/********************************************************************** gc.c - $Author$ $Date$ created at: Tue Oct 5 09:44:46 JST 1993 Copyright (C) 1993-2003 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby.h" #include "rubysig.h" #include "st.h" #include "node.h" #include "env.h" #include "re.h" #include #include #include #ifdef HAVE_SYS_TIME_H #include #endif #ifdef HAVE_SYS_RESOURCE_H #include #endif #if defined _WIN32 || defined __CYGWIN__ #include #endif int rb_io_fptr_finalize(struct OpenFile*); #if !defined(setjmp) && defined(HAVE__SETJMP) #define setjmp(env) _setjmp(env) #endif /* Make alloca work the best possible way. */ #ifdef __GNUC__ # ifndef atarist # ifndef alloca # define alloca __builtin_alloca # endif # endif /* atarist */ #else # ifdef HAVE_ALLOCA_H # include # else # ifdef _AIX #pragma alloca # else # ifndef alloca /* predefined by HP cc +Olibcalls */ void *alloca (); # endif # endif /* AIX */ # endif /* HAVE_ALLOCA_H */ #endif /* __GNUC__ */ #ifndef GC_MALLOC_LIMIT #if defined(MSDOS) || defined(__human68k__) #define GC_MALLOC_LIMIT 200000 #else #define GC_MALLOC_LIMIT 8000000 #endif #endif static unsigned long malloc_increase = 0; static unsigned long malloc_limit = GC_MALLOC_LIMIT; static void run_final(VALUE obj); static VALUE nomem_error; static int garbage_collect(void); void rb_memerror(void) { static int recurse = 0; if (!nomem_error || (recurse > 0 && rb_safe_level() < 4)) { fprintf(stderr, "[FATAL] failed to allocate memory\n"); exit(1); } recurse++; rb_exc_raise(nomem_error); } int gc_stress = 0; /* * call-seq: * GC.stress => true or false * * returns current status of GC stress mode. */ static VALUE gc_stress_get(VALUE self) { return gc_stress ? Qtrue : Qfalse; } /* * call-seq: * GC.stress = bool => bool * * updates GC stress mode. * * When GC.stress = true, GC is invoked for all GC opportunity: * all memory and object allocation. * * Since it makes Ruby very slow, it is only for debugging. */ static VALUE gc_stress_set(VALUE self, VALUE bool) { rb_secure(2); gc_stress = RTEST(bool); return bool; } void * ruby_xmalloc(size_t size) { void *mem; if (size < 0) { rb_raise(rb_eNoMemError, "negative allocation size (or too big)"); } if (size == 0) size = 1; malloc_increase += size; if (gc_stress || malloc_increase > malloc_limit) { garbage_collect(); } RUBY_CRITICAL(mem = malloc(size)); if (!mem) { if (garbage_collect()) { RUBY_CRITICAL(mem = malloc(size)); } if (!mem) { rb_memerror(); } } return mem; } void * ruby_xmalloc2(size_t n, size_t size) { long len = size * n; if (n != 0 && size != len / n) { rb_raise(rb_eArgError, "malloc: possible integer overflow"); } return ruby_xmalloc(len); } void * ruby_xcalloc(size_t n, size_t size) { void *mem; mem = ruby_xmalloc2(n, size); memset(mem, 0, n * size); return mem; } void * ruby_xrealloc(void *ptr, size_t size) { void *mem; if (size < 0) { rb_raise(rb_eArgError, "negative re-allocation size"); } if (!ptr) return ruby_xmalloc(size); if (size == 0) size = 1; malloc_increase += size; if (gc_stress) garbage_collect(); RUBY_CRITICAL(mem = realloc(ptr, size)); if (!mem) { if (garbage_collect()) { RUBY_CRITICAL(mem = realloc(ptr, size)); } if (!mem) { rb_memerror(); } } return mem; } void * ruby_xrealloc2(void *ptr, size_t n, size_t size) { size_t len = size * n; if (n != 0 && size != len / n) { rb_raise(rb_eArgError, "realloc: possible integer overflow"); } return ruby_xrealloc(ptr, len); } void ruby_xfree(void *x) { if (x) RUBY_CRITICAL(free(x)); } static int dont_gc; static int during_gc; static int need_call_final = 0; static st_table *finalizer_table = 0; /* * call-seq: * GC.enable => true or false * * Enables garbage collection, returning true if garbage * collection was previously disabled. * * GC.disable #=> false * GC.enable #=> true * GC.enable #=> false * */ VALUE rb_gc_enable(void) { int old = dont_gc; dont_gc = Qfalse; return old; } /* * call-seq: * GC.disable => true or false * * Disables garbage collection, returning true if garbage * collection was already disabled. * * GC.disable #=> false * GC.disable #=> true * */ VALUE rb_gc_disable(void) { int old = dont_gc; dont_gc = Qtrue; return old; } VALUE rb_mGC; static struct gc_list { VALUE *varptr; struct gc_list *next; } *global_List = 0; void rb_gc_register_address(VALUE *addr) { struct gc_list *tmp; tmp = ALLOC(struct gc_list); tmp->next = global_List; tmp->varptr = addr; global_List = tmp; } void rb_gc_unregister_address(VALUE *addr) { struct gc_list *tmp = global_List; if (tmp->varptr == addr) { global_List = tmp->next; RUBY_CRITICAL(free(tmp)); return; } while (tmp->next) { if (tmp->next->varptr == addr) { struct gc_list *t = tmp->next; tmp->next = tmp->next->next; RUBY_CRITICAL(free(t)); break; } tmp = tmp->next; } } #undef GC_DEBUG void rb_global_variable(VALUE *var) { rb_gc_register_address(var); } #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__) #pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */ #endif typedef struct RVALUE { union { struct { unsigned long