#include "ruby/ruby.h" #include "vm_core.h" #include "insns.inc" #include "internal.h" #include "vm_sync.h" #include "vm_callinfo.h" #include "builtin.h" #include "gc.h" #include "internal/compile.h" #include "internal/class.h" #include "insns_info.inc" #include "yjit.h" #include "yjit_iface.h" #include "yjit_codegen.h" #include "yjit_core.h" #include "yjit_hooks.inc" #include "darray.h" #if HAVE_LIBCAPSTONE #include static VALUE cYjitDisasm; static VALUE cYjitDisasmInsn; #endif static VALUE mYjit; static VALUE cYjitBlock; #if RUBY_DEBUG static int64_t vm_insns_count = 0; static int64_t exit_op_count[VM_INSTRUCTION_SIZE] = { 0 }; int64_t rb_compiled_iseq_count = 0; struct rb_yjit_runtime_counters yjit_runtime_counters = { 0 }; static VALUE cYjitCodeComment; #endif // Machine code blocks (executable memory) extern codeblock_t *cb; extern codeblock_t *ocb; // Hash table of encoded instructions extern st_table *rb_encoded_insn_data; struct rb_yjit_options rb_yjit_opts; static const rb_data_type_t yjit_block_type = { "YJIT/Block", {0, 0, 0, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; // Write the YJIT entry point pre-call bytes void cb_write_pre_call_bytes(codeblock_t* cb) { for (size_t i = 0; i < sizeof(yjit_with_ec_pre_call_bytes); ++i) cb_write_byte(cb, yjit_with_ec_pre_call_bytes[i]); } // Write the YJIT exit post-call bytes void cb_write_post_call_bytes(codeblock_t* cb) { for (size_t i = 0; i < sizeof(yjit_with_ec_post_call_bytes); ++i) cb_write_byte(cb, yjit_with_ec_post_call_bytes[i]); } // Get the PC for a given index in an iseq VALUE * yjit_iseq_pc_at_idx(const rb_iseq_t *iseq, uint32_t insn_idx) { RUBY_ASSERT(iseq != NULL); RUBY_ASSERT(insn_idx < iseq->body->iseq_size); VALUE *encoded = iseq->body->iseq_encoded; VALUE *pc = &encoded[insn_idx]; return pc; } // Keep track of mapping from instructions to generated code // See comment for rb_encoded_insn_data in iseq.c void map_addr2insn(void *code_ptr, int insn) { const void * const *table = rb_vm_get_insns_address_table(); const void * const translated_address = table[insn]; st_data_t encoded_insn_data; if (st_lookup(rb_encoded_insn_data, (st_data_t)translated_address, &encoded_insn_data)) { st_insert(rb_encoded_insn_data, (st_data_t)code_ptr, encoded_insn_data); } else { rb_bug("yjit: failed to find info for original instruction while dealing with addr2insn"); } } int yjit_opcode_at_pc(const rb_iseq_t *iseq, const VALUE *pc) { const VALUE at_pc = *pc; if (FL_TEST_RAW((VALUE)iseq, ISEQ_TRANSLATED)) { return rb_vm_insn_addr2opcode((const void *)at_pc); } else { return (int)at_pc; } } // Verify that calling with cd on receiver goes to callee void check_cfunc_dispatch(VALUE receiver, struct rb_callinfo *ci, void *callee, rb_callable_method_entry_t *compile_time_cme) { if (METHOD_ENTRY_INVALIDATED(compile_time_cme)) { rb_bug("yjit: output code uses invalidated cme %p", (void *)compile_time_cme); } bool callee_correct = false; const rb_callable_method_entry_t *cme = rb_callable_method_entry(CLASS_OF(receiver), vm_ci_mid(ci)); if (cme->def->type == VM_METHOD_TYPE_CFUNC) { const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc); if ((void *)cfunc->func == callee) { callee_correct = true; } } if (!callee_correct) { rb_bug("yjit: output code calls wrong method"); } } MJIT_FUNC_EXPORTED VALUE rb_hash_has_key(VALUE hash, VALUE key); // GC root for interacting with the GC struct yjit_root_struct { int unused; // empty structs are not legal in C99 }; // Hash table of BOP blocks static st_table *blocks_assuming_bops; bool assume_bop_not_redefined(block_t *block, int redefined_flag, enum ruby_basic_operators bop) { if (BASIC_OP_UNREDEFINED_P(bop, redefined_flag)) { if (blocks_assuming_bops) { st_insert(blocks_assuming_bops, (st_data_t)block, 0); } return true; } else { return false; } } // Map klass => id_table[mid, set of blocks] // While a block `b` is in the table, b->callee_cme == rb_callable_method_entry(klass, mid). // See assume_method_lookup_stable() static st_table *method_lookup_dependency; // For adding to method_lookup_dependency data with st_update struct lookup_dependency_insertion { block_t *block; ID mid; }; // Map cme => set of blocks // See assume_method_lookup_stable() static st_table *cme_validity_dependency; static int add_cme_validity_dependency_i(st_data_t *key, st_data_t *value, st_data_t new_block, int existing) { st_table *block_set; if (existing) { block_set = (st_table *)*value; } else { // Make the set and put it into cme_validity_dependency block_set = st_init_numtable(); *value = (st_data_t)block_set; } // Put block into set st_insert(block_set, new_block, 1); return ST_CONTINUE; } static int add_lookup_dependency_i(st_data_t *key, st_data_t *value, st_data_t data, int existing) { struct lookup_dependency_insertion *info = (void *)data; // Find or make an id table struct rb_id_table *id2blocks; if (existing) { id2blocks = (void *)*value; } else { // Make an id table and put it into the st_table id2blocks = rb_id_table_create(1); *value = (st_data_t)id2blocks; } // Find or make a block set st_table *block_set; { VALUE blocks; if (rb_id_table_lookup(id2blocks, info->mid, &blocks)) { // Take existing set block_set = (st_table *)blocks; } else { // Make new block set and put it into the id table block_set = st_init_numtable(); rb_id_table_insert(id2blocks, info->mid, (VALUE)block_set); } } st_insert(block_set, (st_data_t)info->block, 1); return ST_CONTINUE; } // Remember that a block assumes that rb_callable_method_entry(receiver_klass, mid) == cme and that // cme is vald. // When either of these assumptions becomes invalid, rb_yjit_method_lookup_change() or // rb_yjit_cme_invalidate() invalidates the block. // // @raise NoMemoryError void assume_method_lookup_stable(VALUE receiver_klass, const rb_callable_method_entry_t *cme, block_t *block) { RUBY_ASSERT(!block->receiver_klass && !block->callee_cme); RUBY_ASSERT(cme_validity_dependency); RUBY_ASSERT(method_lookup_dependency); RUBY_ASSERT_ALWAYS(RB_TYPE_P(receiver_klass, T_CLASS)); RUBY_ASSERT_ALWAYS(!rb_objspace_garbage_object_p(receiver_klass)); block->callee_cme = (VALUE)cme; st_update(cme_validity_dependency, (st_data_t)cme, add_cme_validity_dependency_i, (st_data_t)block); block->receiver_klass = receiver_klass; struct lookup_dependency_insertion info = { block, cme->called_id }; st_update(method_lookup_dependency, (st_data_t)receiver_klass, add_lookup_dependency_i, (st_data_t)&info); } static st_table *blocks_assuming_single_ractor_mode; // Can raise NoMemoryError. RBIMPL_ATTR_NODISCARD() bool assume_single_ractor_mode(block_t *block) { if (rb_multi_ractor_p()) return false; st_insert(blocks_assuming_single_ractor_mode, (st_data_t)block, 1); return true; } static st_table *blocks_assuming_stable_global_constant_state; // Assume that the global constant state has not changed since call to this function. // Can raise NoMemoryError. void assume_stable_global_constant_state(block_t *block) { st_insert(blocks_assuming_stable_global_constant_state, (st_data_t)block, 1); } static int mark_and_pin_keys_i(st_data_t k, st_data_t v, st_data_t ignore) { rb_gc_mark((VALUE)k); return ST_CONTINUE; } // GC callback during mark phase static void yjit_root_mark(void *ptr) { if (method_lookup_dependency) { // TODO: This is a leak. Unused blocks linger in the table forever, preventing the // callee class they speculate on from being