require 'test/unit' class RationalSub < Rational; end class Rational_Test < Test::Unit::TestCase def test_ratsub c = RationalSub.__send__(:new, 1) cc = RationalSub.__send__(:convert, 1) if defined?(RationalSub::Unify) assert_instance_of(Fixnum, c) assert_instance_of(Fixnum, cc) else assert_instance_of(RationalSub, c) assert_instance_of(RationalSub, cc) c2 = c + 1 assert_instance_of(RationalSub, c2) c2 = c - 1 assert_instance_of(RationalSub, c2) c3 = c - c2 assert_instance_of(RationalSub, c3) s = Marshal.dump(c) c5 = Marshal.load(s) assert_equal(c, c5) assert_instance_of(RationalSub, c5) end end def test_hash assert_instance_of(Fixnum, Rational(1,2).hash) h = {} h[Rational(0)] = 0 h[Rational(1,1)] = 1 h[Rational(2,1)] = 2 h[Rational(3,1)] = 3 assert_equal(4, h.size) assert_equal(2, h[Rational(2,1)]) h[Rational(0,1)] = 9 assert_equal(4, h.size) end def test_freeze c = Rational(1) c.freeze unless defined?(Rational::Unify) assert_equal(true, c.frozen?) end assert_instance_of(String, c.to_s) end def test_new_bang # no unify & no reduce assert_instance_of(Rational, Rational.__send__(:new!, 2,1)) assert_equal([2,1], Rational.__send__(:new!, 2,1). instance_eval{[numerator, denominator]}) assert_equal([2,4], Rational.__send__(:new!, 2,4). instance_eval{[numerator, denominator]}) assert_equal([-2,4], Rational.__send__(:new!, -2,4). instance_eval{[numerator, denominator]}) assert_equal([-2,4], Rational.__send__(:new!, 2,-4). instance_eval{[numerator, denominator]}) assert_equal([2,4], Rational.__send__(:new!, -2,-4). instance_eval{[numerator, denominator]}) # to_i assert_equal([2,1], Rational.__send__(:new!, Rational(2)). instance_eval{[numerator, denominator]}) assert_equal([2,3], Rational.__send__(:new!, Rational(2), Rational(3)). instance_eval{[numerator, denominator]}) assert_equal([2,3], Rational.__send__(:new!, 2, Rational(3)). instance_eval{[numerator, denominator]}) assert_equal([1,1], Rational.__send__(:new!, 1.1). instance_eval{[numerator, denominator]}) assert_equal([-1,1], Rational.__send__(:new!, -1.1). instance_eval{[numerator, denominator]}) assert_equal([1,1], Rational.__send__(:new!, '1'). instance_eval{[numerator, denominator]}) assert_equal([0,1], Rational.__send__(:new!, nil). instance_eval{[numerator, denominator]}) assert_raise(ZeroDivisionError){Rational.__send__(:new!, 1, 0)} end =begin def test_reduce if defined?(Rational::Unify) assert_instance_of(Fixnum, Rational.__send__(:reduce, 2,1)) else assert_instance_of(Rational, Rational.__send__(:reduce, 2,1)) assert_instance_of(Rational, Rational.__send__(:reduce, 2,1)) end assert_equal([2,1], Rational.__send__(:reduce, 2,1). instance_eval{[numerator, denominator]}) assert_equal([1,2], Rational.__send__(:reduce, 2,4). instance_eval{[numerator, denominator]}) assert_equal([-1,2], Rational.__send__(:reduce, -2,4). instance_eval{[numerator, denominator]}) assert_equal([-1,2], Rational.__send__(:reduce, 2,-4). instance_eval{[numerator, denominator]}) assert_equal([1,2], Rational.__send__(:reduce, -2,-4). instance_eval{[numerator, denominator]}) assert_raise(ArgumentError){Rational.__send__(:reduce, Rational(1,2),2)} assert_raise(ArgumentError){Rational.__send__(:reduce, 2,Rational(1,2))} assert_raise(ArgumentError){Rational. __send__(:reduce, Rational(1,2),Rational(1,2))} assert_raise(ArgumentError){Rational.__send__(:reduce, 1.1)} assert_raise(ArgumentError){Rational.__send__(:reduce, -1.1)} assert_raise(ArgumentError){Rational.