/********************************************************************** gc.c - $Author$ created at: Tue Oct 5 09:44:46 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/ruby.h" #include "ruby/st.h" #include "ruby/re.h" #include "ruby/io.h" #include "ruby/util.h" #include "eval_intern.h" #include "vm_core.h" #include "internal.h" #include "gc.h" #include "constant.h" #include #include #include #include #ifdef HAVE_SYS_TIME_H #include #endif #ifdef HAVE_SYS_RESOURCE_H #include #endif #if defined _WIN32 || defined __CYGWIN__ #include #elif defined(HAVE_POSIX_MEMALIGN) #elif defined(HAVE_MEMALIGN) #include #endif #ifdef HAVE_VALGRIND_MEMCHECK_H # include # ifndef VALGRIND_MAKE_MEM_DEFINED # define VALGRIND_MAKE_MEM_DEFINED(p, n) VALGRIND_MAKE_READABLE((p), (n)) # endif # ifndef VALGRIND_MAKE_MEM_UNDEFINED # define VALGRIND_MAKE_MEM_UNDEFINED(p, n) VALGRIND_MAKE_WRITABLE((p), (n)) # endif #else # define VALGRIND_MAKE_MEM_DEFINED(p, n) /* empty */ # define VALGRIND_MAKE_MEM_UNDEFINED(p, n) /* empty */ #endif #define rb_setjmp(env) RUBY_SETJMP(env) #define rb_jmp_buf rb_jmpbuf_t /* Make alloca work the best possible way. */ #ifdef __GNUC__ # ifndef atarist # ifndef alloca # define alloca __builtin_alloca # endif # endif /* atarist */ #else # ifdef HAVE_ALLOCA_H # include # else # ifdef _AIX #pragma alloca # else # ifndef alloca /* predefined by HP cc +Olibcalls */ void *alloca (); # endif # endif /* AIX */ # endif /* HAVE_ALLOCA_H */ #endif /* __GNUC__ */ #ifndef GC_MALLOC_LIMIT #define GC_MALLOC_LIMIT 8000000 #endif #define HEAP_MIN_SLOTS 10000 #define FREE_MIN 4096 typedef struct { unsigned int initial_malloc_limit; unsigned int initial_heap_min_slots; unsigned int initial_free_min; #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE int gc_stress; #endif } ruby_gc_params_t; static ruby_gc_params_t initial_params = { GC_MALLOC_LIMIT, HEAP_MIN_SLOTS, FREE_MIN, #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE FALSE, #endif }; #define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory] #define MARK_STACK_MAX 1024 int ruby_gc_debug_indent = 0; /* for GC profile */ #ifndef GC_PROFILE_MORE_DETAIL #define GC_PROFILE_MORE_DETAIL 0 #endif typedef struct gc_profile_record { double gc_time; double gc_mark_time; double gc_sweep_time; double gc_invoke_time; size_t heap_use_slots; size_t heap_live_objects; size_t heap_free_objects; size_t heap_total_objects; size_t heap_use_size; size_t heap_total_size; int have_finalize; int is_marked; size_t allocate_increase; size_t allocate_limit; } gc_profile_record; static double getrusage_time(void) { #ifdef RUSAGE_SELF struct rusage usage; struct timeval time; getrusage(RUSAGE_SELF, &usage); time = usage.ru_utime; return time.tv_sec + time.tv_usec * 1e-6; #elif defined _WIN32 FILETIME creation_time, exit_time, kernel_time, user_time; ULARGE_INTEGER ui; LONG_LONG q; double t; if (GetProcessTimes(GetCurrentProcess(), &creation_time, &exit_time, &kernel_time, &user_time) == 0) { return 0.0; } memcpy(&ui, &user_time, sizeof(FILETIME)); q = ui.QuadPart / 10L; t = (DWORD)(q % 1000000L) * 1e-6; q /= 1000000L; #ifdef __GNUC__ t += q; #else t += (double)(DWORD)(q >> 16) * (1 << 16); t += (DWORD)q & ~(~0 << 16); #endif return t; #else return 0.0; #endif } #define GC_PROF_TIMER_START do {\ if (objspace->profile.run) {\ if (!objspace->profile.record) {\ objspace->profile.size = 1000;\ objspace->profile.record = malloc(sizeof(gc_profile_record) * objspace->profile.size);\ }\ if (count >= objspace->profile.size) {\ objspace->profile.size += 1000;\ objspace->profile.record = realloc(objspace->profile.record, sizeof(gc_profile_record) * objspace->profile.size);\ }\ if (!objspace->profile.record) {\ rb_bug("gc_profile malloc or realloc miss");\ }\ MEMZERO(&objspace->profile.record[count], gc_profile_record, 1);\ gc_time = getrusage_time();\ objspace->profile.record[count].gc_invoke_time = gc_time - objspace->profile.invoke_time;\ }\ } while(0) #define GC_PROF_TIMER_STOP(marked) do {\ if (objspace->profile.run) {\ gc_time = getrusage_time() - gc_time;\ if (gc_time < 0) gc_time = 0;\ objspace->profile.record[count].gc_time = gc_time;\ objspace->profile.record[count].is_marked = !!(marked);\ GC_PROF_SET_HEAP_INFO(objspace->profile.record[count]);\ objspace->profile.count++;\ }\ } while(0) #if GC_PROFILE_MORE_DETAIL #define INIT_GC_PROF_PARAMS double gc_time = 0, sweep_time = 0;\ size_t count = objspace->profile.count, total = 0, live = 0 #define GC_PROF_MARK_TIMER_START double mark_time = 0;\ do {\ if (objspace->profile.run) {\ mark_time = getrusage_time();\ }\ } while(0) #define GC_PROF_MARK_TIMER_STOP do {\ if (objspace->profile.run) {\ mark_time = getrusage_time() - mark_time;\ if (mark_time < 0) mark_time = 0;\ objspace->profile.record[objspace->profile.count].gc_mark_time = mark_time;\ }\ } while(0) #define GC_PROF_SWEEP_TIMER_START do {\ if (objspace->profile.run) {\ sweep_time = getrusage_time();\ }\ } while(0) #define GC_PROF_SWEEP_TIMER_STOP do {\ if (objspace->profile.run) {\ sweep_time = getrusage_time() - sweep_time;\ if (sweep_time < 0) sweep_time = 0;\ objspace->profile.record[count].gc_sweep_time = sweep_time;\ }\ } while(0) #define GC_PROF_SET_MALLOC_INFO do {\ if (objspace->profile.run) {\ gc_profile_record *record = &objspace->profile.record[objspace->profile.count];\ record->allocate_increase = malloc_increase;\ record->allocate_limit = malloc_limit; \ }\ } while(0) #define GC_PROF_SET_HEAP_INFO(record) do {\ live = objspace->heap.live_num;\ total = heaps_used * HEAP_OBJ_LIMIT;\ (record).heap_use_slots = heaps_used;\ (record).heap_live_objects = live;\ (record).heap_free_objects = total - live;\ (record).heap_total_objects = total;\ (record).have_finalize = deferred_final_list ? Qtrue : Qfalse;\ (record).heap_use_size = live * sizeof(RVALUE);\ (record).heap_total_size = total * sizeof(RVALUE);\ } while(0) #define GC_PROF_INC_LIVE_NUM objspace->heap.live_num++ #define GC_PROF_DEC_LIVE_NUM objspace->heap.live_num-- #else #define INIT_GC_PROF_PARAMS double gc_time = 0;\ size_t count = objspace->profile.count, total = 0, live = 0 #define GC_PROF_MARK_TIMER_START #define GC_PROF_MARK_TIMER_STOP #define GC_PROF_SWEEP_TIMER_START #define GC_PROF_SWEEP_TIMER_STOP #define GC_PROF_SET_MALLOC_INFO #define GC_PROF_SET_HEAP_INFO(record) do {\ live = objspace->heap.live_num;\ total = heaps_used * HEAP_OBJ_LIMIT;\ (record).heap_total_objects = total;\ (record).heap_use_size = live * sizeof(RVALUE);\ (record).heap_total_size = total * sizeof(RVALUE);\ } while(0) #define GC_PROF_INC_LIVE_NUM #define GC_PROF_DEC_LIVE_NUM #endif #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__) #pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */ #endif typedef struct RVALUE { union { struct { VALUE flags; /* always 0 for freed obj */ struct RVALUE *next; } free; struct RBasic basic; struct RObject object; struct RClass klass; struct RFloat flonum; struct RString string; struct RArray array; struct RRegexp regexp; struct RHash hash; struct RData data; struct RTypedData typeddata; struct RStruct rstruct; struct RBignum bignum; struct RFile file; struct RNode node; struct RMatch match; struct RRational rational; struct RComplex complex; } as; #ifdef GC_DEBUG const char *file; int line; #endif } RVALUE; #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__) #pragma pack(pop) #endif struct heaps_slot { void *membase; RVALUE *slot; size_t limit; uintptr_t *bits; RVALUE *freelist; struct heaps_slot *next; struct heaps_slot *prev; struct heaps_slot *free_next; }; struct heaps_header { struct heaps_slot *base; uintptr_t *bits; }; struct sorted_heaps_slot { RVALUE *start; RVALUE *end; struct heaps_slot *slot; }; struct heaps_free_bitmap { struct heaps_free_bitmap *next; }; struct gc_list { VALUE *varptr; struct gc_list *next; }; #ifndef CALC_EXACT_MALLOC_SIZE #define CALC_EXACT_MALLOC_SIZE 0 #endif typedef struct rb_objspace { struct { size_t limit; size_t increase; #if CALC_EXACT_MALLOC_SIZE size_t allocated_size; size_t allocations; #endif } malloc_params; struct { size_t increment; struct heaps_slot *ptr; struct heaps_slot *sweep_slots; struct heaps_slot *free_slots; struct sorted_heaps_slot *sorted; size_t length; size_t used; struct heaps_free_bitmap *free_bitmap; RVALUE *range[2]; RVALUE *freed; size_t live_num; size_t free_num; size_t free_min; size_t final_num; size_t do_heap_free; } heap; struct { int dont_gc; int dont_lazy_sweep; int during_gc; rb_atomic_t finalizing; } flags; struct { st_table *table; RVALUE *deferred; } final; struct { VALUE buffer[MARK_STACK_MAX]; VALUE *ptr; int overflow; } markstack; struct { int run; gc_profile_record *record; size_t count; size_t size; double invoke_time; } profile; struct gc_list *global_list; size_t count; int gc_stress; } rb_objspace_t; #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE #define rb_objspace (*GET_VM()->objspace) #define ruby_initial_gc_stress initial_params.gc_stress int *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress; #else static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT}, {HEAP_MIN_SLOTS}}; int *ruby_initial_gc_stress_ptr = &rb_objspace.gc_stress; #endif #define malloc_limit objspace->malloc_params.limit #define malloc_increase objspace->malloc_params.increase #define heaps objspace->heap.ptr #define heaps_length objspace->heap.length #define heaps_used objspace->heap.used #define lomem objspace->heap.range[0] #define himem objspace->heap.range[1] #define heaps_inc objspace->heap.increment #define heaps_freed objspace->heap.freed #define dont_gc objspace->flags.dont_gc #define during_gc objspace->flags.during_gc #define finalizing objspace->flags.finalizing #define finalizer_table objspace->final.table #define deferred_final_list objspace->final.deferred #define mark_stack objspace->markstack.buffer #define mark_stack_ptr objspace->markstack.ptr #define mark_stack_overflow objspace->markstack.overflow #define global_List objspace->global_list #define ruby_gc_stress objspace->gc_stress #define initial_malloc_limit initial_params.initial_malloc_limit #define initial_heap_min_slots initial_params.initial_heap_min_slots #define initial_free_min initial_params.initial_free_min #define is_lazy_sweeping(objspace) ((objspace)->heap.sweep_slots != 0) #define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG) #define HEAP_HEADER(p) ((struct heaps_header *)(p)) static void rb_objspace_call_finalizer(rb_objspace_t *objspace); static VALUE define_final0(VALUE obj, VALUE block); VALUE rb_define_final(VALUE obj, VALUE block); VALUE rb_undefine_final(VALUE obj); #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE rb_objspace_t * rb_objspace_alloc(void) { rb_objspace_t *objspace = malloc(sizeof(rb_objspace_t)); memset(objspace, 0, sizeof(*objspace)); malloc_limit = initial_malloc_limit; ruby_gc_stress = ruby_initial_gc_stress; return objspace; } #endif static void initial_expand_heap(rb_objspace_t *objspace); void rb_gc_set_params(void) { char *malloc_limit_ptr, *heap_min_slots_ptr, *free_min_ptr; if (rb_safe_level() > 0) return; malloc_limit_ptr = getenv("RUBY_GC_MALLOC_LIMIT"); if (malloc_limit_ptr != NULL) { int malloc_limit_i = atoi(malloc_limit_ptr); if (RTEST(ruby_verbose)) fprintf(stderr, "malloc_limit=%d (%d)\n", malloc_limit_i, initial_malloc_limit); if (malloc_limit_i > 0) { initial_malloc_limit = malloc_limit_i; } } heap_min_slots_ptr = getenv("RUBY_HEAP_MIN_SLOTS"); if (heap_min_slots_ptr != NULL) { int heap_min_slots_i = atoi(heap_min_slots_ptr); if (RTEST(ruby_verbose)) fprintf(stderr, "heap_min_slots=%d (%d)\n", heap_min_slots_i, initial_heap_min_slots); if (heap_min_slots_i > 0) { initial_heap_min_slots = heap_min_slots_i; initial_expand_heap(&rb_objspace); } } free_min_ptr = getenv("RUBY_FREE_MIN"); if (free_min_ptr != NULL) { int free_min_i = atoi(free_min_ptr); if (RTEST(ruby_verbose)) fprintf(stderr, "free_min=%d (%d)\n", free_min_i, initial_free_min); if (free_min_i > 0) { initial_free_min = free_min_i; } } } #if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE static void gc_sweep(rb_objspace_t *); static void slot_sweep(rb_objspace_t *, struct heaps_slot *); static void rest_sweep(rb_objspace_t *); static void aligned_free(void *); void rb_objspace_free(rb_objspace_t *objspace) { rest_sweep(objspace); if (objspace->profile.record) { free(objspace->profile.record); objspace->profile.record = 0; } if (global_List) { struct gc_list *list, *next; for (list = global_List; list; list = next) { next = list->next; xfree(list); } } if (objspace->heap.free_bitmap) { struct heaps_free_bitmap *list, *next; for (list = objspace->heap.free_bitmap; list; list = next) { next = list->next; free(list); } } if (objspace->heap.sorted) { size_t i; for (i = 0; i < heaps_used; ++i) { free(objspace->heap.sorted[i].slot->bits); aligned_free(objspace->heap.sorted[i].slot->membase); free(objspace->heap.sorted[i].slot); } free(objspace->heap.sorted); heaps_used = 0; heaps = 0; } free(objspace); } #endif #ifndef HEAP_ALIGN_LOG /* default tiny heap size: 16KB */ #define HEAP_ALIGN_LOG 14 #endif #define HEAP_ALIGN (1UL << HEAP_ALIGN_LOG) #define HEAP_ALIGN_MASK (~(~0UL << HEAP_ALIGN_LOG)) #define REQUIRED_SIZE_BY_MALLOC (sizeof(size_t) * 5) #define HEAP_SIZE (HEAP_ALIGN - REQUIRED_SIZE_BY_MALLOC) #define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod)) #define HEAP_OBJ_LIMIT (unsigned int)((HEAP_SIZE - sizeof(struct heaps_header))/sizeof(struct RVALUE)) #define HEAP_BITMAP_LIMIT CEILDIV(CEILDIV(HEAP_SIZE, sizeof(struct RVALUE)), sizeof(uintptr_t)*8) #define GET_HEAP_HEADER(x) (HEAP_HEADER(((uintptr_t)x) & ~(HEAP_ALIGN_MASK))) #define GET_HEAP_SLOT(x) (GET_HEAP_HEADER(x)->base) #define GET_HEAP_BITMAP(x) (GET_HEAP_HEADER(x)->bits) #define NUM_IN_SLOT(p) (((uintptr_t)p & HEAP_ALIGN_MASK)/sizeof(RVALUE)) #define BITMAP_INDEX(p) (NUM_IN_SLOT(p) / (sizeof(uintptr_t) * 8)) #define BITMAP_OFFSET(p) (NUM_IN_SLOT(p) & ((sizeof(uintptr_t) * 8)-1)) #define MARKED_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] & ((uintptr_t)1 << BITMAP_OFFSET(p))) #define MARK_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] = bits[BITMAP_INDEX(p)] | ((uintptr_t)1 << BITMAP_OFFSET(p))) #define CLEAR_IN_BITMAP(bits, p) (bits[BITMAP_INDEX(p)] &= ~((uintptr_t)1 << BITMAP_OFFSET(p))) extern st_table *rb_class_tbl; int ruby_disable_gc_stress = 0; static void run_final(rb_objspace_t *objspace, VALUE obj); static int garbage_collect(rb_objspace_t *objspace); static int gc_lazy_sweep(rb_objspace_t *objspace); void rb_global_variable(VALUE *var) { rb_gc_register_address(var); } static void * ruby_memerror_body(void *dummy) { rb_memerror(); return 0; } static void ruby_memerror(void) { if (ruby_thread_has_gvl_p()) { rb_memerror(); } else { if (ruby_native_thread_p()) { rb_thread_call_with_gvl(ruby_memerror_body, 0); } else { /* no ruby thread */ fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } } } void rb_memerror(void) { rb_thread_t *th = GET_THREAD(); if (!nomem_error || (rb_thread_raised_p(th, RAISED_NOMEMORY) && rb_safe_level() < 4)) { fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } if (rb_thread_raised_p(th, RAISED_NOMEMORY)) { rb_thread_raised_clear(th); GET_THREAD()->errinfo = nomem_error; JUMP_TAG(TAG_RAISE); } rb_thread_raised_set(th, RAISED_NOMEMORY); rb_exc_raise(nomem_error); } /* * call-seq: * GC.stress -> true or false * * returns current status of GC stress mode. */ static VALUE gc_stress_get(VALUE self) { rb_objspace_t *objspace = &rb_objspace; return ruby_gc_stress ? Qtrue : Qfalse; } /* * call-seq: * GC.stress = bool -> bool * * Updates the GC stress mode. * * When stress mode is enabled the GC is invoked at every GC opportunity: * all memory and object allocations. * * Enabling stress mode makes Ruby very slow, it is only for debugging. */ static VALUE gc_stress_set(VALUE self, VALUE flag) { rb_objspace_t *objspace = &rb_objspace; rb_secure(2); ruby_gc_stress = RTEST(flag); return flag; } /* * call-seq: * GC::Profiler.enable? -> true or false * * The current status of GC profile mode. */ static VALUE gc_profile_enable_get(VALUE self) { rb_objspace_t *objspace = &rb_objspace; return objspace->profile.run; } /* * call-seq: * GC::Profiler.enable -> nil * * Starts the GC profiler. * */ static VALUE gc_profile_enable(void) { rb_objspace_t *objspace = &rb_objspace; objspace->profile.run = TRUE; return Qnil; } /* * call-seq: * GC::Profiler.disable -> nil * * Stops the GC profiler. * */ static VALUE gc_profile_disable(void) { rb_objspace_t *objspace = &rb_objspace; objspace->profile.run = FALSE; return Qnil; } /* * call-seq: * GC::Profiler.clear -> nil * * Clears the GC profiler data. * */ static VALUE gc_profile_clear(void) { rb_objspace_t *objspace = &rb_objspace; MEMZERO(objspace->profile.record, gc_profile_record, objspace->profile.size); objspace->profile.count = 0; return Qnil; } static void * negative_size_allocation_error_with_gvl(void *ptr) { rb_raise(rb_eNoMemError, "%s", (const char *)ptr); return 0; /* should not be reached */ } static void negative_size_allocation_error(const char *msg) { if (ruby_thread_has_gvl_p()) { rb_raise(rb_eNoMemError, "%s", msg); } else { if (ruby_native_thread_p()) { rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg); } else { fprintf(stderr, "[FATAL] %s\n", msg); exit(EXIT_FAILURE); } } } static void * gc_with_gvl(void *ptr) { return (void *)(VALUE)garbage_collect((rb_objspace_t *)ptr); } static int garbage_collect_with_gvl(rb_objspace_t *objspace) { if (dont_gc) return TRUE; if (ruby_thread_has_gvl_p()) { return garbage_collect(objspace); } else { if (ruby_native_thread_p()) { return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)objspace); } else { /* no ruby thread */ fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(EXIT_FAILURE); } } } static void vm_xfree(rb_objspace_t *objspace, void *ptr); static inline size_t vm_malloc_prepare(rb_objspace_t *objspace, size_t size) { if ((ssize_t)size < 0) { negative_size_allocation_error("negative allocation size (or too big)"); } if (size == 0) size = 1; #if CALC_EXACT_MALLOC_SIZE size += sizeof(size_t); #endif if ((ruby_gc_stress && !ruby_disable_gc_stress) || (malloc_increase+size) > malloc_limit) { garbage_collect_with_gvl(objspace); } return size; } static inline void * vm_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size) { malloc_increase += size; #if CALC_EXACT_MALLOC_SIZE objspace->malloc_params.allocated_size += size; objspace->malloc_params.allocations++; ((size_t *)mem)[0] = size; mem = (size_t *)mem + 1; #endif return mem; } #define TRY_WITH_GC(alloc) do { \ if (!(alloc) && \ (!garbage_collect_with_gvl(objspace) || \ !(alloc))) { \ ruby_memerror(); \ } \ } while (0) static void * vm_xmalloc(rb_objspace_t *objspace, size_t size) { void *mem; size = vm_malloc_prepare(objspace, size); TRY_WITH_GC(mem = malloc(size)); return vm_malloc_fixup(objspace, mem, size); } static void * vm_xrealloc(rb_objspace_t *objspace, void *ptr, size_t size) { void *mem; if ((ssize_t)size < 0) { negative_size_allocation_error("negative re-allocation size"); } if (!ptr) return vm_xmalloc(objspace, size); if (size == 0) { vm_xfree(objspace, ptr); return 0; } if (ruby_gc_stress && !ruby_disable_gc_stress) garbage_collect_with_gvl(objspace); #if CALC_EXACT_MALLOC_SIZE size += sizeof(size_t); objspace->malloc_params.allocated_size -= size; ptr = (size_t *)ptr - 1; #endif mem = realloc(ptr, size); if (!mem) { if (garbage_collect_with_gvl(objspace)) { mem = realloc(ptr, size); } if (!mem) { ruby_memerror(); } } malloc_increase += size; #if CALC_EXACT_MALLOC_SIZE objspace->malloc_params.allocated_size += size; ((size_t *)mem)[0] = size; mem = (size_t *)mem + 1; #endif return mem; } static void vm_xfree(rb_objspace_t *objspace, void *ptr) { #if CALC_EXACT_MALLOC_SIZE size_t size; ptr = ((size_t *)ptr) - 1; size = ((size_t*)ptr)[0]; if (size) { objspace->malloc_params.allocated_size -= size; objspace->malloc_params.allocations--; } #endif free(ptr); } void * ruby_xmalloc(size_t size) { return vm_xmalloc(&rb_objspace, size); } static inline size_t xmalloc2_size(size_t n, size_t size) { size_t len = size * n; if (n != 0 && size != len / n) { rb_raise(rb_eArgError, "malloc: possible integer overflow"); } return len; } void * ruby_xmalloc2(size_t n, size_t size) { return vm_xmalloc(&rb_objspace, xmalloc2_size(n, size)); } static void * vm_xcalloc(rb_objspace_t *objspace, size_t count, size_t elsize) { void *mem; size_t size; size = xmalloc2_size(count, elsize); size = vm_malloc_prepare(objspace, size); TRY_WITH_GC(mem = calloc(1, size)); return vm_malloc_fixup(objspace, mem, size); } void * ruby_xcalloc(size_t n, size_t size) { return vm_xcalloc(&rb_objspace, n, size); } void * ruby_xrealloc(void *ptr, size_t size) { return vm_xrealloc(&rb_objspace, ptr, size); } void * ruby_xrealloc2(void *ptr, size_t n, size_t size) { size_t len = size * n; if (n != 0 && size != len / n) { rb_raise(rb_eArgError, "realloc: possible integer overflow"); } return ruby_xrealloc(ptr, len); } void ruby_xfree(void *x) { if (x) vm_xfree(&rb_objspace, x); } /* Mimic ruby_xmalloc, but need not rb_objspace. * should return pointer suitable for ruby_xfree */ void * ruby_mimmalloc(size_t size) { void *mem; #if CALC_EXACT_MALLOC_SIZE size += sizeof(size_t); #endif mem = malloc(size); #if CALC_EXACT_MALLOC_SIZE /* set 0 for consistency of allocated_size/allocations */ ((size_t *)mem)[0] = 0; mem = (size_t *)mem + 1; #endif return mem; } /* * call-seq: * GC.enable -> true or false * * Enables garbage collection, returning true if garbage * collection was previously disabled. * * GC.disable #=> false * GC.enable #=> true * GC.enable #=> false * */ VALUE rb_gc_enable(void) { rb_objspace_t *objspace = &rb_objspace; int old = dont_gc; dont_gc = FALSE; return old ? Qtrue : Qfalse; } /* * call-seq: * GC.disable -> true or false * * Disables garbage collection, returning true if garbage * collection was already disabled. * * GC.disable #=> false * GC.disable #=> true * */ VALUE rb_gc_disable(void) { rb_objspace_t *objspace = &rb_objspace; int old = dont_gc; dont_gc = TRUE; return old ? Qtrue : Qfalse; } VALUE rb_mGC; void rb_gc_register_mark_object(VALUE obj) { VALUE