collected. // We could do a bespoke weak reference scheme on classes similar to // the interpreter's call cache. See finalizer for T_CLASS and cc_table_free(). st_foreach(method_lookup_dependency, mark_and_pin_keys_i, 0); } if (cme_validity_dependency) { // Why not let the GC move the cme keys in this table? // Because this is basically a compare_by_identity Hash. // If a key moves, we would need to reinsert it into the table so it is rehashed. // That is tricky to do, espcially as it could trigger allocation which could // trigger GC. Not sure if it is okay to trigger GC while the GC is updating // references. st_foreach(cme_validity_dependency, mark_and_pin_keys_i, 0); } } static void yjit_root_free(void *ptr) { // Do nothing. The root lives as long as the process. } static size_t yjit_root_memsize(const void *ptr) { // Count off-gc-heap allocation size of the dependency table return st_memsize(method_lookup_dependency); // TODO: more accurate accounting } // GC callback during compaction static void yjit_root_update_references(void *ptr) { } // Custom type for interacting with the GC // TODO: make this write barrier protected static const rb_data_type_t yjit_root_type = { "yjit_root", {yjit_root_mark, yjit_root_free, yjit_root_memsize, yjit_root_update_references}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; static int block_set_invalidate_i(st_data_t key, st_data_t v, st_data_t ignore) { block_t *version = (block_t *)key; invalidate_block_version(version); return ST_CONTINUE; } // Callback for when rb_callable_method_entry(klass, mid) is going to change. // Invalidate blocks that assume stable method lookup of `mid` in `klass` when this happens. void rb_yjit_method_lookup_change(VALUE klass, ID mid) { if (!method_lookup_dependency) return; RB_VM_LOCK_ENTER(); st_data_t image; st_data_t key = (st_data_t)klass; if (st_lookup(method_lookup_dependency, key, &image)) { struct rb_id_table *id2blocks = (void *)image; VALUE blocks; // Invalidate all blocks in method_lookup_dependency[klass][mid] if (rb_id_table_lookup(id2blocks, mid, &blocks)) { rb_id_table_delete(id2blocks, mid); st_table *block_set = (st_table *)blocks; st_foreach(block_set, block_set_invalidate_i, 0); st_free_table(block_set); } } RB_VM_LOCK_LEAVE(); } // Callback for when a cme becomes invalid. // Invalidate all blocks that depend on cme being valid. void rb_yjit_cme_invalidate(VALUE cme) { if (!cme_validity_dependency) return; RUBY_ASSERT(IMEMO_TYPE_P(cme, imemo_ment)); RB_VM_LOCK_ENTER(); // Delete the block set from the table st_data_t cme_as_st_data = (st_data_t)cme; st_data_t blocks; if (st_delete(cme_validity_dependency, &cme_as_st_data, &blocks)) { st_table *block_set = (st_table *)blocks; // Invalidate each block st_foreach(block_set, block_set_invalidate_i, 0); st_free_table(block_set); } RB_VM_LOCK_LEAVE(); } // For dealing with refinements void rb_yjit_invalidate_all_method_lookup_assumptions(void) { // TODO: implement } // Remove a block from the method lookup dependency table static void remove_method_lookup_dependency(block_t *block) { if (!block->receiver_klass) return; RUBY_ASSERT(block->callee_cme); // callee_cme should be set when receiver_klass is set st_data_t image; st_data_t key = (st_data_t)block->receiver_klass; if (st_lookup(method_lookup_dependency, key, &image)) { struct rb_id_table *id2blocks = (void *)image; const rb_callable_method_entry_t *cme = (void *)block->callee_cme; ID mid = cme->called_id; // Find block set VALUE blocks; if (rb_id_table_lookup(id2blocks, mid, &blocks)) { st_table *block_set = (st_table *)blocks; // Remove block from block set st_data_t block_as_st_data = (st_data_t)block; (void)st_delete(block_set, &block_as_st_data, NULL); if (block_set->num_entries == 0) { // Block set now empty. Remove from id table. rb_id_table_delete(id2blocks, mid); st_free_table(block_set); } } } } // Remove a block from cme_validity_dependency static void remove_cme_validity_dependency(block_t *block) { if (!block->callee_cme) return; st_data_t blocks; if (st_lookup(cme_validity_dependency, block->callee_cme, &blocks)) { st_table *block_set = (st_table *)blocks; st_data_t block_as_st_data = (st_data_t)block; (void)st_delete(block_set, &block_as_st_data, NULL); } } void yjit_unlink_method_lookup_dependency(block_t *block) { remove_method_lookup_dependency(block); remove_cme_validity_dependency(block); } void yjit_block_assumptions_free(block_t *block) { st_data_t as_st_data = (st_data_t)block; if (blocks_assuming_stable_global_constant_state) { st_delete(blocks_assuming_stable_global_constant_state, &as_st_data, NULL); } if (blocks_assuming_single_ractor_mode) { st_delete(blocks_assuming_single_ractor_mode, &as_st_data, NULL); } if (blocks_assuming_bops) { st_delete(blocks_assuming_bops, &as_st_data, NULL); } } void rb_yjit_compile_iseq(const rb_iseq_t *iseq, rb_execution_context_t *ec) { #if OPT_DIRECT_THREADED_CODE || OPT_CALL_THREADED_CODE RB_VM_LOCK_ENTER(); // TODO: I think we need to stop all other ractors here VALUE *encoded = (VALUE *)iseq->body->iseq_encoded; // Compile a block version starting at the first instruction uint8_t* code_ptr = gen_entry_point(iseq, 0, ec); if (code_ptr) { // Map the code address to the corresponding opcode int first_opcode = yjit_opcode_at_pc(iseq, &encoded[0]); map_addr2insn(code_ptr, first_opcode); encoded[0] = (VALUE)code_ptr; } RB_VM_LOCK_LEAVE(); #endif } struct yjit_block_itr { const rb_iseq_t *iseq; VALUE list; }; /* Get a list of the YJIT blocks associated with `rb_iseq` */ static VALUE yjit_blocks_for(VALUE mod, VALUE rb_iseq) { if (CLASS_OF(rb_iseq) != rb_cISeq) { return rb_ary_new(); } const rb_iseq_t *iseq = rb_iseqw_to_iseq(rb_iseq); VALUE all_versions = rb_ary_new(); rb_darray_for(iseq->body->yjit_blocks, version_array_idx) { rb_yjit_block_array_t versions = rb_darray_get(iseq->body->yjit_blocks, version_array_idx); rb_darray_for(versions, block_idx) { block_t *block = rb_darray_get(versions, block_idx); // FIXME: The object craeted here can outlive the block itself VALUE rb_block = TypedData_Wrap_Struct(cYjitBlock, &yjit_block_type, block); rb_ary_push(all_versions, rb_block); } } return all_versions; } /* Get the address of the the code associated with a YJIT::Block */ static VALUE block_address(VALUE self) { block_t * block; TypedData_Get_Struct(self, block_t, &yjit_block_type, block); uint8_t* code_addr = cb_get_ptr(cb, block->start_pos); return LONG2NUM((intptr_t)code_addr); } /* Get the machine code for YJIT::Block as a binary string */ static VALUE block_code(VALUE self) { block_t * block; TypedData_Get_Struct(self, block_t, &yjit_block_type, block); return (VALUE)rb_str_new( (const char*)cb->mem_block + block->start_pos, block->end_pos - block->start_pos ); } /* Get the start index in the Instruction Sequence that corresponds to this * YJIT::Block */ static VALUE iseq_start_index(VALUE self) { block_t * block; TypedData_Get_Struct(self, block_t, &yjit_block_type, block); return INT2NUM(block->blockid.idx); } /* Get the end index in the Instruction Sequence that corresponds to this * YJIT::Block */ static VALUE iseq_end_index(VALUE self) { block_t * block; TypedData_Get_Struct(self, block_t, &yjit_block_type, block); return INT2NUM(block->end_idx); } static int block_invalidation_iterator(st_data_t key, st_data_t value, st_data_t data) { block_t *block = (block_t *)key; invalidate_block_version(block); // Thankfully, st_table supports deleteing while iterating return ST_CONTINUE; } /* Called when a basic operation is redefined */ void rb_yjit_bop_redefined(VALUE klass, const rb_method_entry_t *me, enum ruby_basic_operators bop) { if (blocks_assuming_bops) { st_foreach(blocks_assuming_bops, block_invalidation_iterator, 0); } } /* Called when the constant state changes */ void rb_yjit_constant_state_changed(void) { if (blocks_assuming_stable_global_constant_state) { st_foreach(blocks_assuming_stable_global_constant_state, block_invalidation_iterator, 0); } } // Callback from the opt_setinlinecache instruction in the interpreter void yjit_constant_ic_update(const rb_iseq_t *iseq, IC ic) { RB_VM_LOCK_ENTER(); rb_vm_barrier(); // Stop other ractors since we are going to patch machine code. { const struct rb_iseq_constant_body *const body = iseq->body; VALUE *code = body->iseq_encoded; // This should come from a running iseq, so direct threading translation // should have been done RUBY_ASSERT(FL_TEST((VALUE)iseq, ISEQ_TRANSLATED)); RUBY_ASSERT(ic->get_insn_idx < body->iseq_size); RUBY_ASSERT(rb_vm_insn_addr2insn((const void *)code[ic->get_insn_idx]) == BIN(opt_getinlinecache)); // Find the matching opt_getinlinecache and invalidate all the blocks there RUBY_ASSERT(insn_op_type(BIN(opt_getinlinecache), 1) == TS_IC); if (ic == (IC)code[ic->get_insn_idx + 1 + 1]) { rb_yjit_block_array_t getinlinecache_blocks = yjit_get_version_array(iseq, ic->get_insn_idx); rb_darray_for(getinlinecache_blocks, i) { block_t *block = rb_darray_get(getinlinecache_blocks, i); invalidate_block_version(block); } } else { RUBY_ASSERT(false && "ic->get_insn_diex not set properly"); } } RB_VM_LOCK_LEAVE(); } void rb_yjit_before_ractor_spawn(void) { if (blocks_assuming_single_ractor_mode) { st_foreach(blocks_assuming_single_ractor_mode, block_invalidation_iterator, 0); } } #if HAVE_LIBCAPSTONE static const rb_data_type_t yjit_disasm_type = { "YJIT/Disasm", {0, (void(*)(void *))cs_close, 0, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; static VALUE yjit_disasm_init(VALUE klass) { csh * handle; VALUE disasm = TypedData_Make_Struct(klass, csh, &yjit_disasm_type, handle); if (cs_open(CS_ARCH_X86, CS_MODE_64, handle) != CS_ERR_OK) { rb_raise(rb_eRuntimeError, "failed to make Capstone handle"); } return disasm; } static VALUE yjit_disasm(VALUE self, VALUE code, VALUE from) { size_t count; csh * handle; cs_insn *insns; TypedData_Get_Struct(self, csh, &yjit_disasm_type, handle); count = cs_disasm(*handle, (uint8_t*)StringValuePtr(code), RSTRING_LEN(code), NUM2ULL(from), 0, &insns); VALUE insn_list = rb_ary_new_capa(count); for (size_t i = 0; i < count; i++) { VALUE vals = rb_ary_new_from_args(3, LONG2NUM(insns[i].address), rb_str_new2(insns[i].mnemonic), rb_str_new2(insns[i].op_str)); rb_ary_push(insn_list, rb_struct_alloc(cYjitDisasmInsn, vals)); } cs_free(insns, count); return insn_list; } #endif static VALUE at_exit_print_stats(RB_BLOCK_CALL_FUNC_ARGLIST(yieldarg, data)) { // Defined in yjit.rb rb_funcall(mYjit, rb_intern("_print_stats"), 0); return Qnil; } // Primitive called in yjit.rb. Export all machine code comments as a Ruby array. static VALUE comments_for(rb_execution_context_t *ec, VALUE self, VALUE start_address, VALUE end_address) { VALUE comment_array = rb_ary_new(); #if RUBY_DEBUG uint8_t *start = (void *)NUM2ULL(start_address); uint8_t *end = (void *)NUM2ULL(end_address); rb_darray_for(yjit_code_comments, i) { struct yjit_comment comment = rb_darray_get(yjit_code_comments, i); uint8_t *comment_pos = cb_get_ptr(cb, comment.offset); if (comment_pos >= end) { break; } if (comment_pos >= start) { VALUE vals = rb_ary_new_from_args( 