/**********************************************************************
proc.c - Proc, Binding, Env
$Author$
created at: Wed Jan 17 12:13:14 2007
Copyright (C) 2004-2007 Koichi Sasada
**********************************************************************/
#include "eval_intern.h"
#include "internal.h"
#include "gc.h"
#include "iseq.h"
struct METHOD {
VALUE recv;
VALUE rclass;
VALUE defined_class;
ID id;
rb_method_entry_t *me;
struct unlinked_method_entry_list_entry *ume;
};
VALUE rb_cUnboundMethod;
VALUE rb_cMethod;
VALUE rb_cBinding;
VALUE rb_cProc;
static VALUE bmcall(VALUE, VALUE, int, VALUE *, VALUE);
static int method_arity(VALUE);
static int method_min_max_arity(VALUE, int *max);
#define attached id__attached__
/* Proc */
#define IS_METHOD_PROC_NODE(node) (nd_type(node) == NODE_IFUNC && (node)->nd_cfnc == bmcall)
static void
proc_free(void *ptr)
{
RUBY_FREE_ENTER("proc");
if (ptr) {
ruby_xfree(ptr);
}
RUBY_FREE_LEAVE("proc");
}
static void
proc_mark(void *ptr)
{
rb_proc_t *proc;
RUBY_MARK_ENTER("proc");
if (ptr) {
proc = ptr;
RUBY_MARK_UNLESS_NULL(proc->envval);
RUBY_MARK_UNLESS_NULL(proc->blockprocval);
RUBY_MARK_UNLESS_NULL(proc->block.proc);
RUBY_MARK_UNLESS_NULL(proc->block.self);
if (proc->block.iseq && RUBY_VM_IFUNC_P(proc->block.iseq)) {
RUBY_MARK_UNLESS_NULL((VALUE)(proc->block.iseq));
}
}
RUBY_MARK_LEAVE("proc");
}
static size_t
proc_memsize(const void *ptr)
{
return ptr ? sizeof(rb_proc_t) : 0;
}
static const rb_data_type_t proc_data_type = {
"proc",
{
proc_mark,
proc_free,
proc_memsize,
},
};
VALUE
rb_proc_alloc(VALUE klass)
{
rb_proc_t *proc;
return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc);
}
VALUE
rb_obj_is_proc(VALUE proc)
{
if (rb_typeddata_is_kind_of(proc, &proc_data_type)) {
return Qtrue;
}
else {
return Qfalse;
}
}
/* :nodoc: */
static VALUE
proc_dup(VALUE self)
{
VALUE procval = rb_proc_alloc(rb_cProc);
rb_proc_t *src, *dst;
GetProcPtr(self, src);
GetProcPtr(procval, dst);
dst->block = src->block;
dst->block.proc = procval;
dst->blockprocval = src->blockprocval;
dst->envval = src->envval;
dst->safe_level = src->safe_level;
dst->is_lambda = src->is_lambda;
return procval;
}
/* :nodoc: */
static VALUE
proc_clone(VALUE self)
{
VALUE procval = proc_dup(self);
CLONESETUP(procval, self);
return procval;
}
/*
* call-seq:
* prc.lambda? -> true or false
*
* Returns +true+ for a Proc object for which argument handling is rigid.
* Such procs are typically generated by +lambda+.
*
* A Proc object generated by +proc+ ignores extra arguments.
*
* proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2]
*
* It provides +nil+ for missing arguments.
*
* proc {|a,b| [a,b] }.call(1) #=> [1,nil]
*
* It expands a single array argument.
*
* proc {|a,b| [a,b] }.call([1,2]) #=> [1,2]
*
* A Proc object generated by +lambda+ doesn't have such tricks.
*
* lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError
* lambda {|a,b| [a,b] }.call(1) #=> ArgumentError
* lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError
*
* Proc#lambda? is a predicate for the tricks.
* It returns +true+ if no tricks apply.
*
* lambda {}.lambda? #=> true
* proc {}.lambda? #=> false
*
* Proc.new is the same as +proc+.
*
* Proc.new {}.lambda? #=> false
*
* +lambda+, +proc+ and Proc.new preserve the tricks of
* a Proc object given by &
argument.
*
* lambda(&lambda {}).lambda? #=> true
* proc(&lambda {}).lambda? #=> true
* Proc.new(&lambda {}).lambda? #=> true
*
* lambda(&proc {}).lambda? #=> false
* proc(&proc {}).lambda? #=> false
* Proc.new(&proc {}).lambda? #=> false
*
* A Proc object generated by &
argument has the tricks
*
* def n(&b) b.lambda? end
* n {} #=> false
*
* The &
argument preserves the tricks if a Proc object
* is given by &
argument.
*
* n(&lambda {}) #=> true
* n(&proc {}) #=> false
* n(&Proc.new {}) #=> false
*
* A Proc object converted from a method has no tricks.
*
* def m() end
* method(:m).to_proc.lambda? #=> true
*
* n(&method(:m)) #=> true
* n(&method(:m).to_proc) #=> true
*
* +define_method+ is treated the same as method definition.
* The defined method has no tricks.
*
* class C
* define_method(:d) {}
* end
* C.new.d(1,2) #=> ArgumentError
* C.new.method(:d).to_proc.lambda? #=> true
*
* +define_method+ always defines a method without the tricks,
* even if a non-lambda Proc object is given.
* This is the only exception for which the tricks are not preserved.
*
* class C
* define_method(:e, &proc {})
* end
* C.new.e(1,2) #=> ArgumentError
* C.new.method(:e).to_proc.lambda? #=> true
*
* This exception insures that methods never have tricks
* and makes it easy to have wrappers to define methods that behave as usual.
*
* class C
* def self.def2(name, &body)
* define_method(name, &body)
* end
*
* def2(:f) {}
* end
* C.new.f(1,2) #=> ArgumentError
*
* The wrapper def2 defines a method which has no tricks.
*
*/
VALUE
rb_proc_lambda_p(VALUE procval)
{
rb_proc_t *proc;
GetProcPtr(procval, proc);
return proc->is_lambda ? Qtrue : Qfalse;
}
/* Binding */
static void
binding_free(void *ptr)
{
rb_binding_t *bind;
RUBY_FREE_ENTER("binding");
if (ptr) {
bind = ptr;
ruby_xfree(bind);
}
RUBY_FREE_LEAVE("binding");
}
static void
binding_mark(void *ptr)
{
rb_binding_t *bind;
RUBY_MARK_ENTER("binding");
if (ptr) {
bind = ptr;
RUBY_MARK_UNLESS_NULL(bind->env);
RUBY_MARK_UNLESS_NULL(bind->path);
}
RUBY_MARK_LEAVE("binding");
}
static size_t
binding_memsize(const void *ptr)
{
return ptr ? sizeof(rb_binding_t) : 0;
}
const rb_data_type_t ruby_binding_data_type = {
"binding",
{
binding_mark,
binding_free,
binding_memsize,
},
};
static VALUE
binding_alloc(VALUE klass)
{
VALUE obj;
rb_binding_t *bind;
obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind);
return obj;
}
/* :nodoc: */
static VALUE
binding_dup(VALUE self)
{
VALUE bindval = binding_alloc(rb_cBinding);
rb_binding_t *src, *dst;
GetBindingPtr(self, src);
GetBindingPtr(bindval, dst);
dst->env = src->env;
dst->path = src->path;
dst->first_lineno = src->first_lineno;
return bindval;
}
/* :nodoc: */
static VALUE
binding_clone(VALUE self)
{
VALUE bindval = binding_dup(self);
CLONESETUP(bindval, self);
return bindval;
}
VALUE
rb_binding_new_with_cfp(rb_thread_t *th, const rb_control_frame_t *src_cfp)
{
rb_control_frame_t *cfp = rb_vm_get_binding_creatable_next_cfp(th, src_cfp);
rb_control_frame_t *ruby_level_cfp = rb_vm_get_ruby_level_next_cfp(th, src_cfp);
VALUE bindval, envval;
rb_binding_t *bind;
if (cfp == 0 || ruby_level_cfp == 0) {
rb_raise(rb_eRuntimeError, "Can't create Binding Object on top of Fiber.");
}
while (1) {
envval = rb_vm_make_env_object(th, cfp);
if (cfp == ruby_level_cfp) {
break;
}
cfp = rb_vm_get_binding_creatable_next_cfp(th, RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp));
}
bindval = binding_alloc(rb_cBinding);
GetBindingPtr(bindval, bind);
bind->env = envval;
bind->path = ruby_level_cfp->iseq->location.path;
bind->first_lineno = rb_vm_get_sourceline(ruby_level_cfp);
return bindval;
}
VALUE
rb_binding_new(void)
{
rb_thread_t *th = GET_THREAD();
return rb_binding_new_with_cfp(th, th->cfp);
}
/*
* call-seq:
* binding -> a_binding
*
* Returns a +Binding+ object, describing the variable and
* method bindings at the point of call. This object can be used when
* calling +eval+ to execute the evaluated command in this
* environment. See also the description of class +Binding+.