ary = GET_THREAD()->vm->mark_object_ary; rb_ary_push(ary, obj); } void rb_gc_register_address(VALUE *addr) { rb_objspace_t *objspace = &rb_objspace; struct gc_list *tmp; tmp = ALLOC(struct gc_list); tmp->next = global_List; tmp->varptr = addr; global_List = tmp; } void rb_gc_unregister_address(VALUE *addr) { rb_objspace_t *objspace = &rb_objspace; struct gc_list *tmp = global_List; if (tmp->varptr == addr) { global_List = tmp->next; xfree(tmp); return; } while (tmp->next) { if (tmp->next->varptr == addr) { struct gc_list *t = tmp->next; tmp->next = tmp->next->next; xfree(t); break; } tmp = tmp->next; } } static void allocate_sorted_heaps(rb_objspace_t *objspace, size_t next_heaps_length) { struct sorted_heaps_slot *p; struct heaps_free_bitmap *bits; size_t size, add, i; size = next_heaps_length*sizeof(struct sorted_heaps_slot); add = next_heaps_length - heaps_used; if (heaps_used > 0) { p = (struct sorted_heaps_slot *)realloc(objspace->heap.sorted, size); if (p) objspace->heap.sorted = p; } else { p = objspace->heap.sorted = (struct sorted_heaps_slot *)malloc(size); } if (p == 0) { during_gc = 0; rb_memerror(); } for (i = 0; i < add; i++) { bits = (struct heaps_free_bitmap *)malloc(HEAP_BITMAP_LIMIT * sizeof(uintptr_t)); if (bits == 0) { during_gc = 0; rb_memerror(); return; } bits->next = objspace->heap.free_bitmap; objspace->heap.free_bitmap = bits; } } static void * aligned_malloc(size_t alignment, size_t size) { void *res; #if defined __MINGW32__ res = __mingw_aligned_malloc(size, alignment); #elif defined _WIN32 && !defined __CYGWIN__ res = _aligned_malloc(size, alignment); #elif defined(HAVE_POSIX_MEMALIGN) if (posix_memalign(&res, alignment, size) == 0) { return res; } else { return NULL; } #elif defined(HAVE_MEMALIGN) res = memalign(alignment, size); #else #error no memalign function #endif return res; } static void aligned_free(void *ptr) { #if defined __MINGW32__ __mingw_aligned_free(ptr); #elif defined _WIN32 && !defined __CYGWIN__ _aligned_free(ptr); #else free(ptr); #endif } static void link_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot) { slot->free_next = objspace->heap.free_slots; objspace->heap.free_slots = slot; } static void unlink_free_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot) { objspace->heap.free_slots = slot->free_next; slot->free_next = NULL; } static void assign_heap_slot(rb_objspace_t *objspace) { RVALUE *p, *pend, *membase; struct heaps_slot *slot; size_t hi, lo, mid; size_t objs; objs = HEAP_OBJ_LIMIT; p = (RVALUE*)aligned_malloc(HEAP_ALIGN, HEAP_SIZE); if (p == 0) { during_gc = 0; rb_memerror(); } slot = (struct heaps_slot *)malloc(sizeof(struct heaps_slot)); if (slot == 0) { aligned_free(p); during_gc = 0; rb_memerror(); } MEMZERO((void*)slot, struct heaps_slot, 1); slot->next = heaps; if (heaps) heaps->prev = slot; heaps = slot; membase = p; p = (RVALUE*)((VALUE)p + sizeof(struct heaps_header)); if ((VALUE)p % sizeof(RVALUE) != 0) { p = (RVALUE*)((VALUE)p + sizeof(RVALUE) - ((VALUE)p % sizeof(RVALUE))); objs = (HEAP_SIZE - (size_t)((VALUE)p - (VALUE)membase))/sizeof(RVALUE); } lo = 0; hi = heaps_used; while (lo < hi) { register RVALUE *mid_membase; mid = (lo + hi) / 2; mid_membase = objspace->heap.sorted[mid].slot->membase; if (mid_membase < membase) { lo = mid + 1; } else if (mid_membase > membase) { hi = mid; } else { rb_bug("same heap slot is allocated: %p at %"PRIuVALUE, (void *)membase, (VALUE)mid); } } if (hi < heaps_used) { MEMMOVE(&objspace->heap.sorted[hi+1], &objspace->heap.sorted[hi], struct sorted_heaps_slot, heaps_used - hi); } objspace->heap.sorted[hi].slot = slot; objspace->heap.sorted[hi].start = p; objspace->heap.sorted[hi].end = (p + objs); heaps->membase = membase; heaps->slot = p; heaps->limit = objs; assert(objspace->heap.free_bitmap != NULL); heaps->bits = (uintptr_t *)objspace->heap.free_bitmap; objspace->heap.free_bitmap = objspace->heap.free_bitmap->next; HEAP_HEADER(membase)->base = heaps; HEAP_HEADER(membase)->bits = heaps->bits; memset(heaps->bits, 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t)); objspace->heap.free_num += objs; pend = p + objs; if (lomem == 0 || lomem > p) lomem = p; if (himem < pend) himem = pend; heaps_used++; while (p < pend) { p->as.free.flags = 0; p->as.free.next = heaps->freelist; heaps->freelist = p; p++; } link_free_heap_slot(objspace, heaps); } static void add_heap_slots(rb_objspace_t *objspace, size_t add) { size_t i; size_t next_heaps_length; next_heaps_length = heaps_used + add; if (next_heaps_length > heaps_length) { allocate_sorted_heaps(objspace, next_heaps_length); heaps_length = next_heaps_length; } for (i = 0; i < add; i++) { assign_heap_slot(objspace); } heaps_inc = 0; } static void init_heap(rb_objspace_t *objspace) { add_heap_slots(objspace, HEAP_MIN_SLOTS / HEAP_OBJ_LIMIT); #ifdef USE_SIGALTSTACK { /* altstack of another threads are allocated in another place */ rb_thread_t *th = GET_THREAD(); void *tmp = th->altstack; th->altstack = malloc(ALT_STACK_SIZE); free(tmp); /* free previously allocated area */ } #endif objspace->profile.invoke_time = getrusage_time(); finalizer_table = st_init_numtable(); } static void initial_expand_heap(rb_objspace_t *objspace) { size_t min_size = initial_heap_min_slots / HEAP_OBJ_LIMIT; if (min_size > heaps_used) { add_heap_slots(objspace, min_size - heaps_used); } } static void set_heaps_increment(rb_objspace_t *objspace) { size_t next_heaps_length = (size_t)(heaps_used * 1.8); if (next_heaps_length == heaps_used) { next_heaps_length++; } heaps_inc = next_heaps_length - heaps_used; if (next_heaps_length > heaps_length) { allocate_sorted_heaps(objspace, next_heaps_length); heaps_length = next_heaps_length; } } static int heaps_increment(rb_objspace_t *objspace) { if (heaps_inc > 0) { assign_heap_slot(objspace); heaps_inc--; return TRUE; } return FALSE; } int rb_during_gc(void) { rb_objspace_t *objspace = &rb_objspace; return during_gc; } #define RANY(o) ((RVALUE*)(o)) #define has_free_object (objspace->heap.free_slots && objspace->heap.free_slots->freelist) VALUE rb_newobj(void) { rb_objspace_t *objspace = &rb_objspace; VALUE obj; if (UNLIKELY(during_gc)) { dont_gc = 1; during_gc = 0; rb_bug("object allocation during garbage collection phase"); } if (UNLIKELY(ruby_gc_stress && !ruby_disable_gc_stress)) { if (!garbage_collect(objspace)) { during_gc = 0; rb_memerror(); } } if (UNLIKELY(!has_free_object)) { if (!gc_lazy_sweep(objspace)) { during_gc = 0; rb_memerror(); } } obj = (VALUE)objspace->heap.free_slots->freelist; objspace->heap.free_slots->freelist = RANY(obj)->as.free.next; if (objspace->heap.free_slots->freelist == NULL) { unlink_free_heap_slot(objspace, objspace->heap.free_slots); } MEMZERO((void*)obj, RVALUE, 1); #ifdef GC_DEBUG RANY(obj)->file = rb_sourcefile(); RANY(obj)->line = rb_sourceline(); #endif GC_PROF_INC_LIVE_NUM; return obj; } NODE* rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2) { NODE *n = (NODE*)rb_newobj(); n->flags |= T_NODE; nd_set_type(n, type); n->u1.value = a0; n->u2.value = a1; n->u3.value = a2; return n; } VALUE rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree) { NEWOBJ(data, struct RData); if (klass) Check_Type(klass, T_CLASS); OBJSETUP(data, klass, T_DATA); data->data = datap; data->dfree = dfree; data->dmark = dmark; return (VALUE)data; } VALUE rb_data_typed_object_alloc(VALUE klass, void *datap, const rb_data_type_t *type) { NEWOBJ(data, struct RTypedData); if (klass) Check_Type(klass, T_CLASS); OBJSETUP(data, klass, T_DATA); data->data = datap; data->typed_flag = 1; data->type = type; return (VALUE)data; } size_t rb_objspace_data_type_memsize(VALUE obj) { if (RTYPEDDATA_P(obj) && RTYPEDDATA_TYPE(obj)->function.dsize) { return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj)); } else { return 0; } } const char * rb_objspace_data_type_name(VALUE obj) { if (RTYPEDDATA_P(obj)) { return RTYPEDDATA_TYPE(obj)->wrap_struct_name; } else { return 0; } } #ifdef __ia64 #define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp()) #else #define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end) #endif #define STACK_START (th->machine_stack_start) #define STACK_END (th->machine_stack_end) #define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE)) #if STACK_GROW_DIRECTION < 0 # define STACK_LENGTH (size_t)(STACK_START - STACK_END) #elif STACK_GROW_DIRECTION > 0 # define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1) #else # define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \ : (size_t)(STACK_END - STACK_START + 1)) #endif #if !STACK_GROW_DIRECTION int ruby_stack_grow_direction; int ruby_get_stack_grow_direction(volatile VALUE *addr) { VALUE *end; SET_MACHINE_STACK_END(&end); if (end > addr) return ruby_stack_grow_direction = 1; return ruby_stack_grow_direction = -1; } #endif #define GC_LEVEL_MAX 250 #define STACKFRAME_FOR_GC_MARK (GC_LEVEL_MAX * GC_MARK_STACKFRAME_WORD) size_t ruby_stack_length(VALUE **p) { rb_thread_t *th = GET_THREAD(); SET_STACK_END; if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END); return STACK_LENGTH; } static int stack_check(int water_mark) { int ret; rb_thread_t *th = GET_THREAD(); SET_STACK_END; ret = STACK_LENGTH > STACK_LEVEL_MAX - water_mark; #ifdef __ia64 if (!ret) { ret = (VALUE*)rb_ia64_bsp() - th->machine_register_stack_start > th->machine_register_stack_maxsize/sizeof(VALUE) - water_mark; } #endif return ret; } #define STACKFRAME_FOR_CALL_CFUNC 512 int ruby_stack_check(void) { #if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK) return 0; #else return stack_check(STACKFRAME_FOR_CALL_CFUNC); #endif } static void init_mark_stack(rb_objspace_t *objspace) { mark_stack_overflow = 0; mark_stack_ptr = mark_stack; } #define MARK_STACK_EMPTY (mark_stack_ptr == mark_stack) static void gc_mark(rb_objspace_t *objspace, VALUE ptr, int lev); static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr, int lev); static void gc_mark_all(rb_objspace_t *objspace) { RVALUE *p, *pend; size_t i; init_mark_stack(objspace); for (i = 0; i < heaps_used; i++) { p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end; while (p < pend) { if (MARKED_IN_BITMAP(GET_HEAP_BITMAP(p), p) && p->as.basic.flags) { gc_mark_children(objspace, (VALUE)p, 0); } p++; } } } static void gc_mark_rest(rb_objspace_t *objspace) { VALUE tmp_arry[MARK_STACK_MAX]; VALUE *p; p = (mark_stack_ptr - mark_stack) + tmp_arry; MEMCPY(tmp_arry, mark_stack, VALUE, p - tmp_arry); init_mark_stack(objspace); while (p != tmp_arry) { p--; gc_mark_children(objspace, *p, 0); } } static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr) { register RVALUE *p = RANY(ptr); register struct sorted_heaps_slot *heap; register size_t hi, lo, mid; if (p < lomem || p > himem) return FALSE; if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE; /* check if p looks like a pointer using bsearch*/ lo = 0; hi = heaps_used; while (lo < hi) { mid = (lo + hi) / 2; heap = &objspace->heap.sorted[mid]; if (heap->start <= p) { if (p < heap->end) return TRUE; lo = mid + 1; } else { hi = mid; } } return FALSE; } static void mark_locations_array(rb_objspace_t *objspace, register VALUE *x, register long n) { VALUE v; while (n--) { v = *x; VALGRIND_MAKE_MEM_DEFINED(&v, sizeof(v)); if (is_pointer_to_heap(objspace, (void *)v)) { gc_mark(objspace, v, 0); } x++; } } static void gc_mark_locations(rb_objspace_t *objspace, VALUE *start, VALUE *end) { long n; if (end <= start) return; n = end - start; mark_locations_array(objspace, start, n); } void rb_gc_mark_locations(VALUE *start, VALUE *end) { gc_mark_locations(&rb_objspace, start, end); } #define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, (start), (end)) struct mark_tbl_arg { rb_objspace_t *objspace; int lev; }; static int mark_entry(st_data_t key, st_data_t value, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, (VALUE)value, arg->lev); return ST_CONTINUE; } static void mark_tbl(rb_objspace_t *objspace, st_table *tbl, int lev) { struct mark_tbl_arg arg; if (!tbl || tbl->num_entries == 0) return; arg.objspace = objspace; arg.lev = lev; st_foreach(tbl, mark_entry, (st_data_t)&arg); } static int mark_key(st_data_t key, st_data_t value, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, (VALUE)key, arg->lev); return ST_CONTINUE; } static void mark_set(rb_objspace_t *objspace, st_table *tbl, int lev) { struct mark_tbl_arg arg; if (!tbl) return; arg.objspace = objspace; arg.lev = lev; st_foreach(tbl, mark_key, (st_data_t)&arg); } void rb_mark_set(st_table *tbl) { mark_set(&rb_objspace, tbl, 0); } static int mark_keyvalue(st_data_t key, st_data_t value, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, (VALUE)key, arg->lev); gc_mark(arg->objspace, (VALUE)value, arg->lev); return ST_CONTINUE; } static void mark_hash(rb_objspace_t *objspace, st_table *tbl, int lev) { struct mark_tbl_arg arg; if (!tbl) return; arg.objspace = objspace; arg.lev = lev; st_foreach(tbl, mark_keyvalue, (st_data_t)&arg); } void rb_mark_hash(st_table *tbl) { mark_hash(&rb_objspace, tbl, 0); } static void mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me, int lev) { const rb_method_definition_t *def = me->def; gc_mark(objspace, me->klass, lev); if (!def) return; switch (def->type) { case VM_METHOD_TYPE_ISEQ: gc_mark(objspace, def->body.iseq->self, lev); break; case VM_METHOD_TYPE_BMETHOD: gc_mark(objspace, def->body.proc, lev); break; case VM_METHOD_TYPE_ATTRSET: case VM_METHOD_TYPE_IVAR: gc_mark(objspace, def->body.attr.location, lev); break; default: break; /* ignore */ } } void rb_mark_method_entry(const rb_method_entry_t *me) { mark_method_entry(&rb_objspace, me, 0); } static int mark_method_entry_i(ID key, const rb_method_entry_t *me, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; mark_method_entry(arg->objspace, me, arg->lev); return ST_CONTINUE; } static void mark_m_tbl(rb_objspace_t *objspace, st_table *tbl, int lev) { struct mark_tbl_arg arg; if (!tbl) return; arg.objspace = objspace; arg.lev = lev; st_foreach(tbl, mark_method_entry_i, (st_data_t)&arg); } static int free_method_entry_i(ID key, rb_method_entry_t *me, st_data_t data) { if (!me->mark) { rb_free_method_entry(me); } return ST_CONTINUE; } void rb_free_m_table(st_table *tbl) { st_foreach(tbl, free_method_entry_i, 0); st_free_table(tbl); } static int mark_const_entry_i(ID key, const rb_const_entry_t *ce, st_data_t data) { struct mark_tbl_arg *arg = (void*)data; gc_mark(arg->objspace, ce->value, arg->lev); gc_mark(arg->objspace, ce->file, arg->lev); return ST_CONTINUE; } static void mark_const_tbl(rb_objspace_t *objspace, st_table *tbl, int lev) { struct mark_tbl_arg arg; if (!tbl) return; arg.objspace = objspace; arg.lev = lev; st_foreach(tbl, mark_const_entry_i, (st_data_t)&arg); } static int free_const_entry_i(ID key, rb_const_entry_t *ce, st_data_t data) { xfree(ce); return ST_CONTINUE; } void rb_free_const_table(st_table *tbl) { st_foreach(tbl, free_const_entry_i, 0); st_free_table(tbl); } void rb_mark_tbl(st_table *tbl) { mark_tbl(&rb_objspace, tbl, 0); } void rb_gc_mark_maybe(VALUE obj) { if (is_pointer_to_heap(&rb_objspace, (void *)obj)) { gc_mark(&rb_objspace, obj, 0); } } static int gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr) { register uintptr_t *bits = GET_HEAP_BITMAP(ptr); if (MARKED_IN_BITMAP(bits, ptr)) return 0; MARK_IN_BITMAP(bits, ptr); objspace->heap.live_num++; return 1; } static void gc_mark(rb_objspace_t *objspace, VALUE ptr, int lev) { register RVALUE *obj; obj = RANY(ptr); if (rb_special_const_p(ptr)) return; /* special const not marked */ if (obj->as.basic.flags == 0) return; /* free cell */ if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */ if (lev > GC_LEVEL_MAX || (lev == 0 && stack_check(STACKFRAME_FOR_GC_MARK))) { if (!mark_stack_overflow) { if (mark_stack_ptr - mark_stack < MARK_STACK_MAX) { *mark_stack_ptr = ptr; mark_stack_ptr++; } else { mark_stack_overflow = 1; } } return; } gc_mark_children(objspace, ptr, lev+1); } void rb_gc_mark(VALUE ptr) { gc_mark(&rb_objspace, ptr, 0); } static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr, int lev) { register RVALUE *obj = RANY(ptr); register uintptr_t *bits; goto marking; /* skip */ again: obj = RANY(ptr); if (rb_special_const_p(ptr)) return; /* special const not marked */ if (obj->as.basic.flags == 0) return; /* free cell */ bits = GET_HEAP_BITMAP(ptr); if (MARKED_IN_BITMAP(bits, ptr)) return; /* already marked */ MARK_IN_BITMAP(bits, ptr); objspace->heap.live_num++; marking: if (FL_TEST(obj, FL_EXIVAR)) { rb_mark_generic_ivar(ptr); } switch (BUILTIN_TYPE(obj)) { case T_NIL: case T_FIXNUM: rb_bug("rb_gc_mark() called for broken object"); break; case T_NODE: switch (nd_type(obj)) { case NODE_IF: /* 1,2,3 */ case NODE_FOR: case NODE_ITER: case NODE_WHEN: case NODE_MASGN: case NODE_RESCUE: case NODE_RESBODY: case NODE_CLASS: case NODE_BLOCK_PASS: gc_mark(objspace, (VALUE)obj->as.node.u2.node, lev); /* fall through */ case NODE_BLOCK: /* 1,3 */ case NODE_OPTBLOCK: case NODE_ARRAY: case NODE_DSTR: case NODE_DXSTR: case NODE_DREGX: case NODE_DREGX_ONCE: case NODE_ENSURE: case NODE_CALL: case NODE_DEFS: case NODE_OP_ASGN1: gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev); /* fall through */ case NODE_SUPER: /* 3 */ case NODE_FCALL: case NODE_DEFN: case NODE_ARGS_AUX: ptr = (VALUE)obj->as.node.u3.node; goto again; case NODE_WHILE: /* 1,2 */ case NODE_UNTIL: case NODE_AND: case NODE_OR: case NODE_CASE: case NODE_SCLASS: case NODE_DOT2: case NODE_DOT3: case NODE_FLIP2: case NODE_FLIP3: case NODE_MATCH2: case NODE_MATCH3: case NODE_OP_ASGN_OR: case NODE_OP_ASGN_AND: case NODE_MODULE: case NODE_ALIAS: case NODE_VALIAS: case NODE_ARGSCAT: gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev); /* fall through */ case NODE_GASGN: /* 2 */ case NODE_LASGN: case NODE_DASGN: case NODE_DASGN_CURR: case NODE_IASGN: case NODE_IASGN2: case NODE_CVASGN: case NODE_COLON3: case NODE_OPT_N: case NODE_EVSTR: case NODE_UNDEF: case NODE_POSTEXE: ptr = (VALUE)obj->as.node.u2.node; goto again; case NODE_HASH: /* 1 */ case NODE_LIT: case NODE_STR: case NODE_XSTR: case NODE_DEFINED: case NODE_MATCH: case NODE_RETURN: case NODE_BREAK: case NODE_NEXT: case NODE_YIELD: case NODE_COLON2: case NODE_SPLAT: case NODE_TO_ARY: ptr = (VALUE)obj->as.node.u1.node; goto again; case NODE_SCOPE: /* 2,3 */ case NODE_CDECL: case NODE_OPT_ARG: gc_mark(objspace, (VALUE)obj->as.node.u3.node, lev); ptr = (VALUE)obj->as.node.u2.node; goto again; case NODE_ARGS: /* custom */ { struct rb_args_info *args = obj->as.node.u3.args; if (args) { if (args->pre_init) gc_mark(objspace, (VALUE)args->pre_init, lev); if (args->post_init) gc_mark(objspace, (VALUE)args->post_init, lev); if (args->opt_args) gc_mark(objspace, (VALUE)args->opt_args, lev); if (args->kw_args) gc_mark(objspace, (VALUE)args->kw_args, lev); if (args->kw_rest_arg) gc_mark(objspace, (VALUE)args->kw_rest_arg, lev); } } ptr = (VALUE)obj->as.node.u2.node; goto again; case NODE_ZARRAY: /* - */ case NODE_ZSUPER: case NODE_VCALL: case NODE_GVAR: case NODE_LVAR: case NODE_DVAR: case NODE_IVAR: case NODE_CVAR: case NODE_NTH_REF: case NODE_BACK_REF: case NODE_REDO: case NODE_RETRY: case NODE_SELF: case NODE_NIL: case NODE_TRUE: case NODE_FALSE: case NODE_ERRINFO: case NODE_BLOCK_ARG: break; case NODE_ALLOCA: mark_locations_array(objspace, (VALUE*)obj->as.node.u1.value, obj->as.node.u3.cnt); ptr = (VALUE)obj->as.node.u2.node; goto again; default: /* unlisted NODE */ if (is_pointer_to_heap(objspace, obj->as.node.u1.node)) { gc_mark(objspace, (VALUE)obj->as.node.u1.node, lev); } if (is_pointer_to_heap(objspace, obj->as.node.u2.node)) { gc_mark(objspace, (VALUE)obj->as.node.u2.node, lev); } if (is_pointer_to_heap(objspace, obj->as.node.u3.node)) { gc_mark(objspace, (VALUE)obj->as.node.u3.node, lev); } } return; /* no need to mark class. */ } gc_mark(objspace, obj->as.basic.klass, lev); switch (BUILTIN_TYPE(obj)) { case T_ICLASS: case T_CLASS: case T_MODULE: mark_m_tbl(objspace, RCLASS_M_TBL(obj), lev); if (!RCLASS_EXT(obj)) break; mark_tbl(objspace, RCLASS_IV_TBL(obj), lev); mark_const_tbl(objspace, RCLASS_CONST_TBL(obj), lev); ptr = RCLASS_SUPER(obj); goto again; case T_ARRAY: if (FL_TEST(obj, ELTS_SHARED)) { ptr = obj->as.array.as.heap.aux.shared; goto again; } else { long i, len = RARRAY_LEN(obj); VALUE *ptr = RARRAY_PTR(obj); for (i=0; i < len; i++) { gc_mark(objspace, *ptr++, lev); } } break; case T_HASH: mark_hash(objspace, obj->as.hash.ntbl, lev); ptr = obj->as.hash.ifnone; goto again; case T_STRING: #define STR_ASSOC FL_USER3 /* copied from string.c */ if (FL_TEST(obj, RSTRING_NOEMBED) && FL_ANY(obj, ELTS_SHARED|STR_ASSOC)) { ptr = obj->as.string.as.heap.aux.shared; goto again; } break; case T_DATA: if (RTYPEDDATA_P(obj)) { RUBY_DATA_FUNC mark_func = obj->as.typeddata.type->function.dmark; if (mark_func) (*mark_func)(DATA_PTR(obj)); } else { if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj)); } break; case T_OBJECT: { long i, len = ROBJECT_NUMIV(obj); VALUE *ptr = ROBJECT_IVPTR(obj); for (i = 0; i < len; i++) { gc_mark(objspace, *ptr++, lev); } } break; case T_FILE: if (obj->as.file.fptr) { gc_mark(objspace, obj->as.file.fptr->pathv, lev); gc_mark(objspace, obj->as.file.fptr->tied_io_for_writing, lev); gc_mark(objspace, obj->as.file.fptr->writeconv_asciicompat, lev); gc_mark(objspace, obj->as.file.fptr->writeconv_pre_ecopts, lev); gc_mark(objspace, obj->as.file.fptr->encs.ecopts, lev); gc_mark(objspace, obj->as.file.fptr->write_lock, lev); } break; case T_REGEXP: gc_mark(objspace, obj->as.regexp.src, lev); break; case T_FLOAT: case T_BIGNUM: case T_ZOMBIE: break; case T_MATCH: gc_mark(objspace, obj->as.match.regexp, lev); if (obj->as.match.str) { ptr = obj->as.match.str; goto again; } break; case T_RATIONAL: gc_mark(objspace, obj->as.rational.num, lev); gc_mark(objspace, obj->as.rational.den, lev); break; case T_COMPLEX: gc_mark(objspace, obj->as.complex.real, lev); gc_mark(objspace, obj->as.complex.imag, lev); break; case T_STRUCT: { long len = RSTRUCT_LEN(obj); VALUE *ptr = RSTRUCT_PTR(obj); while (len--) { gc_mark(objspace, *ptr++, lev); } } break; default: rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s", BUILTIN_TYPE(obj), (void *)obj, is_pointer_to_heap(objspace, obj) ? "corrupted