_wb_unprotected_objects_limit, gc_stat_sym_old_objects, gc_stat_sym_old_objects_limit, #if RGENGC_ESTIMATE_OLDMALLOC gc_stat_sym_oldmalloc_increase_bytes, gc_stat_sym_oldmalloc_increase_bytes_limit, #endif #if RGENGC_PROFILE gc_stat_sym_total_generated_normal_object_count, gc_stat_sym_total_generated_shady_object_count, gc_stat_sym_total_shade_operation_count, gc_stat_sym_total_promoted_count, gc_stat_sym_total_remembered_normal_object_count, gc_stat_sym_total_remembered_shady_object_count, #endif gc_stat_sym_last }; static VALUE gc_stat_symbols[gc_stat_sym_last]; static void setup_gc_stat_symbols(void) { if (gc_stat_symbols[0] == 0) { #define S(s) gc_stat_symbols[gc_stat_sym_##s] = ID2SYM(rb_intern_const(#s)) S(count); S(time); S(heap_allocated_pages); S(heap_sorted_length); S(heap_allocatable_pages); S(heap_available_slots); S(heap_live_slots); S(heap_free_slots); S(heap_final_slots); S(heap_marked_slots); S(heap_eden_pages); S(heap_tomb_pages); S(total_allocated_pages); S(total_freed_pages); S(total_allocated_objects); S(total_freed_objects); S(malloc_increase_bytes); S(malloc_increase_bytes_limit); S(minor_gc_count); S(major_gc_count); S(compact_count); S(read_barrier_faults); S(total_moved_objects); S(remembered_wb_unprotected_objects); S(remembered_wb_unprotected_objects_limit); S(old_objects); S(old_objects_limit); #if RGENGC_ESTIMATE_OLDMALLOC S(oldmalloc_increase_bytes); S(oldmalloc_increase_bytes_limit); #endif #if RGENGC_PROFILE S(total_generated_normal_object_count); S(total_generated_shady_object_count); S(total_shade_operation_count); S(total_promoted_count); S(total_remembered_normal_object_count); S(total_remembered_shady_object_count); #endif /* RGENGC_PROFILE */ #undef S } } static size_t gc_stat_internal(VALUE hash_or_sym) { rb_objspace_t *objspace = &rb_objspace; VALUE hash = Qnil, key = Qnil; setup_gc_stat_symbols(); if (RB_TYPE_P(hash_or_sym, T_HASH)) { hash = hash_or_sym; } else if (SYMBOL_P(hash_or_sym)) { key = hash_or_sym; } else { rb_raise(rb_eTypeError, "non-hash or symbol argument"); } #define SET(name, attr) \ if (key == gc_stat_symbols[gc_stat_sym_##name]) \ return attr; \ else if (hash != Qnil) \ rb_hash_aset(hash, gc_stat_symbols[gc_stat_sym_##name], SIZET2NUM(attr)); SET(count, objspace->profile.count); SET(time, (size_t) (objspace->profile.total_time_ns / (1000 * 1000) /* ns -> ms */)); // TODO: UINT64T2NUM /* implementation dependent counters */ SET(heap_allocated_pages, heap_allocated_pages); SET(heap_sorted_length, heap_pages_sorted_length); SET(heap_allocatable_pages, heap_allocatable_pages(objspace)); SET(heap_available_slots, objspace_available_slots(objspace)); SET(heap_live_slots, objspace_live_slots(objspace)); SET(heap_free_slots, objspace_free_slots(objspace)); SET(heap_final_slots, heap_pages_final_slots); SET(heap_marked_slots, objspace->marked_slots); SET(heap_eden_pages, heap_eden_total_pages(objspace)); SET(heap_tomb_pages, heap_tomb_total_pages(objspace)); SET(total_allocated_pages, total_allocated_pages(objspace)); SET(total_freed_pages, total_freed_pages(objspace)); SET(total_allocated_objects, objspace->total_allocated_objects); SET(total_freed_objects, objspace->profile.total_freed_objects); SET(malloc_increase_bytes, malloc_increase); SET(malloc_increase_bytes_limit, malloc_limit); SET(minor_gc_count, objspace->profile.minor_gc_count); SET(major_gc_count, objspace->profile.major_gc_count); SET(compact_count, objspace->profile.compact_count); SET(read_barrier_faults, objspace->profile.read_barrier_faults); SET(total_moved_objects, objspace->rcompactor.total_moved); SET(remembered_wb_unprotected_objects, objspace->rgengc.uncollectible_wb_unprotected_objects); SET(remembered_wb_unprotected_objects_limit, objspace->rgengc.uncollectible_wb_unprotected_objects_limit); SET(old_objects, objspace->rgengc.old_objects); SET(old_objects_limit, objspace->rgengc.old_objects_limit); #if RGENGC_ESTIMATE_OLDMALLOC SET(oldmalloc_increase_bytes, objspace->rgengc.oldmalloc_increase); SET(oldmalloc_increase_bytes_limit, objspace->rgengc.oldmalloc_increase_limit); #endif #if RGENGC_PROFILE SET(total_generated_normal_object_count, objspace->profile.total_generated_normal_object_count); SET(total_generated_shady_object_count, objspace->profile.total_generated_shady_object_count); SET(total_shade_operation_count, objspace->profile.total_shade_operation_count); SET(total_promoted_count, objspace->profile.total_promoted_count); SET(total_remembered_normal_object_count, objspace->profile.total_remembered_normal_object_count); SET(total_remembered_shady_object_count, objspace->profile.total_remembered_shady_object_count); #endif /* RGENGC_PROFILE */ #undef SET if (!NIL_P(key)) { /* matched key should return above */ rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key)); } #if defined(RGENGC_PROFILE) && RGENGC_PROFILE >= 2 if (hash != Qnil) { gc_count_add_each_types(hash, "generated_normal_object_count_types", objspace->profile.generated_normal_object_count_types); gc_count_add_each_types(hash, "generated_shady_object_count_types", objspace->profile.generated_shady_object_count_types); gc_count_add_each_types(hash, "shade_operation_count_types", objspace->profile.shade_operation_count_types); gc_count_add_each_types(hash, "promoted_types", objspace->profile.promoted_types); gc_count_add_each_types(hash, "remembered_normal_object_count_types", objspace->profile.remembered_normal_object_count_types); gc_count_add_each_types(hash, "remembered_shady_object_count_types", objspace->profile.remembered_shady_object_count_types); } #endif return 0; } static VALUE gc_stat(rb_execution_context_t *ec, VALUE self, VALUE arg) // arg is (nil || hash || symbol) { if (NIL_P(arg)) { arg = rb_hash_new(); } else if (SYMBOL_P(arg)) { size_t value = gc_stat_internal(arg); return SIZET2NUM(value); } else if (RB_TYPE_P(arg, T_HASH)) { // ok } else { rb_raise(rb_eTypeError, "non-hash or symbol given"); } gc_stat_internal(arg); return arg; } size_t rb_gc_stat(VALUE key) { if (SYMBOL_P(key)) { size_t value = gc_stat_internal(key); return value; } else { gc_stat_internal(key); return 0; } } enum gc_stat_heap_sym { gc_stat_heap_sym_slot_size, gc_stat_heap_sym_heap_allocatable_pages, gc_stat_heap_sym_heap_eden_pages, gc_stat_heap_sym_heap_eden_slots, gc_stat_heap_sym_heap_tomb_pages, gc_stat_heap_sym_heap_tomb_slots, gc_stat_heap_sym_total_allocated_pages, gc_stat_heap_sym_total_freed_pages, gc_stat_heap_sym_force_major_gc_count, gc_stat_heap_sym_last }; static VALUE gc_stat_heap_symbols[gc_stat_heap_sym_last]; static void setup_gc_stat_heap_symbols(void) { if (gc_stat_heap_symbols[0] == 0) { #define S(s) gc_stat_heap_symbols[gc_stat_heap_sym_##s] = ID2SYM(rb_intern_const(#s)) S(slot_size); S(heap_allocatable_pages); S(heap_eden_pages); S(heap_eden_slots); S(heap_tomb_pages); S(heap_tomb_slots); S(total_allocated_pages); S(total_freed_pages); S(force_major_gc_count); #undef S } } static size_t gc_stat_heap_internal(int size_pool_idx, VALUE hash_or_sym) { rb_objspace_t *objspace = &rb_objspace; VALUE hash = Qnil, key = Qnil; setup_gc_stat_heap_symbols(); if (RB_TYPE_P(hash_or_sym, T_HASH)) { hash = hash_or_sym; } else if (SYMBOL_P(hash_or_sym)) { key = hash_or_sym; } else { rb_raise(rb_eTypeError, "non-hash or symbol argument"); } if (size_pool_idx < 0 || size_pool_idx >= SIZE_POOL_COUNT) { rb_raise(rb_eArgError, "size pool index out of range"); } rb_size_pool_t *size_pool = &size_pools[size_pool_idx]; #define SET(name, attr) \ if (key == gc_stat_heap_symbols[gc_stat_heap_sym_##name]) \ return attr; \ else if (hash != Qnil) \ rb_hash_aset(hash, gc_stat_heap_symbols[gc_stat_heap_sym_##name], SIZET2NUM(attr)); SET(slot_size, size_pool->slot_size); SET(heap_allocatable_pages, size_pool->allocatable_pages); SET(heap_eden_pages, SIZE_POOL_EDEN_HEAP(size_pool)->total_pages); SET(heap_eden_slots, SIZE_POOL_EDEN_HEAP(size_pool)->total_slots); SET(heap_tomb_pages, SIZE_POOL_TOMB_HEAP(size_pool)->total_pages); SET(heap_tomb_slots, SIZE_POOL_TOMB_HEAP(size_pool)->total_slots); SET(total_allocated_pages, size_pool->total_allocated_pages); SET(total_freed_pages, size_pool->total_freed_pages); SET(force_major_gc_count, size_pool->force_major_gc_count); #undef SET if (!NIL_P(key)) { /* matched key should return above */ rb_raise(rb_eArgError, "unknown key: %"PRIsVALUE, rb_sym2str(key)); } return 0; } static VALUE gc_stat_heap(rb_execution_context_t *ec, VALUE self, VALUE heap_name, VALUE arg) { if (NIL_P(heap_name)) { if (NIL_P(arg)) { arg = rb_hash_new(); } else if (RB_TYPE_P(arg, T_HASH)) { // ok } else { rb_raise(rb_eTypeError, "non-hash given"); } for (int i = 0; i < SIZE_POOL_COUNT; i++) { VALUE hash = rb_hash_aref(arg, INT2FIX(i)); if (NIL_P(hash)) { hash = rb_hash_new(); rb_hash_aset(arg, INT2FIX(i), hash); } gc_stat_heap_internal(i, hash); } } else if (FIXNUM_P(heap_name)) { int size_pool_idx = FIX2INT(heap_name); if (NIL_P(arg)) { arg = rb_hash_new(); } else if (SYMBOL_P(arg)) { size_t value = gc_stat_heap_internal(size_pool_idx, arg); return SIZET2NUM(value); } else if (RB_TYPE_P(arg, T_HASH)) { // ok } else { rb_raise(rb_eTypeError, "non-hash or symbol given"); } gc_stat_heap_internal(size_pool_idx, arg); } else { rb_raise(rb_eTypeError, "heap_name must be nil or an Integer"); } return arg; } static VALUE gc_stress_get(rb_execution_context_t *ec, VALUE self) { rb_objspace_t *objspace = &rb_objspace; return ruby_gc_stress_mode; } static void gc_stress_set(rb_objspace_t *objspace, VALUE flag) { objspace->flags.gc_stressful = RTEST(flag); objspace->gc_stress_mode = flag; } static VALUE gc_stress_set_m(rb_execution_context_t *ec, VALUE self, VALUE flag) { rb_objspace_t *objspace = &rb_objspace; gc_stress_set(objspace, flag); return flag; } VALUE rb_gc_enable(void) { rb_objspace_t *objspace = &rb_objspace; return rb_objspace_gc_enable(objspace); } VALUE rb_objspace_gc_enable(rb_objspace_t *objspace) { int old = dont_gc_val(); dont_gc_off(); return RBOOL(old); } static VALUE gc_enable(rb_execution_context_t *ec, VALUE _) { return rb_gc_enable(); } VALUE rb_gc_disable_no_rest(void) { rb_objspace_t *objspace = &rb_objspace; return gc_disable_no_rest(objspace); } static VALUE gc_disable_no_rest(rb_objspace_t *objspace) { int old = dont_gc_val(); dont_gc_on(); return RBOOL(old); } VALUE rb_gc_disable(void) { rb_objspace_t *objspace = &rb_objspace; return rb_objspace_gc_disable(objspace); } VALUE rb_objspace_gc_disable(rb_objspace_t *objspace) { gc_rest(objspace); return gc_disable_no_rest(objspace); } static VALUE gc_disable(rb_execution_context_t *ec, VALUE _) { return rb_gc_disable(); } #if GC_CAN_COMPILE_COMPACTION /* * call-seq: * GC.auto_compact = flag * * Updates automatic compaction mode. * * When enabled, the compactor will execute on every major collection. * * Enabling compaction will degrade performance on major collections. */ static VALUE gc_set_auto_compact(VALUE _, VALUE v) { GC_ASSERT(GC_COMPACTION_SUPPORTED); ruby_enable_autocompact = RTEST(v); return v; } #else # define gc_set_auto_compact rb_f_notimplement #endif #if GC_CAN_COMPILE_COMPACTION /* * call-seq: * GC.auto_compact -> true or false * * Returns whether or not automatic compaction has been enabled. */ static VALUE gc_get_auto_compact(VALUE _) { return RBOOL(ruby_enable_autocompact); } #else # define gc_get_auto_compact rb_f_notimplement #endif static int get_envparam_size(const char *name, size_t *default_value, size_t lower_bound) { const char *ptr = getenv(name); ssize_t val; if (ptr != NULL && *ptr) { size_t unit = 0; char *end; #if SIZEOF_SIZE_T == SIZEOF_LONG_LONG val = strtoll(ptr, &end, 0); #else val = strtol(ptr, &end, 0); #endif switch (*end) { case 'k': case 'K': unit = 1024; ++end; break; case 'm': case 'M': unit = 1024*1024; ++end; break; case 'g': case 'G': unit = 1024*1024*1024; ++end; break; } while (*end && isspace((unsigned char)*end)) end++; if (*end) { if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr); return 0; } if (unit > 0) { if (val < -(ssize_t)(SIZE_MAX / 2 / unit) || (ssize_t)(SIZE_MAX / 2 / unit) < val) { if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%s is ignored because it overflows\n", name, ptr); return 0; } val *= unit; } if (val > 0 && (size_t)val > lower_bound) { if (RTEST(ruby_verbose)) { fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIuSIZE")\n", name, val, *default_value); } *default_value = (size_t)val; return 1; } else { if (RTEST(ruby_verbose)) { fprintf(stderr, "%s=%"PRIdSIZE" (default value: %"PRIuSIZE") is ignored because it must be greater than %"PRIuSIZE".\n", name, val, *default_value, lower_bound); } return 0; } } return 0; } static int get_envparam_double(const char *name, double *default_value, double lower_bound, double upper_bound, int accept_zero) { const char *ptr = getenv(name); double val; if (ptr != NULL && *ptr) { char *end; val = strtod(ptr, &end); if (!*ptr || *end) { if (RTEST(ruby_verbose)) fprintf(stderr, "invalid string for %s: %s\n", name, ptr); return 0; } if (accept_zero && val == 0.0) { goto accept; } else if (val <= lower_bound) { if (RTEST(ruby_verbose)) { fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be greater than %f.\n", name, val, *default_value, lower_bound); } } else if (upper_bound != 0.0 && /* ignore upper_bound if it is 0.0 */ val > upper_bound) { if (RTEST(ruby_verbose)) { fprintf(stderr, "%s=%f (default value: %f) is ignored because it must be lower than %f.\n", name, val, *default_value, upper_bound); } } else { goto accept; } } return 0; accept: if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (default value: %f)\n", name, val, *default_value); *default_value = val; return 1; } static void gc_set_initial_pages(void) { size_t min_pages; rb_objspace_t *objspace = &rb_objspace; gc_rest(objspace); min_pages = gc_params.heap_init_slots / HEAP_PAGE_OBJ_LIMIT; size_t pages_per_class = (min_pages - heap_eden_total_pages(objspace)) / SIZE_POOL_COUNT; for (int i = 0; i < SIZE_POOL_COUNT; i++) { rb_size_pool_t *size_pool = &size_pools[i]; heap_add_pages(objspace, size_pool, SIZE_POOL_EDEN_HEAP(size_pool), pages_per_class); } heap_add_pages(objspace, &size_pools[0], SIZE_POOL_EDEN_HEAP(&size_pools[0]), min_pages - heap_eden_total_pages(objspace)); } /* * GC tuning environment variables * * * RUBY_GC_HEAP_INIT_SLOTS * - Initial allocation slots. * * RUBY_GC_HEAP_FREE_SLOTS * - Prepare at least this amount of slots after GC. * - Allocate slots if there are not enough slots. * * RUBY_GC_HEAP_GROWTH_FACTOR (new from 2.1) * - Allocate slots by this factor. * - (next slots number) = (current slots number) * (this factor) * * RUBY_GC_HEAP_GROWTH_MAX_SLOTS (new from 2.1) * - Allocation rate is limited to this number of slots. * * RUBY_GC_HEAP_FREE_SLOTS_MIN_RATIO (new from 2.4) * - Allocate additional pages when the number of free slots is * lower than the value (total_slots * (this ratio)). * * RUBY_GC_HEAP_FREE_SLOTS_GOAL_RATIO (new from 2.4) * - Allocate slots to satisfy this formula: * free_slots = total_slots * goal_ratio * - In other words, prepare (total_slots * goal_ratio) free slots. * - if this value is 0.0, then use RUBY_GC_HEAP_GROWTH_FACTOR directly. * * RUBY_GC_HEAP_FREE_SLOTS_MAX_RATIO (new from 2.4) * - Allow to free pages when the number of free slots is * greater than the value (total_slots * (this ratio)). * * RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR (new from 2.1.1) * - Do full GC when the number of old objects is more than R * N * where R is this factor and * N is the number of old objects just after last full GC. * * * obsolete * * RUBY_FREE_MIN -> RUBY_GC_HEAP_FREE_SLOTS (from 2.1) * * RUBY_HEAP_MIN_SLOTS -> RUBY_GC_HEAP_INIT_SLOTS (from 2.1) * * * RUBY_GC_MALLOC_LIMIT * * RUBY_GC_MALLOC_LIMIT_MAX (new from 2.1) * * RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR (new from 2.1) * * * RUBY_GC_OLDMALLOC_LIMIT (new from 2.1) * * RUBY_GC_OLDMALLOC_LIMIT_MAX (new from 2.1) * * RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR (new from 2.1) */ void ruby_gc_set_params(void) { rb_objspace_t *objspace = &rb_objspace; /* RUBY_GC_HEAP_FREE_SLOTS */ if (get_envparam_size("RUBY_GC_HEAP_FREE_SLOTS", &gc_params.heap_free_slots, 0)) { /* ok */ } /* RUBY_GC_HEAP_INIT_SLOTS */ if (get_envparam_size("RUBY_GC_HEAP_INIT_SLOTS", &gc_params.heap_init_slots, 0)) { gc_set_initial_pages(); } get_envparam_double("RUBY_GC_HEAP_GROWTH_FACTOR", &gc_params.growth_factor, 1.0, 0.0, FALSE); get_envparam_size ("RUBY_GC_HEAP_GROWTH_MAX_SLOTS", &gc_params.growth_max_slots, 0); get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_MIN_RATIO", &gc_params.heap_free_slots_min_ratio, 0.0, 1.0, FALSE); get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_MAX_RATIO", &gc_params.heap_free_slots_max_ratio, gc_params.heap_free_slots_min_ratio, 1.0, FALSE); get_envparam_double("RUBY_GC_HEAP_FREE_SLOTS_GOAL_RATIO", &gc_params.heap_free_slots_goal_ratio, gc_params.heap_free_slots_min_ratio, gc_params.heap_free_slots_max_ratio, TRUE); get_envparam_double("RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR", &gc_params.oldobject_limit_factor, 0.0, 0.0, TRUE); if (get_envparam_size("RUBY_GC_MALLOC_LIMIT", &gc_params.malloc_limit_min, 0)) { malloc_limit = gc_params.malloc_limit_min; } get_envparam_size ("RUBY_GC_MALLOC_LIMIT_MAX", &gc_params.malloc_limit_max, 0); if (!gc_params.malloc_limit_max) { /* ignore max-check if 0 */ gc_params.malloc_limit_max = SIZE_MAX; } get_envparam_double("RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR", &gc_params.malloc_limit_growth_factor, 1.0, 0.0, FALSE); #if RGENGC_ESTIMATE_OLDMALLOC if (get_envparam_size("RUBY_GC_OLDMALLOC_LIMIT", &gc_params.oldmalloc_limit_min, 0)) { objspace->rgengc.oldmalloc_increase_limit = gc_params.oldmalloc_limit_min; } get_envparam_size ("RUBY_GC_OLDMALLOC_LIMIT_MAX", &gc_params.oldmalloc_limit_max, 0); get_envparam_double("RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR", &gc_params.oldmalloc_limit_growth_factor, 1.0, 0.0, FALSE); #endif } static void reachable_objects_from_callback(VALUE obj) { rb_ractor_t *cr = GET_RACTOR(); cr->mfd->mark_func(obj, cr->mfd->data); } void rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data) { rb_objspace_t *objspace = &rb_objspace; RB_VM_LOCK_ENTER(); { if (during_gc) rb_bug("rb_objspace_reachable_objects_from() is not supported while during_gc == true"); if (is_markable_object(objspace, obj)) { rb_ractor_t *cr = GET_RACTOR(); struct gc_mark_func_data_struct mfd = { .mark_func = func, .data = data, }, *prev_mfd = cr->mfd; cr->mfd = &mfd; gc_mark_children(objspace, obj); cr->mfd = prev_mfd; } } RB_VM_LOCK_LEAVE(); } struct root_objects_data { const char *category; void (*func)(const char *category, VALUE, void *); void *data; }; static void root_objects_from(VALUE obj, void *ptr) { const struct root_objects_data *data = (struct root_objects_data *)ptr; (*data->func)(data->category, obj, data->data); } void rb_objspace_reachable_objects_from_root(void (func)(const char *category, VALUE, void *), void *passing_data) { rb_objspace_t *objspace = &rb_objspace; objspace_reachable_objects_from_root(objspace, func, passing_data); } static void objspace_reachable_objects_from_root(rb_objspace_t *objspace, void (func)(const char *category, VALUE, void *), void *passing_data) { if (during_gc) rb_bug("objspace_reachable_objects_from_root() is not supported while during_gc == true"); rb_ractor_t *cr = GET_RACTOR(); struct root_objects_data data = { .func = func, .data = passing_data, }; struct gc_mark_func_data_struct mfd = { .mark_func = root_objects_from, .data = &data, }, *prev_mfd = cr->mfd; cr->mfd = &mfd; gc_mark_roots(objspace, &data.category); cr->mfd = prev_mfd; } /* ------------------------ Extended allocator ------------------------ */ struct gc_raise_tag { VALUE exc; const char *fmt; va_list *ap; }; static void * gc_vraise(void *ptr) { struct gc_raise_tag *argv = ptr; rb_vraise(argv->exc, argv->fmt, *argv->ap); UNREACHABLE_RETURN(NULL); } static void gc_raise(VALUE exc, const char *fmt, ...) { va_list ap; va_start(ap, fmt); struct gc_raise_tag argv = { exc, fmt, &ap, }; if (ruby_thread_has_gvl_p()) { gc_vraise(&argv); UNREACHABLE; } else if (ruby_native_thread_p()) { rb_thread_call_with_gvl(gc_vraise, &argv); UNREACHABLE; } else { /* Not in a ruby thread */ fprintf(stderr, "%s", "[FATAL] "); vfprintf(stderr, fmt, ap); } va_end(ap); abort(); } static void objspace_xfree(rb_objspace_t *objspace, void *ptr, size_t size); static void negative_size_allocation_error(const char *msg) { gc_raise(rb_eNoMemError, "%s", msg); } static void * ruby_memerror_body(void *dummy) { rb_memerror(); return 0; } NORETURN(static void