/********************************************************************** numeric.c - $Author$ $Date$ created at: Fri Aug 13 18:33:09 JST 1993 Copyright (C) 1993-2003 Yukihiro Matsumoto **********************************************************************/ #include "ruby.h" #include #include #include #if defined(__FreeBSD__) && __FreeBSD__ < 4 #include #endif #ifdef HAVE_FLOAT_H #include #endif #ifdef HAVE_IEEEFP_H #include #endif /* use IEEE 64bit values if not defined */ #ifndef FLT_RADIX #define FLT_RADIX 2 #endif #ifndef FLT_ROUNDS #define FLT_ROUNDS 1 #endif #ifndef DBL_MIN #define DBL_MIN 2.2250738585072014e-308 #endif #ifndef DBL_MAX #define DBL_MAX 1.7976931348623157e+308 #endif #ifndef DBL_MIN_EXP #define DBL_MIN_EXP (-1021) #endif #ifndef DBL_MAX_EXP #define DBL_MAX_EXP 1024 #endif #ifndef DBL_MIN_10_EXP #define DBL_MIN_10_EXP (-307) #endif #ifndef DBL_MAX_10_EXP #define DBL_MAX_10_EXP 308 #endif #ifndef DBL_DIG #define DBL_DIG 15 #endif #ifndef DBL_MANT_DIG #define DBL_MANT_DIG 53 #endif #ifndef DBL_EPSILON #define DBL_EPSILON 2.2204460492503131e-16 #endif static ID id_coerce, id_to_i, id_eq; VALUE rb_cNumeric; VALUE rb_cFloat; VALUE rb_cInteger; VALUE rb_cFixnum; VALUE rb_eZeroDivError; VALUE rb_eFloatDomainError; void rb_num_zerodiv(void) { rb_raise(rb_eZeroDivError, "divided by 0"); } /* * call-seq: * num.coerce(numeric) => array * * If aNumeric is the same type as num, returns an array * containing aNumeric and num. Otherwise, returns an * array with both aNumeric and num represented as * Float objects. This coercion mechanism is used by * Ruby to handle mixed-type numeric operations: it is intended to * find a compatible common type between the two operands of the operator. * * 1.coerce(2.5) #=> [2.5, 1.0] * 1.2.coerce(3) #=> [3.0, 1.2] * 1.coerce(2) #=> [2, 1] */ static VALUE num_coerce(VALUE x, VALUE y) { if (CLASS_OF(x) == CLASS_OF(y)) return rb_assoc_new(y, x); return rb_assoc_new(rb_Float(y), rb_Float(x)); } static VALUE coerce_body(VALUE *x) { return rb_funcall(x[1], id_coerce, 1, x[0]); } static VALUE coerce_rescue(VALUE *x) { volatile VALUE v = rb_inspect(x[1]); rb_raise(rb_eTypeError, "%s can't be coerced into %s", rb_special_const_p(x[1])? RSTRING_PTR(v): rb_obj_classname(x[1]), rb_obj_classname(x[0])); return Qnil; /* dummy */ } static int do_coerce(VALUE *x, VALUE *y, int err) { VALUE ary; VALUE a[2]; a[0] = *x; a[1] = *y; ary = rb_rescue(coerce_body, (VALUE)a, err?coerce_rescue:0, (VALUE)a); if (TYPE(ary) != T_ARRAY || RARRAY_LEN(ary) != 2) { if (err) { rb_raise(rb_eTypeError, "coerce must return [x, y]"); } return Qfalse; } *x = RARRAY_PTR(ary)[0]; *y = RARRAY_PTR(ary)[1]; return Qtrue; } VALUE rb_num_coerce_bin(VALUE x, VALUE y) { do_coerce(&x, &y, Qtrue); return rb_funcall(x, rb_frame_this_func(), 1, y); } VALUE rb_num_coerce_cmp(VALUE x, VALUE y) { if (do_coerce(&x, &y, Qfalse)) return rb_funcall(x, rb_frame_this_func(), 1, y); return Qnil; } VALUE rb_num_coerce_relop(VALUE x, VALUE y) { VALUE c, x0 = x, y0 = y; if (!do_coerce(&x, &y, Qfalse) || NIL_P(c = rb_funcall(x, rb_frame_this_func(), 1, y))) { rb_cmperr(x0, y0); return Qnil; /* not reached */ } return c; } /* * Trap attempts to add methods to Numeric objects. Always * raises a TypeError */ static VALUE num_sadded(VALUE x, VALUE name) { /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */ /* Numerics should be values; singleton_methods should not be added to them */ rb_raise(rb_eTypeError, "can't define singleton method \"%s\" for %s", rb_id2name(rb_to_id(name)), rb_obj_classname(x)); return Qnil; /* not reached */ } /* :nodoc: */ static VALUE num_init_copy(VALUE x, VALUE y) { /* Numerics are immutable values, which should not be copied */ rb_raise(rb_eTypeError, "can't copy %s", rb_obj_classname(x)); return Qnil; /* not reached */ } /* * call-seq: * +num => num * * Unary Plus---Returns the receiver's value. */ static VALUE num_uplus(VALUE num) { return num; } /* * call-seq: * -num => numeric * * Unary Minus---Returns the receiver's value, negated. */ static VALUE num_uminus(VALUE num) { VALUE zero; zero = INT2FIX(0); do_coerce(&zero, &num, Qtrue); return rb_funcall(zero, '-', 1, num); } /* * call-seq: * num.quo(numeric) => result * num.fdiv(numeric) => result * * Equivalent to Numeric#/, but overridden in subclasses. */ static VALUE num_quo(VALUE x, VALUE y) { return rb_funcall(x, '/', 1, y); } static VALUE num_floor(VALUE num); /* * call-seq: * num.div(numeric) => integer * * Uses / to perform division, then converts the result to * an integer. Numeric does not define the / * operator; this is left to subclasses. */ static VALUE num_div(VALUE x, VALUE