*
* def get_binding(param)
* return binding
* end
* b = get_binding("hello")
* eval("param", b) #=> "hello"
*/
static VALUE
rb_f_binding(VALUE self)
{
return rb_binding_new();
}
/*
* call-seq:
* binding.eval(string [, filename [,lineno]]) -> obj
*
* Evaluates the Ruby expression(s) in string, in the
* binding's context. If the optional filename and
* lineno parameters are present, they will be used when
* reporting syntax errors.
*
* def get_binding(param)
* return binding
* end
* b = get_binding("hello")
* b.eval("param") #=> "hello"
*/
static VALUE
bind_eval(int argc, VALUE *argv, VALUE bindval)
{
VALUE args[4];
rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
args[1] = bindval;
return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */);
}
static VALUE
proc_new(VALUE klass, int is_lambda)
{
VALUE procval = Qnil;
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = th->cfp;
rb_block_t *block;
if ((block = rb_vm_control_frame_block_ptr(cfp)) != 0) {
/* block found */
}
else {
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
if ((block = rb_vm_control_frame_block_ptr(cfp)) != 0) {
if (is_lambda) {
rb_warn("tried to create Proc object without a block");
}
}
else {
rb_raise(rb_eArgError,
"tried to create Proc object without a block");
}
}
procval = block->proc;
if (procval) {
if (RBASIC(procval)->klass == klass) {
return procval;
}
else {
VALUE newprocval = proc_dup(procval);
RBASIC_SET_CLASS(newprocval, klass);
return newprocval;
}
}
procval = rb_vm_make_proc(th, block, klass);
if (is_lambda) {
rb_proc_t *proc;
GetProcPtr(procval, proc);
proc->is_lambda = TRUE;
}
return procval;
}
/*
* call-seq:
* Proc.new {|...| block } -> a_proc
* Proc.new -> a_proc
*
* Creates a new Proc
object, bound to the current
* context. Proc::new
may be called without a block only
* within a method with an attached block, in which case that block is
* converted to the Proc
object.
*
* def proc_from
* Proc.new
* end
* proc = proc_from { "hello" }
* proc.call #=> "hello"
*/
static VALUE
rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
{
VALUE block = proc_new(klass, FALSE);
rb_obj_call_init(block, argc, argv);
return block;
}
/*
* call-seq:
* proc { |...| block } -> a_proc
*
* Equivalent to Proc.new
.
*/
VALUE
rb_block_proc(void)
{
return proc_new(rb_cProc, FALSE);
}
/*
* call-seq:
* lambda { |...| block } -> a_proc
*
* Equivalent to Proc.new
, except the resulting Proc objects
* check the number of parameters passed when called.
*/
VALUE
rb_block_lambda(void)
{
return proc_new(rb_cProc, TRUE);
}
VALUE
rb_f_lambda(void)
{
rb_warn("rb_f_lambda() is deprecated; use rb_block_proc() instead");
return rb_block_lambda();
}
/* Document-method: ===
*
* call-seq:
* proc === obj -> result_of_proc
*
* Invokes the block with +obj+ as the proc's parameter like Proc#call. It
* is to allow a proc object to be a target of +when+ clause in a case
* statement.
*/
/* CHECKME: are the argument checking semantics correct? */
/*
* call-seq:
* prc.call(params,...) -> obj
* prc[params,...] -> obj
* prc.(params,...) -> obj
*
* Invokes the block, setting the block's parameters to the values in
* params using something close to method calling semantics.
* Generates a warning if multiple values are passed to a proc that
* expects just one (previously this silently converted the parameters
* to an array). Note that prc.() invokes prc.call() with the parameters
* given. It's a syntax sugar to hide "call".
*
* For procs created using lambda
or ->()
an error
* is generated if the wrong number of parameters are passed to a Proc with
* multiple parameters. For procs created using Proc.new
or
* Kernel.proc
, extra parameters are silently discarded.
*
* Returns the value of the last expression evaluated in the block. See
* also Proc#yield
.
*
* a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
* a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
* a_proc[9, 1, 2, 3] #=> [9, 18, 27]
* a_proc = lambda {|a,b| a}
* a_proc.call(1,2,3)
*
* produces:
*
* prog.rb:4:in `block in ': wrong number of arguments (3 for 2) (ArgumentError)
* from prog.rb:5:in `call'
* from prog.rb:5:in `'
*
*/
static VALUE
proc_call(int argc, VALUE *argv, VALUE procval)
{
VALUE vret;
rb_proc_t *proc;
rb_block_t *blockptr = 0;
rb_iseq_t *iseq;
VALUE passed_procval;
GetProcPtr(procval, proc);
iseq = proc->block.iseq;
if (BUILTIN_TYPE(iseq) == T_NODE || iseq->arg_block != -1) {
if (rb_block_given_p()) {
rb_proc_t *passed_proc;
RB_GC_GUARD(passed_procval) = rb_block_proc();
GetProcPtr(passed_procval, passed_proc);
blockptr = &passed_proc->block;
}
}
vret = rb_vm_invoke_proc(GET_THREAD(), proc, argc, argv, blockptr);
RB_GC_GUARD(procval);
return vret;
}
#if SIZEOF_LONG > SIZEOF_INT
static inline int
check_argc(long argc)
{
if (argc > INT_MAX || argc < 0) {
rb_raise(rb_eArgError, "too many arguments (%lu)",
(unsigned long)argc);
}
return (int)argc;
}
#else
#define check_argc(argc) (argc)
#endif
VALUE
rb_proc_call(VALUE self, VALUE args)
{
VALUE vret;
rb_proc_t *proc;
GetProcPtr(self, proc);
vret = rb_vm_invoke_proc(GET_THREAD(), proc,
check_argc(RARRAY_LEN(args)), RARRAY_PTR(args), 0);
RB_GC_GUARD(self);
RB_GC_GUARD(args);
return vret;
}
VALUE
rb_proc_call_with_block(VALUE self, int argc, VALUE *argv, VALUE pass_procval)
{
VALUE vret;
rb_proc_t *proc;
rb_block_t *block = 0;
GetProcPtr(self, proc);
if (!NIL_P(pass_procval)) {
rb_proc_t *pass_proc;
GetProcPtr(pass_procval, pass_proc);
block = &pass_proc->block;
}
vret = rb_vm_invoke_proc(GET_THREAD(), proc, argc, argv, block);
RB_GC_GUARD(self);
RB_GC_GUARD(pass_procval);
return vret;
}
/*
* call-seq:
* prc.arity -> fixnum
*
* Returns the number of arguments that would not be ignored. If the block
* is declared to take no arguments, returns 0. If the block is known
* to take exactly n arguments, returns n. If the block has optional
* arguments, return -n-1, where n is the number of mandatory
* arguments. A proc
with no argument declarations
* is the same a block declaring ||
as its arguments.