__send__(:reduce, '1')} assert_raise(ArgumentError){Rational.__send__(:reduce, nil)} end =end def test_new if defined?(Rational::Unify) assert_instance_of(Fixnum, Rational.__send__(:new, 2,1)) else assert_instance_of(Rational, Rational.__send__(:new, 2,1)) assert_equal([2,1], Rational.__send__(:new, 2,1). instance_eval{[numerator, denominator]}) end assert_equal([1,2], Rational.__send__(:new, 2,4). instance_eval{[numerator, denominator]}) assert_equal([-1,2], Rational.__send__(:new, -2,4). instance_eval{[numerator, denominator]}) assert_equal([-1,2], Rational.__send__(:new, 2,-4). instance_eval{[numerator, denominator]}) assert_equal([1,2], Rational.__send__(:new, -2,-4). instance_eval{[numerator, denominator]}) assert_raise(ArgumentError){Rational.__send__(:new, Rational(1,2),2)} assert_raise(ArgumentError){Rational.__send__(:new, 2,Rational(1,2))} assert_raise(ArgumentError){Rational.__send__(:new, Rational(1,2),Rational(1,2))} assert_raise(ArgumentError){Rational.__send__(:new, 1.1)} assert_raise(ArgumentError){Rational.__send__(:new, -1.1)} assert_raise(ArgumentError){Rational.__send__(:new, '1')} assert_raise(ArgumentError){Rational.__send__(:new, nil)} =begin assert_raise(ArgumentError){Rational.__send__(:new, Rational(1))} if defined?(Complex) assert_raise(ArgumentError){Rational.__send__(:new, Complex(1))} end =end end def test_conv c = Rational(0,1) assert_equal(Rational.__send__(:new, 0,1), c) c = Rational(2**32, 2**32) assert_equal(Rational.__send__(:new, 2**32,2**32), c) assert_equal([1,1], [c.numerator,c.denominator]) c = Rational(-2**32, 2**32) assert_equal(Rational.__send__(:new, -2**32,2**32), c) assert_equal([-1,1], [c.numerator,c.denominator]) c = Rational(2**32, -2**32) assert_equal(Rational.__send__(:new, 2**32,-2**32), c) assert_equal([-1,1], [c.numerator,c.denominator]) c = Rational(-2**32, -2**32) assert_equal(Rational.__send__(:new, -2**32,-2**32), c) assert_equal([1,1], [c.numerator,c.denominator]) c = Rational(Rational(1,2),2) assert_equal(Rational.__send__(:new, 1,4), c) c = Rational(2,Rational(1,2)) assert_equal(Rational.__send__(:new, 4), c) c = Rational(Rational(1,2),Rational(1,2)) assert_equal(Rational.__send__(:new, 1), c) assert_equal(Rational.__send__(:new, 1),Rational(1)) assert_equal(1.1.to_r,Rational(1.1)) assert_equal(Rational.__send__(:new, 1),Rational('1')) assert_raise(ArgumentError){Rational(nil)} end def test_attr c = Rational(4) assert_equal(4, c.numerator) assert_equal(1, c.denominator) c = Rational(4,5) assert_equal(4, c.numerator) assert_equal(5, c.denominator) c = Rational.__send__(:new, 4) assert_equal(4, c.numerator) assert_equal(1, c.denominator) c = Rational.__send__(:new, 4,5) assert_equal(4, c.numerator) assert_equal(5, c.denominator) c = Rational.__send__(:new!, 4) assert_equal(4, c.numerator) assert_equal(1, c.denominator) c = Rational.__send__(:new!, 4,5) assert_equal(4, c.numerator) assert_equal(5, c.denominator) end def test_attr2 c = Rational(1) if defined?