flags; /* always 0 for freed obj */ struct RVALUE *next; } free; struct RBasic basic; struct RObject object; struct RClass klass; struct RFloat flonum; struct RString string; struct RArray array; struct RRegexp regexp; struct RHash hash; struct RData data; struct RStruct rstruct; struct RBignum bignum; struct RFile file; struct RNode node; struct RMatch match; struct RVarmap varmap; struct SCOPE scope; } as; #ifdef GC_DEBUG char *file; int line; #endif } RVALUE; #if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__) #pragma pack(pop) #endif static RVALUE *freelist = 0; static RVALUE *deferred_final_list = 0; #define HEAPS_INCREMENT 10 static struct heaps_slot { void *membase; RVALUE *slot; int limit; } *heaps; static int heaps_length = 0; static int heaps_used = 0; #define HEAP_MIN_SLOTS 10000 static int heap_slots = HEAP_MIN_SLOTS; #define FREE_MIN 4096 static RVALUE *himem, *lomem; static void add_heap(void) { RVALUE *p, *pend; if (heaps_used == heaps_length) { /* Realloc heaps */ struct heaps_slot *p; int length; heaps_length += HEAPS_INCREMENT; length = heaps_length*sizeof(struct heaps_slot); RUBY_CRITICAL( if (heaps_used > 0) { p = (struct heaps_slot *)realloc(heaps, length); if (p) heaps = p; } else { p = heaps = (struct heaps_slot *)malloc(length); }); if (p == 0) rb_memerror(); } for (;;) { RUBY_CRITICAL(p = (RVALUE*)malloc(sizeof(RVALUE)*(heap_slots+1))); if (p == 0) { if (heap_slots == HEAP_MIN_SLOTS) { rb_memerror(); } heap_slots = HEAP_MIN_SLOTS; continue; } heaps[heaps_used].membase = p; if ((VALUE)p % sizeof(RVALUE) == 0) heap_slots += 1; else p = (RVALUE*)((VALUE)p + sizeof(RVALUE) - ((VALUE)p % sizeof(RVALUE))); heaps[heaps_used].slot = p; heaps[heaps_used].limit = heap_slots; break; } pend = p + heap_slots; if (lomem == 0 || lomem > p) lomem = p; if (himem < pend) himem = pend; heaps_used++; heap_slots *= 1.8; while (p < pend) { p->as.free.flags = 0; p->as.free.next = freelist; freelist = p; p++; } } #define RANY(o) ((RVALUE*)(o)) VALUE rb_newobj(void) { VALUE obj; if ((gc_stress || !freelist) && !garbage_collect()) rb_memerror(); obj = (VALUE)freelist; freelist = freelist->as.free.next; MEMZERO((void*)obj, RVALUE, 1); #ifdef GC_DEBUG RANY(obj)->file = ruby_sourcefile; RANY(obj)->line = ruby_sourceline; #endif return obj; } VALUE rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree) { NEWOBJ(data, struct RData); if (klass) Check_Type(klass, T_CLASS); OBJSETUP(data, klass, T_DATA); data->data = datap; data->dfree = dfree; data->dmark = dmark; return (VALUE)data; } extern st_table *rb_class_tbl; VALUE *rb_gc_stack_start = 0; #ifdef __ia64 VALUE *rb_gc_register_stack_start = 0; #endif #ifdef DJGPP /* set stack size (http://www.delorie.com/djgpp/v2faq/faq15_9.html) */ unsigned int _stklen = 0x180000; /* 1.5 kB */ #endif #if defined(DJGPP) || defined(_WIN32_WCE) static unsigned int STACK_LEVEL_MAX = 65535; #elif defined(__human68k__) unsigned int _stacksize = 262144; # define STACK_LEVEL_MAX (_stacksize - 4096) # undef HAVE_GETRLIMIT #elif defined(HAVE_GETRLIMIT) static unsigned int STACK_LEVEL_MAX = 655300; #else # define STACK_LEVEL_MAX 655300 #endif NOINLINE(static void set_stack_end(VALUE **stack_end_p)); static void set_stack_end(VALUE **stack_end_p) { VALUE stack_end; *stack_end_p = &stack_end; } #define SET_STACK_END VALUE *stack_end; set_stack_end(&stack_end) #define STACK_END (stack_end) #if defined(sparc) || defined(__sparc__) # define STACK_LENGTH (rb_gc_stack_start - STACK_END + 0x80) #elif STACK_GROW_DIRECTION < 0 # define STACK_LENGTH (rb_gc_stack_start - STACK_END) #elif STACK_GROW_DIRECTION > 0 # define STACK_LENGTH (STACK_END - rb_gc_stack_start + 1) #else # define STACK_LENGTH ((STACK_END < rb_gc_stack_start) ? rb_gc_stack_start - STACK_END\ : STACK_END - rb_gc_stack_start + 1) #endif #if STACK_GROW_DIRECTION > 0 # define STACK_UPPER(x, a, b) a #elif STACK_GROW_DIRECTION < 0 # define STACK_UPPER(x, a, b) b #else static int grow_direction; static int stack_grow_direction(addr) VALUE *addr; { SET_STACK_END; if (STACK_END > addr) return grow_direction = 1; return grow_direction = -1; } # define stack_growup_p(x) ((grow_direction ? grow_direction : stack_grow_direction(x)) > 0) # define STACK_UPPER(x, a, b) (stack_growup_p(x) ? a : b) #endif #define GC_WATER_MARK 512 #define CHECK_STACK(ret) do {\ SET_STACK_END;\ (ret) = (STACK_LENGTH > STACK_LEVEL_MAX + GC_WATER_MARK);\ } while (0) int ruby_stack_length(VALUE **p) { SET_STACK_END; if (p) *p = STACK_UPPER(STACK_END, rb_gc_stack_start, STACK_END); return STACK_LENGTH; } int ruby_stack_check(void) { int ret; CHECK_STACK(ret); return ret; } #define MARK_STACK_MAX 1024 static VALUE mark_stack[MARK_STACK_MAX]; static VALUE *mark_stack_ptr; static int mark_stack_overflow; static void init_mark_stack(void) { mark_stack_overflow = 0; mark_stack_ptr = mark_stack; } #define MARK_STACK_EMPTY (mark_stack_ptr == mark_stack) static st_table *source_filenames; char * rb_source_filename(const char *f) { char *name; if (!st_lookup(source_filenames, (st_data_t)f, (st_data_t *)&name)) { long len = strlen(f) + 1; char *ptr = name = ALLOC_N(char, len + 1); *ptr++ = 0; MEMCPY(ptr, f, char, len); st_add_direct(source_filenames, (st_data_t)ptr, (st_data_t)name); return ptr; } return name + 1; } static void mark_source_filename(char *f) { if (f) { f[-1] = 1; } } static int sweep_source_filename(char *key, char *value) { if (*value) { *value = 0; return ST_CONTINUE; } else { free(value); return ST_DELETE; } } static void gc_mark(VALUE ptr, int lev); static void gc_mark_children(VALUE ptr, int lev); static void gc_mark_all(void) { RVALUE *p, *pend; int i; init_mark_stack(); for (i = 0; i < heaps_used; i++) { p = heaps[i].slot; pend = p + heaps[i].limit; while (p < pend) { if ((p->as.basic.flags & FL_MARK) && (p->as.basic.flags != FL_MARK)) { gc_mark_children((VALUE)p, 0); } p++; } } } static void gc_mark_rest(void) { VALUE tmp_arry[MARK_STACK_MAX]; VALUE *p; p = (mark_stack_ptr - mark_stack) + tmp_arry; MEMCPY(tmp_arry, mark_stack, VALUE, MARK_STACK_MAX); init_mark_stack(); while (p != tmp_arry){ p--; gc_mark_children(*p, 0); } } static inline int is_pointer_to_heap(void *ptr) { register RVALUE *p = RANY(ptr); register RVALUE *heap_org; register long i; if (p < lomem || p > himem) return Qfalse; if ((VALUE)p % sizeof(RVALUE) != 0) return Qfalse; /* check if p looks like a pointer */ for (i=0; i < heaps_used; i++) { heap_org = heaps[i].slot; if (heap_org <= p && p < heap_org + heaps[i].limit) return Qtrue; } return Qfalse; } static void mark_locations_array(register VALUE *x, register long n) { VALUE v; while (n--) { v = *x; if (is_pointer_to_heap((void *)v)) { gc_mark(v, 0); } x++; } } void rb_gc_mark_locations(VALUE *start, VALUE *end) { long n; n = end - start; mark_locations_array(start,n); } static int mark_entry(ID key, VALUE value, int lev) { gc_mark(value, lev); return ST_CONTINUE; } static void mark_tbl(st_table *tbl, int lev) { if (!tbl) return; st_foreach(tbl, mark_entry, lev); } void rb_mark_tbl(st_table *tbl) { mark_tbl(tbl, 0); } static int mark_keyvalue(VALUE key, VALUE value, int lev) { gc_mark(key, lev); gc_mark(value, lev); return ST_CONTINUE; } static void mark_hash(st_table *tbl, int lev) { if (!tbl) return; st_foreach(tbl, mark_keyvalue, lev); } void rb_mark_hash(st_table *tbl) { mark_hash(tbl, 0); } void rb_gc_mark_maybe(VALUE obj) { if (is_pointer_to_heap((void *)obj)) { gc_mark(obj, 0); } } #define GC_LEVEL_MAX 250 static void gc_mark(VALUE ptr, int lev) { register RVALUE *obj; obj = RANY(ptr); if (rb_special_const_p(ptr)) return; /* special const not marked */ if (obj->as.basic.flags == 0) return; /* free cell */ if (obj->as.basic.flags & FL_MARK) return; /* already marked */ obj->as.basic.flags |= FL_MARK; if (lev > GC_LEVEL_MAX || (lev == 0 && ruby_stack_check())) { if (!mark_stack_overflow) { if (mark_stack_ptr - mark_stack < MARK_STACK_MAX) { *mark_stack_ptr = ptr; mark_stack_ptr++; } else { mark_stack_overflow = 1; } } return; } gc_mark_children(ptr, lev+1); } void rb_gc_mark(VALUE ptr) { gc_mark(ptr, 0); } static void gc_mark_children(VALUE ptr, int lev) { register RVALUE *obj = RANY(ptr); goto marking; /* skip */ again: obj = RANY(ptr); if (rb_special_const_p(ptr)) return; /* special const not marked */ if (obj->as.basic.flags == 0) return; /* free cell */ if (obj->as.basic.flags & FL_MARK) return; /* already marked */ obj->as.basic.flags |= FL_MARK; marking: if (FL_TEST(obj, FL_EXIVAR)) { rb_mark_generic_ivar(ptr); } switch (obj->as.basic.flags & T_MASK) { case T_NIL: case T_FIXNUM: rb_bug("rb_gc_mark() called for broken object"); break; case T_NODE: mark_source_filename(obj->as.node.nd_file); switch (nd_type(obj)) { case NODE_IF: /* 1,2,3 */ case NODE_FOR: case NODE_ITER: case NODE_WHEN: case NODE_MASGN: case NODE_RESCUE: case NODE_RESBODY: case NODE_CLASS: case NODE_ARGS: gc_mark((VALUE)obj->as.node.u2.node, lev); /* fall through */ case NODE_BLOCK: /* 1,3 */ case NODE_ARRAY: case NODE_DSTR: case NODE_DXSTR: case NODE_DREGX: case NODE_DREGX_ONCE: case NODE_FBODY: case NODE_ENSURE: case NODE_CALL: case NODE_DEFS: case NODE_OP_ASGN1: case NODE_CREF: gc_mark((VALUE)obj->as.node.u1.node, lev); /* fall through */ case NODE_SUPER: /* 3 */ case NODE_FCALL: case NODE_DEFN: ptr = (VALUE)obj->as.node.u3.node; goto again; case NODE_WHILE: /* 1,2 */ case NODE_UNTIL: case NODE_AND: case NODE_OR: case NODE_CASE: case NODE_SCLASS: case NODE_DOT2: case NODE_DOT3: case NODE_FLIP2: case NODE_FLIP3: case NODE_MATCH2: case NODE_MATCH3: case NODE_OP_ASGN_OR: case NODE_OP_ASGN_AND: case NODE_MODULE: case NODE_ALIAS: case NODE_VALIAS: gc_mark((VALUE)obj->as.node.u1.node, lev); /* fall through */ case NODE_METHOD: /* 2 */ case NODE_NOT: case NODE_GASGN: case NODE_LASGN: case NODE_DASGN: case NODE_DASGN_CURR: case NODE_IASGN: case NODE_CVDECL: case NODE_CVASGN: case NODE_COLON3: case NODE_OPT_N: case NODE_EVSTR: case NODE_UNDEF: ptr = (VALUE)obj->as.node.u2.node; goto again; case NODE_HASH: /* 1 */ case NODE_LIT: case NODE_STR: case NODE_XSTR: case NODE_DEFINED: case NODE_MATCH: case NODE_RETURN: case NODE_BREAK: case NODE_NEXT: case NODE_YIELD: case NODE_COLON2: case NODE_SPLAT: case NODE_TO_ARY: case NODE_SVALUE: ptr = (VALUE)obj->as.node.u1.node; goto again; case NODE_SCOPE: /* 2,3 */ case NODE_BLOCK_PASS: case NODE_CDECL: gc_mark((VALUE)obj->as.node.u3.node, lev); ptr = (VALUE)obj->as.node.u2.node; goto again; case NODE_ZARRAY: /* - */ case NODE_ZSUPER: case NODE_CFUNC: case NODE_VCALL: case NODE_GVAR: case NODE_LVAR: case NODE_DVAR: case NODE_IVAR: case NODE_CVAR: case NODE_NTH_REF: case NODE_BACK_REF: case NODE_REDO: case NODE_RETRY: case NODE_SELF: case NODE_NIL: case NODE_TRUE: case NODE_FALSE: case NODE_ERRINFO: case NODE_ATTRSET: case NODE_BLOCK_ARG: case NODE_POSTEXE: break; case NODE_ALLOCA: mark_locations_array((VALUE*)obj->as.node.u1.value, obj->as.node.u3.cnt); ptr = (VALUE)obj->as.node.u2.node; goto again; default: /* unlisted NODE */ if (is_pointer_to_heap(obj->as.node.u1.node)) { gc_mark((VALUE)obj->as.node.u1.node, lev); } if (is_pointer_to_heap(obj->as.node.u2.node)) { gc_mark((VALUE)obj->as.node.u2.node, lev); } if (is_pointer_to_heap(obj->as.node.u3.node)) { gc_mark((VALUE)obj->as.node.u3.node, lev); } } return; /* no need to mark class. */ } gc_mark(obj->as.basic.klass, lev); switch (obj->as.basic.flags & T_MASK) { case T_ICLASS: case T_CLASS: case T_MODULE: mark_tbl(obj->as.klass.m_tbl, lev); mark_tbl(obj->as.klass.iv_tbl, lev); ptr = obj->as.klass.super; goto again; case T_ARRAY: if (FL_TEST(obj, ELTS_SHARED)) { ptr = obj->as.array.aux.shared; goto again; } else { long i, len = obj->as.array.len; VALUE *ptr = obj->as.array.ptr; for (i=0; i < len; i++) { gc_mark(*ptr++, lev); } } break; case T_HASH: mark_hash(obj->as.hash.tbl, lev); ptr = obj->as.hash.ifnone; goto again; case T_STRING: #define STR_ASSOC FL_USER3 /* copied from string.c */ if (FL_TEST(obj, ELTS_SHARED|STR_ASSOC)) { ptr = obj->as.string.aux.shared; goto again; } break; case T_DATA: if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj)); break; case T_OBJECT: mark_tbl(obj->as.object.iv_tbl, lev); break; case T_FILE: case T_REGEXP: case T_FLOAT: case T_BIGNUM: case T_BLOCK: break; case T_MATCH: gc_mark(obj->as.match.regexp, lev); if (obj->as.match.str) { ptr = obj->as.match.str; goto again; } break; case T_VARMAP: gc_mark(obj->as.varmap.val, lev); ptr = (VALUE)obj->as.varmap.next; goto again; case T_SCOPE: if (obj->as.scope.local_vars && (obj->as.scope.flags & SCOPE_MALLOC)) { int n = obj->as.scope.local_tbl[0]+1; VALUE *vars = &obj->as.scope.local_vars[-1]; while (n--) { gc_mark(*vars++, lev); } } break; case T_STRUCT: { long len = RSTRUCT_LEN(obj); VALUE *ptr = RSTRUCT_PTR(obj); while (len--) { gc_mark(*ptr++, lev); } } break; default: rb_bug("rb_gc_mark(): unknown data type 0x%lx(%p) %s", obj->as.basic.flags & T_MASK, obj, is_pointer_to_heap(obj) ? "corrupted object" : "non object"); } } static void obj_free(VALUE); static void finalize_list(RVALUE *p) { while (p) { RVALUE *tmp = p->as.free.next; run_final((VALUE)p); if (!FL_TEST(p, FL_SINGLETON)) { /* not freeing page */ p->as.free.flags = 0; p->as.free.next = freelist; freelist = p; } p = tmp; } } static void free_unused_heaps(void) { int i, j; for (i = j = 1; j < heaps_used; i++) { if (heaps[i].limit == 0) { free(heaps[i].membase); heaps_used--; } else { if (i != j) { heaps[j] = heaps[i]; } j++; } } } void rb_gc_abort_threads(void); static void gc_sweep(void) { RVALUE *p, *pend, *final_list; int freed = 0; int i; unsigned long live = 0; mark_source_filename(ruby_sourcefile); if (source_filenames) { st_foreach(source_filenames, sweep_source_filename, 0); } freelist = 0; final_list = deferred_final_list; deferred_final_list = 0; for (i = 0; i < heaps_used; i++) { int n = 0; RVALUE *free = freelist; RVALUE *final = final_list; p = heaps[i].slot; pend = p + heaps[i].limit; while (p < pend) { if (!(p->as.basic.flags & FL_MARK)) { if (p->as.basic.flags) { obj_free((VALUE)p); } if (need_call_final && FL_TEST(p, FL_FINALIZE)) { p->as.free.flags = FL_MARK; /* remain marked */ p->as.free.next = final_list; final_list = p; } else { p->as.free.flags = 0; p->as.free.next = freelist; freelist = p; } n++; } else if (RBASIC(p)->flags == FL_MARK) { /* objects to be finalized */ /* do nothing remain marked */ } else { RBASIC(p)->flags &= ~FL_MARK; live++; } p++; } if (n == heaps[i].limit && freed > FREE_MIN) { RVALUE *pp; heaps[i].limit = 0; for (pp = final_list; pp != final; pp = pp->as.free.next) { p->as.free.flags |= FL_SINGLETON; /* freeing page mark */ } freelist = free; /* cancel this page from freelist */ } else { freed += n; } } if (malloc_increase > malloc_limit) { malloc_limit += (malloc_increase - malloc_limit) * (double)live / (live + freed); if (malloc_limit < GC_MALLOC_LIMIT) malloc_limit = GC_MALLOC_LIMIT; } malloc_increase = 0; if (freed < FREE_MIN) { add_heap(); } during_gc = 0; /* clear finalization list */ if (final_list) { deferred_final_list = final_list; return; } free_unused_heaps(); } void rb_gc_force_recycle(VALUE p) { RANY(p)->as.free.flags = 0; RANY(p)->as.free.next = freelist; freelist = RANY(p); } static void obj_free(VALUE obj) { switch (RANY(obj)->as.basic.flags & T_MASK) { case T_NIL: case T_FIXNUM: case T_TRUE: case T_FALSE: rb_bug("obj_free() called for broken object"); break; } if (FL_TEST(obj, FL_EXIVAR)) { rb_free_generic_ivar((VALUE)obj); } switch (RANY(obj)->as.basic.flags & T_MASK) { case T_OBJECT: if (RANY(obj)->as.object.iv_tbl) { st_free_table(RANY(obj)->as.object.iv_tbl); } break; case T_MODULE: case T_CLASS: rb_clear_cache_by_class((VALUE)obj); st_free_table(RANY(obj)->as.klass.m_tbl); if (RANY(obj)->as.object.iv_tbl) { st_free_table(RANY(obj)->as.object.iv_tbl); } break; case T_STRING: if (RANY(obj)->as.string.ptr && !FL_TEST(obj, ELTS_SHARED)) { RUBY_CRITICAL(free(RANY(obj)->as.string.ptr)); } break; case T_ARRAY: if (RANY(obj)->as.array.ptr && !FL_TEST(obj, ELTS_SHARED)) { RUBY_CRITICAL(free(RANY(obj)->as.array.ptr)); } break; case T_HASH: if (RANY(obj)->as.hash.tbl) { st_free_table(RANY(obj)->as.hash.tbl); } break; case T_REGEXP: if (RANY(obj)->as.regexp.ptr) { onig_free(RANY(obj)->as.regexp.ptr); } if (RANY(obj)->as.regexp.str) { RUBY_CRITICAL(free(RANY(obj)->as.regexp.str)); } break; case T_DATA: if (DATA_PTR(obj)) { if ((long)RANY(obj)->as.data.dfree == -1) { RUBY_CRITICAL(free(DATA_PTR(obj))); } else if (RANY(obj)->as.data.dfree) { (*RANY(obj)->as.data.dfree)(DATA_PTR(obj)); } } break; case T_MATCH: if (RANY(obj)->as.match.regs) { onig_region_free(RANY(obj)->as.match.regs, 0); RUBY_CRITICAL(free(RANY(obj)->as.match.regs)); } break; case T_FILE: if (RANY(obj)->as.file.fptr) { rb_io_fptr_finalize(RANY(obj)->as.file.fptr); } break; case T_ICLASS: /* iClass shares table with the module */ break; case T_FLOAT: case T_VARMAP: case T_BLOCK: break; case T_BIGNUM: if (RANY(obj)->as.bignum.digits) { RUBY_CRITICAL(free(RANY(obj)->as.bignum.digits)); } break; case T_NODE: switch (nd_type(obj)) { case NODE_SCOPE: if (RANY(obj)->as.node.u1.tbl) { RUBY_CRITICAL(free(RANY(obj)->as.node.u1.tbl)); } break; case NODE_ALLOCA: RUBY_CRITICAL(free(RANY(obj)->as.node.u1.node)); break; } return; /* no need to free iv_tbl */ case T_SCOPE: if (RANY(obj)->as.scope.local_vars && RANY(obj)->as.scope.flags != SCOPE_ALLOCA) { VALUE *vars = RANY(obj)->as.scope.local_vars-1; if (vars[0] == 0) RUBY_CRITICAL(free(RANY(obj)->as.scope.local_tbl)); if (RANY(obj)->as.scope.flags & SCOPE_MALLOC) RUBY_CRITICAL(free(vars)); } break; case T_STRUCT: if (RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK == 0 && RANY(obj)->as.rstruct.as.heap.ptr) { RUBY_CRITICAL(free(RANY(obj)->as.rstruct.as.heap.ptr)); } break; default: rb_bug("gc_sweep(): unknown data type 0x%lx(%p)", RANY(obj)->as.basic.flags & T_MASK, obj); } } void rb_gc_mark_frame(struct FRAME *frame) { gc_mark((VALUE)frame->node, 0); } #ifdef __GNUC__ #if defined(__human68k__) || defined(DJGPP) #if defined(__human68k__) typedef unsigned long rb_jmp_buf[8]; __asm__ (".even\n\ _rb_setjmp:\n\ move.l 4(sp),a0\n\ movem.l d3-d7/a3-a5,(a0)\n\ moveq.l #0,d0\n\ rts"); #ifdef setjmp #undef setjmp #endif #else #if defined(DJGPP) typedef unsigned long rb_jmp_buf[6]; __asm__ (".align 4\n\ _rb_setjmp:\n\ pushl %ebp\n\ movl %esp,%ebp\n\ movl 8(%ebp),%ebp\n\ movl %eax,(%ebp)\n\ movl %ebx,4(%ebp)\n\ movl %ecx,8(%ebp)\n\ movl %edx,12(%ebp)\n\ movl %esi,16(%ebp)\n\ movl %edi,20(%ebp)\n\ popl %ebp\n\ xorl %eax,%eax\n\ ret"); #endif #endif int rb_setjmp (rb_jmp_buf); #define jmp_buf rb_jmp_buf #define setjmp rb_setjmp #endif /* __human68k__ or DJGPP */ #endif /* __GNUC__ */ static int garbage_collect(void) { struct gc_list *list; struct FRAME * volatile frame; /* gcc 2.7.2.3 -O2 bug?? */ jmp_buf save_regs_gc_mark; SET_STACK_END; if (!heaps) return Qfalse; #ifdef HAVE_NATIVETHREAD if (!is_ruby_native_thread()) { rb_bug("cross-thread violation on rb_gc()"); } #endif if (dont_gc || during_gc) { if (!freelist) { add_heap(); } return Qtrue; } during_gc++; init_mark_stack(); gc_mark((VALUE)ruby_current_node, 0); /* mark frame stack */ for (frame = ruby_frame; frame; frame = frame->prev) { rb_gc_mark_frame(frame); if (frame->tmp) { struct FRAME *tmp = frame->tmp; while (tmp) { rb_gc_mark_frame(tmp); tmp = tmp->prev; } } } gc_mark((VALUE)ruby_scope, 0); gc_mark((VALUE)ruby_dyna_vars, 0); if (finalizer_table) { mark_tbl(finalizer_table, 0); } FLUSH_REGISTER_WINDOWS; /* This assumes that all registers are saved into the jmp_buf (and stack) */ setjmp(save_regs_gc_mark); mark_locations_array((VALUE*)save_regs_gc_mark, sizeof(save_regs_gc_mark) / sizeof(VALUE *)); #if STACK_GROW_DIRECTION < 0 rb_gc_mark_locations((VALUE*)STACK_END, rb_gc_stack_start); #elif STACK_GROW_DIRECTION > 0 rb_gc_mark_locations(rb_gc_stack_start, (VALUE*)STACK_END + 1); #else if ((VALUE*)STACK_END < rb_gc_stack_start) rb_gc_mark_locations((VALUE*)STACK_END, rb_gc_stack_start); else rb_gc_mark_locations(rb_gc_stack_start, (VALUE*)STACK_END + 1); #endif #ifdef __ia64 /* mark backing store (flushed register stack) */ /* the basic idea from guile GC code */ rb_gc_mark_locations(rb_gc_register_stack_start, (VALUE*)rb_ia64_bsp()); #endif #if defined(__human68k__) || defined(__mc68000__) rb_gc_mark_locations((VALUE*)((char*)STACK_END + 2), (VALUE*)((char*)rb_gc_stack_start + 2)); #endif rb_gc_mark_threads(); /* mark protected global variables */ for (list = global_List; list; list = list->next) { rb_gc_mark_maybe(*list->varptr); } rb_mark_end_proc(); rb_gc_mark_global_tbl(); rb_mark_tbl(rb_class_tbl); rb_gc_mark_trap_list(); /* mark generic instance variables for special constants */ rb_mark_generic_ivar_tbl(); rb_gc_mark_parser(); /* gc_mark objects whose marking are not completed*/ do { while (!MARK_STACK_EMPTY) { if (mark_stack_overflow){ gc_mark_all(); } else { gc_mark_rest(); } } rb_gc_abort_threads(); } while (!MARK_STACK_EMPTY); gc_sweep(); return Qtrue; } void rb_gc(void) { garbage_collect(); rb_gc_finalize_deferred(); } /* * call-seq: * GC.start => nil * gc.garbage_collect => nil * ObjectSpace.garbage_collect => nil * * Initiates garbage collection, unless manually disabled. * */ VALUE rb_gc_start(void) { rb_gc(); return Qnil; } void ruby_set_stack_size(size_t size) { #ifndef STACK_LEVEL_MAX STACK_LEVEL_MAX = size/sizeof(VALUE); #endif } void Init_stack(VALUE *addr) { #ifdef __ia64 if (rb_gc_register_stack_start == 0) { # if defined(__FreeBSD__) /* * FreeBSD/ia64 currently does not have a way for a process to get the * base address for the RSE backing store, so hardcode it. */ rb_gc_register_stack_start = (4ULL<<61); # elif defined(HAVE___LIBC_IA64_REGISTER_BACKING_STORE_BASE) # pragma weak __libc_ia64_register_backing_store_base extern unsigned long __libc_ia64_register_backing_store_base; rb_gc_register_stack_start = (VALUE*)__libc_ia64_register_backing_store_base; # endif } { VALUE *bsp = (VALUE*)rb_ia64_bsp(); if (rb_gc_register_stack_start == 0 || bsp < rb_gc_register_stack_start) { rb_gc_register_stack_start = bsp; } } #endif #if defined(_WIN32) || defined(__CYGWIN__) MEMORY_BASIC_INFORMATION m; memset(&m, 0, sizeof(m)); VirtualQuery(&m, &m, sizeof(m)); rb_gc_stack_start = STACK_UPPER((VALUE *)&m, (VALUE *)m.BaseAddress, (VALUE *)((char *)m.BaseAddress + m.RegionSize) - 1); #elif defined(STACK_END_ADDRESS) { extern void *STACK_END_ADDRESS; rb_gc_stack_start = STACK_END_ADDRESS; } #else if (!addr) addr = (VALUE *)&addr; STACK_UPPER(&addr, addr, ++addr); if (rb_gc_stack_start) { if (STACK_UPPER(&addr, rb_gc_stack_start > addr, rb_gc_stack_start < addr)) rb_gc_stack_start = addr; return; } rb_gc_stack_start = addr; #endif #ifdef HAVE_GETRLIMIT { struct rlimit rlim; if (getrlimit(RLIMIT_STACK, &rlim) == 0) { unsigned int space = rlim.rlim_cur/5; if (space > 1024*1024) space = 1024*1024; STACK_LEVEL_MAX = (rlim.rlim_cur - space) / sizeof(VALUE); } } #endif } void ruby_init_stack(VALUE *addr #ifdef __ia64 , void *bsp #endif ) { if (!rb_gc_stack_start || STACK_UPPER(&addr, rb_gc_stack_start > addr, rb_gc_stack_start < addr)) { rb_gc_stack_start = addr; } #ifdef __ia64 if (!rb_gc_register_stack_start || (VALUE*)bsp < rb_gc_register_stack_start) { rb_gc_register_stack_start = (VALUE*)bsp; } #endif #ifdef HAVE_GETRLIMIT { struct rlimit rlim; if (getrlimit(RLIMIT_STACK, &rlim) == 0) { unsigned int space = rlim.rlim_cur/5; if (space > 1024*1024) space = 1024*1024; STACK_LEVEL_MAX = (rlim.rlim_cur - space) / sizeof(VALUE); } } #endif } /* * Document-class: ObjectSpace * * The ObjectSpace module contains a number of routines * that interact with the garbage collection facility and allow you to * traverse all living objects with an iterator. * * ObjectSpace also provides support for object * finalizers, procs that will be called when a specific object is * about to be destroyed by garbage collection. * * include ObjectSpace * * * a = "A" * b = "B" * c = "C" * * * define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" }) * define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" }) * define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" }) * * produces: * * Finalizer three on 537763470 * Finalizer one on 537763480 * Finalizer two on 537763480 * */ void Init_heap(void) { if (!rb_gc_stack_start) { Init_stack(0); } add_heap(); } static VALUE os_live_obj(void) { int i; int n = 0; for (i = 0; i < heaps_used; i++) { RVALUE *p, *pend; p = heaps[i].slot; pend = p + heaps[i].limit; for (;p < pend; p++) { if (p->as.basic.flags) { switch (TYPE(p)) { case T_ICLASS: case T_VARMAP: case T_SCOPE: case T_NODE: continue; case T_CLASS: if (FL_TEST(p, FL_SINGLETON)) continue; default: if (!p->as.basic.klass) continue; rb_yield((VALUE)p); n++; } } } } return INT2FIX(n); } static VALUE os_obj_of(VALUE of) { int i; int n = 0; for (i = 0; i < heaps_used; i++) { RVALUE *p, *pend; p = heaps[i].slot; pend = p + heaps[i].limit; for (;p < pend; p++) { if (p->as.basic.flags) { switch (TYPE(p)) { case T_ICLASS: case T_VARMAP: case T_SCOPE: case T_NODE: continue; case T_CLASS: if (FL_TEST(p, FL_SINGLETON)) continue; default: if (!p->as.basic.klass) continue; if (rb_obj_is_kind_of((VALUE)p, of)) { rb_yield((VALUE)p); n++; } } } } } return