*
* proc {}.arity #=> 0
* proc {||}.arity #=> 0
* proc {|a|}.arity #=> 1
* proc {|a,b|}.arity #=> 2
* proc {|a,b,c|}.arity #=> 3
* proc {|*a|}.arity #=> -1
* proc {|a,*b|}.arity #=> -2
* proc {|a,*b, c|}.arity #=> -3
*
* proc { |x = 0| }.arity #=> 0
* lambda { |a = 0| }.arity #=> -1
* proc { |x=0, y| }.arity #=> 1
* lambda { |x=0, y| }.arity #=> -2
* proc { |x=0, y=0| }.arity #=> 0
* lambda { |x=0, y=0| }.arity #=> -1
* proc { |x, y=0| }.arity #=> 1
* lambda { |x, y=0| }.arity #=> -2
* proc { |(x, y), z=0| }.arity #=> 1
* lambda { |(x, y), z=0| }.arity #=> -2
*/
static VALUE
proc_arity(VALUE self)
{
int arity = rb_proc_arity(self);
return INT2FIX(arity);
}
static inline int
rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max)
{
*max = iseq->arg_rest == -1 ?
iseq->argc + iseq->arg_post_len + iseq->arg_opts - (iseq->arg_opts > 0)
: UNLIMITED_ARGUMENTS;
return iseq->argc + iseq->arg_post_len;
}
static int
rb_block_min_max_arity(rb_block_t *block, int *max)
{
rb_iseq_t *iseq = block->iseq;
if (iseq) {
if (BUILTIN_TYPE(iseq) != T_NODE) {
return rb_iseq_min_max_arity(iseq, max);
}
else {
NODE *node = (NODE *)iseq;
if (IS_METHOD_PROC_NODE(node)) {
/* e.g. method(:foo).to_proc.arity */
return method_min_max_arity(node->nd_tval, max);
}
}
}
*max = UNLIMITED_ARGUMENTS;
return 0;
}
/*
* Returns the number of required parameters and stores the maximum
* number of parameters in max, or UNLIMITED_ARGUMENTS if no max.
* For non-lambda procs, the maximum is the number of non-ignored
* parameters even though there is no actual limit to the number of parameters
*/
static int
rb_proc_min_max_arity(VALUE self, int *max)
{
rb_proc_t *proc;
rb_block_t *block;
GetProcPtr(self, proc);
block = &proc->block;
return rb_block_min_max_arity(block, max);
}
int
rb_proc_arity(VALUE self)
{
rb_proc_t *proc;
int max, min = rb_proc_min_max_arity(self, &max);
GetProcPtr(self, proc);
return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
}
int
rb_block_arity(void)
{
int min, max;
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = th->cfp;
rb_block_t *block = rb_vm_control_frame_block_ptr(cfp);
VALUE proc_value;
if (!block) rb_raise(rb_eArgError, "no block given");
min = rb_block_min_max_arity(block, &max);
proc_value = block->proc;
if (proc_value) {
rb_proc_t *proc;
GetProcPtr(proc_value, proc);
if (proc)
return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
}
return max != UNLIMITED_ARGUMENTS ? min : -min-1;
}
#define get_proc_iseq rb_proc_get_iseq
rb_iseq_t *
rb_proc_get_iseq(VALUE self, int *is_proc)
{
rb_proc_t *proc;
rb_iseq_t *iseq;
GetProcPtr(self, proc);
iseq = proc->block.iseq;
if (is_proc) *is_proc = !proc->is_lambda;
if (!RUBY_VM_NORMAL_ISEQ_P(iseq)) {
NODE *node = (NODE *)iseq;
iseq = 0;
if (IS_METHOD_PROC_NODE(node)) {
/* method(:foo).to_proc */
iseq = rb_method_get_iseq(node->nd_tval);
if (is_proc) *is_proc = 0;
}
}
return iseq;
}
static VALUE
iseq_location(rb_iseq_t *iseq)
{
VALUE loc[2];
if (!iseq) return Qnil;
loc[0] = iseq->location.path;
if (iseq->line_info_table) {
loc[1] = INT2FIX(rb_iseq_first_lineno(iseq));
}
else {
loc[1] = Qnil;
}
return rb_ary_new4(2, loc);
}
/*
* call-seq:
* prc.source_location -> [String, Fixnum]
*
* Returns the Ruby source filename and line number containing this proc
* or +nil+ if this proc was not defined in Ruby (i.e. native)
*/
VALUE
rb_proc_location(VALUE self)
{
return iseq_location(get_proc_iseq(self, 0));
}
static VALUE
unnamed_parameters(int arity)
{
VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity);
int n = (arity < 0) ? ~arity : arity;
ID req, rest;
CONST_ID(req, "req");
a = rb_ary_new3(1, ID2SYM(req));
OBJ_FREEZE(a);
for (; n; --n) {
rb_ary_push(param, a);
}
if (arity < 0) {
CONST_ID(rest, "rest");
rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest)));
}
return param;
}
/*
* call-seq:
* prc.parameters -> array
*
* Returns the parameter information of this proc.
*
* prc = lambda{|x, y=42, *other|}
* prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]]
*/
static VALUE
rb_proc_parameters(VALUE self)
{
int is_proc;
rb_iseq_t *iseq = get_proc_iseq(self, &is_proc);
if (!iseq) {
return unnamed_parameters(rb_proc_arity(self));
}
return rb_iseq_parameters(iseq, is_proc);
}
st_index_t
rb_hash_proc(st_index_t hash, VALUE prc)
{
rb_proc_t *proc;
GetProcPtr(prc, proc);
hash = rb_hash_uint(hash, (st_index_t)proc->block.iseq);
hash = rb_hash_uint(hash, (st_index_t)proc->envval);
return rb_hash_uint(hash, (st_index_t)proc->block.ep >> 16);
}
/*
* call-seq:
* prc.hash -> integer
*
* Returns a hash value corresponding to proc body.
*/
static VALUE
proc_hash(VALUE self)
{
st_index_t hash;
hash = rb_hash_start(0);
hash = rb_hash_proc(hash, self);
hash = rb_hash_end(hash);
return LONG2FIX(hash);
}
/*
* call-seq:
* prc.to_s -> string
*
* Returns the unique identifier for this proc, along with
* an indication of where the proc was defined.
*/
static VALUE
proc_to_s(VALUE self)
{
VALUE str = 0;
rb_proc_t *proc;
const char *cname = rb_obj_classname(self);
rb_iseq_t *iseq;
const char *is_lambda;
GetProcPtr(self, proc);
iseq = proc->block.iseq;
is_lambda = proc->is_lambda ? " (lambda)" : "";
if (RUBY_VM_NORMAL_ISEQ_P(iseq)) {
int first_lineno = 0;
if (iseq->line_info_table) {
first_lineno = rb_iseq_first_lineno(iseq);
}
str = rb_sprintf("#<%s:%p@%"PRIsVALUE":%d%s>", cname, (void *)self,
iseq->location.path, first_lineno, is_lambda);
}
else {
str = rb_sprintf("#<%s:%p%s>", cname, (void *)proc->block.iseq,
is_lambda);
}
if (OBJ_TAINTED(self)) {
OBJ_TAINT(str);
}
return str;
}
/*
* call-seq:
* prc.to_proc -> prc
*
* Part of the protocol for converting objects to Proc
* objects. Instances of class Proc
simply return
* themselves.
