#include "rubysocket.h" #include #if defined(HAVE_ST_MSG_CONTROL) static VALUE rb_cAncillaryData; static VALUE constant_to_sym(int constant, ID (*intern_const)(int)) { ID name = intern_const(constant); if (name) { return ID2SYM(name); } return INT2NUM(constant); } static VALUE ip_cmsg_type_to_sym(int level, int cmsg_type) { switch (level) { case SOL_SOCKET: return constant_to_sym(cmsg_type, rsock_intern_scm_optname); case IPPROTO_IP: return constant_to_sym(cmsg_type, rsock_intern_ip_optname); #ifdef IPPROTO_IPV6 case IPPROTO_IPV6: return constant_to_sym(cmsg_type, rsock_intern_ipv6_optname); #endif case IPPROTO_TCP: return constant_to_sym(cmsg_type, rsock_intern_tcp_optname); case IPPROTO_UDP: return constant_to_sym(cmsg_type, rsock_intern_udp_optname); default: return INT2NUM(cmsg_type); } } /* * call-seq: * Socket::AncillaryData.new(family, cmsg_level, cmsg_type, cmsg_data) -> ancillarydata * * _family_ should be an integer, a string or a symbol. * - Socket::AF_INET, "AF_INET", "INET", :AF_INET, :INET * - Socket::AF_UNIX, "AF_UNIX", "UNIX", :AF_UNIX, :UNIX * - etc. * * _cmsg_level_ should be an integer, a string or a symbol. * - Socket::SOL_SOCKET, "SOL_SOCKET", "SOCKET", :SOL_SOCKET and :SOCKET * - Socket::IPPROTO_IP, "IP" and :IP * - Socket::IPPROTO_IPV6, "IPV6" and :IPV6 * - Socket::IPPROTO_TCP, "TCP" and :TCP * - etc. * * _cmsg_type_ should be an integer, a string or a symbol. * If a string/symbol is specified, it is interpreted depend on _cmsg_level_. * - Socket::SCM_RIGHTS, "SCM_RIGHTS", "RIGHTS", :SCM_RIGHTS, :RIGHTS for SOL_SOCKET * - Socket::IP_RECVTTL, "RECVTTL" and :RECVTTL for IPPROTO_IP * - Socket::IPV6_PKTINFO, "PKTINFO" and :PKTINFO for IPPROTO_IPV6 * - etc. * * _cmsg_data_ should be a string. * * p Socket::AncillaryData.new(:INET, :TCP, :NODELAY, "") * #=> # * * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "") * #=> # * */ static VALUE ancillary_initialize(VALUE self, VALUE vfamily, VALUE vlevel, VALUE vtype, VALUE data) { int family = rsock_family_arg(vfamily); int level = rsock_level_arg(family, vlevel); int type = rsock_cmsg_type_arg(family, level, vtype); StringValue(data); rb_ivar_set(self, rb_intern("family"), INT2NUM(family)); rb_ivar_set(self, rb_intern("level"), INT2NUM(level)); rb_ivar_set(self, rb_intern("type"), INT2NUM(type)); rb_ivar_set(self, rb_intern("data"), data); return self; } static VALUE ancdata_new(int family, int level, int type, VALUE data) { NEWOBJ_OF(obj, struct RObject, rb_cAncillaryData, T_OBJECT); StringValue(data); ancillary_initialize((VALUE)obj, INT2NUM(family), INT2NUM(level), INT2NUM(type), data); return (VALUE)obj; } static int ancillary_family(VALUE self) { VALUE v = rb_attr_get(self, rb_intern("family")); return NUM2INT(v); } /* * call-seq: * ancillarydata.family => integer * * returns the socket family as an integer. * * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "").family * #=> 10 */ static VALUE ancillary_family_m(VALUE self) { return INT2NUM(ancillary_family(self)); } static int ancillary_level(VALUE self) { VALUE v = rb_attr_get(self, rb_intern("level")); return NUM2INT(v); } /* * call-seq: * ancillarydata.level => integer * * returns the cmsg level as an integer. * * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "").level * #=> 41 */ static VALUE ancillary_level_m(VALUE self) { return INT2NUM(ancillary_level(self)); } static int ancillary_type(VALUE self) { VALUE v = rb_attr_get(self, rb_intern("type")); return NUM2INT(v); } /* * call-seq: * ancillarydata.type => integer * * returns the cmsg type as an integer. * * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "").type * #=> 2 */ static VALUE ancillary_type_m(VALUE self) { return INT2NUM(ancillary_type(self)); } /* * call-seq: * ancillarydata.data => string * * returns the cmsg data as a string. * * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "").data * #=> "" */ static VALUE ancillary_data(VALUE self) { VALUE v = rb_attr_get(self, rb_intern("data")); StringValue(v); return v; } #ifdef SCM_RIGHTS /* * call-seq: * Socket::AncillaryData.unix_rights(io1, io2, ...) => ancillarydata * * Creates a new Socket::AncillaryData object which contains file descriptors as data. * * p Socket::AncillaryData.unix_rights(STDERR) * #=> # */ static VALUE ancillary_s_unix_rights(int argc, VALUE *argv, VALUE klass) { VALUE result, str, ary; int i; ary = rb_ary_new(); for (i = 0 ; i < argc; i++) { VALUE obj = argv[i]; if (!RB_TYPE_P(obj, T_FILE)) { rb_raise(rb_eTypeError, "IO expected"); } rb_ary_push(ary, obj); } str = rb_str_buf_new(sizeof(int) * argc); for (i = 0 ; i < argc; i++) { VALUE obj = RARRAY_PTR(ary)[i]; rb_io_t *fptr; int fd; GetOpenFile(obj, fptr); fd = fptr->fd; rb_str_buf_cat(str, (char *)&fd, sizeof(int)); } result = ancdata_new(AF_UNIX, SOL_SOCKET, SCM_RIGHTS, str); rb_ivar_set(result, rb_intern("unix_rights"), ary); return result; } #else #define ancillary_s_unix_rights rb_f_notimplement #endif #ifdef SCM_RIGHTS /* * call-seq: * ancillarydata.unix_rights => array-of-IOs or nil * * returns the array of IO objects for SCM_RIGHTS control message in UNIX domain socket. * * The class of the IO objects in the array is IO or Socket. * * The array is attached to _ancillarydata_ when it is instantiated. * For example, BasicSocket#recvmsg attach the array when * receives a SCM_RIGHTS control message and :scm_rights=>true option is given. * * # recvmsg needs :scm_rights=>true for unix_rights * s1, s2 = UNIXSocket.pair * p s1 #=> # * s1.sendmsg "stdin and a socket", 0, nil, Socket::AncillaryData.unix_rights(STDIN, s1) * _, _, _, ctl = s2.recvmsg(:scm_rights=>true) * p ctl #=> # * p ctl.unix_rights #=> [#, #] * p File.identical?(STDIN, ctl.unix_rights[0]) #=> true * p File.identical?