#!/usr/bin/env ruby # frozen_string_literal: true ENV['BUNDLE_GEMFILE'] ||= File.expand_path('./Gemfile', __dir__) require 'bundler/setup' require 'etc' require 'fiddle/import' require 'set' unless build_dir = ARGV.first abort "Usage: #{$0} BUILD_DIR" end # Help ffi-clang find libclang # Hint: apt install libclang1 ENV['LIBCLANG'] ||= Dir.glob("/lib/#{RUBY_PLATFORM}-gnu/libclang-*.so*").grep_v(/-cpp/).sort.last require 'ffi/clang' class Node < Struct.new( :kind, :spelling, :type, :typedef_type, :bitwidth, :sizeof_type, :offsetof, :enum_value, :children, keyword_init: true, ) end # Parse a C header with ffi-clang and return Node objects. # To ease the maintenance, ffi-clang should be used only inside this class. class HeaderParser def initialize(header, cflags:) @translation_unit = FFI::Clang::Index.new.parse_translation_unit(header, cflags, [], {}) end def parse parse_children(@translation_unit.cursor) end private def parse_children(cursor) children = [] cursor.visit_children do |cursor, _parent| children << parse_cursor(cursor) next :continue end children end def parse_cursor(cursor) unless cursor.kind.start_with?('cursor_') raise "unexpected cursor kind: #{cursor.kind}" end kind = cursor.kind.to_s.delete_prefix('cursor_').to_sym children = parse_children(cursor) offsetof = {} if kind == :struct children.select { |c| c.kind == :field_decl }.each do |child| offsetof[child.spelling] = cursor.type.offsetof(child.spelling) end end sizeof_type = nil if %i[struct union].include?(kind) sizeof_type = cursor.type.sizeof end enum_value = nil if kind == :enum_constant_decl enum_value = cursor.enum_value end Node.new( kind: kind, spelling: cursor.spelling, type: cursor.type.spelling, typedef_type: cursor.typedef_type.spelling, bitwidth: cursor.bitwidth, sizeof_type: sizeof_type, offsetof: offsetof, enum_value: enum_value, children: children, ) end end # Convert Node objects to a Ruby binding source. class BindingGenerator BINDGEN_BEG = '### MJIT bindgen begin ###' BINDGEN_END = '### MJIT bindgen end ###' DEFAULTS = { '_Bool' => 'CType::Bool.new' } DEFAULTS.default_proc = proc { |_h, k| "CType::Stub.new(:#{k})" } attr_reader :src # @param src_path [String] # @param uses [Array] # @param values [Hash{ Symbol => Array }] # @param types [Array] # @param dynamic_types [Array] #ifdef-dependent immediate types, which need Primitive.cexpr! for type detection # @param skip_fields [Hash{ Symbol => Array }] Struct fields that are skipped from bindgen # @param ruby_fields [Hash{ Symbol => Array }] Struct VALUE fields that are considered Ruby objects def initialize(src_path:, uses:, values:, types:, dynamic_types:, skip_fields:, ruby_fields:) @preamble, @postamble = split_ambles(src_path) @src = String.new @uses = uses.sort @values = values.transform_values(&:sort) @types = types.sort @dynamic_types = dynamic_types.sort @skip_fields = skip_fields.transform_keys(&:to_s) @ruby_fields = ruby_fields.transform_keys(&:to_s) @references = Set.new end def generate(nodes) println @preamble # Define USE_* macros @uses.each do |use| println " def C.#{use}" println " Primitive.cexpr! %q{ RBOOL(#{use} != 0) }" println " end" println end # Define macros/enums @values.each do |type, values| values.each do |value| println " def C.#{value}" println " Primitive.cexpr! %q{ #{type}2NUM(#{value}) }" println " end" println end end # TODO: Support nested declarations nodes_index = nodes.group_by(&:spelling).transform_values(&:last) # Define types @types.each do |type| unless definition = generate_node(nodes_index[type]) raise "Failed to generate type: #{type}" end println " def C.