2, LL2NUM((long long) comment_pos), rb_str_new_cstr(comment.comment) ); rb_ary_push(comment_array, rb_struct_alloc(cYjitCodeComment, vals)); } } #endif // if RUBY_DEBUG return comment_array; } // Primitive called in yjit.rb. Export all runtime counters as a Ruby hash. static VALUE get_stat_counters(rb_execution_context_t *ec, VALUE self) { #if RUBY_DEBUG if (!rb_yjit_opts.gen_stats) return Qnil; VALUE hash = rb_hash_new(); RB_VM_LOCK_ENTER(); { int64_t *counter_reader = (int64_t *)&yjit_runtime_counters; int64_t *counter_reader_end = &yjit_runtime_counters.last_member; // Iterate through comma separated counter name list char *name_reader = yjit_counter_names; char *counter_name_end = yjit_counter_names + sizeof(yjit_counter_names); while (name_reader < counter_name_end && counter_reader < counter_reader_end) { if (*name_reader == ',' || *name_reader == ' ') { name_reader++; continue; } // Compute name of counter name int name_len; char *name_end; { name_end = strchr(name_reader, ','); if (name_end == NULL) break; name_len = (int)(name_end - name_reader); } // Put counter into hash VALUE key = ID2SYM(rb_intern2(name_reader, name_len)); VALUE value = LL2NUM((long long)*counter_reader); rb_hash_aset(hash, key, value); counter_reader++; name_reader = name_end; } } RB_VM_LOCK_LEAVE(); return hash; #else return Qnil; #endif // if RUBY_DEBUG } // Primitive called in yjit.rb. Zero out all the counters. static VALUE reset_stats_bang(rb_execution_context_t *ec, VALUE self) { #if RUBY_DEBUG vm_insns_count = 0; rb_compiled_iseq_count = 0; memset(&exit_op_count, 0, sizeof(exit_op_count)); memset(&yjit_runtime_counters, 0, sizeof(yjit_runtime_counters)); #endif // if RUBY_DEBUG return Qnil; } #include "yjit.rbinc" #if RUBY_DEBUG // implementation for --yjit-stats void rb_yjit_collect_vm_usage_insn(int insn) { vm_insns_count++; } void rb_yjit_collect_binding_alloc(void) { yjit_runtime_counters.binding_allocations++; } void rb_yjit_collect_binding_set(void) { yjit_runtime_counters.binding_set++; } const VALUE * rb_yjit_count_side_exit_op(const VALUE *exit_pc) { int insn = rb_vm_insn_addr2opcode((const void *)*exit_pc); exit_op_count[insn]++; return exit_pc; // This function must return exit_pc! } struct insn_count { int64_t insn; int64_t count; }; static int insn_count_sort_comp(const void *a, const void *b) { const struct insn_count *count_a = a; const struct insn_count *count_b = b; if (count_a->count > count_b->count) { return -1; } else if (count_a->count < count_b->count) { return 1; } return 0; } static struct insn_count insn_sorting_buffer[VM_INSTRUCTION_SIZE]; static const struct insn_count * sort_insn_count_array(int64_t *array) { for (int i = 0; i < VM_INSTRUCTION_SIZE; i++) { insn_sorting_buffer[i] = (struct insn_count) { i, array[i] }; } qsort(insn_sorting_buffer, VM_INSTRUCTION_SIZE, sizeof(insn_sorting_buffer[0]), &insn_count_sort_comp); return insn_sorting_buffer; } // Compute the total interpreter exit count static int64_t calc_total_exit_count() { size_t total_exit_count = 0; for (int i = 0; i < VM_INSTRUCTION_SIZE; i++) { total_exit_count += exit_op_count[i]; } return total_exit_count; } static void print_insn_count_buffer(int how_many, int left_pad) { size_t total_exit_count = calc_total_exit_count(); // Sort the exit ops by decreasing frequency const struct insn_count *sorted_exit_ops = sort_insn_count_array(exit_op_count); // Compute the longest instruction name and top10_exit_count size_t longest_insn_len = 0; size_t top10_exit_count = 0; for (int i = 0; i < how_many; i++) { const char *instruction_name = insn_name(sorted_exit_ops[i].insn); size_t len = strlen(instruction_name); if (len > longest_insn_len) { longest_insn_len = len; } top10_exit_count += sorted_exit_ops[i].count; } double top10_exit_percent = 100.0 * top10_exit_count / total_exit_count; fprintf(stderr, "top-%d most frequent exit ops (%.1f%% of exits):\n", how_many, top10_exit_percent); // Print the top-N most frequent exit counts for (int i = 0; i < how_many; i++) { const char *instruction_name = insn_name(sorted_exit_ops[i].insn); size_t padding = left_pad + longest_insn_len - strlen(instruction_name); for (size_t j = 0; j < padding; j++) { fputc(' ', stderr); } double percent = 100 * sorted_exit_ops[i].count / (double)total_exit_count; fprintf(stderr, "%s: %10" PRId64 " (%.1f%%)\n", instruction_name, sorted_exit_ops[i].count, percent); } } __attribute__((destructor)) static void print_yjit_stats(void) { if (!rb_yjit_opts.gen_stats) { return; } // Warn if the executable code block is out of the relative // 32-bit jump range away from compiled C code ptrdiff_t start_diff = (cb->mem_block + cb->mem_size) - (uint8_t*)&print_yjit_stats; if (start_diff < INT32_MIN || start_diff > INT32_MAX) { fprintf(stderr, "WARNING: end of code block past rel32 offset range from C code\n"); } // Compute the total exit count int64_t total_exit_count = calc_total_exit_count(); // Number of instructions that finish executing in YJIT. See :count-placement:. int64_t retired_in_yjit = yjit_runtime_counters.exec_instruction - total_exit_count; // Average length of instruction sequences executed by YJIT double avg_len_in_yjit = (double)retired_in_yjit / total_exit_count; // Proportion of instructions that retire in YJIT int64_t total_insns_count = retired_in_yjit + vm_insns_count; double ratio = retired_in_yjit / (double)total_insns_count; fprintf(stderr, "compiled_iseq_count: %10" PRId64 "\n", rb_compiled_iseq_count); fprintf(stderr, "inline_code_size: %10d\n", cb->write_pos); fprintf(stderr, "outlined_code_size: %10d\n", ocb->write_pos); fprintf(stderr, "total_exit_count: %10" PRId64 "\n", total_exit_count); fprintf(stderr, "total_insns_count: %10" PRId64 "\n", total_insns_count); fprintf(stderr, "vm_insns_count: %10" PRId64 "\n", vm_insns_count); fprintf(stderr, "yjit_insns_count: %10" PRId64 "\n", yjit_runtime_counters.exec_instruction); fprintf(stderr, "ratio_in_yjit: %9.1f%%\n", ratio * 100); fprintf(stderr, "avg_len_in_yjit: %10.1f\n", avg_len_in_yjit); // Print the top-N most frequent exit ops print_insn_count_buffer(20, 4); } #endif // if RUBY_DEBUG void rb_yjit_iseq_mark(const struct rb_iseq_constant_body *body) { rb_darray_for(body->yjit_blocks, version_array_idx) { rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx); rb_darray_for(version_array, block_idx) { block_t *block = rb_darray_get(version_array, block_idx); rb_gc_mark_movable((VALUE)block->blockid.iseq); rb_gc_mark_movable(block->receiver_klass); rb_gc_mark_movable(block->callee_cme); // Mark outgoing branch entries rb_darray_for(block->outgoing, branch_idx) { branch_t* branch = rb_darray_get(block->outgoing, branch_idx); for (int i = 0; i < 2; ++i) { rb_gc_mark_movable((VALUE)branch->targets[i].iseq); } } // Walk over references to objects in generated code. uint32_t *offset_element; rb_darray_foreach(block->gc_object_offsets, offset_idx, offset_element) { uint32_t offset_to_value = *offset_element; uint8_t *value_address = cb_get_ptr(cb, offset_to_value); VALUE object; memcpy(&object, value_address, SIZEOF_VALUE); rb_gc_mark_movable(object); } } } } void rb_yjit_iseq_update_references(const struct rb_iseq_constant_body *body) { rb_darray_for(body->yjit_blocks, version_array_idx) { rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx); rb_darray_for(version_array, block_idx) { block_t *block = rb_darray_get(version_array, block_idx); block->blockid.iseq = (const rb_iseq_t *)rb_gc_location((VALUE)block->blockid.iseq); block->receiver_klass = rb_gc_location(block->receiver_klass); block->callee_cme = rb_gc_location(block->callee_cme); // Update outgoing branch entries rb_darray_for(block->outgoing, branch_idx) { branch_t* branch = rb_darray_get(block->outgoing, branch_idx); for (int i = 0; i < 2; ++i) { branch->targets[i].iseq = (const void *)rb_gc_location((VALUE)branch->targets[i].iseq); } } // Walk over references to objects in generated code. uint32_t *offset_element; rb_darray_foreach(block->gc_object_offsets, offset_idx, offset_element) { uint32_t offset_to_value = *offset_element; uint8_t *value_address = cb_get_ptr(cb, offset_to_value); VALUE object; memcpy(&object, value_address, SIZEOF_VALUE); VALUE possibly_moved = rb_gc_location(object); // Only write when the VALUE moves, to be CoW friendly. if (possibly_moved != object) { memcpy(value_address, &possibly_moved, SIZEOF_VALUE); } } } } } // Free the yjit resources associated with an iseq void rb_yjit_iseq_free(const struct rb_iseq_constant_body *body) { rb_darray_for(body->yjit_blocks, version_array_idx) { rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx); rb_darray_for(version_array, block_idx) { block_t *block = rb_darray_get(version_array, block_idx); yjit_free_block(block); } rb_darray_free(version_array); } rb_darray_free(body->yjit_blocks); } bool rb_yjit_enabled_p(void) { return rb_yjit_opts.yjit_enabled; } unsigned rb_yjit_call_threshold(void) { return rb_yjit_opts.call_threshold; } void rb_yjit_init(struct rb_yjit_options *options) { if (!yjit_scrape_successful || !PLATFORM_SUPPORTED_P) { return; } rb_yjit_opts = *options; rb_yjit_opts.yjit_enabled = true; rb_yjit_opts.gen_stats |= !!getenv("YJIT_STATS"); // Normalize command-line options to default values if (rb_yjit_opts.exec_mem_size < 1) { rb_yjit_opts.exec_mem_size = 256; } if (rb_yjit_opts.call_threshold < 1) { rb_yjit_opts.call_threshold = 10; } if (rb_yjit_opts.version_limit < 1) { rb_yjit_opts.version_limit = 4; } blocks_assuming_stable_global_constant_state = st_init_numtable(); blocks_assuming_single_ractor_mode = st_init_numtable(); blocks_assuming_bops = st_init_numtable(); yjit_init_core(); yjit_init_codegen(); // YJIT Ruby module mYjit = rb_define_module("YJIT"); rb_define_module_function(mYjit, "blocks_for", yjit_blocks_for, 1); // YJIT::Block (block version, code block) cYjitBlock = rb_define_class_under(mYjit, "Block", rb_cObject); rb_define_method(cYjitBlock, "address", block_address, 0); rb_define_method(cYjitBlock, "code", block_code, 0); rb_define_method(cYjitBlock, "iseq_start_index", iseq_start_index, 0); rb_define_method(cYjitBlock, "iseq_end_index", iseq_end_index, 0); // YJIT disassembler interface #if HAVE_LIBCAPSTONE cYjitDisasm = rb_define_class_under(mYjit, "Disasm", rb_cObject); rb_define_alloc_func(cYjitDisasm, yjit_disasm_init); rb_define_method(cYjitDisasm, "disasm", yjit_disasm, 2); cYjitDisasmInsn = rb_struct_define_under(cYjitDisasm, "Insn", "address", "mnemonic", "op_str", NULL); #if RUBY_DEBUG cYjitCodeComment = rb_struct_define_under(cYjitDisasm, "Comment", "address", "comment"); #endif #endif if (RUBY_DEBUG && rb_yjit_opts.gen_stats) { // Setup at_exit callback for printing out counters rb_block_call(rb_mKernel, rb_intern("at_exit"), 0, NULL, at_exit_print_stats, Qfalse); } // Make dependency tables method_lookup_dependency = st_init_numtable(); cme_validity_dependency = st_init_numtable(); // Initialize the GC hooks struct yjit_root_struct *root; VALUE yjit_root = TypedData_Make_Struct(0, struct yjit_root_struct, &yjit_root_type, root); rb_gc_register_mark_object(yjit_root); }