(s1, ctl.unix_rights[1]) #=> true * * # If :scm_rights=>true is not given, unix_rights returns nil * s1, s2 = UNIXSocket.pair * s1.sendmsg "stdin and a socket", 0, nil, Socket::AncillaryData.unix_rights(STDIN, s1) * _, _, _, ctl = s2.recvmsg * p ctl #=> # * p ctl.unix_rights #=> nil * */ static VALUE ancillary_unix_rights(VALUE self) { int level, type; level = ancillary_level(self); type = ancillary_type(self); if (level != SOL_SOCKET || type != SCM_RIGHTS) rb_raise(rb_eTypeError, "SCM_RIGHTS ancillary data expected"); return rb_attr_get(self, rb_intern("unix_rights")); } #else #define ancillary_unix_rights rb_f_notimplement #endif #if defined(SCM_TIMESTAMP) || defined(SCM_TIMESTAMPNS) || defined(SCM_BINTIME) /* * call-seq: * ancillarydata.timestamp => time * * returns the timestamp as a time object. * * _ancillarydata_ should be one of following type: * - SOL_SOCKET/SCM_TIMESTAMP (micro second) GNU/Linux, FreeBSD, NetBSD, OpenBSD, Solaris, MacOS X * - SOL_SOCKET/SCM_TIMESTAMPNS (nano second) GNU/Linux * - SOL_SOCKET/SCM_BINTIME (2**(-64) second) FreeBSD * * Addrinfo.udp("127.0.0.1", 0).bind {|s1| * Addrinfo.udp("127.0.0.1", 0).bind {|s2| * s1.setsockopt(:SOCKET, :TIMESTAMP, true) * s2.send "a", 0, s1.local_address * ctl = s1.recvmsg.last * p ctl #=> # * t = ctl.timestamp * p t #=> 2009-02-24 17:35:46 +0900 * p t.usec #=> 775581 * p t.nsec #=> 775581000 * } * } * */ static VALUE ancillary_timestamp(VALUE self) { int level, type; VALUE data; VALUE result = Qnil; level = ancillary_level(self); type = ancillary_type(self); data = ancillary_data(self); # ifdef SCM_TIMESTAMP if (level == SOL_SOCKET && type == SCM_TIMESTAMP && RSTRING_LEN(data) == sizeof(struct timeval)) { struct timeval tv; memcpy((char*)&tv, RSTRING_PTR(data), sizeof(tv)); result = rb_time_new(tv.tv_sec, tv.tv_usec); } # endif # ifdef SCM_TIMESTAMPNS if (level == SOL_SOCKET && type == SCM_TIMESTAMPNS && RSTRING_LEN(data) == sizeof(struct timespec)) { struct timespec ts; memcpy((char*)&ts, RSTRING_PTR(data), sizeof(ts)); result = rb_time_nano_new(ts.tv_sec, ts.tv_nsec); } # endif #define add(x,y) (rb_funcall((x), '+', 1, (y))) #define mul(x,y) (rb_funcall((x), '*', 1, (y))) #define quo(x,y) (rb_funcall((x), rb_intern("quo"), 1, (y))) # ifdef SCM_BINTIME if (level == SOL_SOCKET && type == SCM_BINTIME && RSTRING_LEN(data) == sizeof(struct bintime)) { struct bintime bt; VALUE d, timev; memcpy((char*)&bt, RSTRING_PTR(data), sizeof(bt)); d = ULL2NUM(0x100000000ULL); d = mul(d,d); timev = add(TIMET2NUM(bt.sec), quo(ULL2NUM(bt.frac), d)); result = rb_time_num_new(timev, Qnil); } # endif if (result == Qnil) rb_raise(rb_eTypeError, "timestamp ancillary data expected"); return result; } #else #define ancillary_timestamp rb_f_notimplement #endif /* * call-seq: * Socket::AncillaryData.int(family, cmsg_level, cmsg_type, integer) => ancillarydata * * Creates a new Socket::AncillaryData object which contains a int as data. * * The size and endian is dependent on the host. * * p Socket::AncillaryData.int(:UNIX, :SOCKET, :RIGHTS, STDERR.fileno) * #=> # */ static VALUE ancillary_s_int(VALUE klass, VALUE vfamily, VALUE vlevel, VALUE vtype, VALUE integer) { int family = rsock_family_arg(vfamily); int level = rsock_level_arg(family, vlevel); int type = rsock_cmsg_type_arg(family, level, vtype); int i = NUM2INT(integer); return ancdata_new(family, level, type, rb_str_new((char*)&i, sizeof(i))); } /* * call-seq: * ancillarydata.int => integer * * Returns the data in _ancillarydata_ as an int. * * The size and endian is dependent on the host. * * ancdata = Socket::AncillaryData.int(:UNIX, :SOCKET, :RIGHTS, STDERR.fileno) * p ancdata.int #=> 2 */ static VALUE ancillary_int(VALUE self) { VALUE data; int i; data = ancillary_data(self); if (RSTRING_LEN(data) != sizeof(int)) rb_raise(rb_eTypeError, "size differ. expected as sizeof(int)=%d but %ld", (int)sizeof(int), (long)RSTRING_LEN(data)); memcpy((char*)&i, RSTRING_PTR(data), sizeof(int)); return INT2NUM(i); } #if defined(IPPROTO_IP) && defined(IP_PKTINFO) && defined(HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST) /* GNU/Linux */ /* * call-seq: * Socket::AncillaryData.ip_pktinfo(addr, ifindex) => ancdata * Socket::AncillaryData.ip_pktinfo(addr, ifindex, spec_dst) => ancdata * * Returns new ancillary data for IP_PKTINFO. * * If spec_dst is not given, addr is used. * * IP_PKTINFO is not standard. * * Supported platform: GNU/Linux * * addr = Addrinfo.ip("127.0.0.1") * ifindex = 0 * spec_dst = Addrinfo.ip("127.0.0.1") * p Socket::AncillaryData.ip_pktinfo(addr, ifindex, spec_dst) * #=> # * */ static VALUE ancillary_s_ip_pktinfo(int argc, VALUE *argv, VALUE self) { VALUE v_addr, v_ifindex, v_spec_dst; unsigned int ifindex; struct sockaddr_in sa; struct in_pktinfo pktinfo; rb_scan_args(argc, argv, "21", &v_addr, &v_ifindex, &v_spec_dst); SockAddrStringValue(v_addr); ifindex = NUM2UINT(v_ifindex); if (NIL_P(v_spec_dst)) v_spec_dst = v_addr; else SockAddrStringValue(v_spec_dst); memset(&pktinfo, 0, sizeof(pktinfo)); memset(&sa, 0, sizeof(sa)); if (RSTRING_LEN(v_addr) != sizeof(sa)) rb_raise(rb_eArgError, "addr size different to AF_INET sockaddr"); memcpy(&sa, RSTRING_PTR(v_addr), sizeof(sa)); if (sa.sin_family != AF_INET) rb_raise(rb_eArgError, "addr is not AF_INET sockaddr"); memcpy(&pktinfo.ipi_addr, &sa.sin_addr, sizeof(pktinfo.ipi_addr)); pktinfo.ipi_ifindex = ifindex; memset(&sa, 0, sizeof(sa)); if (RSTRING_LEN(v_spec_dst) != sizeof(sa)) rb_raise(rb_eArgError, "spec_dat size different to AF_INET sockaddr"); memcpy(&sa, RSTRING_PTR(v_spec_dst), sizeof(sa)); if (sa.sin_family != AF_INET) rb_raise(rb_eArgError, "spec_dst is not AF_INET sockaddr"); memcpy(&pktinfo.ipi_spec_dst, &sa.sin_addr, sizeof(pktinfo.ipi_spec_dst)); return ancdata_new(AF_INET, IPPROTO_IP, IP_PKTINFO, rb_str_new((char *)&pktinfo, sizeof(pktinfo))); } #else #define ancillary_s_ip_pktinfo rb_f_notimplement #endif #if defined(IPPROTO_IP) && defined(IP_PKTINFO) && defined(HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST) /* GNU/Linux */ /* * call-seq: * ancdata.ip_pktinfo => [addr, ifindex, spec_dst] * * Extracts addr, ifindex and spec_dst from IP_PKTINFO ancillary data. * * IP_PKTINFO is not