ruby_memerror(void)); RBIMPL_ATTR_MAYBE_UNUSED() static void ruby_memerror(void) { if (ruby_thread_has_gvl_p()) { rb_memerror(); } else { if (ruby_native_thread_p()) { rb_thread_call_with_gvl(ruby_memerror_body, 0); } else { /* no ruby thread */ fprintf(stderr, "[FATAL] failed to allocate memory\n"); } } exit(EXIT_FAILURE); } void rb_memerror(void) { rb_execution_context_t *ec = GET_EC(); rb_objspace_t *objspace = rb_objspace_of(rb_ec_vm_ptr(ec)); VALUE exc; if (0) { // Print out pid, sleep, so you can attach debugger to see what went wrong: fprintf(stderr, "rb_memerror pid=%"PRI_PIDT_PREFIX"d\n", getpid()); sleep(60); } if (during_gc) { // TODO: OMG!! How to implement it? gc_exit(objspace, gc_enter_event_rb_memerror, NULL); } exc = nomem_error; if (!exc || rb_ec_raised_p(ec, RAISED_NOMEMORY)) { fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } if (rb_ec_raised_p(ec, RAISED_NOMEMORY)) { rb_ec_raised_clear(ec); } else { rb_ec_raised_set(ec, RAISED_NOMEMORY); exc = ruby_vm_special_exception_copy(exc); } ec->errinfo = exc; EC_JUMP_TAG(ec, TAG_RAISE); } void * rb_aligned_malloc(size_t alignment, size_t size) { /* alignment must be a power of 2 */ GC_ASSERT(((alignment - 1) & alignment) == 0); GC_ASSERT(alignment % sizeof(void*) == 0); void *res; #if defined __MINGW32__ res = __mingw_aligned_malloc(size, alignment); #elif defined _WIN32 void *_aligned_malloc(size_t, size_t); res = _aligned_malloc(size, alignment); #elif defined(HAVE_POSIX_MEMALIGN) if (posix_memalign(&res, alignment, size) != 0) { return NULL; } #elif defined(HAVE_MEMALIGN) res = memalign(alignment, size); #else char* aligned; res = malloc(alignment + size + sizeof(void*)); aligned = (char*)res + alignment + sizeof(void*); aligned -= ((VALUE)aligned & (alignment - 1)); ((void**)aligned)[-1] = res; res = (void*)aligned; #endif GC_ASSERT((uintptr_t)res % alignment == 0); return res; } static void rb_aligned_free(void *ptr, size_t size) { #if defined __MINGW32__ __mingw_aligned_free(ptr); #elif defined _WIN32 _aligned_free(ptr); #elif defined(HAVE_POSIX_MEMALIGN) || defined(HAVE_MEMALIGN) free(ptr); #else free(((void**)ptr)[-1]); #endif } static inline size_t objspace_malloc_size(rb_objspace_t *objspace, void *ptr, size_t hint) { #ifdef HAVE_MALLOC_USABLE_SIZE return malloc_usable_size(ptr); #else return hint; #endif } enum memop_type { MEMOP_TYPE_MALLOC = 0, MEMOP_TYPE_FREE, MEMOP_TYPE_REALLOC }; static inline void atomic_sub_nounderflow(size_t *var, size_t sub) { if (sub == 0) return; while (1) { size_t val = *var; if (val < sub) sub = val; if (ATOMIC_SIZE_CAS(*var, val, val-sub) == val) break; } } static void objspace_malloc_gc_stress(rb_objspace_t *objspace) { if (ruby_gc_stressful && ruby_native_thread_p()) { unsigned int reason = (GPR_FLAG_IMMEDIATE_MARK | GPR_FLAG_IMMEDIATE_SWEEP | GPR_FLAG_STRESS | GPR_FLAG_MALLOC); if (gc_stress_full_mark_after_malloc_p()) { reason |= GPR_FLAG_FULL_MARK; } garbage_collect_with_gvl(objspace, reason); } } static inline bool objspace_malloc_increase_report(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type) { if (0) fprintf(stderr, "increase - ptr: %p, type: %s, new_size: %"PRIdSIZE", old_size: %"PRIdSIZE"\n", mem, type == MEMOP_TYPE_MALLOC ? "malloc" : type == MEMOP_TYPE_FREE ? "free " : type == MEMOP_TYPE_REALLOC ? "realloc": "error", new_size, old_size); return false; } static bool objspace_malloc_increase_body(rb_objspace_t *objspace, void *mem, size_t new_size, size_t old_size, enum memop_type type) { if (new_size > old_size) { ATOMIC_SIZE_ADD(malloc_increase, new_size - old_size); #if RGENGC_ESTIMATE_OLDMALLOC ATOMIC_SIZE_ADD(objspace->rgengc.oldmalloc_increase, new_size - old_size); #endif } else { atomic_sub_nounderflow(&malloc_increase, old_size - new_size); #if RGENGC_ESTIMATE_OLDMALLOC atomic_sub_nounderflow(&objspace->rgengc.oldmalloc_increase, old_size - new_size); #endif } if (type == MEMOP_TYPE_MALLOC) { retry: if (malloc_increase > malloc_limit && ruby_native_thread_p() && !dont_gc_val()) { if (ruby_thread_has_gvl_p() && is_lazy_sweeping(objspace)) { gc_rest(objspace); /* gc_rest can reduce malloc_increase */ goto retry; } garbage_collect_with_gvl(objspace, GPR_FLAG_MALLOC); } } #if MALLOC_ALLOCATED_SIZE if (new_size >= old_size) { ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, new_size - old_size); } else { size_t dec_size = old_size - new_size; size_t allocated_size = objspace->malloc_params.allocated_size; #if MALLOC_ALLOCATED_SIZE_CHECK if (allocated_size < dec_size) { rb_bug("objspace_malloc_increase: underflow malloc_params.allocated_size."); } #endif atomic_sub_nounderflow(&objspace->malloc_params.allocated_size, dec_size); } switch (type) { case MEMOP_TYPE_MALLOC: ATOMIC_SIZE_INC(objspace->malloc_params.allocations); break; case MEMOP_TYPE_FREE: { size_t allocations = objspace->malloc_params.allocations; if (allocations > 0) { atomic_sub_nounderflow(&objspace->malloc_params.allocations, 1); } #if MALLOC_ALLOCATED_SIZE_CHECK else { GC_ASSERT(objspace->malloc_params.allocations > 0); } #endif } break; case MEMOP_TYPE_REALLOC: /* ignore */ break; } #endif return true; } #define objspace_malloc_increase(...) \ for (bool malloc_increase_done = objspace_malloc_increase_report(__VA_ARGS__); \ !malloc_increase_done; \ malloc_increase_done = objspace_malloc_increase_body(__VA_ARGS__)) struct malloc_obj_info { /* 4 words */ size_t size; #if USE_GC_MALLOC_OBJ_INFO_DETAILS size_t gen; const char *file; size_t line; #endif }; #if USE_GC_MALLOC_OBJ_INFO_DETAILS const char *ruby_malloc_info_file; int ruby_malloc_info_line; #endif static inline size_t objspace_malloc_prepare(rb_objspace_t *objspace, size_t size) { if (size == 0) size = 1; #if CALC_EXACT_MALLOC_SIZE size += sizeof(struct malloc_obj_info); #endif return size; } static inline void * objspace_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size) { size = objspace_malloc_size(objspace, mem, size); objspace_malloc_increase(objspace, mem, size, 0, MEMOP_TYPE_MALLOC); #if CALC_EXACT_MALLOC_SIZE { struct malloc_obj_info *info = mem; info->size = size; #if USE_GC_MALLOC_OBJ_INFO_DETAILS info->gen = objspace->profile.count; info->file = ruby_malloc_info_file; info->line = info->file ? ruby_malloc_info_line : 0; #endif mem = info + 1; } #endif return mem; } #if defined(__GNUC__) && RUBY_DEBUG #define RB_BUG_INSTEAD_OF_RB_MEMERROR 1 #endif #ifndef RB_BUG_INSTEAD_OF_RB_MEMERROR # define RB_BUG_INSTEAD_OF_RB_MEMERROR 0 #endif #define GC_MEMERROR(...) \ ((RB_BUG_INSTEAD_OF_RB_MEMERROR+0) ? rb_bug("" __VA_ARGS__) : rb_memerror()) #define TRY_WITH_GC(siz, expr) do { \ const gc_profile_record_flag gpr = \ GPR_FLAG_FULL_MARK | \ GPR_FLAG_IMMEDIATE_MARK | \ GPR_FLAG_IMMEDIATE_SWEEP | \ GPR_FLAG_MALLOC; \ objspace_malloc_gc_stress(objspace); \ \ if (LIKELY((expr))) { \ /* Success on 1st try */ \ } \ else if (!garbage_collect_with_gvl(objspace, gpr)) { \ /* @shyouhei thinks this doesn't happen */ \ GC_MEMERROR("TRY_WITH_GC: could not GC"); \ } \ else if ((expr)) { \ /* Success on 2nd try */ \ } \ else { \ GC_MEMERROR("TRY_WITH_GC: could not allocate:" \ "%"PRIdSIZE" bytes for %s", \ siz, # expr); \ } \ } while (0) /* these shouldn't be called directly. * objspace_* functions do not check allocation size. */ static void * objspace_xmalloc0(rb_objspace_t *objspace, size_t size) { void *mem; size = objspace_malloc_prepare(objspace, size); TRY_WITH_GC(size, mem = malloc(size)); RB_DEBUG_COUNTER_INC(heap_xmalloc); return objspace_malloc_fixup(objspace, mem, size); } static inline size_t xmalloc2_size(const size_t count, const size_t elsize) { return size_mul_or_raise(count, elsize, rb_eArgError); } static void * objspace_xrealloc(rb_objspace_t *objspace, void *ptr, size_t new_size, size_t old_size) { void *mem; if (!ptr) return objspace_xmalloc0(objspace, new_size); /* * The behavior of realloc(ptr, 0) is implementation defined. * Therefore we don't use realloc(ptr, 0) for portability reason. * see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm */ if (new_size == 0) { if ((mem = objspace_xmalloc0(objspace, 0)) != NULL) { /* * - OpenBSD's malloc(3) man page says that when 0 is passed, it * returns a non-NULL pointer to an access-protected memory page. * The returned pointer cannot be read / written at all, but * still be a valid argument of free(). * * https://man.openbsd.org/malloc.3 * * - Linux's malloc(3) man page says that it _might_ perhaps return * a non-NULL pointer when its argument is 0. That return value * is safe (and is expected) to be passed to free(). * * https://man7.org/linux/man-pages/man3/malloc.3.html * * - As I read the implementation jemalloc's malloc() returns fully * normal 16 bytes memory region when its argument is 0. * * - As I read the implementation musl libc's malloc() returns * fully normal 32 bytes memory region when its argument is 0. * * - Other malloc implementations can also return non-NULL. */ objspace_xfree(objspace, ptr, old_size); return mem; } else { /* * It is dangerous to return NULL here, because that could lead to * RCE. Fallback to 1 byte instead of zero. * * https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11932 */ new_size = 1; } } #if CALC_EXACT_MALLOC_SIZE { struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1; new_size += sizeof(struct malloc_obj_info); ptr = info; old_size = info->size; } #endif old_size = objspace_malloc_size(objspace, ptr, old_size); TRY_WITH_GC(new_size, mem = RB_GNUC_EXTENSION_BLOCK(realloc(ptr, new_size))); new_size = objspace_malloc_size(objspace, mem, new_size); #if CALC_EXACT_MALLOC_SIZE { struct malloc_obj_info *info = mem; info->size = new_size; mem = info + 1; } #endif objspace_malloc_increase(objspace, mem, new_size, old_size, MEMOP_TYPE_REALLOC); RB_DEBUG_COUNTER_INC(heap_xrealloc); return mem; } #if CALC_EXACT_MALLOC_SIZE && USE_GC_MALLOC_OBJ_INFO_DETAILS #define MALLOC_INFO_GEN_SIZE 100 #define MALLOC_INFO_SIZE_SIZE 10 static size_t malloc_info_gen_cnt[MALLOC_INFO_GEN_SIZE]; static size_t malloc_info_gen_size[MALLOC_INFO_GEN_SIZE]; static size_t malloc_info_size[MALLOC_INFO_SIZE_SIZE+1]; static st_table *malloc_info_file_table; static int mmalloc_info_file_i(st_data_t key, st_data_t val, st_data_t dmy) { const char *file = (void *)key; const size_t *data = (void *)val; fprintf(stderr, "%s\t%"PRIdSIZE"\t%"PRIdSIZE"\n", file, data[0], data[1]); return