#{type}" println "@#{type} ||= #{definition}".gsub(/^/, " ").chomp println " end" println end # Define dynamic types @dynamic_types.each do |type| unless generate_node(nodes_index[type])&.start_with?('CType::Immediate') raise "Non-immediate type is given to dynamic_types: #{type}" end println " def C.#{type}" println " @#{type} ||= CType::Immediate.find(Primitive.cexpr!(\"SIZEOF(#{type})\"), Primitive.cexpr!(\"SIGNED_TYPE_P(#{type})\"))" println " end" println end # Leave a stub for types that are referenced but not targeted (@references - @types - @dynamic_types).each do |type| println " def C.#{type}" println " #{DEFAULTS[type]}" println " end" println end print @postamble end private # Return code before BINDGEN_BEG and code after BINDGEN_END def split_ambles(src_path) lines = File.read(src_path).lines preamble_end = lines.index { |l| l.include?(BINDGEN_BEG) } raise "`#{BINDGEN_BEG}` was not found in '#{src_path}'" if preamble_end.nil? postamble_beg = lines.index { |l| l.include?(BINDGEN_END) } raise "`#{BINDGEN_END}` was not found in '#{src_path}'" if postamble_beg.nil? raise "`#{BINDGEN_BEG}` was found after `#{BINDGEN_END}`" if preamble_end >= postamble_beg return lines[0..preamble_end].join, lines[postamble_beg..-1].join end # Generate code from a node. Used for constructing a complex nested node. # @param node [Node] def generate_node(node, sizeof_type: nil) case node&.kind when :struct, :union # node.spelling is often empty for union, but we'd like to give it a name when it has one. buf = +"CType::#{node.kind.to_s.sub(/\A[a-z]/, &:upcase)}.new(\n" buf << " \"#{node.spelling}\", Primitive.cexpr!(\"SIZEOF(#{sizeof_type || node.type})\"),\n" bit_fields_end = node.children.index { |c| c.bitwidth == -1 } || node.children.size # first non-bit field index node.children.each_with_index do |child, i| skip_type = sizeof_type&.gsub(/\(\(struct ([^\)]+) \*\)NULL\)->/, '\1.') || node.spelling next if @skip_fields.fetch(skip_type, []).include?(child.spelling) field_builder = proc do |field, type| if node.kind == :struct to_ruby = @ruby_fields.fetch(node.spelling, []).include?(field) if child.bitwidth > 0 if bit_fields_end <= i # give up offsetof calculation for non-leading bit fields raise "non-leading bit fields are not supported. consider including '#{field}' in skip_fields." end offsetof = node.offsetof.fetch(field) else off_type = sizeof_type || "(*((#{node.type} *)NULL))" offsetof = "Primitive.cexpr!(\"OFFSETOF(#{off_type}, #{field})\")" end " #{field}: [#{type}, #{offsetof}#{', true' if to_ruby}],\n" else " #{field}: #{type},\n" end end case child # BitField is struct-specific. So it must be handled here. in Node[kind: :field_decl, spelling:, bitwidth:, children: [_grandchild]] if bitwidth > 0 buf << field_builder.call(spelling, "CType::BitField.new(#{bitwidth}, #{node.offsetof.fetch(spelling) % 8})") # "(unnamed ...)" struct and union are handled here, which are also struct-specific. in Node[kind: :field_decl, spelling:, type:, children: [grandchild]] if type.match?(/\((unnamed|anonymous) [^)]+\)\z/) if sizeof_type child_type = "#{sizeof_type}.