standard. * * Supported platform: GNU/Linux * * addr = Addrinfo.ip("127.0.0.1") * ifindex = 0 * spec_dest = Addrinfo.ip("127.0.0.1") * ancdata = Socket::AncillaryData.ip_pktinfo(addr, ifindex, spec_dest) * p ancdata.ip_pktinfo * #=> [#, 0, #] * * */ static VALUE ancillary_ip_pktinfo(VALUE self) { int level, type; VALUE data; struct in_pktinfo pktinfo; struct sockaddr_in sa; VALUE v_spec_dst, v_addr; level = ancillary_level(self); type = ancillary_type(self); data = ancillary_data(self); if (level != IPPROTO_IP || type != IP_PKTINFO || RSTRING_LEN(data) != sizeof(struct in_pktinfo)) { rb_raise(rb_eTypeError, "IP_PKTINFO ancillary data expected"); } memcpy(&pktinfo, RSTRING_PTR(data), sizeof(struct in_pktinfo)); memset(&sa, 0, sizeof(sa)); sa.sin_family = AF_INET; memcpy(&sa.sin_addr, &pktinfo.ipi_addr, sizeof(sa.sin_addr)); v_addr = rsock_addrinfo_new((struct sockaddr *)&sa, sizeof(sa), PF_INET, 0, 0, Qnil, Qnil); sa.sin_family = AF_INET; memcpy(&sa.sin_addr, &pktinfo.ipi_spec_dst, sizeof(sa.sin_addr)); v_spec_dst = rsock_addrinfo_new((struct sockaddr *)&sa, sizeof(sa), PF_INET, 0, 0, Qnil, Qnil); return rb_ary_new3(3, v_addr, UINT2NUM(pktinfo.ipi_ifindex), v_spec_dst); } #else #define ancillary_ip_pktinfo rb_f_notimplement #endif #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) /* IPv6 RFC3542 */ /* * call-seq: * Socket::AncillaryData.ipv6_pktinfo(addr, ifindex) => ancdata * * Returns new ancillary data for IPV6_PKTINFO. * * IPV6_PKTINFO is defined by RFC 3542. * * addr = Addrinfo.ip("::1") * ifindex = 0 * p Socket::AncillaryData.ipv6_pktinfo(addr, ifindex) * #=> # * */ static VALUE ancillary_s_ipv6_pktinfo(VALUE self, VALUE v_addr, VALUE v_ifindex) { unsigned int ifindex; struct sockaddr_in6 sa; struct in6_pktinfo pktinfo; SockAddrStringValue(v_addr); ifindex = NUM2UINT(v_ifindex); memset(&pktinfo, 0, sizeof(pktinfo)); memset(&sa, 0, sizeof(sa)); if (RSTRING_LEN(v_addr) != sizeof(sa)) rb_raise(rb_eArgError, "addr size different to AF_INET6 sockaddr"); memcpy(&sa, RSTRING_PTR(v_addr), sizeof(sa)); if (sa.sin6_family != AF_INET6) rb_raise(rb_eArgError, "addr is not AF_INET6 sockaddr"); memcpy(&pktinfo.ipi6_addr, &sa.sin6_addr, sizeof(pktinfo.ipi6_addr)); pktinfo.ipi6_ifindex = ifindex; return ancdata_new(AF_INET6, IPPROTO_IPV6, IPV6_PKTINFO, rb_str_new((char *)&pktinfo, sizeof(pktinfo))); } #else #define ancillary_s_ipv6_pktinfo rb_f_notimplement #endif #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) /* IPv6 RFC3542 */ static void extract_ipv6_pktinfo(VALUE self, struct in6_pktinfo *pktinfo_ptr, struct sockaddr_in6 *sa_ptr) { int level, type; VALUE data; level = ancillary_level(self); type = ancillary_type(self); data = ancillary_data(self); if (level != IPPROTO_IPV6 || type != IPV6_PKTINFO || RSTRING_LEN(data) != sizeof(struct in6_pktinfo)) { rb_raise(rb_eTypeError, "IPV6_PKTINFO ancillary data expected"); } memcpy(pktinfo_ptr, RSTRING_PTR(data), sizeof(*pktinfo_ptr)); memset(sa_ptr, 0, sizeof(*sa_ptr)); SET_SA_LEN((struct sockaddr *)sa_ptr, sizeof(struct sockaddr_in6)); sa_ptr->sin6_family = AF_INET6; memcpy(&sa_ptr->sin6_addr, &pktinfo_ptr->ipi6_addr, sizeof(sa_ptr->sin6_addr)); if (IN6_IS_ADDR_LINKLOCAL(&sa_ptr->sin6_addr)) sa_ptr->sin6_scope_id = pktinfo_ptr->ipi6_ifindex; } #endif #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) /* IPv6 RFC3542 */ /* * call-seq: * ancdata.ipv6_pktinfo => [addr, ifindex] * * Extracts addr and ifindex from IPV6_PKTINFO ancillary data. * * IPV6_PKTINFO is defined by RFC 3542. * * addr = Addrinfo.ip("::1") * ifindex = 0 * ancdata = Socket::AncillaryData.ipv6_pktinfo(addr, ifindex) * p ancdata.ipv6_pktinfo #=> [#, 0] * */ static VALUE ancillary_ipv6_pktinfo(VALUE self) { struct in6_pktinfo pktinfo; struct sockaddr_in6 sa; VALUE v_addr; extract_ipv6_pktinfo(self, &pktinfo, &sa); v_addr = rsock_addrinfo_new((struct sockaddr *)&sa, (socklen_t)sizeof(sa), PF_INET6, 0, 0, Qnil, Qnil); return rb_ary_new3(2, v_addr, UINT2NUM(pktinfo.ipi6_ifindex)); } #else #define ancillary_ipv6_pktinfo rb_f_notimplement #endif #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) /* IPv6 RFC3542 */ /* * call-seq: * ancdata.ipv6_pktinfo_addr => addr * * Extracts addr from IPV6_PKTINFO ancillary data. * * IPV6_PKTINFO is defined by RFC 3542. * * addr = Addrinfo.ip("::1") * ifindex = 0 * ancdata = Socket::AncillaryData.ipv6_pktinfo(addr, ifindex) * p ancdata.ipv6_pktinfo_addr #=> # * */ static VALUE ancillary_ipv6_pktinfo_addr(VALUE self) { struct in6_pktinfo pktinfo; struct sockaddr_in6 sa; extract_ipv6_pktinfo(self, &pktinfo, &sa); return rsock_addrinfo_new((struct sockaddr *)&sa, (socklen_t)sizeof(sa), PF_INET6, 0, 0, Qnil, Qnil); } #else #define ancillary_ipv6_pktinfo_addr rb_f_notimplement #endif #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) /* IPv6 RFC3542 */ /* * call-seq: * ancdata.ipv6_pktinfo_ifindex => addr * * Extracts ifindex from IPV6_PKTINFO ancillary data. * * IPV6_PKTINFO is defined by RFC 3542. * * addr = Addrinfo.ip("::1") * ifindex = 0 * ancdata = Socket::AncillaryData.ipv6_pktinfo(addr, ifindex) * p ancdata.ipv6_pktinfo_ifindex #=> 0 * */ static VALUE ancillary_ipv6_pktinfo_ifindex(VALUE self) { struct in6_pktinfo pktinfo; struct sockaddr_in6 sa; extract_ipv6_pktinfo(self, &pktinfo, &sa); return UINT2NUM(pktinfo.ipi6_ifindex); } #else #define ancillary_ipv6_pktinfo_ifindex rb_f_notimplement #endif #if defined(SOL_SOCKET) && defined(SCM_RIGHTS) /* 4.4BSD */ static int anc_inspect_socket_rights(int level, int type, VALUE data, VALUE ret) { if (level == SOL_SOCKET && type == SCM_RIGHTS && 0 < RSTRING_LEN(data) && (RSTRING_LEN(data) % sizeof(int) == 0)) { long off; for (off = 0; off < RSTRING_LEN(data); off += sizeof(int)) { int fd; memcpy((char*)&fd, RSTRING_PTR(data)+off, sizeof(int)); rb_str_catf(ret, " %d", fd); } return 1; } else { return 0; } } #endif #if defined(SCM_CREDENTIALS) /* GNU/Linux */ static int anc_inspect_passcred_credentials(int level, int type, VALUE data, VALUE