(Rational::Unify) assert_equal(true, c.scalar?) =begin assert_equal(true, c.finite?) assert_equal(false, c.infinite?) assert_equal(false, c.nan?) assert_equal(true, c.integer?) assert_equal(false, c.float?) assert_equal(true, c.rational?) assert_equal(true, c.real?) assert_equal(false, c.complex?) assert_equal(true, c.exact?) assert_equal(false, c.inexact?) =end else assert_equal(true, c.scalar?) =begin assert_equal(true, c.finite?) assert_equal(false, c.infinite?) assert_equal(false, c.nan?) assert_equal(false, c.integer?) assert_equal(false, c.float?) assert_equal(true, c.rational?) assert_equal(true, c.real?) assert_equal(false, c.complex?) assert_equal(true, c.exact?) assert_equal(false, c.inexact?) =end end =begin assert_equal(true, Rational(0).positive?) assert_equal(true, Rational(1).positive?) assert_equal(false, Rational(-1).positive?) assert_equal(false, Rational(0).negative?) assert_equal(false, Rational(1).negative?) assert_equal(true, Rational(-1).negative?) assert_equal(0, Rational(0).sign) assert_equal(1, Rational(2).sign) assert_equal(-1, Rational(-2).sign) =end assert_equal(true, Rational(0).zero?) assert_equal(true, Rational(0,1).zero?) assert_equal(false, Rational(1,1).zero?) assert_equal(nil, Rational(0).nonzero?) assert_equal(nil, Rational(0,1).nonzero?) assert_equal(Rational(1,1), Rational(1,1).nonzero?) end def test_uplus assert_equal(Rational(1), +Rational(1)) assert_equal(Rational(-1), +Rational(-1)) assert_equal(Rational(1,1), +Rational(1,1)) assert_equal(Rational(-1,1), +Rational(-1,1)) assert_equal(Rational(-1,1), +Rational(1,-1)) assert_equal(Rational(1,1), +Rational(-1,-1)) end def test_negate assert_equal(Rational(-1), -Rational(1)) assert_equal(Rational(1), -Rational(-1)) assert_equal(Rational(-1,1), -Rational(1,1)) assert_equal(Rational(1,1), -Rational(-1,1)) assert_equal(Rational(1,1), -Rational(1,-1)) assert_equal(Rational(-1,1), -Rational(-1,-1)) =begin assert_equal(0, Rational(0).negate) assert_equal(-2, Rational(2).negate) assert_equal(2, Rational(-2).negate) =end end def test_add c = Rational(1,2) c2 = Rational(2,3) assert_equal(Rational(7,6), c + c2) assert_equal(Rational(5,2), c + 2) assert_equal(2.5, c + 2.0) end def test_sub c = Rational(1,2) c2 = Rational(2,3) assert_equal(Rational(-1,6), c - c2) assert_equal(Rational(-3,2), c - 2) assert_equal(-1.5, c - 2.0) end def test_mul c = Rational(1,2) c2 = Rational(2,3) assert_equal(Rational(1,3), c * c2) assert_equal(Rational(1,1), c * 2) assert_equal(1.0, c * 2.0) end def test_div c = Rational(1,2) c2 = Rational(2,3) assert_equal(Rational(3,4), c / c2) assert_equal(Rational(1,4), c / 2) assert_equal(0.25, c / 2.0) end def assert_eql(exp, act, *args) unless Array === exp exp = [exp] end unless Array === act act = [act] end exp.zip(act).each do |e, a| na = [e, a] + args assert_equal(*na) na = [e.class, a] + args assert_instance_of(*na) end end def test_idiv c = Rational(1,2) c2 = Rational(2,3) assert_eql(0, c.div(c2)) assert_eql(0, c.div(2)) assert_eql(0, c.div(2.0)) c = Rational(301,100) c2 = Rational(7,5) assert_equal(2, c.div(c2)) assert_equal(-3, c.div(-c2)) assert_equal(-3, (-c).div(c2)) assert_equal(2, (-c).div(-c2)) c = Rational(301,100) c2 = Rational(2) assert_equal(1, c.div(c2)) assert_equal(-2, c.div(-c2)) assert_equal(-2, (-c).div(c2)) assert_equal(1, (-c).div(-c2)) unless defined?(Rational::Unify) c = Rational(11) c2 = Rational(3) assert_equal(3, c.div(c2)) assert_equal(-4, c.div(-c2)) assert_equal(-4, (-c).div(c2)) assert_equal(3, (-c).div(-c2)) end end def test_divmod c = Rational(1,2) c2 = Rational(2,3) assert_eql([0, Rational(1,2)], c.divmod(c2)) assert_eql([0, Rational(1,2)], c.divmod(2)) assert_eql([0, 0.5], c.divmod(2.0)) c = Rational(301,100) c2 = Rational(7,5) assert_equal([2, Rational(21,100)], c.divmod(c2)) assert_equal([-3, Rational(-119,100)], c.divmod(-c2)) assert_equal([-3, Rational(119,100)], (-c).divmod(c2)) assert_equal([2, Rational(-21,100)], (-c).divmod(-c2)) c = Rational(301,100) c2 = Rational(2) assert_equal([1, Rational(101,100)], c.divmod(c2)) assert_equal([-2, Rational(-99,100)], c.divmod(-c2)) assert_equal([-2, Rational(99,100)], (-c).divmod(c2)) assert_equal([1, Rational(-101,100)], (-c).divmod(-c2)) unless defined?