*/
static VALUE
proc_to_proc(VALUE self)
{
return self;
}
static void
bm_mark(void *ptr)
{
struct METHOD *data = ptr;
rb_gc_mark(data->defined_class);
rb_gc_mark(data->rclass);
rb_gc_mark(data->recv);
if (data->me) rb_mark_method_entry(data->me);
}
static void
bm_free(void *ptr)
{
struct METHOD *data = ptr;
struct unlinked_method_entry_list_entry *ume = data->ume;
data->me->mark = 0;
ume->me = data->me;
ume->next = GET_VM()->unlinked_method_entry_list;
GET_VM()->unlinked_method_entry_list = ume;
xfree(ptr);
}
static size_t
bm_memsize(const void *ptr)
{
return ptr ? sizeof(struct METHOD) : 0;
}
static const rb_data_type_t method_data_type = {
"method",
{
bm_mark,
bm_free,
bm_memsize,
},
};
VALUE
rb_obj_is_method(VALUE m)
{
if (rb_typeddata_is_kind_of(m, &method_data_type)) {
return Qtrue;
}
else {
return Qfalse;
}
}
static VALUE
mnew_from_me(rb_method_entry_t *me, VALUE defined_class, VALUE klass,
VALUE obj, ID id, VALUE mclass, int scope)
{
VALUE method;
VALUE rclass = klass;
ID rid = id;
struct METHOD *data;
rb_method_entry_t meb;
rb_method_definition_t *def = 0;
rb_method_flag_t flag = NOEX_UNDEF;
again:
if (UNDEFINED_METHOD_ENTRY_P(me)) {
ID rmiss = idRespond_to_missing;
VALUE sym = ID2SYM(id);
if (obj != Qundef && !rb_method_basic_definition_p(klass, rmiss)) {
if (RTEST(rb_funcall(obj, rmiss, 2, sym, scope ? Qfalse : Qtrue))) {
def = ALLOC(rb_method_definition_t);
def->type = VM_METHOD_TYPE_MISSING;
def->original_id = id;
def->alias_count = 0;
meb.flag = 0;
meb.mark = 0;
meb.called_id = id;
meb.klass = klass;
meb.def = def;
me = &meb;
def = 0;
goto gen_method;
}
}
rb_print_undef(klass, id, 0);
}
def = me->def;
if (flag == NOEX_UNDEF) {
flag = me->flag;
if (scope && (flag & NOEX_MASK) != NOEX_PUBLIC) {
const char *v = "";
switch (flag & NOEX_MASK) {
case NOEX_PRIVATE: v = "private"; break;
case NOEX_PROTECTED: v = "protected"; break;
}
rb_name_error(id, "method `%s' for %s `%s' is %s",
rb_id2name(id),
(RB_TYPE_P(klass, T_MODULE)) ? "module" : "class",
rb_class2name(klass),
v);
}
}
if (def && def->type == VM_METHOD_TYPE_ZSUPER) {
klass = RCLASS_SUPER(defined_class);
id = def->original_id;
me = rb_method_entry_without_refinements(klass, id, &defined_class);
goto again;
}
klass = defined_class;
while (rclass != klass &&
(FL_TEST(rclass, FL_SINGLETON) || RB_TYPE_P(rclass, T_ICLASS))) {
rclass = RCLASS_SUPER(rclass);
}
if (RB_TYPE_P(klass, T_ICLASS)) {
klass = RBASIC(klass)->klass;
}
gen_method:
method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
data->recv = obj;
data->rclass = rclass;
data->defined_class = defined_class;
data->id = rid;
data->me = ALLOC(rb_method_entry_t);
*data->me = *me;
data->me->def->alias_count++;
data->ume = ALLOC(struct unlinked_method_entry_list_entry);
OBJ_INFECT(method, klass);
return method;
}
static VALUE
mnew(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope)
{
VALUE defined_class;
rb_method_entry_t *me =
rb_method_entry_without_refinements(klass, id, &defined_class);
return mnew_from_me(me, defined_class, klass, obj, id, mclass, scope);
}
/**********************************************************************
*
* Document-class : Method
*
* Method objects are created by Object#method
, and are
* associated with a particular object (not just with a class). They
* may be used to invoke the method within the object, and as a block
* associated with an iterator. They may also be unbound from one
* object (creating an UnboundMethod
) and bound to
* another.
*
* class Thing
* def square(n)
* n*n
* end
* end
* thing = Thing.new
* meth = thing.method(:square)
*
* meth.call(9) #=> 81
* [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
*
*/
/*
* call-seq:
* meth.eql?(other_meth) -> true or false
* meth == other_meth -> true or false
*
* Two method objects are equal if they are bound to the same
* object and refer to the same method definition and their owners are the
* same class or module.
*/
static VALUE
method_eq(VALUE method, VALUE other)
{
struct METHOD *m1, *m2;
if (!rb_obj_is_method(other))
return Qfalse;
if (CLASS_OF(method) != CLASS_OF(other))
return Qfalse;
Check_TypedStruct(method, &method_data_type);
m1 = (struct METHOD *)DATA_PTR(method);
m2 = (struct METHOD *)DATA_PTR(other);
if (!rb_method_entry_eq(m1->me, m2->me) ||
m1->rclass != m2->rclass ||
m1->recv != m2->recv) {
return Qfalse;
}
return Qtrue;
}
/*
* call-seq:
* meth.hash -> integer
*
* Returns a hash value corresponding to the method object.
*/
static VALUE
method_hash(VALUE method)
{
struct METHOD *m;
st_index_t hash;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, m);
hash = rb_hash_start((st_index_t)m->rclass);
hash = rb_hash_uint(hash, (st_index_t)m->recv);
hash = rb_hash_method_entry(hash, m->me);
hash = rb_hash_end(hash);
return INT2FIX(hash);
}
/*
* call-seq:
* meth.unbind -> unbound_method
*
* Dissociates meth from its current receiver. The resulting
* UnboundMethod
can subsequently be bound to a new object
* of the same class (see UnboundMethod
).
*/
static VALUE
method_unbind(VALUE obj)
{
VALUE method;
struct METHOD *orig, *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig);
method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD,
&method_data_type, data);
data->recv = Qundef;
data->id = orig->id;
data->me = ALLOC(rb_method_entry_t);
*data->me = *orig->me;
if (orig->me->def) orig->me->def->alias_count++;
data->rclass = orig->rclass;
data->defined_class = orig->defined_class;
data->ume = ALLOC(struct unlinked_method_entry_list_entry);
OBJ_INFECT(method, obj);
return method;
}
/*
* call-seq:
* meth.receiver -> object
*
* Returns the bound receiver of the method object.
*/
static VALUE
method_receiver(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return data->recv;
}
/*
* call-seq:
* meth.name -> symbol
*
* Returns the name of the method.
*/
static VALUE
method_name(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return ID2SYM(data->id);
}
/*
* call-seq:
* meth.original_name -> symbol
*
* Returns the original name of the method.
*/
static VALUE
method_original_name(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return ID2SYM(data->me->def->original_id);
}
/*
* call-seq:
* meth.owner -> class_or_module
*
* Returns the class or module that defines the method.
*/
static VALUE
method_owner(VALUE obj)
{
struct METHOD *data;
TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
return data->me->klass;
}
void
rb_method_name_error(VALUE klass, VALUE str)
{
const char *s0 = " class";
VALUE c = klass;
if (FL_TEST(c, FL_SINGLETON)) {
VALUE obj = rb_ivar_get(klass, attached);
switch (TYPE(obj)) {
case T_MODULE:
case T_CLASS:
c = obj;
s0 = "";
}
}
else if (RB_TYPE_P(c, T_MODULE)) {
s0 = " module";
}
rb_name_error_str(str, "undefined method `%"PRIsVALUE"' for%s `%"PRIsVALUE"'",
QUOTE(str), s0, rb_class_name(c));
}
/*
* call-seq:
* obj.method(sym) -> method
*
* Looks up the named method as a receiver in obj, returning a
* Method
object (or raising NameError
). The
* Method
object acts as a closure in obj's object
* instance, so instance variables and the value of self
* remain available.
*
* class Demo
* def initialize(n)
* @iv = n
* end
* def hello()
* "Hello, @iv = #{@iv}"
* end
* end
*
* k = Demo.new(99)
* m = k.method(:hello)
* m.call #=> "Hello, @iv = 99"
*
* l = Demo.new('Fred')
* m = l.method("hello")
* m.call #=> "Hello, @iv = Fred"
*/
VALUE
rb_obj_method(VALUE obj, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(CLASS_OF(obj), vid);
}
return mnew(CLASS_OF(obj), obj, id, rb_cMethod, FALSE);
}
/*
* call-seq:
* obj.public_method(sym) -> method
*
* Similar to _method_, searches public method only.