INT2FIX(n); } /* * call-seq: * ObjectSpace.each_object([module]) {|obj| ... } => fixnum * * Calls the block once for each living, nonimmediate object in this * Ruby process. If module is specified, calls the block * for only those classes or modules that match (or are a subclass of) * module. Returns the number of objects found. Immediate * objects (Fixnums, Symbols * true, false, and nil) are * never returned. In the example below, each_object * returns both the numbers we defined and several constants defined in * the Math module. * * a = 102.7 * b = 95 # Won't be returned * c = 12345678987654321 * count = ObjectSpace.each_object(Numeric) {|x| p x } * puts "Total count: #{count}" * * produces: * * 12345678987654321 * 102.7 * 2.71828182845905 * 3.14159265358979 * 2.22044604925031e-16 * 1.7976931348623157e+308 * 2.2250738585072e-308 * Total count: 7 * */ static VALUE os_each_obj(int argc, VALUE *argv) { VALUE of; rb_secure(4); if (rb_scan_args(argc, argv, "01", &of) == 0) { return os_live_obj(); } else { return os_obj_of(of); } } static VALUE finalizers; /* deprecated */ static VALUE add_final(VALUE os, VALUE block) { rb_warn("ObjectSpace::add_finalizer is deprecated; use define_finalizer"); if (!rb_respond_to(block, rb_intern("call"))) { rb_raise(rb_eArgError, "wrong type argument %s (should be callable)", rb_obj_classname(block)); } rb_ary_push(finalizers, block); return block; } /* * deprecated */ static VALUE rm_final(VALUE os, VALUE block) { rb_warn("ObjectSpace::remove_finalizer is deprecated; use undefine_finalizer"); rb_ary_delete(finalizers, block); return block; } /* * deprecated */ static VALUE finals(void) { rb_warn("ObjectSpace::finalizers is deprecated"); return finalizers; } /* * deprecated */ static VALUE call_final(VALUE os, VALUE obj) { rb_warn("ObjectSpace::call_finalizer is deprecated; use define_finalizer"); need_call_final = 1; FL_SET(obj, FL_FINALIZE); return obj; } /* * call-seq: * ObjectSpace.undefine_finalizer(obj) * * Removes all finalizers for obj. * */ static VALUE undefine_final(VALUE os, VALUE obj) { if (finalizer_table) { st_delete(finalizer_table, (st_data_t*)&obj, 0); } return obj; } /* * call-seq: * ObjectSpace.define_finalizer(obj, aProc=proc()) * * Adds aProc as a finalizer, to be called after obj * was destroyed. * */ static VALUE define_final(int argc, VALUE *argv, VALUE os) { VALUE obj, block, table; rb_scan_args(argc, argv, "11", &obj, &block); if (argc == 1) { block = rb_block_proc(); } else if (!rb_respond_to(block, rb_intern("call"))) { rb_raise(rb_eArgError, "wrong type argument %s (should be callable)", rb_obj_classname(block)); } need_call_final = 1; FL_SET(obj, FL_FINALIZE); block = rb_ary_new3(2, INT2FIX(ruby_safe_level), block); if (!finalizer_table) { finalizer_table = st_init_numtable(); } if (st_lookup(finalizer_table, obj, &table)) { rb_ary_push(table, block); } else { st_add_direct(finalizer_table, obj, rb_ary_new3(1, block)); } return block; } void rb_gc_copy_finalizer(VALUE dest, VALUE obj) { VALUE table; if (!finalizer_table) return; if (!FL_TEST(obj, FL_FINALIZE)) return; if (st_lookup(finalizer_table, obj, &table)) { st_insert(finalizer_table, dest, table); } FL_SET(dest, FL_FINALIZE); } static VALUE run_single_final(VALUE *args) { rb_eval_cmd(args[0], args[1], (int)args[2]); return Qnil; } static void run_final(VALUE obj) { long i; int status, critical_save = rb_thread_critical; VALUE args[3], table, objid; objid = rb_obj_id(obj); /* make obj into id */ rb_thread_critical = Qtrue; args[1] = 0; args[2] = (VALUE)ruby_safe_level; for (i=0; ilen; i++) { args[0] = RARRAY(finalizers)->ptr[i]; if (!args[1]) args[1] = rb_ary_new3(1, objid); rb_protect((VALUE(*)(VALUE))run_single_final, (VALUE)args, &status); } if (finalizer_table && st_delete(finalizer_table, (st_data_t*)&obj, &table)) { for (i=0; ilen; i++) { VALUE final = RARRAY(table)->ptr[i]; args[0] = RARRAY(final)->ptr[1]; if (!args[1]) args[1] = rb_ary_new3(1, objid); args[2] = FIX2INT(RARRAY(final)->ptr[0]); rb_protect((VALUE(*)(VALUE))run_single_final, (VALUE)args, &status); } } rb_thread_critical = critical_save; } void rb_gc_finalize_deferred(void) { RVALUE *p = deferred_final_list; during_gc++; deferred_final_list = 0; if (p) { finalize_list(p); } free_unused_heaps(); during_gc = 0; } void rb_gc_call_finalizer_at_exit(void) { RVALUE *p, *pend; int i; /* finalizers are part of garbage collection */ during_gc++; /* run finalizers */ if (need_call_final) { p = deferred_final_list; deferred_final_list = 0; finalize_list(p); for (i = 0; i < heaps_used; i++) { p = heaps[i].slot; pend = p + heaps[i].limit; while (p < pend) { if (FL_TEST(p, FL_FINALIZE)) { FL_UNSET(p, FL_FINALIZE); p->as.basic.klass = 0; run_final((VALUE)p); } p++; } } } /* run data object's finalizers */ for (i = 0; i < heaps_used; i++) { p = heaps[i].slot; pend = p + heaps[i].limit; while (p < pend) { if (BUILTIN_TYPE(p) == T_DATA && DATA_PTR(p) && RANY(p)->as.data.dfree && RANY(p)->as.basic.klass != rb_cThread) { p->as.free.flags = 0; if ((long)RANY(p)->as.data.dfree == -1) { RUBY_CRITICAL(free(DATA_PTR(p))); } else if (RANY(p)->as.data.dfree) { (*RANY(p)->as.data.dfree)(DATA_PTR(p)); } } else if (BUILTIN_TYPE(p) == T_FILE) { if (rb_io_fptr_finalize(RANY(p)->as.file.fptr)) { p->as.free.flags = 0; } } p++; } } during_gc = 0; } /* * call-seq: * ObjectSpace._id2ref(object_id) -> an_object * * Converts an object id to a reference to the object. May not be * called on an object id passed as a parameter to a finalizer. * * s = "I am a string" #=> "I am a string" * r = ObjectSpace._id2ref(s.object_id) #=> "I am a string" * r == s #=> true * */ static VALUE id2ref(VALUE obj, VALUE objid) { #if SIZEOF_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULONG(x) #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP #define NUM2PTR(x) NUM2ULL(x) #endif VALUE ptr; void *p0; rb_secure(4); ptr = NUM2PTR(objid); p0 = (void *)ptr; if (ptr == Qtrue) return Qtrue; if (ptr == Qfalse) return Qfalse; if (ptr == Qnil) return Qnil; if (FIXNUM_P(ptr)) return (VALUE)ptr; ptr = objid ^ FIXNUM_FLAG; /* unset FIXNUM_FLAG */ if ((ptr % sizeof(RVALUE)) == (4 << 2)) { ID symid = ptr / sizeof(RVALUE); if (rb_id2name(symid) == 0) rb_raise(rb_eRangeError, "%p is not symbol id value", p0); return ID2SYM(symid); } if (!is_pointer_to_heap((void *)ptr)|| BUILTIN_TYPE(ptr) >= T_BLOCK) { rb_raise(rb_eRangeError, "%p is not id value", p0); } if (BUILTIN_TYPE(ptr) == 0 || RBASIC(ptr)->klass == 0) { rb_raise(rb_eRangeError, "%p is recycled object", p0); } return (VALUE)ptr; } /* * Document-method: __id__ * Document-method: object_id * * call-seq: * obj.__id__ => fixnum * obj.object_id => fixnum * * Returns an integer identifier for obj. The same number will * be returned on all calls to id for a given object, and * no two active objects will share an id. * Object#object_id is a different concept from the * :name notation, which returns the symbol id of * name. Replaces the deprecated Object#id. */ /* * call-seq: * obj.hash => fixnum * * Generates a Fixnum hash value for this object. This * function must have the property that a.eql?(b) implies * a.hash == b.hash. The hash value is used by class * Hash. Any hash value that exceeds the capacity of a * Fixnum will be truncated before being used. */ VALUE rb_obj_id(VALUE obj) { /* * 32-bit VALUE space * MSB ------------------------ LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol ssssssssssssssssssssssss00001110 * object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE)) * fixnum fffffffffffffffffffffffffffffff1 * * object_id space * LSB * false 00000000000000000000000000000000 * true 00000000000000000000000000000010 * nil 00000000000000000000000000000100 * undef 00000000000000000000000000000110 * symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4) * object oooooooooooooooooooooooooooooo0 o...o % A = 0 * fixnum fffffffffffffffffffffffffffffff1 bignum if required * * where A = sizeof(RVALUE)/4 * * sizeof(RVALUE) is * 20 if 32-bit, double is 4-byte aligned * 24 if 32-bit, double is 8-byte aligned * 40 if 64-bit */ if (TYPE(obj) == T_SYMBOL) { return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG; } if (SPECIAL_CONST_P(obj)) { return LONG2NUM((long)obj); } return (VALUE)((long)obj|FIXNUM_FLAG); } /* * The GC module provides an interface to Ruby's mark and * sweep garbage collection mechanism. Some of the underlying methods * are also available via the ObjectSpace module. */ void Init_GC(void) { VALUE rb_mObSpace; rb_mGC = rb_define_module("GC"); rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0); rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0); rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0); rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0); rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1); rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0); rb_mObSpace = rb_define_module("ObjectSpace"); rb_define_module_function(rb_mObSpace, "each_object", os_each_obj, -1); rb_define_module_function(rb_mObSpace, "garbage_collect", rb_gc_start, 0); rb_define_module_function(rb_mObSpace, "add_finalizer", add_final, 1); rb_define_module_function(rb_mObSpace, "remove_finalizer", rm_final, 1); rb_define_module_function(rb_mObSpace, "finalizers", finals, 0); rb_define_module_function(rb_mObSpace, "call_finalizer", call_final, 1); rb_define_module_function(rb_mObSpace, "define_finalizer", define_final, -1); rb_define_module_function(rb_mObSpace, "undefine_finalizer", undefine_final, 1); rb_define_module_function(rb_mObSpace, "_id2ref", id2ref, 1); rb_gc_register_address(&rb_mObSpace); rb_global_variable(&finalizers); rb_gc_unregister_address(&rb_mObSpace); finalizers = rb_ary_new(); source_filenames = st_init_strtable(); rb_global_variable(&nomem_error); nomem_error = rb_exc_new2(rb_eNoMemError, "failed to allocate memory"); rb_define_method(rb_mKernel, "hash", rb_obj_id, 0); rb_define_method(rb_mKernel, "__id__", rb_obj_id, 0); rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0); }