object" : "non object"); } } static int obj_free(rb_objspace_t *, VALUE); static inline struct heaps_slot * add_slot_local_freelist(rb_objspace_t *objspace, RVALUE *p) { struct heaps_slot *slot; VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE)); p->as.free.flags = 0; slot = GET_HEAP_SLOT(p); p->as.free.next = slot->freelist; slot->freelist = p; return slot; } static void finalize_list(rb_objspace_t *objspace, RVALUE *p) { while (p) { RVALUE *tmp = p->as.free.next; run_final(objspace, (VALUE)p); if (!FL_TEST(p, FL_SINGLETON)) { /* not freeing page */ add_slot_local_freelist(objspace, p); if (!is_lazy_sweeping(objspace)) { GC_PROF_DEC_LIVE_NUM; } } else { struct heaps_slot *slot = (struct heaps_slot *)(VALUE)RDATA(p)->dmark; slot->limit--; } p = tmp; } } static void unlink_heap_slot(rb_objspace_t *objspace, struct heaps_slot *slot) { if (slot->prev) slot->prev->next = slot->next; if (slot->next) slot->next->prev = slot->prev; if (heaps == slot) heaps = slot->next; if (objspace->heap.sweep_slots == slot) objspace->heap.sweep_slots = slot->next; slot->prev = NULL; slot->next = NULL; } static void free_unused_heaps(rb_objspace_t *objspace) { size_t i, j; RVALUE *last = 0; for (i = j = 1; j < heaps_used; i++) { if (objspace->heap.sorted[i].slot->limit == 0) { struct heaps_slot* h = objspace->heap.sorted[i].slot; ((struct heaps_free_bitmap *)(h->bits))->next = objspace->heap.free_bitmap; objspace->heap.free_bitmap = (struct heaps_free_bitmap *)h->bits; if (!last) { last = objspace->heap.sorted[i].slot->membase; } else { aligned_free(objspace->heap.sorted[i].slot->membase); } free(objspace->heap.sorted[i].slot); heaps_used--; } else { if (i != j) { objspace->heap.sorted[j] = objspace->heap.sorted[i]; } j++; } } if (last) { if (last < heaps_freed) { aligned_free(heaps_freed); heaps_freed = last; } else { aligned_free(last); } } } static void gc_clear_slot_bits(struct heaps_slot *slot) { memset(GET_HEAP_BITMAP(slot->slot), 0, HEAP_BITMAP_LIMIT * sizeof(uintptr_t)); } static void slot_sweep(rb_objspace_t *objspace, struct heaps_slot *sweep_slot) { size_t free_num = 0, final_num = 0; RVALUE *p, *pend; RVALUE *final = deferred_final_list; int deferred; uintptr_t *bits; p = sweep_slot->slot; pend = p + sweep_slot->limit; bits = GET_HEAP_BITMAP(p); while (p < pend) { if ((!(MARKED_IN_BITMAP(bits, p))) && BUILTIN_TYPE(p) != T_ZOMBIE) { if (p->as.basic.flags) { if ((deferred = obj_free(objspace, (VALUE)p)) || (FL_TEST(p, FL_FINALIZE))) { if (!deferred) { p->as.free.flags = T_ZOMBIE; RDATA(p)->dfree = 0; } p->as.free.next = deferred_final_list; deferred_final_list = p; assert(BUILTIN_TYPE(p) == T_ZOMBIE); final_num++; } else { VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE)); p->as.free.flags = 0; p->as.free.next = sweep_slot->freelist; sweep_slot->freelist = p; free_num++; } } else { free_num++; } } p++; } gc_clear_slot_bits(sweep_slot); if (final_num + free_num == sweep_slot->limit && objspace->heap.free_num > objspace->heap.do_heap_free) { RVALUE *pp; for (pp = deferred_final_list; pp != final; pp = pp->as.free.next) { RDATA(pp)->dmark = (void (*)(void *))(VALUE)sweep_slot; pp->as.free.flags |= FL_SINGLETON; /* freeing page mark */ } sweep_slot->limit = final_num; unlink_heap_slot(objspace, sweep_slot); } else { if (free_num > 0) { link_free_heap_slot(objspace, sweep_slot); } else { sweep_slot->free_next = NULL; } objspace->heap.free_num += free_num; } objspace->heap.final_num += final_num; if (deferred_final_list && !finalizing) { rb_thread_t *th = GET_THREAD(); if (th) { RUBY_VM_SET_FINALIZER_INTERRUPT(th); } } } static int ready_to_gc(rb_objspace_t *objspace) { if (dont_gc || during_gc) { if (!has_free_object) { if (!heaps_increment(objspace)) { set_heaps_increment(objspace); heaps_increment(objspace); } } return FALSE; } return TRUE; } static void before_gc_sweep(rb_objspace_t *objspace) { objspace->heap.do_heap_free = (size_t)((heaps_used * HEAP_OBJ_LIMIT) * 0.65); objspace->heap.free_min = (size_t)((heaps_used * HEAP_OBJ_LIMIT) * 0.2); if (objspace->heap.free_min < initial_free_min) { objspace->heap.do_heap_free = heaps_used * HEAP_OBJ_LIMIT; objspace->heap.free_min = initial_free_min; } objspace->heap.sweep_slots = heaps; objspace->heap.free_num = 0; objspace->heap.free_slots = NULL; /* sweep unlinked method entries */ if (GET_VM()->unlinked_method_entry_list) { rb_sweep_method_entry(GET_VM()); } } static void after_gc_sweep(rb_objspace_t *objspace) { GC_PROF_SET_MALLOC_INFO; if (objspace->heap.free_num < objspace->heap.free_min) { set_heaps_increment(objspace); heaps_increment(objspace); } if (malloc_increase > malloc_limit) { malloc_limit += (size_t)((malloc_increase - malloc_limit) * (double)objspace->heap.live_num / (heaps_used * HEAP_OBJ_LIMIT)); if (malloc_limit < initial_malloc_limit) malloc_limit = initial_malloc_limit; } malloc_increase = 0; free_unused_heaps(objspace); } static int lazy_sweep(rb_objspace_t *objspace) { struct heaps_slot *next; heaps_increment(objspace); while (objspace->heap.sweep_slots) { next = objspace->heap.sweep_slots->next; slot_sweep(objspace, objspace->heap.sweep_slots); objspace->heap.sweep_slots = next; if (has_free_object) { during_gc = 0; return TRUE; } } return FALSE; } static void rest_sweep(rb_objspace_t *objspace) { if (objspace->heap.sweep_slots) { while (objspace->heap.sweep_slots) { lazy_sweep(objspace); } after_gc_sweep(objspace); } } static void gc_marks(rb_objspace_t *objspace); static int gc_lazy_sweep(rb_objspace_t *objspace) { int res; INIT_GC_PROF_PARAMS; if (objspace->flags.dont_lazy_sweep) return garbage_collect(objspace); if (!ready_to_gc(objspace)) return TRUE; during_gc++; GC_PROF_TIMER_START; GC_PROF_SWEEP_TIMER_START; if (objspace->heap.sweep_slots) { res = lazy_sweep(objspace); if (res) { GC_PROF_SWEEP_TIMER_STOP; GC_PROF_SET_MALLOC_INFO; GC_PROF_TIMER_STOP(Qfalse); return res; } after_gc_sweep(objspace); } else { if (heaps_increment(objspace)) { during_gc = 0; return TRUE; } } gc_marks(objspace); before_gc_sweep(objspace); if (objspace->heap.free_min > (heaps_used * HEAP_OBJ_LIMIT - objspace->heap.live_num)) { set_heaps_increment(objspace); } GC_PROF_SWEEP_TIMER_START; if (!(res = lazy_sweep(objspace))) { after_gc_sweep(objspace); if (has_free_object) { res = TRUE; during_gc = 0; } } GC_PROF_SWEEP_TIMER_STOP; GC_PROF_TIMER_STOP(Qtrue); return res; } static void gc_sweep(rb_objspace_t *objspace) { struct heaps_slot *next; before_gc_sweep(objspace); while (objspace->heap.sweep_slots) { next = objspace->heap.sweep_slots->next; slot_sweep(objspace, objspace->heap.sweep_slots); objspace->heap.sweep_slots = next; } after_gc_sweep(objspace); during_gc = 0; } void rb_gc_force_recycle(VALUE p) { rb_objspace_t *objspace = &rb_objspace; struct heaps_slot *slot; if (MARKED_IN_BITMAP(GET_HEAP_BITMAP(p), p)) { add_slot_local_freelist(objspace, (RVALUE *)p); } else { GC_PROF_DEC_LIVE_NUM; slot = add_slot_local_freelist(objspace, (RVALUE *)p); if (slot->free_next == NULL) { link_free_heap_slot(objspace, slot); } } } static inline void make_deferred(RVALUE *p) { p->as.basic.flags = (p->as.basic.flags & ~T_MASK) | T_ZOMBIE; } static inline void make_io_deferred(RVALUE *p) { rb_io_t *fptr = p->as.file.fptr; make_deferred(p); p->as.data.dfree = (void (*)(void*))rb_io_fptr_finalize; p->as.data.data = fptr; } static int obj_free(rb_objspace_t *objspace, VALUE obj) { switch (BUILTIN_TYPE(obj)) { case T_NIL: case T_FIXNUM: case T_TRUE: case T_FALSE: rb_bug("obj_free() called for broken object"); break; } if (FL_TEST(obj, FL_EXIVAR)) { rb_free_generic_ivar((VALUE)obj); FL_UNSET(obj, FL_EXIVAR); } switch (BUILTIN_TYPE(obj)) { case T_OBJECT: if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) && RANY(obj)->as.object.as.heap.ivptr) { xfree(RANY(obj)->as.object.as.heap.ivptr); } break; case T_MODULE: case T_CLASS: rb_clear_cache_by_class((VALUE)obj); rb_free_m_table(RCLASS_M_TBL(obj)); if (RCLASS_IV_TBL(obj)) { st_free_table(RCLASS_IV_TBL(obj)); } if (RCLASS_CONST_TBL(obj)) { rb_free_const_table(RCLASS_CONST_TBL(obj)); } if (RCLASS_IV_INDEX_TBL(obj)) { st_free_table(RCLASS_IV_INDEX_TBL(obj)); } xfree(RANY(obj)->as.klass.ptr); break; case T_STRING: rb_str_free(obj); break; case T_ARRAY: rb_ary_free(obj); break; case T_HASH: if (RANY(obj)->as.hash.ntbl) { st_free_table(RANY(obj)->as.hash.ntbl); } break; case T_REGEXP: if (RANY(obj)->as.regexp.ptr) { onig_free(RANY(obj)->as.regexp.ptr); } break; case T_DATA: if (DATA_PTR(obj)) { if (RTYPEDDATA_P(obj)) { RDATA(obj)->dfree = RANY(obj)->as.typeddata.type->function.dfree; } if (RANY(obj)->as.data.dfree == (RUBY_DATA_FUNC)-1) { xfree(DATA_PTR(obj)); } else if (RANY(obj)->as.data.dfree) { make_deferred(RANY(obj)); return 1; } } break; case T_MATCH: if (RANY(obj)->as.match.rmatch) { struct rmatch *rm = RANY(obj)->as.match.rmatch; onig_region_free(&rm->regs, 0); if (rm->char_offset) xfree(rm->char_offset); xfree(rm); } break; case T_FILE: if (RANY(obj)->as.file.fptr) { make_io_deferred(RANY(obj)); return 1; } break; case T_RATIONAL: case T_COMPLEX: break; case T_ICLASS: /* iClass shares table with the module */ xfree(RANY(obj)->as.klass.ptr); break; case T_FLOAT: break; case T_BIGNUM: if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) { xfree(RBIGNUM_DIGITS(obj)); } break; case T_NODE: switch (nd_type(obj)) { case NODE_SCOPE: if (RANY(obj)->as.node.u1.tbl) { xfree(RANY(obj)->as.node.u1.tbl); } break; case NODE_ARGS: if (RANY(obj)->as.node.u3.args) { xfree(RANY(obj)->as.node.u3.args); } break; case NODE_ALLOCA: xfree(RANY(obj)->as.node.u1.node); break; } break; /* no need to free iv_tbl */ case T_STRUCT: if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 && RANY(obj)->as.rstruct.as.heap.ptr) { xfree(RANY(obj)->as.rstruct.as.heap.ptr); } break; default: rb_bug("gc_sweep(): unknown data type 0x%x(%p)", BUILTIN_TYPE(obj), (void*)obj); } return 0; } #define GC_NOTIFY 0 #if STACK_GROW_DIRECTION < 0 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START) #elif STACK_GROW_DIRECTION > 0 #define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix)) #else #define GET_STACK_BOUNDS(start, end, appendix) \ ((STACK_END < STACK_START) ? \ ((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix))) #endif #define numberof(array) (int)(sizeof(array) / sizeof((array)[0])) static void mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th) { union { rb_jmp_buf j; VALUE v[sizeof(rb_jmp_buf) / sizeof(VALUE)]; } save_regs_gc_mark; VALUE *stack_start, *stack_end; FLUSH_REGISTER_WINDOWS; /* This assumes that all registers are saved into the jmp_buf (and stack) */ rb_setjmp(save_regs_gc_mark.j); SET_STACK_END; GET_STACK_BOUNDS(stack_start, stack_end, 1); mark_locations_array(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v)); rb_gc_mark_locations(stack_start, stack_end); #ifdef __ia64 rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end); #endif #if defined(__mc68000__) mark_locations_array(objspace, (VALUE*)((char*)STACK_END + 2), (STACK_START - STACK_END)); #endif } static void gc_marks(rb_objspace_t *objspace) { struct gc_list *list; rb_thread_t *th = GET_THREAD(); GC_PROF_MARK_TIMER_START; objspace->heap.live_num = 0; objspace->count++; SET_STACK_END; init_mark_stack(objspace); th->vm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm); mark_tbl(objspace, finalizer_table, 0); mark_current_machine_context(objspace, th); rb_gc_mark_symbols(); rb_gc_mark_encodings(); /* mark protected global variables */ for (list = global_List; list; list = list->next) { rb_gc_mark_maybe(*list->varptr); } rb_mark_end_proc(); rb_gc_mark_global_tbl(); mark_tbl(objspace, rb_class_tbl, 0); /* mark generic instance variables for special constants */ rb_mark_generic_ivar_tbl(); rb_gc_mark_parser(); rb_gc_mark_unlinked_live_method_entries(th->vm); /* gc_mark objects whose marking are not completed*/ while (!MARK_STACK_EMPTY) { if (mark_stack_overflow) { gc_mark_all(objspace); } else { gc_mark_rest(objspace); } } GC_PROF_MARK_TIMER_STOP; } static int garbage_collect(rb_objspace_t *objspace) { INIT_GC_PROF_PARAMS; if (GC_NOTIFY) printf("start garbage_collect()\n"); if (!heaps) { return FALSE; } if (!ready_to_gc(objspace)) { return TRUE; } GC_PROF_TIMER_START; rest_sweep(objspace); during_gc++; gc_marks(objspace); GC_PROF_SWEEP_TIMER_START; gc_sweep(objspace); GC_PROF_SWEEP_TIMER_STOP; GC_PROF_TIMER_STOP(Qtrue); if (GC_NOTIFY) printf("end garbage_collect()\n"); return TRUE; } int rb_garbage_collect(void) { return garbage_collect(&rb_objspace); } void rb_gc_mark_machine_stack(rb_thread_t *th) { rb_objspace_t *objspace = &rb_objspace; VALUE *stack_start, *stack_end; GET_STACK_BOUNDS(stack_start, stack_end, 0); rb_gc_mark_locations(stack_start, stack_end); #ifdef __ia64 rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end); #endif } /* * call-seq: * GC.start -> nil * gc.garbage_collect -> nil * ObjectSpace.garbage_collect -> nil * * Initiates garbage collection, unless manually disabled. * */ VALUE rb_gc_start(void) { rb_gc(); return Qnil; } #undef Init_stack void Init_stack(volatile VALUE *addr) { ruby_init_stack(addr); } /* * Document-class: ObjectSpace * * The ObjectSpace module contains a number of routines * that interact with the garbage collection facility and allow you to * traverse all living objects with an iterator. * * ObjectSpace also provides support for object * finalizers, procs that will be called when a specific object is * about to be destroyed by garbage collection. * * include ObjectSpace * * * a = "A" * b = "B" * c = "C" * * * define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" }) * define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" }) * define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" }) * * produces: * * Finalizer three on 537763470 * Finalizer one on 537763480 * Finalizer two on 537763480 * */ void Init_heap(void) { init_heap(&rb_objspace); } static VALUE lazy_sweep_enable(void) { rb_objspace_t *objspace = &rb_objspace; objspace->flags.dont_lazy_sweep = FALSE; return Qnil; } typedef int each_obj_callback(void *, void *, size_t, void *); struct each_obj_args { each_obj_callback *callback; void *data; }; static VALUE objspace_each_objects(VALUE arg) { size_t i; RVALUE *membase = 0; RVALUE *pstart, *pend; rb_objspace_t *objspace = &rb_objspace; struct each_obj_args *args = (struct each_obj_args *)arg; volatile VALUE v; i = 0; while (i < heaps_used) { while (0 < i && (uintptr_t)membase < (uintptr_t)objspace->heap.sorted[i-1].slot->membase) i--; while (i < heaps_used && (uintptr_t)objspace->heap.sorted[i].slot->membase <= (uintptr_t)membase) i++; if (heaps_used <= i) break; membase = objspace->heap.sorted[i].slot->membase; pstart = objspace->heap.sorted[i].slot->slot; pend = pstart + objspace->heap.sorted[i].slot->limit; for (; pstart != pend; pstart++) { if (pstart->as.basic.flags) { v = (VALUE)pstart; /* acquire to save this object */ break; } } if (pstart != pend) { if ((*args->callback)(pstart, pend, sizeof(RVALUE), args->data)) { break; } } } RB_GC_GUARD(v); return Qnil; } /* * rb_objspace_each_objects() is special C API to walk through * Ruby object space. This C API is too difficult to use it. * To be frank, you should not use it. Or you need to read the * source code of this function and understand what this function does. * * 'callback' will be called several times (the number of heap slot, * at current implementation) with: * vstart: a pointer to the first living object of the heap_slot. * vend: a pointer to next to the valid heap_slot area. * stride: a distance to next VALUE. * * If callback() returns non-zero, the iteration will be stopped. * * This is a sample callback code to iterate liveness objects: * * int * sample_callback(void *vstart, void *vend, int stride, void *data) { * VALUE v = (VALUE)vstart; * for (; v != (VALUE)vend; v += stride) { * if (RBASIC(v)->flags) { // liveness check * // do something with live object 'v' * } * return 0; // continue to iteration * } * * Note: 'vstart' is not a top of heap_slot. This point the first * living object to grasp at least one object to avoid GC issue. * This means that you can not walk through all Ruby object slot * including freed object slot. * * Note: On this implementation, 'stride' is same as sizeof(RVALUE). * However, there are possibilities to pass variable values with * 'stride' with some reasons. You must use stride instead of * use some constant value in the iteration. */ void rb_objspace_each_objects(each_obj_callback *callback, void *data) { struct each_obj_args args; rb_objspace_t *objspace = &rb_objspace; rest_sweep(objspace); objspace->flags.dont_lazy_sweep = TRUE; args.callback = callback; args.data = data; rb_ensure(objspace_each_objects, (VALUE)&args, lazy_sweep_enable, Qnil); } struct os_each_struct { size_t num; VALUE of; }; static int os_obj_of_i(void *vstart, void *vend, size_t stride, void *data) { struct os_each_struct *oes = (struct os_each_struct *)data; RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend; volatile VALUE v; for (; p != pend; p++) { if (p->as.basic.flags) { switch (BUILTIN_TYPE(p)) { case T_NONE: case T_ICLASS: case T_NODE: case T_ZOMBIE: continue; case T_CLASS: if (FL_TEST(p, FL_SINGLETON)) continue; default: if (!p->as.basic.klass) continue; v = (VALUE)p; if (!oes->of || rb_obj_is_kind_of(v, oes->of)) { rb_yield(v); oes->num++; } } } } return 0; } static VALUE os_obj_of(VALUE of) { struct os_each_struct oes; oes.num = 0; oes.of = of; rb_objspace_each_objects(os_obj_of_i, &oes); return SIZET2NUM(oes.num); } /* * call-seq: * ObjectSpace.each_object([module]) {|obj| ... } -> fixnum * ObjectSpace.each_object([module]) -> an_enumerator * * Calls the block once for each living, nonimmediate object in this * Ruby process. If module is specified, calls the block * for only those classes or modules that match (or are a subclass of) * module. Returns the number of objects found. Immediate * objects (Fixnums, Symbols * true, false, and nil) are * never returned. In the example below, each_object * returns both the numbers we defined and several constants defined in * the Math module. * * If no block is given, an enumerator is returned instead. * * a = 102.7 * b = 95 # Won't be returned * c = 12345678987654321 * count = ObjectSpace.each_object(Numeric) {|x| p x } * puts "Total count: #{count}" * * produces: * * 12345678987654321 * 102.7 * 2.71828182845905 * 3.14159265358979 * 2.22044604925031e-16 * 1.7976931348623157e+308 * 2.2250738585072e-308 * Total count: 7 * */ static VALUE os_each_obj(int argc, VALUE *argv, VALUE os) { VALUE of; rb_secure(4); if (argc == 0) { of = 0; } else { rb_scan_args(argc, argv, "01", &of); } RETURN_ENUMERATOR(os, 1, &of); return os_obj_of(of); } /* * call-seq: * ObjectSpace.undefine_finalizer(obj) * * Removes all finalizers for obj. * */ static VALUE undefine_final(VALUE os, VALUE obj) { return rb_undefine_final(obj); } VALUE rb_undefine_final(VALUE obj) { rb_objspace_t *objspace = &rb_objspace; st_data_t data = obj; rb_check_frozen(obj); st_delete(finalizer_table, &data, 0); FL_UNSET(obj, FL_FINALIZE); return obj; } /* * call-seq: * ObjectSpace.define_finalizer(obj, aProc=proc()) * * Adds aProc as a finalizer, to be called after obj * was destroyed. * */ static VALUE define_final(int argc, VALUE *argv, VALUE os) { VALUE obj, block; rb_scan_args(argc, argv, "11", &obj, &block); rb_check_frozen(obj); if (argc == 1) { block = rb_block_proc(); } else if (!rb_respond_to(block, rb_intern("call"))) { rb_raise(rb_eArgError, "wrong type argument %s (should be callable)", rb_obj_classname(block)); } return define_final0(obj, block); } static VALUE define_final0(VALUE obj, VALUE block) { rb_objspace_t *objspace = &rb_objspace; VALUE table; st_data_t data; if (!FL_ABLE(obj)) { rb_raise(rb_eArgError, "cannot define finalizer for %s", rb_obj_classname(obj)); } RBASIC(obj)->flags |= FL_FINALIZE; block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block); OBJ_FREEZE(block); if (st_lookup(finalizer_table, obj, &data)) { table = (VALUE)data; rb_ary_push(table, block); } else { table = rb_ary_new3(1, block); RBASIC(table)->klass = 0; st_add_direct(finalizer_table, obj, table); } return block; } VALUE rb_define_final(VALUE obj, VALUE block) { rb_check_frozen(obj); if (!rb_respond_to(block, rb_intern("call"))) { rb_raise(rb_eArgError, "wrong type argument %s (should be callable)", rb_obj_classname(block)); } return define_final0(obj, block); } void rb_gc_copy_finalizer(VALUE dest, VALUE obj) { rb_objspace_t *objspace = &rb_objspace; VALUE table; st_data_t data; if (!FL_TEST(obj, FL_FINALIZE)) return; if (st_lookup(finalizer_table, obj, &data)) { table = (VALUE)data; st_insert(finalizer_table, dest, table); } FL_SET(dest, FL_FINALIZE); } static VALUE run_single_final(VALUE arg) { VALUE *args = (VALUE *)arg; rb_eval_cmd(args[0], args[1], (int)args[2]); return Qnil; } static void run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table) { long i; int status; VALUE args[3]; VALUE objid = nonspecial_obj_id(obj); if (RARRAY_LEN(table) > 0) { args[1] = rb_obj_freeze(rb_ary_new3(1, objid)); } else { args[1] = 0; } args[2] = (VALUE)rb_safe_level(); for (i=0; iheap.final_num--; RBASIC(obj)->klass = 0; if (RTYPEDDATA_P(obj)) { free_func = RTYPEDDATA_TYPE(obj)->function.dfree; } else { free_func = RDATA(obj)->dfree; } if (free_func) { (*free_func)(DATA_PTR(obj)); } key = (st_data_t)obj; if (st_delete(finalizer_table, &key, &table)) { run_finalizer(objspace, obj, (VALUE)table); } } static void finalize_deferred(rb_objspace_t *objspace) { RVALUE *p = deferred_final_list; deferred_final_list = 0; if (p) { finalize_list(objspace, p); } } void rb_gc_finalize_deferred(void) { rb_objspace_t *objspace = &rb_objspace; if (ATOMIC_EXCHANGE(finalizing, 1)) return; finalize_deferred(objspace); ATOMIC_SET(finalizing, 0); } static int chain_finalized_object(st_data_t key, st_data_t val, st_data_t arg) { RVALUE *p = (RVALUE *)key, **final_list = (RVALUE **)arg; if ((p->as.basic.flags & FL_FINALIZE) == FL_FINALIZE && !MARKED_IN_BITMAP(GET_HEAP_BITMAP(p), p)) { if (BUILTIN_TYPE(p) != T_ZOMBIE) { p->as.free.flags = T_ZOMBIE; RDATA(p)->dfree = 0; } p->as.free.next = *final_list; *final_list = p; } return ST_CONTINUE; } struct force_finalize_list { VALUE obj; VALUE table; struct force_finalize_list *next; }; static int force_chain_object(st_data_t key, st_data_t val, st_data_t arg) { struct force_finalize_list **prev = (struct force_finalize_list **)arg; struct force_finalize_list *curr = ALLOC(struct force_finalize_list); curr->obj = key; curr->table = val; curr->next = *prev; *prev = curr; return ST_CONTINUE; } void rb_gc_call_finalizer_at_exit(void) { rb_objspace_call_finalizer(&rb_objspace); } static void rb_objspace_call_finalizer(rb_objspace_t *objspace) { RVALUE *p, *pend; RVALUE *final_list = 0; size_t i; /* run finalizers */ rest_sweep(objspace); if (ATOMIC_EXCHANGE(finalizing, 1)) return; do { /* XXX: this loop will make no sense */ /* because mark will not be removed */ finalize_deferred(objspace); mark_tbl(objspace, finalizer_table, 0); st_foreach(finalizer_table, chain_finalized_object, (st_data_t)&deferred_final_list); } while (deferred_final_list); /* force to run finalizer */ while (finalizer_table->num_entries) { struct force_finalize_list *list = 0; st_foreach(finalizer_table, force_chain_object, (st_data_t)&list); while (list) { struct force_finalize_list *curr = list; st_data_t obj = (st_data_t)curr->obj; run_finalizer(objspace, curr->obj, curr->table); st_delete(finalizer_table, &obj, 0); list = curr->next; xfree(curr); } } /* finalizers are part of garbage collection */ during_gc++; /* run data object's finalizers */ for (i = 0; i < heaps_used; i++) { p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end; while (p < pend) { if (BUILTIN_TYPE(p) == T_DATA && DATA_PTR(p) && RANY(p)->as.data.dfree && !rb_obj_is_thread((VALUE)p) && !rb_obj_is_mutex((VALUE)p) && !rb_obj_is_fiber((VALUE)p)) { p->as.free.flags = 0; if (RTYPEDDATA_P(p)) { RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree; } if (RANY(p)->as.data.dfree == (RUBY_DATA_FUNC)-1) { xfree(DATA_PTR(p)); } else if (RANY(p)->as.data.dfree) { make_deferred(RANY(p)); RANY(p)->as.free.next = final_list; final_list = p; } } else if (BUILTIN_TYPE(p) == T_FILE) { if (RANY(p)->as.file.fptr) { make_io_deferred(RANY(p)); RANY(p)->as.free.next = final_list; final_list = p; } } p++; } } during_gc = 0; if (final_list) { finalize_list(objspace, final_list); } st_free_table(finalizer_table); finalizer_table = 0; ATOMIC_SET(finalizing, 0); } void rb_gc(void) { rb_objspace_t *objspace = &rb_objspace; garbage_collect(objspace); if (!finalizing) finalize_deferred(objspace); free_unused_heaps(objspace); } static inline int is_id_value(rb_objspace_t *objspace, VALUE ptr) { if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE; if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE; if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE; return TRUE; } static inline int is_dead_object(rb_objspace_t *objspace, VALUE ptr) { struct heaps_slot *slot = objspace->heap.sweep_slots; if (!is_lazy_sweeping(objspace) || MARKED_IN_BITMAP(GET_HEAP_BITMAP(ptr), ptr)) return FALSE; while (slot) { if ((VALUE)slot->slot <= ptr && ptr < (VALUE)(slot->slot + slot->limit)) return TRUE; slot = slot->next; } return FALSE; } static inline int is_live_object(rb_objspace_t *objspace, VALUE ptr) { if (BUILTIN_TYPE(ptr) == 0) return FALSE; if (RBASIC(ptr)->klass == 0) return FALSE; if (is_dead_object(objspace, ptr)) return FALSE; return TRUE; } /* * call-seq: * ObjectSpace._id2ref(object_id) -> an_object * * Converts an object id to a reference to the object. May not be * called on an object id passed as a parameter to a finalizer. * * s = "I am a string" #=> "I am a string" * r = ObjectSpace._id2ref(s.object_id) #=> "I am a string" * r == s #=> true * */ static VALUE id2ref(VALUE obj, VALUE objid) { #if SIZEOF_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULONG(x) #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULL(x) #endif rb_objspace_t *objspace = &rb_objspace; VALUE ptr; void *p0; rb_secure(4); ptr = NUM2PTR(objid); p0 = (void *)ptr; if (ptr == Qtrue) return Qtrue; if (ptr == Qfalse) return Qfalse; if (ptr == Qnil) return Qnil; if (FIXNUM_P(ptr)) return (VALUE)ptr; ptr = objid ^ FIXNUM_FLAG; /* unset FIXNUM_FLAG */ if ((ptr % sizeof(RVALUE)) == (4 << 2)) { ID symid = ptr / sizeof(RVALUE); if (rb_id2name(symid) == 0) rb_raise(rb_eRangeError, "%p is not symbol id value", p0); return ID2SYM(symid); } if (!is_id_value(objspace, ptr)) { rb_raise(rb_eRangeError, "%p is not id value", p0); } if (!is_live_object(objspace, ptr)) { rb_raise(rb_eRangeError, "%p is recycled object", p0); } return (VALUE)ptr; } /* * Document-method: __id__ * Document-method: object_id * * call-seq: * obj.__id__ -> fixnum * obj.object_id -> fixnum * * Returns an integer identifier for obj. The same number will * be returned on all calls to id for a given object, and * no two active objects will share an id. * Object#object_id is a different concept from the * :name notation, which returns the symbol id of * name. Replaces the deprecated Object#id. */ /* * call-seq: * obj.hash -> fixnum * * Generates a Fixnum hash value for this object. This * function must have the property that a.eql?(b) implies * a.hash == b.hash. The hash value is used by class * Hash. Any hash value that exceeds the capacity of a * Fixnum will be truncated before being used. */ VALUE rb_obj_id(VALUE obj) { /* * 32-bit VALUE space * MSB ------------------------ LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol ssssssssssssssssssssssss00001110 * object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE)) * fixnum fffffffffffffffffffffffffffffff1 * * object_id space * LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4) * object oooooooooooooooooooooooooooooo0 o...o % A = 0 * fixnum fffffffffffffffffffffffffffffff1 bignum if required * * where A = sizeof(RVALUE)/4 * * sizeof(RVALUE) is * 20 if 32-bit, double is 4-byte aligned * 24 if 32-bit, double is 8-byte aligned * 40 if 64-bit */ if (SYMBOL_P(obj)) { return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG; } if (SPECIAL_CONST_P(obj)) { return LONG2NUM((SIGNED_VALUE)obj); } return nonspecial_obj_id(obj); } static int set_zero(st_data_t key, st_data_t val, st_data_t arg) { VALUE k = (VALUE)key; VALUE hash = (VALUE)arg; rb_hash_aset(hash, k, INT2FIX(0)); return ST_CONTINUE; } /* * call-seq: * ObjectSpace.count_objects([result_hash]) -> hash * * Counts objects for each type. * * It returns a hash as: * {:TOTAL=>10000, :FREE=>3011, :T_OBJECT=>6, :T_CLASS=>404, ...} * * If the optional argument, result_hash, is given, * it is overwritten and returned. * This is intended to avoid probe effect. * * The contents of the returned hash is implementation defined. * It may be changed in future. * * This method is not expected to work except C Ruby. * */ static VALUE count_objects(int argc, VALUE *argv, VALUE os) { rb_objspace_t *objspace = &rb_objspace; size_t counts[T_MASK+1]; size_t freed = 0; size_t total = 0; size_t i; VALUE hash; if (rb_scan_args(argc, argv, "01", &hash) == 1) { if (!RB_TYPE_P(hash, T_HASH)) rb_raise(rb_eTypeError, "non-hash given"); } for (i = 0; i <= T_MASK; i++) { counts[i] = 0; } for (i = 0; i < heaps_used; i++) { RVALUE *p, *pend; p = objspace->heap.sorted[i].start; pend = objspace->heap.sorted[i].end; for (;p < pend; p++) { if (p->as.basic.flags) { counts[BUILTIN_TYPE(p)]++; } else { freed++; } } total += objspace->heap.sorted[i].slot->limit; } if (hash == Qnil) { hash = rb_hash_new(); } else if (!RHASH_EMPTY_P(hash)) { st_foreach(RHASH_TBL(hash), set_zero, hash); } rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total)); rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed)); for (i = 0; i <= T_MASK; i++) { VALUE type; switch (i) { #define COUNT_TYPE(t) case (t): type = ID2SYM(rb_intern(#t)); break; COUNT_TYPE(T_NONE); COUNT_TYPE(T_OBJECT); COUNT_TYPE(T_CLASS); COUNT_TYPE(T_MODULE); COUNT_TYPE(T_FLOAT); COUNT_TYPE(T_STRING); COUNT_TYPE(T_REGEXP); COUNT_TYPE(T_ARRAY); COUNT_TYPE(T_HASH); COUNT_TYPE(T_STRUCT); COUNT_TYPE(T_BIGNUM); COUNT_TYPE(T_FILE); COUNT_TYPE(T_DATA); COUNT_TYPE(T_MATCH); COUNT_TYPE(T_COMPLEX); COUNT_TYPE(T_RATIONAL); COUNT_TYPE(T_NIL); COUNT_TYPE(T_TRUE); COUNT_TYPE(T_FALSE); COUNT_TYPE(T_SYMBOL); COUNT_TYPE(T_FIXNUM); COUNT_TYPE(T_UNDEF); COUNT_TYPE(T_NODE); COUNT_TYPE(T_ICLASS); COUNT_TYPE(T_ZOMBIE); #undef COUNT_TYPE default: type = INT2NUM(i); break; } if (counts[i]) rb_hash_aset(hash, type, SIZET2NUM(counts[i])); } return hash; } /* * Document-class: ObjectSpace::WeakMap * * An ObjectSpace::WeakMap object holds references to * any objects, but those objects can get disposed by GC. */ struct weakmap { st_table *obj2wmap; /* obj -> [ref,...] */ st_table *wmap2obj; /* ref -> obj */ VALUE final; }; static int wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg) { gc_mark_ptr((rb_objspace_t *)arg, (VALUE)val); return ST_CONTINUE; } static void wmap_mark(void *ptr) { struct weakmap *w = ptr; st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace); rb_gc_mark(w->final); } static int wmap_free_map(st_data_t key, st_data_t val, st_data_t arg) { rb_ary_resize((VALUE)val, 0); return ST_CONTINUE; } static void wmap_free(void *ptr) { struct weakmap *w = ptr; st_foreach(w->obj2wmap, wmap_free_map, 0); st_free_table(w->obj2wmap); st_free_table(w->wmap2obj); } size_t rb_ary_memsize(VALUE ary); static int wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg) { *(size_t *)arg += rb_ary_memsize((VALUE)val); return ST_CONTINUE; } static size_t wmap_memsize(const void *ptr) { size_t size; const struct weakmap *w = ptr; if (!w) return 0; size = sizeof(*w); size += st_memsize(w->obj2wmap); size += st_memsize(w->wmap2obj); st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size); return size; } static const rb_data_type_t weakmap_type = { "weakmap", { wmap_mark, wmap_free, wmap_memsize, } }; static VALUE wmap_allocate(VALUE klass) { struct weakmap *w; VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w); w->obj2wmap = st_init_numtable(); w->wmap2obj = st_init_numtable(); w->final = rb_obj_method(obj, ID2SYM(rb_intern("finalize"))); return obj; } static int wmap_final_func(st_data_t key, st_data_t *value, st_data_t arg) { VALUE obj = (VALUE)key, ary = (VALUE)*value; rb_ary_delete(ary, obj); if (!RARRAY_LEN(ary)) return ST_DELETE; return ST_CONTINUE; } static VALUE wmap_finalize(VALUE self, VALUE obj) { st_data_t data; VALUE rids; long i; struct weakmap *w; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); obj = NUM2PTR(obj); data = (st_data_t)obj; if (st_delete(w->obj2wmap, &data, &data)) { rids = (VALUE)data; for (i = 0; i < RARRAY_LEN(rids); ++i) { data = (st_data_t)RARRAY_PTR(rids)[i]; st_delete(w->wmap2obj, &data, NULL); } } data = (st_data_t)obj; if (st_delete(w->wmap2obj, &data, &data)) { st_update(w->obj2wmap, (st_data_t)obj, wmap_final_func, 0); } return self; } static VALUE wmap_aset(VALUE self, VALUE wmap, VALUE orig) { st_data_t data; VALUE rids; struct weakmap *w; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); rb_define_final(orig, w->final); rb_define_final(wmap, w->final); if (st_lookup(w->obj2wmap, (st_data_t)orig, &data)) { rids = (VALUE)data; } else { rids = rb_ary_tmp_new(1); st_insert(w->obj2wmap, (st_data_t)orig, (st_data_t)rids); } rb_ary_push(rids, orig); st_insert(w->wmap2obj, (st_data_t)wmap, (st_data_t)orig); return nonspecial_obj_id(orig); } static VALUE wmap_aref(VALUE self, VALUE wmap) { st_data_t data; VALUE obj; struct weakmap *w; rb_objspace_t *objspace = &rb_objspace; TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w); if (!st_lookup(w->wmap2obj, (st_data_t)wmap, &data)) return Qnil; obj = (VALUE)data; if (!is_id_value(objspace, obj)) return Qnil; if (!is_live_object(objspace, obj)) return Qnil; return obj; } /* * call-seq: * GC.count -> Integer * * The number of times GC occurred. * * It returns the number of times GC occurred since the process started. * */ static VALUE gc_count(VALUE self) { return UINT2NUM((&rb_objspace)->count); } /* * call-seq: * GC.stat -> Hash * * Returns a Hash containing information about the GC. * * The hash includes information about internal statistics about GC such as: * * { * :count => 18, * :heap_used => 77, * :heap_length => 77, * :heap_increment => 0, * :heap_live_num => 23287, * :heap_free_num => 8115, * :heap_final_num => 0, * } * * The contents of the hash are implementation defined and may be changed in * the future. * * This method is only expected to work on C Ruby. * */ static VALUE gc_stat(int argc, VALUE *argv, VALUE self) { rb_objspace_t *objspace = &rb_objspace; VALUE hash; if (rb_scan_args(argc, argv, "01", &hash) == 1) { if (!RB_TYPE_P(hash, T_HASH)) rb_raise(rb_eTypeError, "non-hash given"); } if (hash == Qnil) { hash = rb_hash_new(); } rest_sweep(objspace); rb_hash_aset(hash, ID2SYM(rb_intern("count")), SIZET2NUM(objspace->count)); /* implementation dependent counters */ rb_hash_aset(hash, ID2SYM(rb_intern("heap_used")), SIZET2NUM(objspace->heap.used)); rb_hash_aset(hash, ID2SYM(rb_intern("heap_length")), SIZET2NUM(objspace->heap.length)); rb_hash_aset(hash, ID2SYM(rb_intern("heap_increment")), SIZET2NUM(objspace->heap.increment)); rb_hash_aset(hash, ID2SYM(rb_intern("heap_live_num")), SIZET2NUM(objspace->heap.live_num)); rb_hash_aset(hash, ID2SYM(rb_intern("heap_free_num")), SIZET2NUM(objspace->heap.free_num)); rb_hash_aset(hash, ID2SYM(rb_intern("heap_final_num")), SIZET2NUM(objspace->heap.final_num)); return hash; } #if CALC_EXACT_MALLOC_SIZE /* * call-seq: * GC.malloc_allocated_size -> Integer * * The allocated size by malloc(). * * It returns the allocated size by malloc(). */ static VALUE gc_malloc_allocated_size(VALUE self) { return UINT2NUM((&rb_objspace)->malloc_params.allocated_size); } /* * call-seq: * GC.malloc_allocations -> Integer * * The number of allocated memory object by malloc(). * * It returns the number of allocated memory object by malloc(). */ static VALUE gc_malloc_allocations(VALUE self) { return UINT2NUM((&rb_objspace)->malloc_params.allocations); } #endif /* * call-seq: * GC::Profiler.raw_data -> [Hash, ...] * * Returns an Array of individual raw profile data Hashes ordered * from earliest to latest by :GC_INVOKE_TIME. For example: * * [{:GC_TIME=>1.3000000000000858e-05, * :GC_INVOKE_TIME=>0.010634999999999999, * :HEAP_USE_SIZE=>289640, * :HEAP_TOTAL_SIZE=>588960, * :HEAP_TOTAL_OBJECTS=>14724, * :GC_IS_MARKED=>false}, * ... * ] * * The keys mean: * * +:GC_TIME+:: Time taken for this run in milliseconds * +:GC_INVOKE_TIME+:: Time the GC was invoked since startup in seconds * +:HEAP_USE_SIZE+:: Bytes of heap used * +:HEAP_TOTAL_SIZE+:: Size of heap in bytes * +:HEAP_TOTAL_OBJECTS+:: Number of objects * +:GC_IS_MARKED+:: Is the GC in the mark phase * */ static VALUE gc_profile_record_get(void) { VALUE prof; VALUE gc_profile = rb_ary_new(); size_t i; rb_objspace_t *objspace = (&rb_objspace); if (!objspace->profile.run) { return Qnil; } for (i =0; i < objspace->profile.count; i++) { prof = rb_hash_new(); rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(objspace->profile.record[i].gc_time)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(objspace->profile.record[i].gc_invoke_time)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_use_size)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(objspace->profile.record[i].heap_total_size)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_total_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), objspace->profile.record[i].is_marked); #if GC_PROFILE_MORE_DETAIL rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(objspace->profile.record[i].gc_mark_time)); rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(objspace->profile.record[i].gc_sweep_time)); rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(objspace->profile.record[i].allocate_increase)); rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(objspace->profile.record[i].allocate_limit)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SLOTS")), SIZET2NUM(objspace->profile.record[i].heap_use_slots)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_live_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(objspace->profile.record[i].heap_free_objects)); rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), objspace->profile.record[i].have_finalize); #endif rb_ary_push(gc_profile, prof); } return gc_profile; } /* * call-seq: * GC::Profiler.result -> String * * Returns a profile data report such as: * * GC 1 invokes. * Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms) * 1 0.012 159240 212940 10647 0.00000000000001530000 */ static VALUE gc_profile_result(void) { rb_objspace_t *objspace = &rb_objspace; VALUE record; VALUE result; int i, index; record = gc_profile_record_get(); if (objspace->profile.run && objspace->profile.count) { result = rb_sprintf("GC %d invokes.\n", NUM2INT(gc_count(0))); index = 1; rb_str_cat2(result, "Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n"); for (i = 0; i < (int)RARRAY_LEN(record); i++) { VALUE r = RARRAY_PTR(record)[i]; #if !GC_PROFILE_MORE_DETAIL if (rb_hash_aref(r, ID2SYM(rb_intern("GC_IS_MARKED")))) { #endif rb_str_catf(result, "%5d %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n", index++, NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_INVOKE_TIME")))), (size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_USE_SIZE")))), (size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")))), (size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")))), NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_TIME"))))*1000); #if !GC_PROFILE_MORE_DETAIL } #endif } #if GC_PROFILE_MORE_DETAIL rb_str_cat2(result, "\n\n"); rb_str_cat2(result, "More detail.\n"); rb_str_cat2(result, "Index Allocate Increase Allocate Limit Use Slot Have Finalize Mark Time(ms) Sweep Time(ms)\n"); index = 1; for (i = 0; i < (int)RARRAY_LEN(record); i++) { VALUE r = RARRAY_PTR(record)[i]; rb_str_catf(result, "%5d %17"PRIuSIZE" %17"PRIuSIZE" %9"PRIuSIZE" %14s %25.20f %25.20f\n", index++, (size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("ALLOCATE_INCREASE")))), (size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("ALLOCATE_LIMIT")))), (size_t)NUM2SIZET(rb_hash_aref(r, ID2SYM(rb_intern("HEAP_USE_SLOTS")))), rb_hash_aref(r, ID2SYM(rb_intern("HAVE_FINALIZE")))? "true" : "false", NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_MARK_TIME"))))*1000, NUM2DBL(rb_hash_aref(r, ID2SYM(rb_intern("GC_SWEEP_TIME"))))*1000); } #endif } else { result = rb_str_new2(""); } return result; } /* * call-seq: * GC::Profiler.report * GC::Profiler.report io * * Writes the GC::Profiler#result to $stdout or the given IO object. * */ static VALUE gc_profile_report(int argc, VALUE *argv, VALUE self) { VALUE out; if (argc == 0) { out = rb_stdout; } else { rb_scan_args(argc, argv, "01", &out); } rb_io_write(out, gc_profile_result()); return Qnil; } /* * call-seq: * GC::Profiler.total_time -> float * * The total time used for garbage collection in milliseconds */ static VALUE gc_profile_total_time(VALUE self) { double time = 0; rb_objspace_t *objspace = &rb_objspace; size_t i; if (objspace->profile.run && objspace->profile.count) { for (i = 0; i < objspace->profile.count; i++) { time += objspace->profile.record[i].gc_time; } } return DBL2NUM(time); } /* Document-class: GC::Profiler * * The GC profiler provides access to information on GC runs including time, * length and object space size. * * Example: * * GC::Profiler.enable * * require 'rdoc/rdoc' * * puts GC::Profiler.result * * GC::Profiler.disable * * See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations */ /* * The GC module provides an interface to Ruby's mark and * sweep garbage collection mechanism. Some of the underlying methods * are also available via the ObjectSpace module. * * You may obtain information about the operation of the GC through * GC::Profiler. */ void Init_GC(void) { VALUE rb_mObSpace; VALUE rb_mProfiler; rb_mGC = rb_define_module("GC"); rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0); rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0); rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0); rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0); rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1); rb_define_singleton_method(rb_mGC, "count", gc_count, 0); rb_define_singleton_method(rb_mGC, "stat", gc_stat, -1); rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0); rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler"); rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0); rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0); rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0); rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0); rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0); rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0); rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1); rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0); rb_mObSpace = rb_define_module("ObjectSpace"); rb_define_module_function(rb_mObSpace, "each_object", os_each_obj, -1); rb_define_module_function(rb_mObSpace, "garbage_collect", rb_gc_start, 0); rb_define_module_function(rb_mObSpace, "define_finalizer", define_final, -1); rb_define_module_function(rb_mObSpace, "undefine_finalizer", undefine_final, 1); rb_define_module_function(rb_mObSpace, "_id2ref", id2ref, 1); nomem_error = rb_exc_new3(rb_eNoMemError, rb_obj_freeze(rb_str_new2("failed to allocate memory"))); OBJ_TAINT(nomem_error); OBJ_FREEZE(nomem_error); rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0); rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0); rb_define_module_function(rb_mObSpace, "count_objects", count_objects, -1); { VALUE rb_cWeakMap = rb_define_class_under(rb_mObSpace, "WeakMap", rb_cObject); rb_define_alloc_func(rb_cWeakMap, wmap_allocate); rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2); rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1); rb_define_private_method(rb_cWeakMap, "finalize", wmap_finalize, 1); } #if CALC_EXACT_MALLOC_SIZE rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0); rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0); #endif }