*/
VALUE
rb_obj_public_method(VALUE obj, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(CLASS_OF(obj), vid);
}
return mnew(CLASS_OF(obj), obj, id, rb_cMethod, TRUE);
}
/*
* call-seq:
* obj.singleton_method(sym) -> method
*
* Similar to _method_, searches singleton method only.
*
* class Demo
* def initialize(n)
* @iv = n
* end
* def hello()
* "Hello, @iv = #{@iv}"
* end
* end
*
* k = Demo.new(99)
* def k.hi
* "Hi, @iv = #{@iv}"
* end
* m = k.singleton_method(:hi)
* m.call #=> "Hi, @iv = 99"
* m = k.singleton_method(:hello) #=> NameError
*/
VALUE
rb_obj_singleton_method(VALUE obj, VALUE vid)
{
rb_method_entry_t *me;
VALUE klass;
ID id = rb_check_id(&vid);
if (!id) {
rb_name_error_str(vid, "undefined singleton method `%"PRIsVALUE"' for `%"PRIsVALUE"'",
QUOTE(vid), obj);
}
if (NIL_P(klass = rb_singleton_class_get(obj)) ||
!(me = rb_method_entry_at(klass, id))) {
rb_name_error(id, "undefined singleton method `%"PRIsVALUE"' for `%"PRIsVALUE"'",
QUOTE_ID(id), obj);
}
return mnew_from_me(me, klass, klass, obj, id, rb_cMethod, FALSE);
}
/*
* call-seq:
* mod.instance_method(symbol) -> unbound_method
*
* Returns an +UnboundMethod+ representing the given
* instance method in _mod_.
*
* class Interpreter
* def do_a() print "there, "; end
* def do_d() print "Hello "; end
* def do_e() print "!\n"; end
* def do_v() print "Dave"; end
* Dispatcher = {
* "a" => instance_method(:do_a),
* "d" => instance_method(:do_d),
* "e" => instance_method(:do_e),
* "v" => instance_method(:do_v)
* }
* def interpret(string)
* string.each_char {|b| Dispatcher[b].bind(self).call }
* end
* end
*
* interpreter = Interpreter.new
* interpreter.interpret('dave')
*
* produces:
*
* Hello there, Dave!
*/
static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
}
/*
* call-seq:
* mod.public_instance_method(symbol) -> unbound_method
*
* Similar to _instance_method_, searches public method only.
*/
static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
ID id = rb_check_id(&vid);
if (!id) {
rb_method_name_error(mod, vid);
}
return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
}
/*
* call-seq:
* define_method(symbol, method) -> new_method
* define_method(symbol) { block } -> proc
*
* Defines an instance method in the receiver. The _method_
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
* If a block is specified, it is used as the method body. This block
* is evaluated using instance_eval
, a point that is
* tricky to demonstrate because define_method
is private.
* (This is why we resort to the +send+ hack in this example.)
*
* class A
* def fred
* puts "In Fred"
* end
* def create_method(name, &block)
* self.class.send(:define_method, name, &block)
* end
* define_method(:wilma) { puts "Charge it!" }
* end
* class B < A
* define_method(:barney, instance_method(:fred))
* end
* a = B.new
* a.barney
* a.wilma
* a.create_method(:betty) { p self }
* a.betty
*
* produces:
*
* In Fred
* Charge it!
* #
*/
static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
ID id;
VALUE body;
int noex = (int)rb_vm_cref()->nd_visi;
if (argc == 1) {
id = rb_to_id(argv[0]);
body = rb_block_lambda();
}
else {
rb_check_arity(argc, 1, 2);
id = rb_to_id(argv[0]);
body = argv[1];
if (!rb_obj_is_method(body) && !rb_obj_is_proc(body)) {
rb_raise(rb_eTypeError,
"wrong argument type %s (expected Proc/Method)",
rb_obj_classname(body));
}
}
if (rb_obj_is_method(body)) {
struct METHOD *method = (struct METHOD *)DATA_PTR(body);
VALUE rclass = method->rclass;
if (rclass != mod && !RB_TYPE_P(rclass, T_MODULE) &&
!RTEST(rb_class_inherited_p(mod, rclass))) {
if (FL_TEST(rclass, FL_SINGLETON)) {
rb_raise(rb_eTypeError,
"can't bind singleton method to a different class");
}
else {
rb_raise(rb_eTypeError,
"bind argument must be a subclass of %s",
rb_class2name(rclass));
}
}
rb_method_entry_set(mod, id, method->me, noex);
if (noex == NOEX_MODFUNC) {
rb_method_entry_set(rb_singleton_class(mod), id, method->me, NOEX_PUBLIC);
}
}
else if (rb_obj_is_proc(body)) {
rb_proc_t *proc;
body = proc_dup(body);
GetProcPtr(body, proc);
if (BUILTIN_TYPE(proc->block.iseq) != T_NODE) {
proc->block.iseq->defined_method_id = id;
OBJ_WRITE(proc->block.iseq->self, &proc->block.iseq->klass, mod);
proc->is_lambda = TRUE;
proc->is_from_method = TRUE;
proc->block.klass = mod;
}
rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)body, noex);
if (noex == NOEX_MODFUNC) {
rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, NOEX_PUBLIC);
}
}
else {
/* type error */
rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)");
}
return body;
}
/*
* call-seq:
* define_singleton_method(symbol, method) -> new_method
* define_singleton_method(symbol) { block } -> proc
*
* Defines a singleton method in the receiver. The _method_
* parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
* If a block is specified, it is used as the method body.
*
* class A
* class << self
* def class_name
* to_s
* end
* end
* end
* A.define_singleton_method(:who_am_i) do
* "I am: #{class_name}"
* end
* A.who_am_i # ==> "I am: A"
*
* guy = "Bob"
* guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
* guy.hello #=> "Bob: Hello there!"
*/
static VALUE
rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
{
VALUE klass = rb_singleton_class(obj);
return rb_mod_define_method(argc, argv, klass);
}
/*
* define_method(symbol, method) -> new_method
* define_method(symbol) { block } -> proc
*
* Defines a global function by _method_ or the block.
*/
static VALUE
top_define_method(int argc, VALUE *argv, VALUE obj)
{
rb_thread_t *th = GET_THREAD();
VALUE klass;
klass = th->top_wrapper;
if (klass) {
rb_warning("main.define_method in the wrapped load is effective only in wrapper module");
}
else {
klass = rb_cObject;
}
return rb_mod_define_method(argc, argv, klass);
}
/*
* call-seq:
* method.clone -> new_method
*
* Returns a clone of this method.
*
* class A
* def foo
* return "bar"
* end
* end
*
* m = A.new.method(:foo)
* m.call # => "bar"
* n = m.clone.call # => "bar"
*/
static VALUE
method_clone(VALUE self)
{
VALUE clone;
struct METHOD *orig, *data;
TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
CLONESETUP(clone, self);
*data = *orig;
data->me = ALLOC(rb_method_entry_t);
*data->me = *orig->me;
if (data->me->def) data->me->def->alias_count++;
data->ume = ALLOC(struct unlinked_method_entry_list_entry);
return clone;
}
/*
* call-seq:
* meth.call(args, ...) -> obj
* meth[args, ...] -> obj
*
* Invokes the meth with the specified arguments, returning the
* method's return value.