(Rational::Unify) c = Rational(11) c2 = Rational(3) assert_equal([3,2], c.divmod(c2)) assert_equal([-4,-1], c.divmod(-c2)) assert_equal([-4,1], (-c).divmod(c2)) assert_equal([3,-2], (-c).divmod(-c2)) end end =begin def test_quot c = Rational(1,2) c2 = Rational(2,3) assert_eql(0, c.quot(c2)) assert_eql(0, c.quot(2)) assert_eql(0, c.quot(2.0)) c = Rational(301,100) c2 = Rational(7,5) assert_equal(2, c.quot(c2)) assert_equal(-2, c.quot(-c2)) assert_equal(-2, (-c).quot(c2)) assert_equal(2, (-c).quot(-c2)) c = Rational(301,100) c2 = Rational(2) assert_equal(1, c.quot(c2)) assert_equal(-1, c.quot(-c2)) assert_equal(-1, (-c).quot(c2)) assert_equal(1, (-c).quot(-c2)) unless defined?(Rational::Unify) c = Rational(11) c2 = Rational(3) assert_equal(3, c.quot(c2)) assert_equal(-3, c.quot(-c2)) assert_equal(-3, (-c).quot(c2)) assert_equal(3, (-c).quot(-c2)) end end def test_quotrem c = Rational(1,2) c2 = Rational(2,3) assert_eql([0, Rational(1,2)], c.quotrem(c2)) assert_eql([0, Rational(1,2)], c.quotrem(2)) assert_eql([0, 0.5], c.quotrem(2.0)) c = Rational(301,100) c2 = Rational(7,5) assert_equal([2, Rational(21,100)], c.quotrem(c2)) assert_equal([-2, Rational(21,100)], c.quotrem(-c2)) assert_equal([-2, Rational(-21,100)], (-c).quotrem(c2)) assert_equal([2, Rational(-21,100)], (-c).quotrem(-c2)) c = Rational(301,100) c2 = Rational(2) assert_equal([1, Rational(101,100)], c.quotrem(c2)) assert_equal([-1, Rational(101,100)], c.quotrem(-c2)) assert_equal([-1, Rational(-101,100)], (-c).quotrem(c2)) assert_equal([1, Rational(-101,100)], (-c).quotrem(-c2)) unless defined?(Rational::Unify) c = Rational(11) c2 = Rational(3) assert_equal([3,2], c.quotrem(c2)) assert_equal([-3,2], c.quotrem(-c2)) assert_equal([-3,-2], (-c).quotrem(c2)) assert_equal([3,-2], (-c).quotrem(-c2)) end end =end def test_quo c = Rational(1,2) c2 = Rational(2,3) assert_equal(Rational(3,4), c.quo(c2)) assert_equal(Rational(1,4), c.quo(2)) assert_equal(Rational(0.25), c.quo(2.0)) end def test_fdiv c = Rational(1,2) c2 = Rational(2,3) assert_equal(0.75, c.fdiv(c2)) assert_equal(0.25, c.fdiv(2)) assert_equal(0.25, c.fdiv(2.0)) end def test_expt c = Rational(1,2) c2 = Rational(2,3) r = c ** c2 assert_in_delta(0.6299, r, 0.001) assert_equal(Rational(1,4), c ** 2) assert_equal(Rational(4), c ** -2) assert_equal(Rational(1,4), (-c) ** 2) assert_equal(Rational(4), (-c) ** -2) assert_equal(0.25, c ** 2.0) assert_equal(4.0, c ** -2.0) assert_equal(Rational(1,4), c ** Rational(2)) assert_equal(Rational(4), c ** Rational(-2)) assert_equal(Rational(1), 0 ** Rational(0)) assert_equal(Rational(1), Rational(0) ** 0) assert_equal(Rational(1), Rational(0) ** Rational(0)) # p ** p x = 2 ** Rational(2) assert_equal(Rational(4), x) unless defined?(Rational::Unify) assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) x = Rational(2) ** 2 assert_equal(Rational(4), x) unless defined?(Rational::Unify) assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) x = Rational(2) ** Rational(2) assert_equal(Rational(4), x) unless defined?(Rational::Unify) assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) # -p ** p x = (-2) ** Rational(2) assert_equal(Rational(4), x) unless defined?