ST_CONTINUE; } __attribute__((destructor)) void rb_malloc_info_show_results(void) { int i; fprintf(stderr, "* malloc_info gen statistics\n"); for (i=0; isize; #if USE_GC_MALLOC_OBJ_INFO_DETAILS { int gen = (int)(objspace->profile.count - info->gen); int gen_index = gen >= MALLOC_INFO_GEN_SIZE ? MALLOC_INFO_GEN_SIZE-1 : gen; int i; malloc_info_gen_cnt[gen_index]++; malloc_info_gen_size[gen_index] += info->size; for (i=0; isize <= s) { malloc_info_size[i]++; goto found; } } malloc_info_size[i]++; found:; { st_data_t key = (st_data_t)info->file, d; size_t *data; if (malloc_info_file_table == NULL) { malloc_info_file_table = st_init_numtable_with_size(1024); } if (st_lookup(malloc_info_file_table, key, &d)) { /* hit */ data = (size_t *)d; } else { data = malloc(xmalloc2_size(2, sizeof(size_t))); if (data == NULL) rb_bug("objspace_xfree: can not allocate memory"); data[0] = data[1] = 0; st_insert(malloc_info_file_table, key, (st_data_t)data); } data[0] ++; data[1] += info->size; }; if (0 && gen >= 2) { /* verbose output */ if (info->file) { fprintf(stderr, "free - size:%"PRIdSIZE", gen:%d, pos: %s:%"PRIdSIZE"\n", info->size, gen, info->file, info->line); } else { fprintf(stderr, "free - size:%"PRIdSIZE", gen:%d\n", info->size, gen); } } } #endif #endif old_size = objspace_malloc_size(objspace, ptr, old_size); objspace_malloc_increase(objspace, ptr, 0, old_size, MEMOP_TYPE_FREE) { free(ptr); ptr = NULL; RB_DEBUG_COUNTER_INC(heap_xfree); } } static void * ruby_xmalloc0(size_t size) { return objspace_xmalloc0(&rb_objspace, size); } void * ruby_xmalloc_body(size_t size) { if ((ssize_t)size < 0) { negative_size_allocation_error("too large allocation size"); } return ruby_xmalloc0(size); } void ruby_malloc_size_overflow(size_t count, size_t elsize) { rb_raise(rb_eArgError, "malloc: possible integer overflow (%"PRIuSIZE"*%"PRIuSIZE")", count, elsize); } void * ruby_xmalloc2_body(size_t n, size_t size) { return objspace_xmalloc0(&rb_objspace, xmalloc2_size(n, size)); } static void * objspace_xcalloc(rb_objspace_t *objspace, size_t size) { void *mem; size = objspace_malloc_prepare(objspace, size); TRY_WITH_GC(size, mem = calloc1(size)); return objspace_malloc_fixup(objspace, mem, size); } void * ruby_xcalloc_body(size_t n, size_t size) { return objspace_xcalloc(&rb_objspace, xmalloc2_size(n, size)); } #ifdef ruby_sized_xrealloc #undef ruby_sized_xrealloc #endif void * ruby_sized_xrealloc(void *ptr, size_t new_size, size_t old_size) { if ((ssize_t)new_size < 0) { negative_size_allocation_error("too large allocation size"); } return objspace_xrealloc(&rb_objspace, ptr, new_size, old_size); } void * ruby_xrealloc_body(void *ptr, size_t new_size) { return ruby_sized_xrealloc(ptr, new_size, 0); } #ifdef ruby_sized_xrealloc2 #undef ruby_sized_xrealloc2 #endif void * ruby_sized_xrealloc2(void *ptr, size_t n, size_t size, size_t old_n) { size_t len = xmalloc2_size(n, size); return objspace_xrealloc(&rb_objspace, ptr, len, old_n * size); } void * ruby_xrealloc2_body(void *ptr, size_t n, size_t size) { return ruby_sized_xrealloc2(ptr, n, size, 0); } #ifdef ruby_sized_xfree #undef ruby_sized_xfree #endif void ruby_sized_xfree(void *x, size_t size) { if (x) { objspace_xfree(&rb_objspace, x, size); } } void ruby_xfree(void *x) { ruby_sized_xfree(x, 0); } void * rb_xmalloc_mul_add(size_t x, size_t y, size_t z) /* x * y + z */ { size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError); return ruby_xmalloc(w); } void * rb_xcalloc_mul_add(size_t x, size_t y, size_t z) /* x * y + z */ { size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError); return ruby_xcalloc(w, 1); } void * rb_xrealloc_mul_add(const void *p, size_t x, size_t y, size_t z) /* x * y + z */ { size_t w = size_mul_add_or_raise(x, y, z, rb_eArgError); return ruby_xrealloc((void *)p, w); } void * rb_xmalloc_mul_add_mul(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */ { size_t u = size_mul_add_mul_or_raise(x, y, z, w, rb_eArgError); return ruby_xmalloc(u); } void * rb_xcalloc_mul_add_mul(size_t x, size_t y, size_t z, size_t w) /* x * y + z * w */ { size_t u = size_mul_add_mul_or_raise(x, y, z, w, rb_eArgError); return ruby_xcalloc(u, 1); } /* Mimic ruby_xmalloc, but need not rb_objspace. * should return pointer suitable for ruby_xfree */ void * ruby_mimmalloc(size_t size) { void *mem; #if CALC_EXACT_MALLOC_SIZE size += sizeof(struct malloc_obj_info); #endif mem = malloc(size); #if CALC_EXACT_MALLOC_SIZE if (!mem) { return NULL; } else /* set 0 for consistency of allocated_size/allocations */ { struct malloc_obj_info *info = mem; info->size = 0; #if USE_GC_MALLOC_OBJ_INFO_DETAILS info->gen = 0; info->file = NULL; info->line = 0; #endif mem = info + 1; } #endif return mem; } void ruby_mimfree(void *ptr) { #if CALC_EXACT_MALLOC_SIZE struct malloc_obj_info *info = (struct malloc_obj_info *)ptr - 1; ptr = info; #endif free(ptr); } void * rb_alloc_tmp_buffer_with_count(volatile VALUE *store, size_t size, size_t cnt) { void *ptr; VALUE imemo; rb_imemo_tmpbuf_t *tmpbuf; /* Keep the order; allocate an empty imemo first then xmalloc, to * get rid of potential memory leak */ imemo = rb_imemo_tmpbuf_auto_free_maybe_mark_buffer(NULL, 0); *store = imemo; ptr = ruby_xmalloc0(size); tmpbuf = (rb_imemo_tmpbuf_t *)imemo; tmpbuf->ptr = ptr; tmpbuf->cnt = cnt; return ptr; } void * rb_alloc_tmp_buffer(volatile VALUE *store, long len) { long cnt; if (len < 0 || (cnt = (long)roomof(len, sizeof(VALUE))) < 0) { rb_raise(rb_eArgError, "negative buffer size (or size too big)"); } return rb_alloc_tmp_buffer_with_count(store, len, cnt); } void rb_free_tmp_buffer(volatile VALUE *store) { rb_imemo_tmpbuf_t *s = (rb_imemo_tmpbuf_t*)ATOMIC_VALUE_EXCHANGE(*store, 0); if (s) { void *ptr = ATOMIC_PTR_EXCHANGE(s->ptr, 0); s->cnt = 0; ruby_xfree(ptr); } } #if MALLOC_ALLOCATED_SIZE /* * call-seq: * GC.malloc_allocated_size -> Integer * * Returns the size of memory allocated by malloc(). * * Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+. */ static VALUE gc_malloc_allocated_size(VALUE self) { return UINT2NUM(rb_objspace.malloc_params.allocated_size); } /* * call-seq: * GC.malloc_allocations -> Integer * * Returns the number of malloc() allocations. * * Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+. */ static VALUE gc_malloc_allocations(VALUE self) { return UINT2NUM(rb_objspace.malloc_params.allocations); } #endif void rb_gc_adjust_memory_usage(ssize_t diff) { rb_objspace_t *objspace = &rb_objspace; if (diff > 0) { objspace_malloc_increase(objspace, 0, diff, 0, MEMOP_TYPE_REALLOC); } else if (diff < 0) { objspace_malloc_increase(objspace, 0, 0, -diff, MEMOP_TYPE_REALLOC); } } /* ------------------------------ WeakMap ------------------------------ */ struct weakmap { st_table *obj2wmap; /* obj -> [ref,...] */ st_table *wmap2obj; /* ref -> obj */ VALUE final; }; #define WMAP_DELETE_DEAD_OBJECT_IN_MARK 0 #if WMAP_DELETE_DEAD_OBJECT_IN_MARK static int wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg) { rb_objspace_t *objspace = (rb_objspace_t *)arg; VALUE obj = (VALUE)val; if (!is_live_object(objspace, obj)) return ST_DELETE; return ST_CONTINUE; } #endif static void wmap_compact(void *ptr) { struct weakmap *w = ptr; if (w->wmap2obj) rb_gc_update_tbl_refs(w->wmap2obj); if (w->obj2wmap) rb_gc_update_tbl_refs(w->obj2wmap); w->final = rb_gc_location(w->final); } static void wmap_mark(void *ptr) { struct weakmap *w = ptr; #if WMAP_DELETE_DEAD_OBJECT_IN_MARK if (w->obj2wmap) st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace); #endif rb_gc_mark_movable(w->final); } static int wmap_free_map(st_data_t key, st_data_t val, st_data_t arg) { VALUE *ptr = (VALUE *)val; ruby_sized_xfree(ptr, (ptr[0] + 1) * sizeof(VALUE)); return ST_CONTINUE; } static void wmap_free(void *ptr) { struct weakmap *w = ptr; st_foreach(w->obj2wmap, wmap_free_map, 0); st_free_table(w->obj2wmap); st_free_table(w->wmap2obj); } static int wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg) { VALUE *ptr = (VALUE *)val; *(size_t *)arg += (ptr[0] + 1) * sizeof(VALUE); return ST_CONTINUE; } static size_t wmap_memsize(const void *ptr) { size_t size; const struct weakmap *w = ptr; size = sizeof(*w); size += st_memsize(w->obj2wmap); size += st_memsize(w->wmap2obj); st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size); return size; } static const rb_data_type_t weakmap_type = { "weakmap", { wmap_mark, wmap_free, wmap_memsize, wmap_compact, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; static VALUE wmap_finalize(RB_BLOCK_CALL_FUNC_ARGLIST(objid, self)); static VALUE wmap_allocate(VALUE klass) { struct weakmap *w; VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w); w->obj2wmap = rb_init_identtable(); w->wmap2obj = rb_init_identtable(); w->final = rb_func_lambda_new(wmap_finalize, obj, 1, 1); return obj; } static int wmap_live_p(rb_objspace_t *objspace, VALUE obj) { if (SPECIAL_CONST_P(obj)) return TRUE; /* If is_pointer_to_heap returns false, the page could be in the tomb heap * or have already been freed. */ if (!is_pointer_to_heap(objspace, (void *)obj)) return FALSE; void *poisoned = asan_unpoison_object_temporary(obj); enum ruby_value_type t = BUILTIN_TYPE(obj); int ret = (!