*
* m = 12.method("+")
* m.call(3) #=> 15
* m.call(20) #=> 32
*/
VALUE
rb_method_call(int argc, VALUE *argv, VALUE method)
{
VALUE proc = rb_block_given_p() ? rb_block_proc() : Qnil;
return rb_method_call_with_block(argc, argv, method, proc);
}
VALUE
rb_method_call_with_block(int argc, VALUE *argv, VALUE method, VALUE pass_procval)
{
VALUE result = Qnil; /* OK */
struct METHOD *data;
int state;
volatile int safe = -1;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
if (data->recv == Qundef) {
rb_raise(rb_eTypeError, "can't call unbound method; bind first");
}
PUSH_TAG();
if (OBJ_TAINTED(method)) {
const int safe_level_to_run = 4 /*SAFE_LEVEL_MAX*/;
safe = rb_safe_level();
if (rb_safe_level() < safe_level_to_run) {
rb_set_safe_level_force(safe_level_to_run);
}
}
if ((state = EXEC_TAG()) == 0) {
rb_thread_t *th = GET_THREAD();
rb_block_t *block = 0;
if (!NIL_P(pass_procval)) {
rb_proc_t *pass_proc;
GetProcPtr(pass_procval, pass_proc);
block = &pass_proc->block;
}
th->passed_block = block;
result = rb_vm_call(th, data->recv, data->id, argc, argv, data->me, data->defined_class);
}
POP_TAG();
if (safe >= 0)
rb_set_safe_level_force(safe);
if (state)
JUMP_TAG(state);
return result;
}
/**********************************************************************
*
* Document-class: UnboundMethod
*
* Ruby supports two forms of objectified methods. Class
* Method
is used to represent methods that are associated
* with a particular object: these method objects are bound to that
* object. Bound method objects for an object can be created using
* Object#method
.
*
* Ruby also supports unbound methods; methods objects that are not
* associated with a particular object. These can be created either by
* calling Module#instance_method
or by calling
* unbind
on a bound method object. The result of both of
* these is an UnboundMethod
object.
*
* Unbound methods can only be called after they are bound to an
* object. That object must be be a kind_of? the method's original
* class.
*
* class Square
* def area
* @side * @side
* end
* def initialize(side)
* @side = side
* end
* end
*
* area_un = Square.instance_method(:area)
*
* s = Square.new(12)
* area = area_un.bind(s)
* area.call #=> 144
*
* Unbound methods are a reference to the method at the time it was
* objectified: subsequent changes to the underlying class will not
* affect the unbound method.
*
* class Test
* def test
* :original
* end
* end
* um = Test.instance_method(:test)
* class Test
* def test
* :modified
* end
* end
* t = Test.new
* t.test #=> :modified
* um.bind(t).call #=> :original
*
*/
/*
* call-seq:
* umeth.bind(obj) -> method
*
* Bind umeth to obj. If Klass
was the class
* from which umeth was obtained,
* obj.kind_of?(Klass)
must be true.
*
* class A
* def test
* puts "In test, class = #{self.class}"
* end
* end
* class B < A
* end
* class C < B
* end
*
*
* um = B.instance_method(:test)
* bm = um.bind(C.new)
* bm.call
* bm = um.bind(B.new)
* bm.call
* bm = um.bind(A.new)
* bm.call
*
* produces:
*
* In test, class = C
* In test, class = B
* prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
* from prog.rb:16
*/
static VALUE
umethod_bind(VALUE method, VALUE recv)
{
struct METHOD *data, *bound;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
if (!RB_TYPE_P(data->rclass, T_MODULE) &&
data->rclass != CLASS_OF(recv) && !rb_obj_is_kind_of(recv, data->rclass)) {
if (FL_TEST(data->rclass, FL_SINGLETON)) {
rb_raise(rb_eTypeError,
"singleton method called for a different object");
}
else {
rb_raise(rb_eTypeError, "bind argument must be an instance of %s",
rb_class2name(data->rclass));
}
}
method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound);
*bound = *data;
bound->me = ALLOC(rb_method_entry_t);
*bound->me = *data->me;
if (bound->me->def) bound->me->def->alias_count++;
bound->recv = recv;
bound->rclass = CLASS_OF(recv);
data->ume = ALLOC(struct unlinked_method_entry_list_entry);
return method;
}
/*
* Returns the number of required parameters and stores the maximum
* number of parameters in max, or UNLIMITED_ARGUMENTS
* if there is no maximum.
*/
static int
rb_method_entry_min_max_arity(const rb_method_entry_t *me, int *max)
{
const rb_method_definition_t *def = me->def;
if (!def) return *max = 0;
switch (def->type) {
case VM_METHOD_TYPE_CFUNC:
if (def->body.cfunc.argc < 0) {
*max = UNLIMITED_ARGUMENTS;
return 0;
}
return *max = check_argc(def->body.cfunc.argc);
case VM_METHOD_TYPE_ZSUPER:
*max = UNLIMITED_ARGUMENTS;
return 0;
case VM_METHOD_TYPE_ATTRSET:
return *max = 1;
case VM_METHOD_TYPE_IVAR:
return *max = 0;
case VM_METHOD_TYPE_BMETHOD:
return rb_proc_min_max_arity(def->body.proc, max);
case VM_METHOD_TYPE_ISEQ: {
rb_iseq_t *iseq = def->body.iseq;
return rb_iseq_min_max_arity(iseq, max);
}
case VM_METHOD_TYPE_UNDEF:
case VM_METHOD_TYPE_NOTIMPLEMENTED:
return *max = 0;
case VM_METHOD_TYPE_MISSING:
*max = UNLIMITED_ARGUMENTS;
return 0;
case VM_METHOD_TYPE_OPTIMIZED: {
switch (def->body.optimize_type) {
case OPTIMIZED_METHOD_TYPE_SEND:
*max = UNLIMITED_ARGUMENTS;
return 0;
default:
break;
}
break;
}
case VM_METHOD_TYPE_REFINED:
*max = UNLIMITED_ARGUMENTS;
return 0;
}
rb_bug("rb_method_entry_min_max_arity: invalid method entry type (%d)", def->type);
UNREACHABLE;
}
int
rb_method_entry_arity(const rb_method_entry_t *me)
{
int max, min = rb_method_entry_min_max_arity(me, &max);
return min == max ? min : -min-1;
}
/*
* call-seq:
* meth.arity -> fixnum
*
* Returns an indication of the number of arguments accepted by a
* method. Returns a nonnegative integer for methods that take a fixed
* number of arguments. For Ruby methods that take a variable number of
* arguments, returns -n-1, where n is the number of required
* arguments. For methods written in C, returns -1 if the call takes a
* variable number of arguments.
*
* class C
* def one; end
* def two(a); end
* def three(*a); end
* def four(a, b); end
* def five(a, b, *c); end
* def six(a, b, *c, &d); end
* end
* c = C.new
* c.method(:one).arity #=> 0
* c.method(:two).arity #=> 1
* c.method(:three).arity #=> -1
* c.method(:four).arity #=> 2
* c.method(:five).arity #=> -3
* c.method(:six).arity #=> -3
*
* "cat".method(:size).arity #=> 0
* "cat".method(:replace).arity #=> 1
* "cat".method(:squeeze).arity #=> -1
* "cat".method(:count).arity #=> -1
*/
static VALUE
method_arity_m(VALUE method)
{
int n = method_arity(method);
return INT2FIX(n);
}
static int
method_arity(VALUE method)
{
struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
return rb_method_entry_arity(data->me);
}
static rb_method_entry_t *
original_method_entry(VALUE mod, ID id)
{
VALUE rclass;
rb_method_entry_t *me;
while ((me = rb_method_entry(mod, id, &rclass)) != 0) {
rb_method_definition_t *def = me->def;
if (!def) break;
if (def->type != VM_METHOD_TYPE_ZSUPER) break;
mod = RCLASS_SUPER(rclass);
id = def->original_id;
}
return me;
}
static int
method_min_max_arity(VALUE method, int *max)
{
struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
return rb_method_entry_min_max_arity(data->me, max);
}
int
rb_mod_method_arity(VALUE mod, ID id)
{
rb_method_entry_t *me = original_method_entry(mod, id);
if (!me) return 0; /* should raise? */
return rb_method_entry_arity(me);
}
int
rb_obj_method_arity(VALUE obj, ID id)
{
return rb_mod_method_arity(CLASS_OF(obj), id);
}
static inline rb_method_definition_t *
method_get_def(VALUE method)
{
struct METHOD *data;
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
return data->me->def;
}
static rb_iseq_t *
method_get_iseq(rb_method_definition_t *def)
{
switch (def->type) {
case VM_METHOD_TYPE_BMETHOD:
return get_proc_iseq(def->body.proc, 0);
case VM_METHOD_TYPE_ISEQ:
return def->body.iseq;
default:
return 0;
}
}
rb_iseq_t *
rb_method_get_iseq(VALUE method)
{
return method_get_iseq(method_get_def(method));
}
static VALUE
method_def_location(rb_method_definition_t *def)
{
if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) {
if (!def->body.attr.location)
return Qnil;
return rb_ary_dup(def->body.attr.location);
}
return iseq_location(method_get_iseq(def));
}
VALUE
rb_method_entry_location(rb_method_entry_t *me)
{
if (!me || !me->def) return Qnil;
return method_def_location(me->def);
}
VALUE
rb_mod_method_location(VALUE mod, ID id)
{
rb_method_entry_t *me = original_method_entry(mod, id);
return rb_method_entry_location(me);
}
VALUE
rb_obj_method_location(VALUE obj, ID id)
{
return rb_mod_method_location(CLASS_OF(obj), id);
}
/*
* call-seq:
* meth.source_location -> [String, Fixnum]
*
* Returns the Ruby source filename and line number containing this method
* or nil if this method was not defined in Ruby (i.e. native)
*/
VALUE
rb_method_location(VALUE method)
{
rb_method_definition_t *def = method_get_def(method);
return method_def_location(def);
}
/*
* call-seq:
* meth.parameters -> array
*
* Returns the parameter information of this method.