#{child.spelling}" else child_type = "((#{node.type} *)NULL)->#{child.spelling}" end buf << field_builder.call(spelling, generate_node(grandchild, sizeof_type: child_type).gsub(/^/, ' ').sub(/\A +/, '')) # In most cases, we'd like to let generate_type handle the type unless it's "(unnamed ...)". in Node[kind: :field_decl, spelling:, type:] if !type.empty? buf << field_builder.call(spelling, generate_type(type)) else # forward declarations are ignored end end buf << ")" when :typedef_decl case node.children in [child] generate_node(child) in [child, Node[kind: :integer_literal]] generate_node(child) in _ unless node.typedef_type.empty? generate_type(node.typedef_type) end when :enum_decl generate_type('int') when :type_ref generate_type(node.spelling) end end # Generate code from a type name. Used for resolving the name of a simple leaf node. # @param type [String] def generate_type(type) if type.match?(/\[\d+\]\z/) return "CType::Pointer.new { #{generate_type(type.sub!(/\[\d+\]\z/, ''))} }" end type = type.delete_suffix('const') if type.end_with?('*') return "CType::Pointer.new { #{generate_type(type.delete_suffix('*').rstrip)} }" end type = type.gsub(/((const|volatile) )+/, '').rstrip if type.start_with?(/(struct|union|enum) /) target = type.split(' ', 2).last push_target(target) "self.#{target}" else begin ctype = Fiddle::Importer.parse_ctype(type) rescue Fiddle::DLError push_target(type) "self.#{type}" else # Convert any function pointers to void* to workaround FILE* vs int* if ctype == Fiddle::TYPE_VOIDP "CType::Immediate.parse(\"void *\")" else "CType::Immediate.parse(#{type.dump})" end end end end def print(str) @src << str end def println(str = "") @src << str << "\n" end def chomp @src.delete_suffix!("\n") end def rstrip! @src.rstrip! end def push_target(target) unless target.match?(/\A\w+\z/) raise "invalid target: #{target}" end @references << target end end src_dir = File.expand_path('../..', __dir__) src_path = File.join(src_dir, 'mjit_c.rb') build_dir = File.expand_path(build_dir) cflags = [ src_dir, build_dir, File.join(src_dir, 'include'), File.join(build_dir, ".ext/include/#{RUBY_PLATFORM}"), ].map { |dir| "-I#{dir}" } nodes = HeaderParser.new(File.join(src_dir, 'mjit_compiler.h'), cflags: cflags).parse generator = BindingGenerator.new( src_path: src_path, uses: %w[ USE_LAZY_LOAD USE_RVARGC ], values: { INT: %w[ NOT_COMPILED_STACK_SIZE VM_CALL_KW_SPLAT VM_CALL_KW_SPLAT_bit VM_CALL_TAILCALL VM_CALL_TAILCALL_bit VM_METHOD_TYPE_CFUNC VM_METHOD_TYPE_ISEQ ], ULONG: %w[ INVALID_SHAPE_ID SHAPE_MASK ], }, types: %w[ CALL_DATA IC IVC RB_BUILTIN attr_index_t compile_branch compile_status inlined_call_context iseq_inline_constant_cache iseq_inline_constant_cache_entry iseq_inline_iv_cache_entry iseq_inline_storage_entry mjit_options rb_builtin_function rb_call_data rb_callable_method_entry_struct rb_callcache rb_callinfo rb_control_frame_t rb_cref_t rb_execution_context_struct rb_execution_context_t rb_iseq_constant_body rb_iseq_location_t rb_iseq_struct rb_iseq_t rb_iv_index_tbl_entry rb_method_definition_struct rb_method_iseq_t rb_method_type_t rb_mjit_compile_info rb_mjit_unit rb_serial_t ], dynamic_types: %w[ VALUE shape_id_t ], skip_fields: { 'rb_execution_context_struct.machine': %w[regs], # differs between macOS and Linux rb_execution_context_struct: %w[method_missing_reason], # non-leading bit fields not supported rb_iseq_constant_body: %w[yjit_payload], # conditionally defined }, ruby_fields: { rb_iseq_location_struct: %w[ base_label first_lineno label pathobj ] }, ) generator.generate(nodes) File.write(src_path, generator.src)