(t == T_NONE || t >= T_FIXNUM || t == T_ICLASS) && is_live_object(objspace, obj)); if (poisoned) { asan_poison_object(obj); } return ret; } static int wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing) { VALUE wmap, *ptr, size, i, j; if (!existing) return ST_STOP; wmap = (VALUE)arg, ptr = (VALUE *)*value; for (i = j = 1, size = ptr[0]; i <= size; ++i) { if (ptr[i] != wmap) { ptr[j++] = ptr[i]; } } if (j == 1) { ruby_sized_xfree(ptr, i * sizeof(VALUE)); return ST_DELETE; } if (j < i) { SIZED_REALLOC_N(ptr, VALUE, j + 1, i); ptr[0] = j; *value = (st_data_t)ptr; } return ST_CONTINUE; } /* :nodoc: */ static VALUE wmap_finalize(RB_BLOCK_CALL_FUNC_ARGLIST(objid, self)) { st_data_t orig, wmap, data; VALUE obj, *rids, i, size; struct weakmap *w; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); /* Get reference from object id. */ if ((obj = id2ref_obj_tbl(&rb_objspace, objid)) == Qundef) { rb_bug("wmap_finalize: objid is not found."); } /* obj is original referenced object and/or weak reference. */ orig = (st_data_t)obj; if (st_delete(w->obj2wmap, &orig, &data)) { rids = (VALUE *)data; size = *rids++; for (i = 0; i < size; ++i) { wmap = (st_data_t)rids[i]; st_delete(w->wmap2obj, &wmap, NULL); } ruby_sized_xfree((VALUE *)data, (size + 1) * sizeof(VALUE)); } wmap = (st_data_t)obj; if (st_delete(w->wmap2obj, &wmap, &orig)) { wmap = (st_data_t)obj; st_update(w->obj2wmap, orig, wmap_final_func, wmap); } return self; } struct wmap_iter_arg { rb_objspace_t *objspace; VALUE value; }; static VALUE wmap_inspect_append(rb_objspace_t *objspace, VALUE str, VALUE obj) { if (SPECIAL_CONST_P(obj)) { return rb_str_append(str, rb_inspect(obj)); } else if (wmap_live_p(objspace, obj)) { return rb_str_append(str, rb_any_to_s(obj)); } else { return rb_str_catf(str, "#", (void*)obj); } } static int wmap_inspect_i(st_data_t key, st_data_t val, st_data_t arg) { struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg; rb_objspace_t *objspace = argp->objspace; VALUE str = argp->value; VALUE k = (VALUE)key, v = (VALUE)val; if (RSTRING_PTR(str)[0] == '#') { rb_str_cat2(str, ", "); } else { rb_str_cat2(str, ": "); RSTRING_PTR(str)[0] = '#'; } wmap_inspect_append(objspace, str, k); rb_str_cat2(str, " => "); wmap_inspect_append(objspace, str, v); return ST_CONTINUE; } static VALUE wmap_inspect(VALUE self) { VALUE str; VALUE c = rb_class_name(CLASS_OF(self)); struct weakmap *w; struct wmap_iter_arg args; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void *)self); if (w->wmap2obj) { args.objspace = &rb_objspace; args.value = str; st_foreach(w->wmap2obj, wmap_inspect_i, (st_data_t)&args); } RSTRING_PTR(str)[0] = '#'; rb_str_cat2(str, ">"); return str; } static inline bool wmap_live_entry_p(rb_objspace_t *objspace, st_data_t key, st_data_t val) { return wmap_live_p(objspace, (VALUE)key) && wmap_live_p(objspace, (VALUE)val); } static int wmap_each_i(st_data_t key, st_data_t val, st_data_t arg) { rb_objspace_t *objspace = (rb_objspace_t *)arg; if (wmap_live_entry_p(objspace, key, val)) { rb_yield_values(2, (VALUE)key, (VALUE)val); return ST_CONTINUE; } else { return ST_DELETE; } } /* Iterates over keys and objects in a weakly referenced object */ static VALUE wmap_each(VALUE self) { struct weakmap *w; rb_objspace_t *objspace = &rb_objspace; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); st_foreach(w->wmap2obj, wmap_each_i, (st_data_t)objspace); return self; } static int wmap_each_key_i(st_data_t key, st_data_t val, st_data_t arg) { rb_objspace_t *objspace = (rb_objspace_t *)arg; if (wmap_live_entry_p(objspace, key, val)) { rb_yield((VALUE)key); return ST_CONTINUE; } else { return ST_DELETE; } } /* Iterates over keys and objects in a weakly referenced object */ static VALUE wmap_each_key(VALUE self) { struct weakmap *w; rb_objspace_t *objspace = &rb_objspace; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); st_foreach(w->wmap2obj, wmap_each_key_i, (st_data_t)objspace); return self; } static int wmap_each_value_i(st_data_t key, st_data_t val, st_data_t arg) { rb_objspace_t *objspace = (rb_objspace_t *)arg; if (wmap_live_entry_p(objspace, key, val)) { rb_yield((VALUE)val); return ST_CONTINUE; } else { return ST_DELETE; } } /* Iterates over keys and objects in a weakly referenced object */ static VALUE wmap_each_value(VALUE self) { struct weakmap *w; rb_objspace_t *objspace = &rb_objspace; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); st_foreach(w->wmap2obj, wmap_each_value_i, (st_data_t)objspace); return self; } static int wmap_keys_i(st_data_t key, st_data_t val, st_data_t arg) { struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg; rb_objspace_t *objspace = argp->objspace; VALUE ary = argp->value; if (wmap_live_entry_p(objspace, key, val)) { rb_ary_push(ary, (VALUE)key); return ST_CONTINUE; } else { return ST_DELETE; } } /* Iterates over keys and objects in a weakly referenced object */ static VALUE wmap_keys(VALUE self) { struct weakmap *w; struct wmap_iter_arg args; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); args.objspace = &rb_objspace; args.value = rb_ary_new(); st_foreach(w->wmap2obj, wmap_keys_i, (st_data_t)&args); return args.value; } static int wmap_values_i(st_data_t key, st_data_t val, st_data_t arg) { struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg; rb_objspace_t *objspace = argp->objspace; VALUE ary = argp->value; if (wmap_live_entry_p(objspace, key, val)) { rb_ary_push(ary, (VALUE)val); return ST_CONTINUE; } else { return ST_DELETE; } } /* Iterates over values and objects in a weakly referenced object */ static VALUE wmap_values(VALUE self) { struct weakmap *w; struct wmap_iter_arg args; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); args.objspace = &rb_objspace; args.value = rb_ary_new(); st_foreach(w->wmap2obj, wmap_values_i, (st_data_t)&args); return args.value; } static int wmap_aset_update(st_data_t *key, st_data_t *val, st_data_t arg, int existing) { VALUE size, *ptr, *optr; if (existing) { size = (ptr = optr = (VALUE *)*val)[0]; ++size; SIZED_REALLOC_N(ptr, VALUE, size + 1, size); } else { optr = 0; size = 1; ptr = ruby_xmalloc0(2 * sizeof(VALUE)); } ptr[0] = size; ptr[size] = (VALUE)arg; if (ptr == optr) return ST_STOP; *val = (st_data_t)ptr; return ST_CONTINUE; } /* Creates a weak reference from the given key to the given value */ static VALUE wmap_aset(VALUE self, VALUE key, VALUE value) { struct weakmap *w; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); if (FL_ABLE(value)) { define_final0(value, w->final); } if (FL_ABLE(key)) { define_final0(key, w->final); } st_update(w->obj2wmap, (st_data_t)value, wmap_aset_update, key); st_insert(w->wmap2obj, (st_data_t)key, (st_data_t)value); return nonspecial_obj_id(value); } /* Retrieves a weakly referenced object with the given key */ static VALUE wmap_lookup(VALUE self, VALUE key) { st_data_t data; VALUE obj; struct weakmap *w; rb_objspace_t *objspace = &rb_objspace; GC_ASSERT(wmap_live_p(objspace, key)); TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); if (!st_lookup(w->wmap2obj, (st_data_t)key, &data)) return Qundef; obj = (VALUE)data; if (!wmap_live_p(objspace, obj)) return Qundef; return obj; } /* Retrieves a weakly referenced object with the given key */ static VALUE wmap_aref(VALUE self, VALUE key) { VALUE obj = wmap_lookup(self, key); return obj != Qundef ? obj : Qnil; } /* Returns +true+ if +key+ is registered */ static VALUE wmap_has_key(VALUE self, VALUE key) { return RBOOL(wmap_lookup(self, key) != Qundef); } /* Returns the number of referenced objects */ static VALUE wmap_size(VALUE self) { struct weakmap *w; st_index_t n; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); n = w->wmap2obj->num_entries; #if SIZEOF_ST_INDEX_T <= SIZEOF_LONG return ULONG2NUM(n); #else return ULL2NUM(n); #endif } /* ------------------------------ GC profiler ------------------------------ */ #define GC_PROFILE_RECORD_DEFAULT_SIZE 100 static bool current_process_time(struct timespec *ts) { #if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID) { static int try_clock_gettime = 1; if (try_clock_gettime && clock_gettime(CLOCK_PROCESS_CPUTIME_ID, ts) == 0) { return true; } else { try_clock_gettime = 0; } } #endif #ifdef RUSAGE_SELF { struct rusage usage; struct timeval time; if (getrusage(RUSAGE_SELF, &usage) == 0) { time = usage.ru_utime; ts->tv_sec = time.tv_sec; ts->tv_nsec = (int32_t)time.tv_usec * 1000; return true; } } #endif #ifdef _WIN32 { FILETIME creation_time, exit_time, kernel_time, user_time; ULARGE_INTEGER ui; if (GetProcessTimes(GetCurrentProcess(), &creation_time, &exit_time, &kernel_time, &user_time) != 0) { memcpy(&ui, &user_time, sizeof(FILETIME)); #define PER100NSEC (uint64_t)(1000 * 1000 * 10) ts->tv_nsec = (long)(ui.QuadPart % PER100NSEC); ts->tv_sec = (time_t)(ui.QuadPart / PER100NSEC); return true; } } #endif return false; } static double getrusage_time(void) { struct timespec ts; if (current_process_time(&ts)) { return ts.tv_sec + ts.tv_nsec * 1e-9; } else { return 0.0; } } static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, unsigned int reason) { if (objspace->profile.run) { size_t index = objspace->profile.next_index; gc_profile_record *record; /* create new record */ objspace->profile.next_index++; if (!objspace->profile.records) { objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE; objspace->profile.records = malloc(xmalloc2_size(sizeof(gc_profile_record), objspace->profile.size)); } if (index >= objspace->profile.size) { void *ptr; objspace->profile.size += 1000; ptr = realloc(objspace->profile.records, xmalloc2_size(sizeof(gc_profile_record), objspace->profile.size)); if (!ptr) rb_memerror(); objspace->profile.records = ptr; } if (!objspace->profile.records) { rb_bug("gc_profile malloc or realloc miss"); } record = objspace->profile.current_record = &objspace->profile.records[objspace->profile.next_index - 1]; MEMZERO(record, gc_profile_record, 1); /* setup before-GC parameter */ record->flags = reason | (ruby_gc_stressful ? GPR_FLAG_STRESS : 0); #if MALLOC_ALLOCATED_SIZE record->allocated_size = malloc_allocated_size; #endif #if GC_PROFILE_MORE_DETAIL && GC_PROFILE_DETAIL_MEMORY #ifdef RUSAGE_SELF { struct rusage usage; if (getrusage(RUSAGE_SELF, &usage) == 0) { record->maxrss = usage.ru_maxrss; record->minflt = usage.ru_minflt; record->majflt = usage.ru_majflt; } } #endif #endif } } static inline void gc_prof_timer_start(rb_objspace_t *objspace) { if (gc_prof_enabled(objspace)) { gc_profile_record *record = gc_prof_record(objspace); #if GC_PROFILE_MORE_DETAIL record->prepare_time = objspace->profile.prepare_time; #endif record->gc_time = 0; record->gc_invoke_time = getrusage_time(); } } static double elapsed_time_from(double time) { double now = getrusage_time(); if (now > time) { return now - time; } else { return 0; } } static inline void gc_prof_timer_stop(rb_objspace_t *objspace) { if (gc_prof_enabled(objspace)) { gc_profile_record *record = gc_prof_record(objspace); record->gc_time = elapsed_time_from(record->gc_invoke_time); record->gc_invoke_time -= objspace->profile.invoke_time; } } #define RUBY_DTRACE_GC_HOOK(name) \ do {if (RUBY_DTRACE_GC_##name##_ENABLED()) RUBY_DTRACE_GC_##name();} while (0) static inline void gc_prof_mark_timer_start(rb_objspace_t *objspace) { RUBY_DTRACE_GC_HOOK(MARK_BEGIN); #if GC_PROFILE_MORE_DETAIL if (gc_prof_enabled(objspace)) { gc_prof_record(objspace)->gc_mark_time = getrusage_time(); } #endif } static inline void gc_prof_mark_timer_stop(rb_objspace_t *objspace) { RUBY_DTRACE_GC_HOOK(MARK_END); #if GC_PROFILE_MORE_DETAIL if (gc_prof_enabled(objspace)) { gc_profile_record *record = gc_prof_record(objspace); record->gc_mark_time = elapsed_time_from(record->gc_mark_time); } #endif } static inline void gc_prof_sweep_timer_start(rb_objspace_t *objspace) { RUBY_DTRACE_GC_HOOK(SWEEP_BEGIN); if (gc_prof_enabled(objspace)) { gc_profile_record *record = gc_prof_record(objspace); if (record->gc_time > 0 || GC_PROFILE_MORE_DETAIL) { objspace->profile.gc_sweep_start_time = getrusage_time(); } } } static inline void gc_prof_sweep_timer_stop(rb_objspace_t *objspace) { RUBY_DTRACE_GC_HOOK(SWEEP_END); if (gc_prof_enabled(objspace)) { double sweep_time; gc_profile_record *record = gc_prof_record(objspace); if (record->gc_time > 0) { sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time); /* need to accumulate GC time for lazy sweep after gc() */ record->gc_time += sweep_time; } else if (GC_PROFILE_MORE_DETAIL) { sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time); } #if GC_PROFILE_MORE_DETAIL record->gc_sweep_time += sweep_time; if (heap_pages_deferred_final) record->flags |= GPR_FLAG_HAVE_FINALIZE; #endif if (heap_pages_deferred_final) objspace->profile.latest_gc_info |= GPR_FLAG_HAVE_FINALIZE; } } static inline void gc_prof_set_malloc_info(rb_objspace_t *objspace) { #if GC_PROFILE_MORE_DETAIL if (gc_prof_enabled(objspace)) { gc_profile_record *record = gc_prof_record(objspace); record->allocate_increase = malloc_increase; record->allocate_limit = malloc_limit; } #endif } static inline void gc_prof_set_heap_info(rb_objspace_t *objspace) { if (gc_prof_enabled(objspace)) { gc_profile_record *record = gc_prof_record(objspace); size_t live = objspace->profile.total_allocated_objects_at_gc_start - objspace->profile.total_freed_objects; size_t total = objspace->profile.heap_used_at_gc_start * HEAP_PAGE_OBJ_LIMIT; #if GC_PROFILE_MORE_DETAIL record->heap_use_pages = objspace->profile.heap_used_at_gc_start; record->heap_live_objects = live; record->heap_free_objects = total - live; #endif record->heap_total_objects = total; record->heap_use_size = live * sizeof(RVALUE); record->heap_total_size = total * sizeof(RVALUE); } } /* * call-seq: * GC::Profiler.clear -> nil * * Clears the GC profiler data. * */ static VALUE gc_profile_clear(VALUE _) { rb_objspace_t *objspace = &rb_objspace; void *p = objspace->profile.records; objspace->profile.records = NULL; objspace->profile.size = 0; objspace->profile.next_index = 0; objspace->profile.current_record = 0; if (p) { free(p); } return Qnil; } /* * call-seq: * GC::Profiler.raw_data -> [Hash, ...] * * Returns an Array of individual raw profile data Hashes ordered * from earliest to latest by +:GC_INVOKE_TIME+. * * For example: * * [ * { * :GC_TIME=>1.3000000000000858e-05, * :GC_INVOKE_TIME=>0.010634999999999999, * :HEAP_USE_SIZE=>289640, * :HEAP_TOTAL_SIZE=>588960, * :HEAP_TOTAL_OBJECTS=>14724, * :GC_IS_MARKED=>false * }, * # ... * ] * * The keys mean: * * +:GC_TIME+:: * Time elapsed in seconds for this GC run * +:GC_INVOKE_TIME+:: * Time elapsed in seconds from startup to when the GC was invoked * +:HEAP_USE_SIZE+:: * Total bytes of heap used * +:HEAP_TOTAL_SIZE+:: * Total size of heap in bytes * +:HEAP_TOTAL_OBJECTS+:: * Total number of objects * +:GC_IS_MARKED+:: * Returns +true+ if the GC is in mark phase * * If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access * to the following hash keys: * * +:GC_MARK_TIME+:: * +:GC_SWEEP_TIME+:: * +:ALLOCATE_INCREASE+:: * +:ALLOCATE_LIMIT+:: * +:HEAP_USE_PAGES+:: * +:HEAP_LIVE_OBJECTS+:: * +:HEAP_FREE_OBJECTS+:: * +:HAVE_FINALIZE+:: * */ static VALUE gc_profile_record_get(VALUE _) { VALUE prof; VALUE gc_profile = rb_ary_new(); size_t i; rb_objspace_t *objspace = (&rb_objspace); if (!objspace->profile.run) { return Qnil; } for (i =0; i < objspace->profile.next_index; i++) { gc_profile_record *record = &objspace->profile.records[i]; prof = rb_hash_new(); rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_info_decode(0, rb_hash_new(), record->flags)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(record->gc_time)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(record->gc_invoke_time)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(record->heap_use_size)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(record->heap_total_size)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(record->heap_total_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("MOVED_OBJECTS")), SIZET2NUM(record->moved_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue); #if GC_PROFILE_MORE_DETAIL rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(record->gc_mark_time)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(record->gc_sweep_time)); rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(record->allocate_increase)); rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(record->allocate_limit)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_PAGES")), SIZET2NUM(record->heap_use_pages)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(record->heap_live_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(record->heap_free_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMOVING_OBJECTS")), SIZET2NUM(record->removing_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("EMPTY_OBJECTS")), SIZET2NUM(record->empty_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), RBOOL(record->flags & GPR_FLAG_HAVE_FINALIZE)); #endif #if RGENGC_PROFILE > 0 rb_hash_aset(prof, ID2SYM(rb_intern("OLD_OBJECTS")), SIZET2NUM(record->old_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_NORMAL_OBJECTS")), SIZET2NUM(record->remembered_normal_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBERED_SHADY_OBJECTS")), SIZET2NUM(record->remembered_shady_objects)); #endif rb_ary_push(gc_profile, prof); } return gc_profile; } #if GC_PROFILE_MORE_DETAIL #define MAJOR_REASON_MAX 0x10 static char * gc_profile_dump_major_reason(unsigned int flags, char *buff) { unsigned int reason = flags & GPR_FLAG_MAJOR_MASK; int i = 0; if (reason == GPR_FLAG_NONE) { buff[0] = '-'; buff[1] = 0; } else { #define C(x, s) \ if (reason & GPR_FLAG_MAJOR_BY_##x) { \ buff[i++] = #x[0]; \ if (i >= MAJOR_REASON_MAX) rb_bug("gc_profile_dump_major_reason: overflow"); \ buff[i] = 0; \ } C(NOFREE, N); C(OLDGEN, O); C(SHADY, S); #if RGENGC_ESTIMATE_OLDMALLOC C(OLDMALLOC, M); #endif #undef C } return buff; } #endif static void gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE)) { rb_objspace_t *objspace = &rb_objspace; size_t count = objspace->profile.next_index; #ifdef MAJOR_REASON_MAX char reason_str[MAJOR_REASON_MAX]; #endif if (objspace->profile.run && count /* > 1 */) { size_t i; const gc_profile_record *record; append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->profile.count)); append(out, rb_str_new_cstr("Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n")); for (i = 0; i < count; i++) { record = &objspace->profile.records[i]; append(out, rb_sprintf("%5"PRIuSIZE" %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n", i+1, record->gc_invoke_time, record->heap_use_size, record->heap_total_size, record->heap_total_objects, record->gc_time*1000)); } #if GC_PROFILE_MORE_DETAIL const char *str = "\n\n" \ "More detail.\n" \ "Prepare Time = Previously GC's rest sweep time\n" "Index Flags Allocate Inc. Allocate Limit" #if CALC_EXACT_MALLOC_SIZE " Allocated Size" #endif " Use Page Mark Time(ms) Sweep Time(ms) Prepare Time(ms) LivingObj FreeObj RemovedObj EmptyObj" #if RGENGC_PROFILE " OldgenObj RemNormObj RemShadObj" #endif #if GC_PROFILE_DETAIL_MEMORY " MaxRSS(KB) MinorFLT MajorFLT" #endif "\n"; append(out, rb_str_new_cstr(str)); for (i = 0; i < count; i++) { record = &objspace->profile.records[i]; append(out, rb_sprintf("%5"PRIuSIZE" %4s/%c/%6s%c %13"PRIuSIZE" %15"PRIuSIZE #if CALC_EXACT_MALLOC_SIZE " %15"PRIuSIZE #endif " %9"PRIuSIZE" %17.12f %17.12f %17.12f %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE #if RGENGC_PROFILE "%10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE #endif #if GC_PROFILE_DETAIL_MEMORY "%11ld %8ld %8ld" #endif "\n", i+1, gc_profile_dump_major_reason(record->flags, reason_str), (record->flags & GPR_FLAG_HAVE_FINALIZE) ? 'F' : '.', (record->flags & GPR_FLAG_NEWOBJ) ? "NEWOBJ" : (record->flags & GPR_FLAG_MALLOC) ? "MALLOC" : (record->flags & GPR_FLAG_METHOD) ? "METHOD" : (record->flags & GPR_FLAG_CAPI) ? "CAPI__" : "??????", (record->flags & GPR_FLAG_STRESS) ? '!' : ' ', record->allocate_increase, record->allocate_limit, #if CALC_EXACT_MALLOC_SIZE record->allocated_size, #endif record->heap_use_pages, record->gc_mark_time*1000, record->gc_sweep_time*1000, record->prepare_time*1000, record->heap_live_objects, record->heap_free_objects, record->removing_objects, record->empty_objects #if RGENGC_PROFILE , record->old_objects, record->remembered_normal_objects, record->remembered_shady_objects #endif #if GC_PROFILE_DETAIL_MEMORY , record->maxrss / 1024, record->minflt, record->majflt #endif )); } #endif } } /* * call-seq: * GC::Profiler.result -> String * * Returns a profile data report such as: * * GC 1 invokes. * Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms) * 1 0.012 159240 212940 10647 0.00000000000001530000 */ static VALUE gc_profile_result(VALUE _) { VALUE str = rb_str_buf_new(0); gc_profile_dump_on(str, rb_str_buf_append); return str; } /* * call-seq: * GC::Profiler.report * GC::Profiler.report(io) * * Writes the GC::Profiler.result to $stdout or the given IO object. * */ static VALUE gc_profile_report(int argc, VALUE *argv, VALUE self) { VALUE out; out = (!rb_check_arity(argc, 0, 1) ? rb_stdout : argv[0]); gc_profile_dump_on(out, rb_io_write); return Qnil; } /* * call-seq: * GC::Profiler.total_time -> float * * The total time used for garbage collection in seconds */ static VALUE gc_profile_total_time(VALUE self) { double time = 0; rb_objspace_t *objspace = &rb_objspace; if (objspace->profile.run && objspace->profile.next_index > 0) { size_t i; size_t count = objspace->profile.next_index; for (i = 0; i < count; i++) { time += objspace->profile.records[i].gc_time; } } return DBL2NUM(time); } /* * call-seq: * GC::Profiler.enabled? -> true or false * * The current status of GC profile mode. */ static VALUE gc_profile_enable_get(VALUE self) { rb_objspace_t *objspace = &rb_objspace; return RBOOL(objspace->profile.run); } /* * call-seq: * GC::Profiler.enable -> nil * * Starts the GC profiler. * */ static VALUE gc_profile_enable(VALUE _) { rb_objspace_t *objspace = &rb_objspace; objspace->profile.run = TRUE; objspace->profile.current_record = 0; return Qnil; } /* * call-seq: * GC::Profiler.disable -> nil * * Stops the GC profiler. * */ static VALUE gc_profile_disable(VALUE _) { rb_objspace_t *objspace = &rb_objspace; objspace->profile.run = FALSE; objspace->profile.current_record = 0; return Qnil; } /* ------------------------------ DEBUG ------------------------------ */ static const char * type_name(int type, VALUE obj) { switch (type) { #define TYPE_NAME(t) case (t): return #t; TYPE_NAME(T_NONE); TYPE_NAME(T_OBJECT); TYPE_NAME(T_CLASS); TYPE_NAME(T_MODULE); TYPE_NAME(T_FLOAT); TYPE_NAME(T_STRING); TYPE_NAME(T_REGEXP); TYPE_NAME(T_ARRAY); TYPE_NAME(T_HASH); TYPE_NAME(T_STRUCT); TYPE_NAME(T_BIGNUM); TYPE_NAME(T_FILE); TYPE_NAME(T_MATCH); TYPE_NAME(T_COMPLEX); TYPE_NAME(T_RATIONAL); TYPE_NAME(T_NIL); TYPE_NAME(T_TRUE); TYPE_NAME(T_FALSE); TYPE_NAME(T_SYMBOL); TYPE_NAME(T_FIXNUM); TYPE_NAME(T_UNDEF); TYPE_NAME(T_IMEMO); TYPE_NAME(T_ICLASS); TYPE_NAME(T_MOVED); TYPE_NAME(T_ZOMBIE); case T_DATA: if (obj && rb_objspace_data_type_name(obj)) { return rb_objspace_data_type_name(obj); } return "T_DATA"; #undef TYPE_NAME } return "unknown"; } static const char * obj_type_name(VALUE obj) { return type_name(TYPE(obj), obj); } const char * rb_method_type_name(rb_method_type_t type) { switch (type) { case VM_METHOD_TYPE_ISEQ: return "iseq"; case VM_METHOD_TYPE_ATTRSET: return "attrest"; case VM_METHOD_TYPE_IVAR: return "ivar"; case VM_METHOD_TYPE_BMETHOD: return "bmethod"; case VM_METHOD_TYPE_ALIAS: return "alias"; case VM_METHOD_TYPE_REFINED: return "refined"; case VM_METHOD_TYPE_CFUNC: return "cfunc"; case VM_METHOD_TYPE_ZSUPER: return "zsuper"; case VM_METHOD_TYPE_MISSING: return "missing"; case VM_METHOD_TYPE_OPTIMIZED: return "optimized"; case VM_METHOD_TYPE_UNDEF: return "undef"; case VM_METHOD_TYPE_NOTIMPLEMENTED: return "notimplemented"; } rb_bug("rb_method_type_name: unreachable (type: %d)", type); } static void rb_raw_iseq_info(char *const buff, const size_t buff_size, const rb_iseq_t *iseq) { if (buff_size > 0 && ISEQ_BODY(iseq) && ISEQ_BODY(iseq)->location.label && !RB_TYPE_P(ISEQ_BODY(iseq)->location.pathobj, T_MOVED)) { VALUE path = rb_iseq_path(iseq); int n = ISEQ_BODY(iseq)->location.first_lineno; snprintf(buff, buff_size, " %s@%s:%d", RSTRING_PTR(ISEQ_BODY(iseq)->location.label), RSTRING_PTR(path), n); } } static int str_len_no_raise(VALUE str) { long len = RSTRING_LEN(str); if (len < 0) return 0; if (len > INT_MAX) return INT_MAX; return (int)len; } #define BUFF_ARGS buff + pos, buff_size - pos #define APPEND_F(...) if ((pos += snprintf(BUFF_ARGS, "" __VA_ARGS__)) >= buff_size) goto end #define APPEND_S(s) do { \ if ((pos + (int)rb_strlen_lit(s)) >= buff_size) { \ goto end; \ } \ else { \ memcpy(buff + pos, (s), rb_strlen_lit(s) + 1); \ } \ } while (0) #define TF(c) ((c) != 0 ? "true" : "false") #define C(c, s) ((c) != 0 ? (s) : " ") static size_t rb_raw_obj_info_common(char *const buff, const size_t buff_size, const VALUE obj) { size_t pos = 0; if (SPECIAL_CONST_P(obj)) { APPEND_F("%s", obj_type_name(obj)); if (FIXNUM_P(obj)) { APPEND_F(" %ld", FIX2LONG(obj)); } else if (SYMBOL_P(obj)) { APPEND_F(" %s", rb_id2name(SYM2ID(obj))); } } else { const int age = RVALUE_FLAGS_AGE(RBASIC(obj)->flags); if (is_pointer_to_heap(&rb_objspace, (void *)obj)) { APPEND_F("%p [%d%s%s%s%s%s%s] %s ", (void *)obj, age, C(RVALUE_UNCOLLECTIBLE_BITMAP(obj), "L"), C(RVALUE_MARK_BITMAP(obj), "M"), C(RVALUE_PIN_BITMAP(obj), "P"), C(RVALUE_MARKING_BITMAP(obj), "R"), C(RVALUE_WB_UNPROTECTED_BITMAP(obj), "U"), C(rb_objspace_garbage_object_p(obj), "G"), obj_type_name(obj)); } else { /* fake */ APPEND_F("%p [%dXXXX] %s", (void *)obj, age, obj_type_name(obj)); } if (internal_object_p(obj)) { /* ignore */ } else if (RBASIC(obj)->klass == 0) { APPEND_S("(temporary internal)"); } else if (RTEST(RBASIC(obj)->klass)) { VALUE class_path = rb_class_path_cached(RBASIC(obj)->klass); if (!NIL_P(class_path)) { APPEND_F("(%s)", RSTRING_PTR(class_path)); } } #if GC_DEBUG APPEND_F("@%s:%d", RANY(obj)->file, RANY(obj)->line); #endif } end: return pos; } static size_t rb_raw_obj_info_buitin_type(char *const buff, const size_t buff_size, const VALUE obj, size_t pos) { if (LIKELY(pos < buff_size) && !SPECIAL_CONST_P(obj)) { const enum ruby_value_type type = BUILTIN_TYPE(obj); switch (type) { case T_NODE: UNEXPECTED_NODE(rb_raw_obj_info); break; case T_ARRAY: if (ARY_SHARED_P(obj)) { APPEND_S("shared -> "); rb_raw_obj_info(BUFF_ARGS, ARY_SHARED_ROOT(obj)); } else if (ARY_EMBED_P(obj)) { APPEND_F("[%s%s] len: %ld (embed)", C(ARY_EMBED_P(obj), "E"), C(ARY_SHARED_P(obj), "S"), RARRAY_LEN(obj)); } else { APPEND_F("[%s%s%s] len: %ld, capa:%ld ptr:%p", C(ARY_EMBED_P(obj), "E"), C(ARY_SHARED_P(obj), "S"), C(RARRAY_TRANSIENT_P(obj), "T"), RARRAY_LEN(obj), ARY_EMBED_P(obj) ? -1L : RARRAY(obj)->as.heap.aux.capa, (void *)RARRAY_CONST_PTR_TRANSIENT(obj)); } break; case T_STRING: { if (STR_SHARED_P(obj)) { APPEND_F(" [shared] len: %ld", RSTRING_LEN(obj)); } else { if (STR_EMBED_P(obj)) APPEND_S(" [embed]"); APPEND_F(" len: %ld, capa: %" PRIdSIZE, RSTRING_LEN(obj), rb_str_capacity(obj)); } APPEND_F(" \"%.*s\"", str_len_no_raise(obj), RSTRING_PTR(obj)); break; } case T_SYMBOL: { VALUE fstr = RSYMBOL(obj)->fstr; ID id = RSYMBOL(obj)->id; if (RB_TYPE_P(fstr, T_STRING)) { APPEND_F(":%s id:%d", RSTRING_PTR(fstr), (unsigned int)id); } else { APPEND_F("(%p) id:%d", (void *)fstr, (unsigned int)id); } break; } case T_MOVED: { APPEND_F("-> %p", (void*)rb_gc_location(obj)); break; } case T_HASH: { APPEND_F("[%c%c] %"PRIdSIZE, RHASH_AR_TABLE_P(obj) ? 'A' : 'S', RHASH_TRANSIENT_P(obj) ? 'T' : ' ', RHASH_SIZE(obj)); break; } case T_CLASS: case T_MODULE: { VALUE class_path = rb_class_path_cached(obj); if (!NIL_P(class_path)) { APPEND_F("%s", RSTRING_PTR(class_path)); } else { APPEND_S("(annon)"); } break; } case T_ICLASS: { VALUE class_path = rb_class_path_cached(RBASIC_CLASS(obj)); if (!NIL_P(class_path)) { APPEND_F("src:%s", RSTRING_PTR(class_path)); } break; } case T_OBJECT: { uint32_t len = ROBJECT_NUMIV(obj); if (RANY(obj)->as.basic.flags & ROBJECT_EMBED) { APPEND_F("(embed) len:%d", len); } else { VALUE *ptr = ROBJECT_IVPTR(obj); APPEND_F("len:%d ptr:%p", len, (void *)ptr); } } break; case T_DATA: { const struct rb_block *block; const rb_iseq_t *iseq; if (rb_obj_is_proc(obj) && (block = vm_proc_block(obj)) != NULL && (vm_block_type(block) == block_type_iseq) && (iseq = vm_block_iseq(block)) != NULL) { rb_raw_iseq_info(BUFF_ARGS, iseq); } else if (rb_ractor_p(obj)) { rb_ractor_t *r = (void *)DATA_PTR(obj); if (r) { APPEND_F("r:%d", r->pub.id); } } else { const char * const type_name = rb_objspace_data_type_name(obj); if (type_name) { APPEND_F("%s", type_name); } } break; } case T_IMEMO: { APPEND_F("<%s> ", rb_imemo_name(imemo_type(obj))); switch (imemo_type(obj)) { case imemo_ment: { const rb_method_entry_t *me = &RANY(obj)->as.imemo.ment; APPEND_F(":%s (%s%s%s%s) type:%s alias:%d owner:%p defined_class:%p", rb_id2name(me->called_id), METHOD_ENTRY_VISI(me) == METHOD_VISI_PUBLIC ? "pub" : METHOD_ENTRY_VISI(me) == METHOD_VISI_PRIVATE ? "pri" : "pro", METHOD_ENTRY_COMPLEMENTED(me) ? ",cmp" : "", METHOD_ENTRY_CACHED(me) ? ",cc" : "", METHOD_ENTRY_INVALIDATED(me) ? ",inv" : "", me->def ? rb_method_type_name(me->def->type) : "NULL", me->def ? me->def->alias_count : -1, (void *)me->owner, // obj_info(me->owner), (void *)me->defined_class); //obj_info(me->defined_class))); if (me->def) { switch (me->def->type) { case VM_METHOD_TYPE_ISEQ: APPEND_S(" (iseq:"); rb_raw_obj_info(BUFF_ARGS, (VALUE)me->def->body.iseq.iseqptr); APPEND_S(")"); break; default: break; } } break; } case imemo_iseq: { const rb_iseq_t *iseq = (const rb_iseq_t *)obj; rb_raw_iseq_info(BUFF_ARGS, iseq); break; } case imemo_callinfo: { const struct rb_callinfo *ci = (const struct rb_callinfo *)obj; APPEND_F("(mid:%s, flag:%x argc:%d, kwarg:%s)", rb_id2name(vm_ci_mid(ci)), vm_ci_flag(ci), vm_ci_argc(ci), vm_ci_kwarg(ci) ? "available" : "NULL"); break; } case imemo_callcache: { const struct rb_callcache *cc = (const struct rb_callcache *)obj; VALUE class_path = cc->klass ? rb_class_path_cached(cc->klass) : Qnil; const rb_callable_method_entry_t *cme = vm_cc_cme(cc); APPEND_F("(klass:%s cme:%s%s (%p) call:%p", NIL_P(class_path) ? (cc->klass ? "??" : "") : RSTRING_PTR(class_path), cme ? rb_id2name(cme->called_id) : "", cme ? (METHOD_ENTRY_INVALIDATED(cme) ? " [inv]" : "") : "", (void *)cme, (void *)vm_cc_call(cc)); break; } default: break; } } default: break; } } end: return pos; } #undef TF #undef C const char * rb_raw_obj_info(char *const buff, const size_t buff_size, VALUE obj) { asan_unpoisoning_object(obj) { size_t pos = rb_raw_obj_info_common(buff, buff_size, obj); pos = rb_raw_obj_info_buitin_type(buff, buff_size, obj, pos); if (pos >= buff_size) {} // truncated } return buff; } #undef APPEND_S #undef APPEND_F #undef BUFF_ARGS #if RGENGC_OBJ_INFO #define OBJ_INFO_BUFFERS_NUM 10 #define OBJ_INFO_BUFFERS_SIZE 0x100 static rb_atomic_t obj_info_buffers_index = 0; static char obj_info_buffers[OBJ_INFO_BUFFERS_NUM][OBJ_INFO_BUFFERS_SIZE]; /* Increments *var atomically and resets *var to 0 when maxval is * reached. Returns the wraparound old *var value (0...maxval). */ static rb_atomic_t atomic_inc_wraparound(rb_atomic_t *var, const rb_atomic_t maxval) { rb_atomic_t oldval = RUBY_ATOMIC_FETCH_ADD(*var, 1); if (UNLIKELY(oldval >= maxval - 1)) { // wraparound *var const rb_atomic_t newval = oldval + 1; RUBY_ATOMIC_CAS(*var, newval, newval % maxval); oldval %= maxval; } return oldval; } static const char * obj_info(VALUE obj) { rb_atomic_t index = atomic_inc_wraparound(&obj_info_buffers_index, OBJ_INFO_BUFFERS_NUM); char *const buff = obj_info_buffers[index]; return rb_raw_obj_info(buff, OBJ_INFO_BUFFERS_SIZE, obj); } #else static const char * obj_info(VALUE obj) { return obj_type_name(obj); } #endif MJIT_FUNC_EXPORTED const char * rb_obj_info(VALUE obj) { return obj_info(obj); } void rb_obj_info_dump(VALUE obj) { char buff[0x100]; fprintf(stderr, "rb_obj_info_dump: %s\n", rb_raw_obj_info(buff, 