*/
static VALUE
rb_method_parameters(VALUE method)
{
rb_iseq_t *iseq = rb_method_get_iseq(method);
if (!iseq) {
return unnamed_parameters(method_arity(method));
}
return rb_iseq_parameters(iseq, 0);
}
/*
* call-seq:
* meth.to_s -> string
* meth.inspect -> string
*
* Returns the name of the underlying method.
*
* "cat".method(:count).inspect #=> "#"
*/
static VALUE
method_inspect(VALUE method)
{
struct METHOD *data;
VALUE str;
const char *s;
const char *sharp = "#";
TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
str = rb_str_buf_new2("#<");
s = rb_obj_classname(method);
rb_str_buf_cat2(str, s);
rb_str_buf_cat2(str, ": ");
if (FL_TEST(data->me->klass, FL_SINGLETON)) {
VALUE v = rb_ivar_get(data->me->klass, attached);
if (data->recv == Qundef) {
rb_str_buf_append(str, rb_inspect(data->me->klass));
}
else if (data->recv == v) {
rb_str_buf_append(str, rb_inspect(v));
sharp = ".";
}
else {
rb_str_buf_append(str, rb_inspect(data->recv));
rb_str_buf_cat2(str, "(");
rb_str_buf_append(str, rb_inspect(v));
rb_str_buf_cat2(str, ")");
sharp = ".";
}
}
else {
rb_str_buf_cat2(str, rb_class2name(data->rclass));
if (data->rclass != data->me->klass) {
rb_str_buf_cat2(str, "(");
rb_str_buf_cat2(str, rb_class2name(data->me->klass));
rb_str_buf_cat2(str, ")");
}
}
rb_str_buf_cat2(str, sharp);
rb_str_append(str, rb_id2str(data->id));
if (data->id != data->me->def->original_id) {
rb_str_catf(str, "(%"PRIsVALUE")",
rb_id2str(data->me->def->original_id));
}
if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
rb_str_buf_cat2(str, " (not-implemented)");
}
rb_str_buf_cat2(str, ">");
return str;
}
static VALUE
mproc(VALUE method)
{
return rb_funcall2(rb_mRubyVMFrozenCore, idProc, 0, 0);
}
static VALUE
mlambda(VALUE method)
{
return rb_funcall(rb_mRubyVMFrozenCore, idLambda, 0, 0);
}
static VALUE
bmcall(VALUE args, VALUE method, int argc, VALUE *argv, VALUE passed_proc)
{
volatile VALUE a;
VALUE ret;
if (CLASS_OF(args) != rb_cArray) {
args = rb_ary_new3(1, args);
argc = 1;
}
else {
argc = check_argc(RARRAY_LEN(args));
}
ret = rb_method_call_with_block(argc, RARRAY_PTR(args), method, passed_proc);
RB_GC_GUARD(a) = args;
return ret;
}
VALUE
rb_proc_new(
VALUE (*func)(ANYARGS), /* VALUE yieldarg[, VALUE procarg] */
VALUE val)
{
VALUE procval = rb_iterate(mproc, 0, func, val);
return procval;
}
/*
* call-seq:
* meth.to_proc -> prc
*
* Returns a Proc
object corresponding to this method.
*/
static VALUE
method_proc(VALUE method)
{
VALUE procval;
rb_proc_t *proc;
/*
* class Method
* def to_proc
* proc{|*args|
* self.call(*args)
* }
* end
* end
*/
procval = rb_iterate(mlambda, 0, bmcall, method);
GetProcPtr(procval, proc);
proc->is_from_method = 1;
return procval;
}
/*
* call-seq:
* local_jump_error.exit_value -> obj
*
* Returns the exit value associated with this +LocalJumpError+.
*/
static VALUE
localjump_xvalue(VALUE exc)
{
return rb_iv_get(exc, "@exit_value");
}
/*
* call-seq:
* local_jump_error.reason -> symbol
*
* The reason this block was terminated:
* :break, :redo, :retry, :next, :return, or :noreason.
*/
static VALUE
localjump_reason(VALUE exc)
{
return rb_iv_get(exc, "@reason");
}
/*
* call-seq:
* prc.binding -> binding
*
* Returns the binding associated with prc. Note that
* Kernel#eval
accepts either a Proc
or a
* Binding
object as its second parameter.
*
* def fred(param)
* proc {}
* end
*
* b = fred(99)
* eval("param", b.binding) #=> 99
*/
static VALUE
proc_binding(VALUE self)
{
rb_proc_t *proc;
VALUE bindval;
rb_binding_t *bind;
GetProcPtr(self, proc);
if (RB_TYPE_P((VALUE)proc->block.iseq, T_NODE)) {
if (!IS_METHOD_PROC_NODE((NODE *)proc->block.iseq)) {
rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
}
}
bindval = binding_alloc(rb_cBinding);
GetBindingPtr(bindval, bind);
bind->env = proc->envval;
if (RUBY_VM_NORMAL_ISEQ_P(proc->block.iseq)) {
bind->path = proc->block.iseq->location.path;
bind->first_lineno = rb_iseq_first_lineno(proc->block.iseq);
}
else {
bind->path = Qnil;
bind->first_lineno = 0;
}
return bindval;
}
static VALUE curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc);
static VALUE
make_curry_proc(VALUE proc, VALUE passed, VALUE arity)
{
VALUE args = rb_ary_new3(3, proc, passed, arity);
rb_proc_t *procp;
int is_lambda;
GetProcPtr(proc, procp);
is_lambda = procp->is_lambda;
rb_ary_freeze(passed);
rb_ary_freeze(args);
proc = rb_proc_new(curry, args);
GetProcPtr(proc, procp);
procp->is_lambda = is_lambda;
return proc;
}
static VALUE
curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc)
{
VALUE proc, passed, arity;
proc = RARRAY_AREF(args, 0);
passed = RARRAY_AREF(args, 1);
arity = RARRAY_AREF(args, 2);
passed = rb_ary_plus(passed, rb_ary_new4(argc, argv));
rb_ary_freeze(passed);
if (RARRAY_LEN(passed) < FIX2INT(arity)) {
if (!NIL_P(passed_proc)) {
rb_warn("given block not used");
}
arity = make_curry_proc(proc, passed, arity);
return arity;
}
else {
return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)),
RARRAY_PTR(passed), passed_proc);
}
}
/*
* call-seq:
* prc.curry -> a_proc
* prc.curry(arity) -> a_proc
*
* Returns a curried proc. If the optional arity argument is given,
* it determines the number of arguments.