(Rational::Unify) assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) x = Rational(-2) ** 2 assert_equal(Rational(4), x) unless defined?(Rational::Unify) assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) x = Rational(-2) ** Rational(2) assert_equal(Rational(4), x) unless defined?(Rational::Unify) assert_instance_of(Rational, x) end assert_equal(4, x.numerator) assert_equal(1, x.denominator) # p ** -p x = 2 ** Rational(-2) assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) x = Rational(2) ** -2 assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) x = Rational(2) ** Rational(-2) assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) # -p ** -p x = (-2) ** Rational(-2) assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) x = Rational(-2) ** -2 assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) x = Rational(-2) ** Rational(-2) assert_equal(Rational(1,4), x) assert_instance_of(Rational, x) assert_equal(1, x.numerator) assert_equal(4, x.denominator) unless defined?(Rational::Unify) # maybe bug mathn assert_raise(ZeroDivisionError){0 ** -1} end end def test_cmp assert_equal(-1, Rational(-1) <=> Rational(0)) assert_equal(0, Rational(0) <=> Rational(0)) assert_equal(+1, Rational(+1) <=> Rational(0)) assert_equal(-1, Rational(-1) <=> 0) assert_equal(0, Rational(0) <=> 0) assert_equal(+1, Rational(+1) <=> 0) assert_equal(-1, Rational(-1) <=> 0.0) assert_equal(0, Rational(0) <=> 0.0) assert_equal(+1, Rational(+1) <=> 0.0) assert_equal(-1, Rational(1,2) <=> Rational(2,3)) assert_equal(0, Rational(2,3) <=> Rational(2,3)) assert_equal(+1, Rational(2,3) <=> Rational(1,2)) f = 2**30-1 b = 2**30 assert_equal(0, Rational(f) <=> Rational(f)) assert_equal(-1, Rational(f) <=> Rational(b)) assert_equal(+1, Rational(b) <=> Rational(f)) assert_equal(0, Rational(b) <=> Rational(b)) assert_equal(-1, Rational(f-1) <=> Rational(f)) assert_equal(+1, Rational(f) <=> Rational(f-1)) assert_equal(-1, Rational(b-1) <=> Rational(b)) assert_equal(+1, Rational(b) <=> Rational(b-1)) assert_equal(false, Rational(0) < Rational(0)) assert_equal(true, Rational(0) <= Rational(0)) assert_equal(true, Rational(0) >= Rational(0)) assert_equal(false, Rational(0) > Rational(0)) end def test_equal assert(Rational(1,1) == Rational(1)) assert(Rational(1,1) == Rational.__send__(:new, 1)) assert(Rational(1,1) == Rational.__send__(:new, 1,1)) assert(Rational(1,1) == Rational.__send__(:new!, 1)) assert(Rational(1,1) == Rational.__send__(:new!, 1,1)) assert(Rational(-1,1) == Rational(-1)) assert(Rational(-1,1) == Rational.__send__(:new, -1)) assert(Rational(-1,1) == Rational.__send__(:new, -1,1)) assert(Rational(-1,1) == Rational.__send__(:new!, -1)) assert(Rational(-1,1) == Rational.__send__(:new!, -1,1)) assert_equal(false, Rational(2,1) == Rational(1)) assert_equal(true, Rational(2,1) != Rational(1)) assert_equal(false, Rational(1) == nil) assert_equal(false, Rational(1) == '') end def test_unify if defined?(Rational::Unify) assert_instance_of(Fixnum, Rational(1,2) + Rational(1,2)) assert_instance_of(Fixnum, Rational(1,2) - Rational(1,2)) assert_instance_of(Fixnum, Rational(1,2) * 2) assert_instance_of(Fixnum, Rational(1,2) / Rational(1,2)) assert_instance_of(Fixnum, Rational(1,2).div(Rational(1,2))) assert_instance_of(Fixnum, Rational(1,2).quo(Rational(1,2))) assert_instance_of(Fixnum, Rational(1,2) ** -2) end end def test_to_s c = Rational(1,2) assert_instance_of(String, c.to_s) assert_equal('1/2', c.to_s) if defined?