ret) { if (level == SOL_SOCKET && type == SCM_CREDENTIALS && RSTRING_LEN(data) == sizeof(struct ucred)) { struct ucred cred; memcpy(&cred, RSTRING_PTR(data), sizeof(struct ucred)); rb_str_catf(ret, " pid=%u uid=%u gid=%u", cred.pid, cred.uid, cred.gid); rb_str_cat2(ret, " (ucred)"); return 1; } else { return 0; } } #endif #if defined(SCM_CREDS) #define INSPECT_SCM_CREDS static int anc_inspect_socket_creds(int level, int type, VALUE data, VALUE ret) { if (level != SOL_SOCKET && type != SCM_CREDS) return 0; /* * FreeBSD has struct cmsgcred and struct sockcred. * They use both SOL_SOCKET/SCM_CREDS in the ancillary message. * They are not ambiguous from the view of the caller * because struct sockcred is sent if and only if the caller sets LOCAL_CREDS socket option. * But inspect method doesn't know it. * So they are ambiguous from the view of inspect. * This function distinguish them by the size of the ancillary message. * This heuristics works well except when sc_ngroups == CMGROUP_MAX. */ #if defined(HAVE_TYPE_STRUCT_CMSGCRED) /* FreeBSD */ if (RSTRING_LEN(data) == sizeof(struct cmsgcred)) { struct cmsgcred cred; memcpy(&cred, RSTRING_PTR(data), sizeof(struct cmsgcred)); rb_str_catf(ret, " pid=%u", cred.cmcred_pid); rb_str_catf(ret, " uid=%u", cred.cmcred_uid); rb_str_catf(ret, " euid=%u", cred.cmcred_euid); rb_str_catf(ret, " gid=%u", cred.cmcred_gid); if (cred.cmcred_ngroups) { int i; const char *sep = " groups="; for (i = 0; i < cred.cmcred_ngroups; i++) { rb_str_catf(ret, "%s%u", sep, cred.cmcred_groups[i]); sep = ","; } } rb_str_cat2(ret, " (cmsgcred)"); return 1; } #endif #if defined(HAVE_TYPE_STRUCT_SOCKCRED) /* FreeBSD, NetBSD */ if ((size_t)RSTRING_LEN(data) >= SOCKCREDSIZE(0)) { struct sockcred cred0, *cred; memcpy(&cred0, RSTRING_PTR(data), SOCKCREDSIZE(0)); if ((size_t)RSTRING_LEN(data) == SOCKCREDSIZE(cred0.sc_ngroups)) { cred = (struct sockcred *)ALLOCA_N(char, SOCKCREDSIZE(cred0.sc_ngroups)); memcpy(cred, RSTRING_PTR(data), SOCKCREDSIZE(cred0.sc_ngroups)); rb_str_catf(ret, " uid=%u", cred->sc_uid); rb_str_catf(ret, " euid=%u", cred->sc_euid); rb_str_catf(ret, " gid=%u", cred->sc_gid); rb_str_catf(ret, " egid=%u", cred->sc_egid); if (cred0.sc_ngroups) { int i; const char *sep = " groups="; for (i = 0; i < cred0.sc_ngroups; i++) { rb_str_catf(ret, "%s%u", sep, cred->sc_groups[i]); sep = ","; } } rb_str_cat2(ret, " (sockcred)"); return 1; } } #endif return 0; } #endif #if defined(IPPROTO_IP) && defined(IP_RECVDSTADDR) /* 4.4BSD */ static int anc_inspect_ip_recvdstaddr(int level, int type, VALUE data, VALUE ret) { if (level == IPPROTO_IP && type == IP_RECVDSTADDR && RSTRING_LEN(data) == sizeof(struct in_addr)) { struct in_addr addr; char addrbuf[INET_ADDRSTRLEN]; memcpy(&addr, RSTRING_PTR(data), sizeof(addr)); if (inet_ntop(AF_INET, &addr, addrbuf, (socklen_t)sizeof(addrbuf)) == NULL) rb_str_cat2(ret, " invalid-address"); else rb_str_catf(ret, " %s", addrbuf); return 1; } else { return 0; } } #endif #if defined(IPPROTO_IP) && defined(IP_PKTINFO) && defined(HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST) /* GNU/Linux */ static int anc_inspect_ip_pktinfo(int level, int type, VALUE data, VALUE ret) { if (level == IPPROTO_IP && type == IP_PKTINFO && RSTRING_LEN(data) == sizeof(struct in_pktinfo)) { struct in_pktinfo pktinfo; char buf[INET_ADDRSTRLEN > IFNAMSIZ ? INET_ADDRSTRLEN : IFNAMSIZ]; memcpy(&pktinfo, RSTRING_PTR(data), sizeof(pktinfo)); if (inet_ntop(AF_INET, &pktinfo.ipi_addr, buf, sizeof(buf)) == NULL) rb_str_cat2(ret, " invalid-address"); else rb_str_catf(ret, " %s", buf); if (if_indextoname(pktinfo.ipi_ifindex, buf) == NULL) rb_str_catf(ret, " ifindex:%d", pktinfo.ipi_ifindex); else rb_str_catf(ret, " %s", buf); if (inet_ntop(AF_INET, &pktinfo.ipi_spec_dst, buf, sizeof(buf)) == NULL) rb_str_cat2(ret, " spec_dst:invalid-address"); else rb_str_catf(ret, " spec_dst:%s", buf); return 1; } else { return 0; } } #endif #if defined(IPPROTO_IPV6) && defined(IPV6_PKTINFO) && defined(HAVE_TYPE_STRUCT_IN6_PKTINFO) /* IPv6 RFC3542 */ static int anc_inspect_ipv6_pktinfo(int level, int type, VALUE data, VALUE ret) { if (level == IPPROTO_IPV6 && type == IPV6_PKTINFO && RSTRING_LEN(data) == sizeof(struct in6_pktinfo)) { struct in6_pktinfo *pktinfo = (struct in6_pktinfo *)RSTRING_PTR(data); struct in6_addr addr; unsigned int ifindex; char addrbuf[INET6_ADDRSTRLEN], ifbuf[IFNAMSIZ]; memcpy(&addr, &pktinfo->ipi6_addr, sizeof(addr)); memcpy(&ifindex, &pktinfo->ipi6_ifindex, sizeof(ifindex)); if (inet_ntop(AF_INET6, &addr, addrbuf, (socklen_t)sizeof(addrbuf)) == NULL) rb_str_cat2(ret, " invalid-address"); else rb_str_catf(ret, " %s", addrbuf); if (if_indextoname(ifindex, ifbuf) == NULL) rb_str_catf(ret, " ifindex:%d", ifindex); else rb_str_catf(ret, " %s", ifbuf); return 1; } else { return 0; } } #endif #if defined(SCM_TIMESTAMP) /* GNU/Linux, FreeBSD, NetBSD, OpenBSD, MacOS X, Solaris */ static int inspect_timeval_as_abstime(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(struct timeval)) { struct timeval tv; time_t time; struct tm tm; char buf[32]; memcpy((char*)&tv, RSTRING_PTR(data), sizeof(tv)); time = tv.tv_sec; tm = *localtime(&time); strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", &tm); rb_str_catf(ret, " %s.%06ld", buf, (long)tv.tv_usec); return 1; } else { return 0; } } #endif #if defined(SCM_TIMESTAMPNS) /* GNU/Linux */ static int inspect_timespec_as_abstime(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(struct timespec)) { struct timespec ts; struct tm tm; char buf[32]; memcpy((char*)&ts, RSTRING_PTR(data), sizeof(ts)); tm = *localtime(&ts.tv_sec); strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", &tm); rb_str_catf(ret, " %s.