* A curried proc receives some arguments. If a sufficient number of
* arguments are supplied, it passes the supplied arguments to the original
* proc and returns the result. Otherwise, returns another curried proc that
* takes the rest of arguments.
*
* b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> 6
* p b.curry(5)[1][2][3][4][5] #=> 6
* p b.curry(5)[1, 2][3, 4][5] #=> 6
* p b.curry(1)[1] #=> 1
*
* b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> 10
* p b.curry(5)[1][2][3][4][5] #=> 15
* p b.curry(5)[1, 2][3, 4][5] #=> 15
* p b.curry(1)[1] #=> 1
*
* b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> wrong number of arguments (4 for 3)
* p b.curry(5) #=> wrong number of arguments (5 for 3)
* p b.curry(1) #=> wrong number of arguments (1 for 3)
*
* b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
* p b.curry[1][2][3] #=> 6
* p b.curry[1, 2][3, 4] #=> 10
* p b.curry(5)[1][2][3][4][5] #=> 15
* p b.curry(5)[1, 2][3, 4][5] #=> 15
* p b.curry(1) #=> wrong number of arguments (1 for 3)
*
* b = proc { :foo }
* p b.curry[] #=> :foo
*/
static VALUE
proc_curry(int argc, VALUE *argv, VALUE self)
{
int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity);
VALUE arity;
rb_scan_args(argc, argv, "01", &arity);
if (NIL_P(arity)) {
arity = INT2FIX(min_arity);
}
else {
sarity = FIX2INT(arity);
if (rb_proc_lambda_p(self)) {
rb_check_arity(sarity, min_arity, max_arity);
}
}
return make_curry_proc(self, rb_ary_new(), arity);
}
/*
* Document-class: LocalJumpError
*
* Raised when Ruby can't yield as requested.
*
* A typical scenario is attempting to yield when no block is given:
*
* def call_block
* yield 42
* end
* call_block
*
* raises the exception:
*
* LocalJumpError: no block given (yield)
*
* A more subtle example:
*
* def get_me_a_return
* Proc.new { return 42 }
* end
* get_me_a_return.call
*
* raises the exception:
*
* LocalJumpError: unexpected return
*/
/*
* Document-class: SystemStackError
*
* Raised in case of a stack overflow.
*
* def me_myself_and_i
* me_myself_and_i
* end
* me_myself_and_i
*
* raises the exception:
*
* SystemStackError: stack level too deep
*/
/*
* Proc
objects are blocks of code that have been bound to
* a set of local variables. Once bound, the code may be called in
* different contexts and still access those variables.
*
* def gen_times(factor)
* return Proc.new {|n| n*factor }
* end
*
* times3 = gen_times(3)
* times5 = gen_times(5)
*
* times3.call(12) #=> 36
* times5.call(5) #=> 25
* times3.call(times5.call(4)) #=> 60
*
*/
void
Init_Proc(void)
{
/* Proc */
rb_cProc = rb_define_class("Proc", rb_cObject);
rb_undef_alloc_func(rb_cProc);
rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1);
#if 0 /* incomplete. */
rb_add_method(rb_cProc, rb_intern("call"), VM_METHOD_TYPE_OPTIMIZED,
(void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
rb_add_method(rb_cProc, rb_intern("[]"), VM_METHOD_TYPE_OPTIMIZED,
(void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
rb_add_method(rb_cProc, rb_intern("==="), VM_METHOD_TYPE_OPTIMIZED,
(void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
rb_add_method(rb_cProc, rb_intern("yield"), VM_METHOD_TYPE_OPTIMIZED,
(void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
#else
rb_define_method(rb_cProc, "call", proc_call, -1);
rb_define_method(rb_cProc, "[]", proc_call, -1);
rb_define_method(rb_cProc, "===", proc_call, -1);
rb_define_method(rb_cProc, "yield", proc_call, -1);
#endif
rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
rb_define_method(rb_cProc, "arity", proc_arity, 0);
rb_define_method(rb_cProc, "clone", proc_clone, 0);
rb_define_method(rb_cProc, "dup", proc_dup, 0);
rb_define_method(rb_cProc, "hash", proc_hash, 0);
rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
rb_define_alias(rb_cProc, "inspect", "to_s");
rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0);
rb_define_method(rb_cProc, "binding", proc_binding, 0);
rb_define_method(rb_cProc, "curry", proc_curry, -1);
rb_define_method(rb_cProc, "source_location", rb_proc_location, 0);
rb_define_method(rb_cProc, "parameters", rb_proc_parameters, 0);
/* Exceptions */
rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
sysstack_error = rb_exc_new3(rb_eSysStackError,
rb_obj_freeze(rb_str_new2("stack level too deep")));
OBJ_TAINT(sysstack_error);
/* utility functions */
rb_define_global_function("proc", rb_block_proc, 0);
rb_define_global_function("lambda", rb_block_lambda, 0);
/* Method */
rb_cMethod = rb_define_class("Method", rb_cObject);
rb_undef_alloc_func(rb_cMethod);
rb_undef_method(CLASS_OF(rb_cMethod), "new");
rb_define_method(rb_cMethod, "==", method_eq, 1);
rb_define_method(rb_cMethod, "eql?", method_eq, 1);
rb_define_method(rb_cMethod, "hash", method_hash, 0);
rb_define_method(rb_cMethod, "clone", method_clone, 0);
rb_define_method(rb_cMethod, "call", rb_method_call, -1);
rb_define_method(rb_cMethod, "[]", rb_method_call, -1);
rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
rb_define_method(rb_cMethod, "to_proc", method_proc, 0);
rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
rb_define_method(rb_cMethod, "name", method_name, 0);
rb_define_method(rb_cMethod, "original_name", method_original_name, 0);
rb_define_method(rb_cMethod, "owner", method_owner, 0);
rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
rb_define_method(rb_cMethod, "source_location", rb_method_location, 0);
rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0);
rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1);
rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1);
/* UnboundMethod */
rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
rb_undef_alloc_func(rb_cUnboundMethod);
rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
rb_define_method(rb_cUnboundMethod, "==", method_eq, 1);
rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1);
rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0);
rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0);
rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0);
/* Module#*_method */
rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1);
rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1);
rb_define_private_method(rb_cModule, "define_method", rb_mod_define_method, -1);
/* Kernel */
rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"define_method", top_define_method, -1);
}
/*
* Objects of class Binding
encapsulate the execution
* context at some particular place in the code and retain this context
* for future use. The variables, methods, value of self
,
* and possibly an iterator block that can be accessed in this context
* are all retained. Binding objects can be created using
* Kernel#binding
, and are made available to the callback
* of Kernel#set_trace_func
.
*
* These binding objects can be passed as the second argument of the
* Kernel#eval
method, establishing an environment for the
* evaluation.
*
* class Demo
* def initialize(n)
* @secret = n
* end
* def get_binding
* return binding()
* end
* end
*
* k1 = Demo.new(99)
* b1 = k1.get_binding
* k2 = Demo.new(-3)
* b2 = k2.get_binding
*
* eval("@secret", b1) #=> 99
* eval("@secret", b2) #=> -3
* eval("@secret") #=> nil
*
* Binding objects have no class-specific methods.
*
*/
void
Init_Binding(void)
{
rb_cBinding = rb_define_class("Binding", rb_cObject);
rb_undef_alloc_func(rb_cBinding);
rb_undef_method(CLASS_OF(rb_cBinding), "new");
rb_define_method(rb_cBinding, "clone", binding_clone, 0);
rb_define_method(rb_cBinding, "dup", binding_dup, 0);
rb_define_method(rb_cBinding, "eval", bind_eval, -1);
rb_define_global_function("binding", rb_f_binding, 0);
}