(Rational::Unify) assert_equal('0', Rational(0,2).to_s) assert_equal('0', Rational(0,-2).to_s) else assert_equal('0/1', Rational(0,2).to_s) assert_equal('0/1', Rational(0,-2).to_s) end assert_equal('1/2', Rational(1,2).to_s) assert_equal('-1/2', Rational(-1,2).to_s) assert_equal('1/2', Rational(-1,-2).to_s) assert_equal('-1/2', Rational(1,-2).to_s) assert_equal('1/2', Rational(-1,-2).to_s) end def test_inspect c = Rational(1,2) assert_instance_of(String, c.inspect) assert_equal('(1/2)', c.inspect) end def test_marshal c = Rational(1,2) s = Marshal.dump(c) c2 = Marshal.load(s) assert_equal(c, c2) assert_instance_of(Rational, c2) assert_raise(ZeroDivisionError){ Marshal.load("\x04\bU:\rRational[\ai\x06i\x05") } end def test_parse assert_equal(Rational(0), ''.to_r) assert_equal(Rational(0), ' '.to_r) assert_equal(Rational(5), '5'.to_r) assert_equal(Rational(-5), '-5'.to_r) assert_equal(Rational(5,3), '5/3'.to_r) assert_equal(Rational(-5,3), '-5/3'.to_r) # assert_equal(Rational(5,-3), '5/-3'.to_r) # assert_equal(Rational(-5,-3), '-5/-3'.to_r) assert_equal(Rational(5), '5.0'.to_r) assert_equal(Rational(-5), '-5.0'.to_r) assert_equal(Rational(5,3), '5.0/3'.to_r) assert_equal(Rational(-5,3), '-5.0/3'.to_r) # assert_equal(Rational(5,-3), '5.0/-3'.to_r) # assert_equal(Rational(-5,-3), '-5.0/-3'.to_r) assert_equal(Rational(5), '5e0'.to_r) assert_equal(Rational(-5), '-5e0'.to_r) assert_equal(Rational(5,3), '5e0/3'.to_r) assert_equal(Rational(-5,3), '-5e0/3'.to_r) # assert_equal(Rational(5,-3), '5e0/-3'.to_r) # assert_equal(Rational(-5,-3), '-5e0/-3'.to_r) assert_equal(Rational(33,100), '0.33'.to_r) assert_equal(Rational(-33,100), '-0.33'.to_r) assert_equal(Rational(-33,100), '-0.3_3'.to_r) assert_equal(Rational(1,2), '5e-1'.to_r) assert_equal(Rational(50), '5e+1'.to_r) assert_equal(Rational(1,2), '5.0e-1'.to_r) assert_equal(Rational(50), '5.0e+1'.to_r) assert_equal(Rational(50), '5e1'.to_r) assert_equal(Rational(50), '5E1'.to_r) assert_equal(Rational(500), '5e2'.to_r) assert_equal(Rational(5000), '5e3'.to_r) assert_equal(Rational(500000000000), '5e1_1'.to_r) assert_equal(Rational(5), Rational('5')) assert_equal(Rational(-5), Rational('-5')) assert_equal(Rational(5,3), Rational('5/3')) assert_equal(Rational(-5,3), Rational('-5/3')) # assert_equal(Rational(5,-3), Rational('5/-3')) # assert_equal(Rational(-5,-3), Rational('-5/-3')) assert_equal(Rational(33,100), Rational('0.33')) assert_equal(Rational(-33,100), Rational('-0.33')) assert_equal(Rational(-33,100), Rational('-0.3_3')) assert_equal(Rational(1,2), Rational('5e-1')) assert_equal(Rational(50), Rational('5e1')) assert_equal(Rational(50), Rational('5E1')) assert_equal(Rational(500), Rational('5e2')) assert_equal(Rational(5000), Rational('5e3')) assert_equal(Rational(500000000000), Rational('5e1_1')) assert_equal(Rational(5.0), Rational('5.0')) assert_equal(Rational(-5.0), Rational('-5.0')) assert_equal(Rational(5.0,3), Rational('5.0/3')) assert_equal(Rational(-5.0,3), Rational('-5.0/3')) # assert_equal(Rational(5.0,-3), Rational('5.0/-3')) # assert_equal(Rational(-5.0,-3), Rational('-5.0/-3')) assert_equal(Rational(0), '_'.to_r) assert_equal(Rational(0), '_5'.to_r) assert_equal(Rational(5), '5_'.to_r) assert_equal(Rational(5), '5x'.to_r) assert_equal(Rational(5), '5/_3'.to_r) assert_equal(Rational(5,3), '5/3_'.to_r) assert_equal(Rational(5,3), '5/3.3'.to_r) assert_equal(Rational(5,3), '5/3x'.to_r) assert_raise(ArgumentError){ Rational('')} assert_raise(ArgumentError){ Rational('_')} assert_raise(ArgumentError){ Rational('_5')} assert_raise(ArgumentError){ Rational('5_')} assert_raise(ArgumentError){ Rational('5x')} assert_raise(ArgumentError){ Rational('5/_3')} assert_raise(ArgumentError){ Rational('5/3_')} assert_raise(ArgumentError){ Rational('5/3.3')} assert_raise(ArgumentError){ Rational('5/3x')} end =begin def test_reciprocal assert_equal(Rational(1,9), Rational(9,1).reciprocal) assert_equal(Rational(9,1), Rational(1,9).reciprocal) assert_equal(Rational(-1,9), Rational(-9,1).reciprocal) assert_equal(Rational(-9,1), Rational(-1,9).reciprocal) end =end def test_to_i assert_equal(1, Rational(3,2).to_i) assert_equal(1, Integer(Rational(3,2))) end def test_to_f assert_equal(1.5, Rational(3,2).to_f) assert_equal(1.5, Float(Rational(3,2))) end def test_to_c if defined?(Complex) && !Complex.instance_variable_get('@RCS_ID') if defined?(Rational::Unify) assert_equal(Rational(3,2), Rational(3,2).to_c) assert_equal(Rational(3,2), Complex(Rational(3,2))) else assert_equal(Complex(Rational(3,2)), Rational(3,2).to_c) assert_equal(Complex(Rational(3,2)), Complex(Rational(3,2))) end end end def test_to_r c = nil.to_r assert_equal([0,1] , [c.numerator, c.denominator]) c = 0.to_r assert_equal([0,1] , [c.numerator, c.denominator]) c = 1.to_r assert_equal([1,1] , [c.numerator, c.denominator]) c = 1.1.to_r assert_equal([2476979795053773, 2251799813685248], [c.numerator, c.denominator]) c = Rational(1,2).to_r assert_equal([1,2] , [c.numerator, c.denominator]) if defined?(Complex) if Complex.instance_variable_get('@RCS_ID') assert_raise(NoMethodError){Complex(1,2).to_r} else assert_raise(RangeError){Complex(1,2).to_r} end end end def test_prec assert_equal(true, Rational < Precision) c = Rational(3,2) assert_eql(1, c.prec(Integer)) assert_eql(1.5, c.prec(Float)) assert_eql(c, c.prec(Rational)) end def test_supp assert_equal(true, 1.scalar?) assert_equal(true, 1.1.scalar?) if defined?(Complex) assert_equal(1, 1.real) assert_equal(0, 1.image) assert_equal(0, 1.imag) assert_equal(1.1, 1.1.real) assert_equal(0, 1.1.image) assert_equal(0, 1.1.imag) assert_equal(0, 1.arg) assert_equal(0, 1.angle) assert_equal(0, 1.0.arg) assert_equal(0, 1.0.angle) assert_equal(Math::PI, -1.arg) assert_equal(Math::PI, -1.angle) assert_equal(Math::PI, -1.0.arg) assert_equal(Math::PI, -1.0.angle) assert_equal([1,0], 1.polar) assert_equal([1, Math::PI], -1.polar) assert_equal([1.0,0], 1.0.polar) assert_equal([1.0, Math::PI], -1.0.polar) assert_equal(1, 1.conjugate) assert_equal(-1, -1.conjugate) assert_equal(1, 1.conj) assert_equal(-1, -1.conj) assert_equal(1.1, 1.1.conjugate) assert_equal(-1.1, -1.1.conjugate) assert_equal(1.1, 1.1.conj) assert_equal(-1.1, -1.1.conj) end assert_equal(1, 1.numerator) assert_equal(9, 9.numerator) assert_equal(1, 1.denominator) assert_equal(1, 9.denominator) assert_equal(1.0, 1.0.numerator) assert_equal(9.0, 9.0.numerator) assert_equal(1.0, 1.0.denominator) assert_equal(1.0, 9.0.denominator) =begin assert_equal(Rational(1,9), 9.reciprocal) assert_equal(Rational(1,9), 9.0.reciprocal) assert_equal(Rational(1,9), 9.inverse) assert_equal(Rational(1,9), 9.0.inverse) =end assert_equal(Rational(1,2), 1.quo(2)) assert_equal(Rational(5000000000), 10000000000.quo(2)) assert_equal(0.5, 1.0.quo(2)) assert_equal(Rational(1,4), Rational(1,2).quo(2)) assert_equal(0.5, 1.fdiv(2)) assert_equal(5000000000.0, 10000000000.fdiv(2)) assert_equal(0.5, 1.0.fdiv(2)) assert_equal(0.25, Rational(1,2).fdiv(2)) end =begin def test_zero_div assert_raise(ZeroDivisionError) { Rational(1, 0) } assert_raise(ZeroDivisionError) { Rational(1, 1) / 0 } end def test_gcd assert_equal(0, Rational(0, 2**100)) end def test_unify2 f = defined?