%09ld", buf, (long)ts.tv_nsec); return 1; } else { return 0; } } #endif #if defined(SCM_BINTIME) /* FreeBSD */ static int inspect_bintime_as_abstime(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(struct bintime)) { struct bintime bt; struct tm tm; uint64_t frac_h, frac_l; uint64_t scale_h, scale_l; uint64_t tmp1, tmp2; uint64_t res_h, res_l; char buf[32]; memcpy((char*)&bt, RSTRING_PTR(data), sizeof(bt)); tm = *localtime(&bt.sec); strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", &tm); /* res_h = frac * 10**19 / 2**64 */ frac_h = bt.frac >> 32; frac_l = bt.frac & 0xffffffff; scale_h = 0x8ac72304; /* 0x8ac7230489e80000 == 10**19 */ scale_l = 0x89e80000; res_h = frac_h * scale_h; res_l = frac_l * scale_l; tmp1 = frac_h * scale_l; res_h += tmp1 >> 32; tmp2 = res_l; res_l += tmp1 & 0xffffffff; if (res_l < tmp2) res_h++; tmp1 = frac_l * scale_h; res_h += tmp1 >> 32; tmp2 = res_l; res_l += tmp1 & 0xffffffff; if (res_l < tmp2) res_h++; rb_str_catf(ret, " %s.%019"PRIu64, buf, res_h); return 1; } else { return 0; } } #endif /* * call-seq: * ancillarydata.inspect => string * * returns a string which shows ancillarydata in human-readable form. * * p Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "").inspect * #=> "#" */ static VALUE ancillary_inspect(VALUE self) { VALUE ret; int family, level, type; VALUE data; ID family_id, level_id, type_id; VALUE vtype; int inspected; family = ancillary_family(self); level = ancillary_level(self); type = ancillary_type(self); data = ancillary_data(self); ret = rb_sprintf("#<%s:", rb_obj_classname(self)); family_id = rsock_intern_family_noprefix(family); if (family_id) rb_str_catf(ret, " %s", rb_id2name(family_id)); else rb_str_catf(ret, " family:%d", family); if (level == SOL_SOCKET) { rb_str_cat2(ret, " SOCKET"); type_id = rsock_intern_scm_optname(type); if (type_id) rb_str_catf(ret, " %s", rb_id2name(type_id)); else rb_str_catf(ret, " cmsg_type:%d", type); } else if (IS_IP_FAMILY(family)) { level_id = rsock_intern_iplevel(level); if (level_id) rb_str_catf(ret, " %s", rb_id2name(level_id)); else rb_str_catf(ret, " cmsg_level:%d", level); vtype = ip_cmsg_type_to_sym(level, type); if (SYMBOL_P(vtype)) rb_str_catf(ret, " %s", rb_id2name(SYM2ID(vtype))); else rb_str_catf(ret, " cmsg_type:%d", type); } else { rb_str_catf(ret, " cmsg_level:%d", level); rb_str_catf(ret, " cmsg_type:%d", type); } inspected = 0; if (level == SOL_SOCKET) family = AF_UNSPEC; switch (family) { case AF_UNSPEC: switch (level) { # if defined(SOL_SOCKET) case SOL_SOCKET: switch (type) { # if defined(SCM_TIMESTAMP) /* GNU/Linux, FreeBSD, NetBSD, OpenBSD, MacOS X, Solaris */ case SCM_TIMESTAMP: inspected = inspect_timeval_as_abstime(level, type, data, ret); break; # endif # if defined(SCM_TIMESTAMPNS) /* GNU/Linux */ case SCM_TIMESTAMPNS: inspected = inspect_timespec_as_abstime(level, type, data, ret); break; # endif # if defined(SCM_BINTIME) /* FreeBSD */ case SCM_BINTIME: inspected = inspect_bintime_as_abstime(level, type, data, ret); break; # endif # if defined(SCM_RIGHTS) /* 4.4BSD */ case SCM_RIGHTS: inspected = anc_inspect_socket_rights(level, type, data, ret); break; # endif # if defined(SCM_CREDENTIALS) /* GNU/Linux */ case SCM_CREDENTIALS: inspected = anc_inspect_passcred_credentials(level, type, data, ret); break; # endif # if defined(INSPECT_SCM_CREDS) /* NetBSD */ case SCM_CREDS: inspected = anc_inspect_socket_creds(level, type, data, ret); break; # endif } break; # endif } break; case AF_INET: #ifdef INET6 case AF_INET6: #endif switch (level) { # if defined(IPPROTO_IP) case IPPROTO_IP: switch (type) { # if defined(IP_RECVDSTADDR) /* 4.4BSD */ case IP_RECVDSTADDR: inspected = anc_inspect_ip_recvdstaddr(level, type, data, ret); break; # endif # if defined(IP_PKTINFO) && defined(HAVE_STRUCT_IN_PKTINFO_IPI_SPEC_DST) /* GNU/Linux */ case IP_PKTINFO: inspected = anc_inspect_ip_pktinfo(level, type, data, ret); break; # endif } break; # endif # if defined(IPPROTO_IPV6) case IPPROTO_IPV6: switch (type) { # if defined(IPV6_PKTINFO) /* RFC 3542 */ case IPV6_PKTINFO: inspected = anc_inspect_ipv6_pktinfo(level, type, data, ret); break; # endif } break; # endif } break; } if (!inspected) { rb_str_cat2(ret, " "); rb_str_append(ret, rb_str_dump(data)); } rb_str_cat2(ret, ">"); return ret; } /* * call-seq: * ancillarydata.cmsg_is?(level, type) => true or false * * tests the level and type of _ancillarydata_. * * ancdata = Socket::AncillaryData.new(:INET6, :IPV6, :PKTINFO, "") * ancdata.cmsg_is?(Socket::IPPROTO_IPV6, Socket::IPV6_PKTINFO) #=> true * ancdata.cmsg_is?(:IPV6, :PKTINFO) #=> true * ancdata.cmsg_is?(:IP, :PKTINFO) #=> false * ancdata.cmsg_is?(:SOCKET, :RIGHTS) #=> false */ static VALUE ancillary_cmsg_is_p(VALUE self, VALUE vlevel, VALUE vtype) { int family = ancillary_family(self); int level = rsock_level_arg(family, vlevel); int type = rsock_cmsg_type_arg(family, level, vtype); if (ancillary_level(self) == level && ancillary_type(self) == type) return Qtrue; else return Qfalse; } #endif #if defined(HAVE_SENDMSG) struct sendmsg_args_struct { int fd; const struct msghdr *msg; int flags; }; static void * nogvl_sendmsg_func(void *ptr) { struct sendmsg_args_struct *args = ptr; return (void *)(VALUE)sendmsg(args->fd, args->msg, args->flags); } static ssize_t rb_sendmsg(int fd, const struct msghdr *msg, int flags) { struct sendmsg_args_struct args; args.fd = fd; args.msg = msg; args.flags = flags; return (ssize_t)rb_thread_call_without_gvl(nogvl_sendmsg_func, &args, RUBY_UBF_IO, 0); } static VALUE bsock_sendmsg_internal(int argc, VALUE *argv, VALUE sock, int nonblock) { rb_io_t *fptr; VALUE data, vflags, dest_sockaddr; VALUE *controls_ptr; int controls_num; struct msghdr mh; struct iovec iov; #if defined(HAVE_ST_MSG_CONTROL) volatile VALUE controls_str = 0; #endif int flags; ssize_t ss; int family; rb_secure(4); GetOpenFile(sock, fptr); family = rsock_getfamily(fptr->fd); data = vflags = dest_sockaddr = Qnil; controls_ptr = NULL; controls_num = 0; if (argc == 0) rb_raise(rb_eArgError, "mesg argument required"); data = argv[0]; if (1 < argc) vflags = argv[1]; if (2 < argc) dest_sockaddr = argv[2]; if (3 < argc) { controls_ptr = &argv[3]; controls_num = argc - 3; } StringValue(data); if (controls_num) { #if defined(HAVE_ST_MSG_CONTROL) int i; size_t last_pad = 0; #if defined(__NetBSD__) int last_level = 0; int last_type = 0; #endif controls_str = rb_str_tmp_new(0); for (i = 0; i < controls_num; i++) { VALUE elt = controls_ptr[i], v; VALUE vlevel, vtype; int level, type; VALUE cdata; long oldlen; struct cmsghdr cmh; char *cmsg; size_t cspace; v = rb_check_convert_type(elt, T_ARRAY, "Array", "to_ary"); if (!NIL_P(v)) { elt = v; if (RARRAY_LEN(elt) != 3) rb_raise(rb_eArgError, "an element of controls should be 3-elements array"); vlevel = rb_ary_entry(elt, 0); vtype = rb_ary_entry(elt, 1); cdata = rb_ary_entry(elt, 2); } else { vlevel = rb_funcall(elt, rb_intern("level"), 0); vtype = rb_funcall(elt, rb_intern("type"), 0); cdata = rb_funcall(elt, rb_intern("data"), 0); } level = rsock_level_arg(family, vlevel); type = rsock_cmsg_type_arg(family, level, vtype); StringValue(cdata); oldlen = RSTRING_LEN(controls_str); cspace = CMSG_SPACE(RSTRING_LEN(cdata)); rb_str_resize(controls_str, oldlen + cspace); cmsg = RSTRING_PTR(controls_str)+oldlen; memset((char *)cmsg, 0, cspace); memset((char *)&cmh, 0, sizeof(cmh)); cmh.cmsg_level = level; cmh.cmsg_type = type; cmh.cmsg_len = (socklen_t)CMSG_LEN(RSTRING_LEN(cdata)); MEMCPY(cmsg, &cmh, char, sizeof(cmh)); MEMCPY(cmsg+((char*)CMSG_DATA(&cmh)-(char*)&cmh), RSTRING_PTR(cdata), char, RSTRING_LEN(cdata)); #if defined(__NetBSD__) last_level = cmh.cmsg_level; last_type = cmh.cmsg_type; #endif last_pad = cspace - cmh.cmsg_len; } if (last_pad) { /* * This code removes the last padding from msg_controllen. * * 4.3BSD-Reno reject the padding for SCM_RIGHTS. (There was no 64bit environments in those days?) * RFC 2292 require the padding. * RFC 3542 relaxes the condition - implementation must accept both as valid. * * Actual problems: * * - NetBSD 4.0.1 * SCM_RIGHTS with padding causes EINVAL * IPV6_PKTINFO without padding causes "page fault trap" * http://www.netbsd.org/cgi-bin/query-pr-single.pl?number=40661 * * - OpenBSD 4.4 * IPV6_PKTINFO without padding causes EINVAL * * Basically, msg_controllen should contains the padding. * So the padding is removed only if a problem really exists. */ #if defined(__NetBSD__) if (last_level == SOL_SOCKET && last_type == SCM_RIGHTS) rb_str_set_len(controls_str, RSTRING_LEN(controls_str)-last_pad); #endif } #else rb_raise(rb_eNotImpError, "control message for sendmsg is unimplemented"); #endif } flags = NIL_P(vflags) ? 0 : NUM2INT(vflags); #ifdef MSG_DONTWAIT if (nonblock) flags |= MSG_DONTWAIT; #endif if (!NIL_P(dest_sockaddr)) SockAddrStringValue(dest_sockaddr); rb_io_check_closed(fptr); retry: memset(&mh, 0, sizeof(mh)); if (!NIL_P(dest_sockaddr)) { mh.msg_name = RSTRING_PTR(dest_sockaddr); mh.msg_namelen = RSTRING_LENINT(dest_sockaddr); } mh.msg_iovlen = 1; mh.msg_iov = &iov; iov.iov_base = RSTRING_PTR(data); iov.iov_len = RSTRING_LEN(data); #if defined(HAVE_ST_MSG_CONTROL) if (controls_str) { mh.msg_control = RSTRING_PTR(controls_str); mh.msg_controllen = RSTRING_LENINT(controls_str); } else { mh.msg_control = NULL; mh.msg_controllen = 0; } #endif rb_io_check_closed(fptr); if (nonblock) rb_io_set_nonblock(fptr); ss = rb_sendmsg(fptr->fd, &mh, flags); if (!nonblock && rb_io_wait_writable(fptr->fd)) { rb_io_check_closed(fptr); goto retry; } if (ss == -1) { if (nonblock && (errno == EWOULDBLOCK || errno == EAGAIN)) rb_mod_sys_fail(rb_mWaitWritable, "sendmsg(2) would block"); rb_sys_fail("sendmsg(2)"); } return SSIZET2NUM(ss); } #endif #if defined(HAVE_SENDMSG) /* * call-seq: * basicsocket.sendmsg(mesg, flags=0, dest_sockaddr=nil, *controls) => numbytes_sent * * sendmsg sends a message using sendmsg(2) system call in blocking manner. * * _mesg_ is a string to send. * * _flags_ is bitwise OR of MSG_* constants such as Socket::MSG_OOB. * * _dest_sockaddr_ is a destination socket address for connection-less socket. * It should be a sockaddr such as a result of Socket.sockaddr_in. * An Addrinfo object can be used too. * * _controls_ is a list of ancillary data. * The element of _controls_ should be Socket::AncillaryData or * 3-elements array. * The 3-element array should contains cmsg_level, cmsg_type and data. * * The return value, _numbytes_sent_ is an integer which is the number of bytes sent. * * sendmsg can be used to implement send_io as follows: * * # use Socket::AncillaryData. * ancdata = Socket::AncillaryData.int(:UNIX, :SOCKET, :RIGHTS, io.fileno) * sock.sendmsg("a", 0, nil, ancdata) * * # use 3-element array. * ancdata = [:SOCKET, :RIGHTS, [io.fileno].pack("i!")] * sock.sendmsg("\0", 0, nil, ancdata) * */ VALUE rsock_bsock_sendmsg(int argc, VALUE *argv, VALUE sock) { return bsock_sendmsg_internal(argc, argv, sock, 0); } #endif #if defined(HAVE_SENDMSG) /* * call-seq: * basicsocket.sendmsg_nonblock(mesg, flags=0, dest_sockaddr=nil, *controls) => numbytes_sent * * sendmsg_nonblock sends a message using sendmsg(2) system call in non-blocking manner. * * It is similar to BasicSocket#sendmsg * but the non-blocking flag is set before the system call * and it doesn't retry the system call. * */ VALUE rsock_bsock_sendmsg_nonblock(int argc, VALUE *argv, VALUE sock) { return bsock_sendmsg_internal(argc, argv, sock, 1); } #endif #if defined(HAVE_RECVMSG) struct recvmsg_args_struct { int fd; struct msghdr *msg; int flags; }; ssize_t rsock_recvmsg(int socket, struct msghdr *message, int flags) { #ifdef MSG_CMSG_CLOEXEC /* MSG_CMSG_CLOEXEC is available since Linux 2.6.23. Linux 2.6.18 silently ignore it. */ flags |= MSG_CMSG_CLOEXEC; #endif return recvmsg(socket, message, flags); } static void * nogvl_recvmsg_func(void *ptr) { struct recvmsg_args_struct *args = ptr; int flags = args->flags; return (void *)rsock_recvmsg(args->fd, args->msg, flags); } static ssize_t rb_recvmsg(int fd, struct msghdr *msg, int flags) { struct recvmsg_args_struct args; args.fd = fd; args.msg = msg; args.flags = flags; return (ssize_t)rb_thread_call_without_gvl(nogvl_recvmsg_func, &args, RUBY_UBF_IO, 