0x100, obj)); } MJIT_FUNC_EXPORTED void rb_obj_info_dump_loc(VALUE obj, const char *file, int line, const char *func) { char buff[0x100]; fprintf(stderr, " %s\n", func, file, line, rb_raw_obj_info(buff, 0x100, obj)); } #if GC_DEBUG void rb_gcdebug_print_obj_condition(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; fprintf(stderr, "created at: %s:%d\n", RANY(obj)->file, RANY(obj)->line); if (BUILTIN_TYPE(obj) == T_MOVED) { fprintf(stderr, "moved?: true\n"); } else { fprintf(stderr, "moved?: false\n"); } if (is_pointer_to_heap(objspace, (void *)obj)) { fprintf(stderr, "pointer to heap?: true\n"); } else { fprintf(stderr, "pointer to heap?: false\n"); return; } fprintf(stderr, "marked? : %s\n", MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) ? "true" : "false"); fprintf(stderr, "pinned? : %s\n", MARKED_IN_BITMAP(GET_HEAP_PINNED_BITS(obj), obj) ? "true" : "false"); fprintf(stderr, "age? : %d\n", RVALUE_AGE(obj)); fprintf(stderr, "old? : %s\n", RVALUE_OLD_P(obj) ? "true" : "false"); fprintf(stderr, "WB-protected?: %s\n", RVALUE_WB_UNPROTECTED(obj) ? "false" : "true"); fprintf(stderr, "remembered? : %s\n", RVALUE_REMEMBERED(obj) ? "true" : "false"); if (is_lazy_sweeping(objspace)) { fprintf(stderr, "lazy sweeping?: true\n"); fprintf(stderr, "swept?: %s\n", is_swept_object(objspace, obj) ? "done" : "not yet"); } else { fprintf(stderr, "lazy sweeping?: false\n"); } } static VALUE gcdebug_sentinel(RB_BLOCK_CALL_FUNC_ARGLIST(obj, name)) { fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj); return Qnil; } void rb_gcdebug_sentinel(VALUE obj, const char *name) { rb_define_finalizer(obj, rb_proc_new(gcdebug_sentinel, (VALUE)name)); } #endif /* GC_DEBUG */ #if GC_DEBUG_STRESS_TO_CLASS /* * call-seq: * GC.add_stress_to_class(class[, ...]) * * Raises NoMemoryError when allocating an instance of the given classes. * */ static VALUE rb_gcdebug_add_stress_to_class(int argc, VALUE *argv, VALUE self) { rb_objspace_t *objspace = &rb_objspace; if (!stress_to_class) { stress_to_class = rb_ary_hidden_new(argc); } rb_ary_cat(stress_to_class, argv, argc); return self; } /* * call-seq: * GC.remove_stress_to_class(class[, ...]) * * No longer raises NoMemoryError when allocating an instance of the * given classes. * */ static VALUE rb_gcdebug_remove_stress_to_class(int argc, VALUE *argv, VALUE self) { rb_objspace_t *objspace = &rb_objspace; int i; if (stress_to_class) { for (i = 0; i < argc; ++i) { rb_ary_delete_same(stress_to_class, argv[i]); } if (RARRAY_LEN(stress_to_class) == 0) { stress_to_class = 0; } } return Qnil; } #endif /* * Document-module: ObjectSpace * * The ObjectSpace module contains a number of routines * that interact with the garbage collection facility and allow you to * traverse all living objects with an iterator. * * ObjectSpace also provides support for object finalizers, procs that will be * called when a specific object is about to be destroyed by garbage * collection. See the documentation for * ObjectSpace.define_finalizer for important information on * how to use this method correctly. * * a = "A" * b = "B" * * ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" }) * ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" }) * * a = nil * b = nil * * _produces:_ * * Finalizer two on 537763470 * Finalizer one on 537763480 */ /* * Document-class: ObjectSpace::WeakMap * * An ObjectSpace::WeakMap object holds references to * any objects, but those objects can get garbage collected. * * This class is mostly used internally by WeakRef, please use * +lib/weakref.rb+ for the public interface. */ /* Document-class: GC::Profiler * * The GC profiler provides access to information on GC runs including time, * length and object space size. * * Example: * * GC::Profiler.enable * * require 'rdoc/rdoc' * * GC::Profiler.report * * GC::Profiler.disable * * See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations */ #include "gc.rbinc" void Init_GC(void) { #undef rb_intern VALUE rb_mObjSpace; VALUE rb_mProfiler; VALUE gc_constants; rb_mGC = rb_define_module("GC"); gc_constants = rb_hash_new(); rb_hash_aset(gc_constants, ID2SYM(rb_intern("DEBUG")), RBOOL(GC_DEBUG)); rb_hash_aset(gc_constants, ID2SYM(rb_intern("BASE_SLOT_SIZE")), SIZET2NUM(BASE_SLOT_SIZE)); rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVALUE_SIZE")), SIZET2NUM(sizeof(RVALUE))); rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_OBJ_LIMIT")), SIZET2NUM(HEAP_PAGE_OBJ_LIMIT)); rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_BITMAP_SIZE")), SIZET2NUM(HEAP_PAGE_BITMAP_SIZE)); rb_hash_aset(gc_constants, ID2SYM(rb_intern("HEAP_PAGE_SIZE")), SIZET2NUM(HEAP_PAGE_SIZE)); rb_hash_aset(gc_constants, ID2SYM(rb_intern("SIZE_POOL_COUNT")), LONG2FIX(SIZE_POOL_COUNT)); rb_hash_aset(gc_constants, ID2SYM(rb_intern("RVARGC_MAX_ALLOCATE_SIZE")), LONG2FIX(size_pool_slot_size(SIZE_POOL_COUNT - 1))); OBJ_FREEZE(gc_constants); /* internal constants */ rb_define_const(rb_mGC, "INTERNAL_CONSTANTS", gc_constants); rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler"); rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0); rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0); rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0); rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0); rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0); rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0); rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1); rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0); rb_mObjSpace = rb_define_module("ObjectSpace"); rb_define_module_function(rb_mObjSpace, "each_object", os_each_obj, -1); rb_define_module_function(rb_mObjSpace, "define_finalizer", define_final, -1); rb_define_module_function(rb_mObjSpace, "undefine_finalizer", undefine_final, 1); rb_define_module_function(rb_mObjSpace, "_id2ref", os_id2ref, 1); rb_vm_register_special_exception(ruby_error_nomemory, rb_eNoMemError, "failed to allocate memory"); rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0); rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0); rb_define_module_function(rb_mObjSpace, "count_objects", count_objects, -1); { VALUE rb_cWeakMap = rb_define_class_under(rb_mObjSpace, "WeakMap", rb_cObject); rb_define_alloc_func(rb_cWeakMap, wmap_allocate); rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2); rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1); rb_define_method(rb_cWeakMap, "include?", wmap_has_key, 1); rb_define_method(rb_cWeakMap, "member?", wmap_has_key, 1); rb_define_method(rb_cWeakMap, "key?", wmap_has_key, 1); rb_define_method(rb_cWeakMap, "inspect", wmap_inspect, 0); rb_define_method(rb_cWeakMap, "each", wmap_each, 0); rb_define_method(rb_cWeakMap, "each_pair", wmap_each, 0); rb_define_method(rb_cWeakMap, "each_key", wmap_each_key, 0); rb_define_method(rb_cWeakMap, "each_value", wmap_each_value, 0); rb_define_method(rb_cWeakMap, "keys", wmap_keys, 0); rb_define_method(rb_cWeakMap, "values", wmap_values, 0); rb_define_method(rb_cWeakMap, "size", wmap_size, 0); rb_define_method(rb_cWeakMap, "length", wmap_size, 0); rb_include_module(rb_cWeakMap, rb_mEnumerable); } /* internal methods */ rb_define_singleton_method(rb_mGC, "verify_internal_consistency", gc_verify_internal_consistency_m, 0); rb_define_singleton_method(rb_mGC, "verify_transient_heap_internal_consistency", gc_verify_transient_heap_internal_consistency, 0); #if MALLOC_ALLOCATED_SIZE rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0); rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0); #endif if (GC_COMPACTION_SUPPORTED) { rb_define_singleton_method(rb_mGC, "compact", gc_compact, 0); rb_define_singleton_method(rb_mGC, "auto_compact", gc_get_auto_compact, 0); rb_define_singleton_method(rb_mGC, "auto_compact=", gc_set_auto_compact, 1); rb_define_singleton_method(rb_mGC, "latest_compact_info", gc_compact_stats, 0); } else { rb_define_singleton_method(rb_mGC, "compact", rb_f_notimplement, 0); rb_define_singleton_method(rb_mGC, "auto_compact", rb_f_notimplement, 0); rb_define_singleton_method(rb_mGC, "auto_compact=", rb_f_notimplement, 1); rb_define_singleton_method(rb_mGC, "latest_compact_info", rb_f_notimplement, 0); /* When !GC_COMPACTION_SUPPORTED, this method is not defined in gc.rb */ rb_define_singleton_method(rb_mGC, "verify_compaction_references", rb_f_notimplement, -1); } #if GC_DEBUG_STRESS_TO_CLASS rb_define_singleton_method(rb_mGC, "add_stress_to_class", rb_gcdebug_add_stress_to_class, -1); rb_define_singleton_method(rb_mGC, "remove_stress_to_class", rb_gcdebug_remove_stress_to_class, -1); #endif { VALUE opts; /* GC build options */ rb_define_const(rb_mGC, "OPTS", opts = rb_ary_new()); #define OPT(o) if (o) rb_ary_push(opts, rb_fstring_lit(#o)) OPT(GC_DEBUG); OPT(USE_RGENGC); OPT(RGENGC_DEBUG); OPT(RGENGC_CHECK_MODE); OPT(RGENGC_PROFILE); OPT(RGENGC_ESTIMATE_OLDMALLOC); OPT(GC_PROFILE_MORE_DETAIL); OPT(GC_ENABLE_LAZY_SWEEP); OPT(CALC_EXACT_MALLOC_SIZE); OPT(MALLOC_ALLOCATED_SIZE); OPT(MALLOC_ALLOCATED_SIZE_CHECK); OPT(GC_PROFILE_DETAIL_MEMORY); OPT(GC_COMPACTION_SUPPORTED); #undef OPT OBJ_FREEZE(opts); } } #ifdef ruby_xmalloc #undef ruby_xmalloc #endif #ifdef ruby_xmalloc2 #undef ruby_xmalloc2 #endif #ifdef ruby_xcalloc #undef ruby_xcalloc #endif #ifdef ruby_xrealloc #undef ruby_xrealloc #endif #ifdef ruby_xrealloc2 #undef ruby_xrealloc2 #endif void * ruby_xmalloc(size_t size) { #if USE_GC_MALLOC_OBJ_INFO_DETAILS ruby_malloc_info_file = __FILE__; ruby_malloc_info_line = __LINE__; #endif return ruby_xmalloc_body(size); } void * ruby_xmalloc2(size_t n, size_t size) { #if USE_GC_MALLOC_OBJ_INFO_DETAILS ruby_malloc_info_file = __FILE__; ruby_malloc_info_line = __LINE__; #endif return ruby_xmalloc2_body(n, size); } void * ruby_xcalloc(size_t n, size_t size) { #if USE_GC_MALLOC_OBJ_INFO_DETAILS ruby_malloc_info_file = __FILE__; ruby_malloc_info_line = __LINE__; #endif return ruby_xcalloc_body(n, size); } void * ruby_xrealloc(void *ptr, size_t new_size) { #if USE_GC_MALLOC_OBJ_INFO_DETAILS ruby_malloc_info_file = __FILE__; ruby_malloc_info_line = __LINE__; #endif return ruby_xrealloc_body(ptr, new_size); } void * ruby_xrealloc2(void *ptr, size_t n, size_t new_size) { #if USE_GC_MALLOC_OBJ_INFO_DETAILS ruby_malloc_info_file = __FILE__; ruby_malloc_info_line = __LINE__; #endif return ruby_xrealloc2_body(ptr, n, new_size); }