(Rational::Unify) Rational.const_set(:Unify, true) unless f assert_same(42, Rational(84, 2)) assert_same(1, Rational(1, 2) + Rational(1, 2)) Rational.instance_eval { remove_const(:Unify) } unless f end def test_coerce r = Rational(7, 3) assert_equal(Rational(42, 1), r.coerce(42).first) assert_raise(TypeError) { r.coerce(Object.new) } o = Object.new def o.coerce(x); [x.numerator, x.denominator]; end assert_equal(10, r + o) assert_equal(4, r - o) assert_equal(21, r * o) assert_equal(2, r / o) assert_equal(343, r ** o) assert_equal(1, r <=> o) b = 2**100 def b.<=>(x); 0; end rescue nil assert_equal(1, r ** b) b = 2**100 def b.**(x); -1; end rescue nil assert_equal(-1, Rational(1, b)**3) end def test_modulo_remainder assert_equal(Rational(1, 2), Rational(5, 2).modulo(1)) assert_equal(Rational(1, 2), Rational(5, 2).modulo(2)) assert_equal(Rational(5, 2), Rational(5, 2).modulo(3)) assert_equal(Rational(5, 6), Rational(5, 2).modulo(Rational(5, 3))) assert_equal(Rational(1, 2), Rational(-5, 2).modulo(1)) assert_equal(Rational(-1, 2), Rational(5, 2).modulo(-1)) assert_equal(Rational(-1, 2), Rational(-5, 2).modulo(-1)) assert_equal(Rational(1, 2), Rational(5, 2).remainder(1)) assert_equal(Rational(1, 2), Rational(5, 2).remainder(2)) assert_equal(Rational(5, 2), Rational(5, 2).remainder(3)) assert_equal(Rational(5, 6), Rational(5, 2).remainder(Rational(5, 3))) assert_equal(Rational(-1, 2), Rational(-5, 2).remainder(1)) assert_equal(Rational(1, 2), Rational(5, 2).remainder(-1)) assert_equal(Rational(-1, 2), Rational(-5, 2).remainder(-1)) end def test_abs assert_equal(Rational(1, 2), Rational(1, 2).abs) assert_equal(Rational(1, 2), Rational(-1, 2).abs) end def test_floor_ceil_truncate_round assert_equal( 2, Rational( 5, 2).floor) assert_equal(-3, Rational(-5, 2).floor) assert_equal( 3, Rational( 5, 2).ceil) assert_equal(-2, Rational(-5, 2).ceil) assert_equal( 2, Rational( 5, 2).truncate) assert_equal(-2, Rational(-5, 2).truncate) assert_equal( 3, Rational( 5, 2).round) assert_equal(-3, Rational(-5, 2).round) assert_equal( 1, Rational( 4, 3).round) assert_equal(-1, Rational(-4, 3).round) assert_equal( 2, Rational( 5, 3).round) assert_equal(-2, Rational(-5, 3).round) end def test_convert assert_equal(Rational(1, 2), Rational(Complex(1, 0), 2)) assert_raise(RangeError) { Rational(Complex(1, 1), 1) } assert_equal(Rational(1, 2), Rational(1, Complex(2, 0))) assert_raise(RangeError) { Rational(1, Complex(2, 1)) } assert_equal(Rational(1, 2), Rational(0.25, 0.5)) assert_equal(Rational(1, 2), Rational('1', '2')) end def test_add2 assert_equal(Rational(2**100, 3), Rational(0, 1) + Rational(2**100, 3)) assert_equal(Rational(2, 3**100), Rational(0, 1) + Rational(2, 3**100)) end def test_div2 assert_raise(ZeroDivisionError) { Rational(1, 1) / Rational(0, 1) } end def test_to_f2 assert_equal(1, Rational(2**5000,3).to_f.infinite?) assert_equal(0, Rational(1, 2**5000).to_f) end =end def test_fixed_bug if defined?(Rational::Unify) assert_instance_of(Fixnum, Rational(1,2) ** 0) # mathn's bug end n = Float::MAX.to_i * 2 assert_equal(1.0, Rational(n + 2, n + 1).to_f, '[ruby-dev:33852]') end def test_known_bug end end