0); } #if defined(HAVE_ST_MSG_CONTROL) static void discard_cmsg(struct cmsghdr *cmh, char *msg_end, int msg_peek_p) { # if !defined(FD_PASSING_WORK_WITH_RECVMSG_MSG_PEEK) /* * FreeBSD 8.2.0, NetBSD 5 and MacOS X Snow Leopard doesn't * allocate fds by recvmsg with MSG_PEEK. * [ruby-dev:44189] * http://bugs.ruby-lang.org/issues/5075 * * Linux 2.6.38 allocate fds by recvmsg with MSG_PEEK. */ if (msg_peek_p) return; # endif if (cmh->cmsg_level == SOL_SOCKET && cmh->cmsg_type == SCM_RIGHTS) { int *fdp = (int *)CMSG_DATA(cmh); int *end = (int *)((char *)cmh + cmh->cmsg_len); while ((char *)fdp + sizeof(int) <= (char *)end && (char *)fdp + sizeof(int) <= msg_end) { rb_fd_fix_cloexec(*fdp); close(*fdp); fdp++; } } } #endif void rsock_discard_cmsg_resource(struct msghdr *mh, int msg_peek_p) { #if defined(HAVE_ST_MSG_CONTROL) struct cmsghdr *cmh; char *msg_end; if (mh->msg_controllen == 0) return; msg_end = (char *)mh->msg_control + mh->msg_controllen; for (cmh = CMSG_FIRSTHDR(mh); cmh != NULL; cmh = CMSG_NXTHDR(mh, cmh)) { discard_cmsg(cmh, msg_end, msg_peek_p); } #endif } #if defined(HAVE_ST_MSG_CONTROL) static void make_io_for_unix_rights(VALUE ctl, struct cmsghdr *cmh, char *msg_end) { if (cmh->cmsg_level == SOL_SOCKET && cmh->cmsg_type == SCM_RIGHTS) { int *fdp, *end; VALUE ary = rb_ary_new(); rb_ivar_set(ctl, rb_intern("unix_rights"), ary); fdp = (int *)CMSG_DATA(cmh); end = (int *)((char *)cmh + cmh->cmsg_len); while ((char *)fdp + sizeof(int) <= (char *)end && (char *)fdp + sizeof(int) <= msg_end) { int fd = *fdp; struct stat stbuf; VALUE io; if (fstat(fd, &stbuf) == -1) rb_raise(rb_eSocket, "invalid fd in SCM_RIGHTS"); rb_fd_fix_cloexec(fd); if (S_ISSOCK(stbuf.st_mode)) io = rsock_init_sock(rb_obj_alloc(rb_cSocket), fd); else io = rb_io_fdopen(fd, O_RDWR, NULL); ary = rb_attr_get(ctl, rb_intern("unix_rights")); rb_ary_push(ary, io); fdp++; } OBJ_FREEZE(ary); } } #endif static VALUE bsock_recvmsg_internal(int argc, VALUE *argv, VALUE sock, int nonblock) { rb_io_t *fptr; VALUE vmaxdatlen, vmaxctllen, vflags, vopts; int grow_buffer; size_t maxdatlen; int flags, orig_flags; int request_scm_rights; struct msghdr mh; struct iovec iov; struct sockaddr_storage namebuf; char datbuf0[4096], *datbuf; VALUE dat_str = Qnil; VALUE ret; ssize_t ss; #if defined(HAVE_ST_MSG_CONTROL) struct cmsghdr *cmh; size_t maxctllen; union { char bytes[4096]; struct cmsghdr align; } ctlbuf0; char *ctlbuf; VALUE ctl_str = Qnil; int family; int gc_done = 0; #endif rb_secure(4); vopts = Qnil; if (0 < argc && RB_TYPE_P(argv[argc-1], T_HASH)) vopts = argv[--argc]; rb_scan_args(argc, argv, "03", &vmaxdatlen, &vflags, &vmaxctllen); maxdatlen = NIL_P(vmaxdatlen) ? sizeof(datbuf0) : NUM2SIZET(vmaxdatlen); #if defined(HAVE_ST_MSG_CONTROL) maxctllen = NIL_P(vmaxctllen) ? sizeof(ctlbuf0) : NUM2SIZET(vmaxctllen); #else if (!NIL_P(vmaxctllen)) rb_raise(rb_eArgError, "control message not supported"); #endif flags = NIL_P(vflags) ? 0 : NUM2INT(vflags); #ifdef MSG_DONTWAIT if (nonblock) flags |= MSG_DONTWAIT; #endif orig_flags = flags; grow_buffer = NIL_P(vmaxdatlen) || NIL_P(vmaxctllen); request_scm_rights = 0; if (!NIL_P(vopts) && RTEST(rb_hash_aref(vopts, ID2SYM(rb_intern("scm_rights"))))) request_scm_rights = 1; GetOpenFile(sock, fptr); if (rb_io_read_pending(fptr)) { rb_raise(rb_eIOError, "recvmsg for buffered IO"); } #if !defined(HAVE_ST_MSG_CONTROL) if (grow_buffer) { int socktype; socklen_t optlen = (socklen_t)sizeof(socktype); if (getsockopt(fptr->fd, SOL_SOCKET, SO_TYPE, (void*)&socktype, &optlen) == -1) { rb_sys_fail("getsockopt(SO_TYPE)"); } if (socktype == SOCK_STREAM) grow_buffer = 0; } #endif retry: if (maxdatlen <= sizeof(datbuf0)) datbuf = datbuf0; else { if (NIL_P(dat_str)) dat_str = rb_str_tmp_new(maxdatlen); else rb_str_resize(dat_str, maxdatlen); datbuf = RSTRING_PTR(dat_str); } #if defined(HAVE_ST_MSG_CONTROL) if (maxctllen <= sizeof(ctlbuf0)) ctlbuf = ctlbuf0.bytes; else { if (NIL_P(ctl_str)) ctl_str = rb_str_tmp_new(maxctllen); else rb_str_resize(ctl_str, maxctllen); ctlbuf = RSTRING_PTR(ctl_str); } #endif memset(&mh, 0, sizeof(mh)); memset(&namebuf, 0, sizeof(namebuf)); mh.msg_name = (struct sockaddr *)&namebuf; mh.msg_namelen = (socklen_t)sizeof(namebuf); mh.msg_iov = &iov; mh.msg_iovlen = 1; iov.iov_base = datbuf; iov.iov_len = maxdatlen; #if defined(HAVE_ST_MSG_CONTROL) mh.msg_control = ctlbuf; mh.msg_controllen = (socklen_t)maxctllen; #endif if (grow_buffer) flags |= MSG_PEEK; rb_io_check_closed(fptr); if (nonblock) rb_io_set_nonblock(fptr); ss = rb_recvmsg(fptr->fd, &mh, flags); if (!nonblock && rb_io_wait_readable(fptr->fd)) { rb_io_check_closed(fptr); goto retry; } if (ss == -1) { if (nonblock && (errno == EWOULDBLOCK || errno == EAGAIN)) rb_mod_sys_fail(rb_mWaitReadable, "recvmsg(2) would block"); #if defined(HAVE_ST_MSG_CONTROL) if (!gc_done && (errno == EMFILE || errno == EMSGSIZE)) { /* * When SCM_RIGHTS hit the file descriptors limit: * - Linux 2.6.18 causes success with MSG_CTRUNC * - MacOS X 10.4 causes EMSGSIZE (and lost file descriptors?) * - Solaris 11 causes EMFILE */ gc_and_retry: rb_gc(); gc_done = 1; goto retry; } #endif rb_sys_fail("recvmsg(2)"); } if (grow_buffer) { int grown = 0; #if defined(HAVE_ST_MSG_CONTROL) if (NIL_P(vmaxdatlen) && (mh.msg_flags & MSG_TRUNC)) { if (SIZE_MAX/2 < maxdatlen) rb_raise(rb_eArgError, "max data length too big"); maxdatlen *= 2; grown = 1; } if (NIL_P(vmaxctllen) && (mh.msg_flags & MSG_CTRUNC)) { #define BIG_ENOUGH_SPACE 65536 if (BIG_ENOUGH_SPACE < maxctllen && mh.msg_controllen < (socklen_t)(maxctllen - BIG_ENOUGH_SPACE)) { /* there are big space bug truncated. * file descriptors limit? */ if (!gc_done) { rsock_discard_cmsg_resource(&mh, (flags & MSG_PEEK) != 0); goto gc_and_retry; } } else { if (SIZE_MAX/2 < maxctllen) rb_raise(rb_eArgError, "max control message length too big"); maxctllen *= 2; grown = 1; } #undef BIG_ENOUGH_SPACE } #else if (NIL_P(vmaxdatlen) && ss != -1 && ss == (ssize_t)iov.iov_len) { if (SIZE_MAX/2 < maxdatlen) rb_raise(rb_eArgError, "max data length too big"); maxdatlen *= 2; grown = 1; } #endif if (grown) { rsock_discard_cmsg_resource(&mh, (flags & MSG_PEEK) != 0); goto retry; } else { grow_buffer = 0; if (flags != orig_flags) { rsock_discard_cmsg_resource(&mh, (flags & MSG_PEEK) != 0); flags = orig_flags; goto retry; } } } if (NIL_P(dat_str)) dat_str = rb_tainted_str_new(datbuf, ss); else { rb_str_resize(dat_str, ss); OBJ_TAINT(dat_str); RBASIC(dat_str)->klass = rb_cString; } ret = rb_ary_new3(3, dat_str, rsock_io_socket_addrinfo(sock, mh.msg_name, mh.msg_namelen), #if defined(HAVE_ST_MSG_CONTROL) INT2NUM(mh.msg_flags) #else Qnil #endif ); #if defined(HAVE_ST_MSG_CONTROL) family = rsock_getfamily(fptr->fd); if (mh.msg_controllen) { char *msg_end = (char *)mh.msg_control + mh.msg_controllen; for (cmh = CMSG_FIRSTHDR(&mh); cmh != NULL; cmh = CMSG_NXTHDR(&mh, cmh)) { VALUE ctl; char *ctl_end; size_t clen; if (cmh->cmsg_len == 0) { rb_raise(rb_eTypeError, "invalid control message (cmsg_len == 0)"); } ctl_end = (char*)cmh + cmh->cmsg_len; clen = (ctl_end <= msg_end ? ctl_end : msg_end) - (char*)CMSG_DATA(cmh); ctl = ancdata_new(family, cmh->cmsg_level, cmh->cmsg_type, rb_tainted_str_new((char*)CMSG_DATA(cmh), clen)); if (request_scm_rights) make_io_for_unix_rights(ctl, cmh, msg_end); else discard_cmsg(cmh, msg_end, (flags & MSG_PEEK) != 0); rb_ary_push(ret, ctl); } } #endif return ret; } #endif #if defined(HAVE_RECVMSG) /* * call-seq: * basicsocket.recvmsg(maxmesglen=nil, flags=0, maxcontrollen=nil, opts={}) => [mesg, sender_addrinfo, rflags, *controls] * * recvmsg receives a message using recvmsg(2) system call in blocking manner. * * _maxmesglen_ is the maximum length of mesg to receive. * * _flags_ is bitwise OR of MSG_* constants such as Socket::MSG_PEEK. * * _maxcontrollen_ is the maximum length of controls (ancillary data) to receive. * * _opts_ is option hash. * Currently :scm_rights=>bool is the only option. * * :scm_rights option specifies that application expects SCM_RIGHTS control message. * If the value is nil or false, application don't expects SCM_RIGHTS control message. * In this case, recvmsg closes the passed file descriptors immediately. * This is the default behavior. * * If :scm_rights value is neither nil nor false, application expects SCM_RIGHTS control message. * In this case, recvmsg creates IO objects for each file descriptors for * Socket::AncillaryData#unix_rights method. * * The return value is 4-elements array. * * _mesg_ is a string of the received message. * * _sender_addrinfo_ is a sender socket address for connection-less socket. * It is an Addrinfo object. * For connection-oriented socket such as TCP, sender_addrinfo is platform dependent. * * _rflags_ is a flags on the received message which is bitwise OR of MSG_* constants such as Socket::MSG_TRUNC. * It will be nil if the system uses 4.3BSD style old recvmsg system call. * * _controls_ is ancillary data which is an array of Socket::AncillaryData objects such as: * * # * * _maxmesglen_ and _maxcontrollen_ can be nil. * In that case, the buffer will be grown until the message is not truncated. * Internally, MSG_PEEK is used and MSG_TRUNC/MSG_CTRUNC are checked. * * recvmsg can be used to implement recv_io as follows: * * mesg, sender_sockaddr, rflags, *controls = sock.recvmsg(:scm_rights=>true) * controls.each {|ancdata| * if ancdata.cmsg_is?(:SOCKET, :RIGHTS) * return ancdata.unix_rights[0] * end * } * */ VALUE rsock_bsock_recvmsg(int argc, VALUE *argv, VALUE sock) { return bsock_recvmsg_internal(argc, argv, sock, 0); } #endif #if defined(HAVE_RECVMSG) /* * call-seq: * basicsocket.recvmsg_nonblock(maxdatalen=nil, flags=0, maxcontrollen=nil, opts={}) => [data, sender_addrinfo, rflags, *controls] * * recvmsg receives a message using recvmsg(2) system call in non-blocking manner. * * It is similar to BasicSocket#recvmsg * but non-blocking flag is set before the system call * and it doesn't retry the system call. * */ VALUE rsock_bsock_recvmsg_nonblock(int argc, VALUE *argv, VALUE sock) { return bsock_recvmsg_internal(argc, argv, sock, 1); } #endif void rsock_init_ancdata(void) { #if defined(HAVE_ST_MSG_CONTROL) /* * Document-class: Socket::AncillaryData * * Socket::AncillaryData represents the ancillary data (control information) * used by sendmsg and recvmsg system call. It contains socket #family, * control message (cmsg) #level, cmsg #type and cmsg #data. */ rb_cAncillaryData = rb_define_class_under(rb_cSocket, "AncillaryData", rb_cObject); rb_define_method(rb_cAncillaryData, "initialize", ancillary_initialize, 4); rb_define_method(rb_cAncillaryData, "inspect", ancillary_inspect, 0); rb_define_method(rb_cAncillaryData, "family", ancillary_family_m, 0); rb_define_method(rb_cAncillaryData, "level", ancillary_level_m, 0); rb_define_method(rb_cAncillaryData, "type", ancillary_type_m, 0); rb_define_method(rb_cAncillaryData, "data", ancillary_data, 0); rb_define_method(rb_cAncillaryData, "cmsg_is?", ancillary_cmsg_is_p, 2); rb_define_singleton_method(rb_cAncillaryData, "int", ancillary_s_int, 4); rb_define_method(rb_cAncillaryData, "int", ancillary_int, 0); rb_define_singleton_method(rb_cAncillaryData, "unix_rights", ancillary_s_unix_rights, -1); rb_define_method(rb_cAncillaryData, "unix_rights", ancillary_unix_rights, 0); rb_define_method(rb_cAncillaryData, "timestamp", ancillary_timestamp, 0); rb_define_singleton_method(rb_cAncillaryData, "ip_pktinfo", ancillary_s_ip_pktinfo, -1); rb_define_method(rb_cAncillaryData, "ip_pktinfo", ancillary_ip_pktinfo, 0); rb_define_singleton_method(rb_cAncillaryData, "ipv6_pktinfo", ancillary_s_ipv6_pktinfo, 2); rb_define_method(rb_cAncillaryData, "ipv6_pktinfo", ancillary_ipv6_pktinfo, 0); rb_define_method(rb_cAncillaryData, "ipv6_pktinfo_addr", ancillary_ipv6_pktinfo_addr, 0); rb_define_method(rb_cAncillaryData, "ipv6_pktinfo_ifindex", ancillary_ipv6_pktinfo_ifindex, 0); #endif }