y) { return num_floor(rb_funcall(x, '/', 1, y)); } /* * call-seq: * num.divmod( aNumeric ) -> anArray * * Returns an array containing the quotient and modulus obtained by * dividing num by aNumeric. If q, r = * x.divmod(y), then * * q = floor(float(x)/float(y)) * x = q*y + r * * The quotient is rounded toward -infinity, as shown in the following table: * * a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b) * ------+-----+---------------+---------+-------------+--------------- * 13 | 4 | 3, 1 | 3 | 1 | 1 * ------+-----+---------------+---------+-------------+--------------- * 13 | -4 | -4, -3 | -3 | -3 | 1 * ------+-----+---------------+---------+-------------+--------------- * -13 | 4 | -4, 3 | -4 | 3 | -1 * ------+-----+---------------+---------+-------------+--------------- * -13 | -4 | 3, -1 | 3 | -1 | -1 * ------+-----+---------------+---------+-------------+--------------- * 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5 * ------+-----+---------------+---------+-------------+--------------- * 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5 * ------+-----+---------------+---------+-------------+--------------- * -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5 * ------+-----+---------------+---------+-------------+--------------- * -11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5 * * * Examples * 11.divmod(3) #=> [3, 2] * 11.divmod(-3) #=> [-4, -1] * 11.divmod(3.5) #=> [3, 0.5] * (-11).divmod(3.5) #=> [-4, 3.0] * (11.5).divmod(3.5) #=> [3, 1.0] */ static VALUE num_divmod(VALUE x, VALUE y) { return rb_assoc_new(num_div(x, y), rb_funcall(x, '%', 1, y)); } /* * call-seq: * num.modulo(numeric) => result * * Equivalent to * num.divmod(aNumeric)[1]. */ static VALUE num_modulo(VALUE x, VALUE y) { return rb_funcall(x, '%', 1, y); } /* * call-seq: * num.remainder(numeric) => result * * If num and numeric have different signs, returns * mod-numeric; otherwise, returns mod. In * both cases mod is the value * num.modulo(numeric). The * differences between remainder and modulo * (%) are shown in the table under Numeric#divmod. */ static VALUE num_remainder(VALUE x, VALUE y) { VALUE z = rb_funcall(x, '%', 1, y); if ((!rb_equal(z, INT2FIX(0))) && ((RTEST(rb_funcall(x, '<', 1, INT2FIX(0))) && RTEST(rb_funcall(y, '>', 1, INT2FIX(0)))) || (RTEST(rb_funcall(x, '>', 1, INT2FIX(0))) && RTEST(rb_funcall(y, '<', 1, INT2FIX(0)))))) { return rb_funcall(z, '-', 1, y); } return z; } /* * call-seq: * num.scalar? -> true or false * * Returns true if num is an Scalar * (i.e. non Complex). */ static VALUE num_scalar_p(VALUE num) { return Qtrue; } /* * call-seq: * num.integer? -> true or false * * Returns true if num is an Integer * (including Fixnum and Bignum). */ static VALUE num_int_p(VALUE num) { return Qfalse; } /* * call-seq: * num.abs => num or numeric * * Returns the absolute value of num. * * 12.abs #=> 12 * (-34.56).abs #=> 34.56 * -34.56.abs #=> 34.56 */ static VALUE num_abs(VALUE num) { if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) { return rb_funcall(num, rb_intern("-@"), 0); } return num; } /* * call-seq: * num.zero? => true or false * * Returns true if num has a zero value. */ static VALUE num_zero_p(VALUE num) { if (rb_equal(num, INT2FIX(0))) { return Qtrue; } return Qfalse; } /* * call-seq: * num.nonzero? => num or nil * * Returns num if num is not zero, nil * otherwise. This behavior is useful when chaining comparisons: * * a = %w( z Bb bB bb BB a aA Aa AA A ) * b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b } * b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"] */ static VALUE num_nonzero_p(VALUE num) { if (RTEST(rb_funcall(num, rb_intern("zero?"), 0, 0))) { return Qnil; } return num; } /* * call-seq: * num.to_int => integer * * Invokes the child class's to_i method to convert * num to an integer. */ static VALUE num_to_int(VALUE num) { return rb_funcall(num, id_to_i, 0, 0); } /******************************************************************** * * Document-class: Float * * Float objects represent real numbers using the native * architecture's double-precision floating point representation. */ VALUE rb_float_new(double d) { NEWOBJ(flt, struct RFloat); OBJSETUP(flt, rb_cFloat, T_FLOAT); flt->value = d; return (VALUE)flt; } /* * call-seq: * flt.to_s => string * * Returns a string containing a representation of self. As well as a * fixed or exponential form of the number, the call may return * ``NaN'', ``Infinity'', and * ``-Infinity''. */ static VALUE flo_to_s(VALUE flt) { char buf[32]; double value = RFLOAT(flt)->value; char *p, *e; if (isinf(value)) return rb_str_new2(value < 0 ? "-Infinity" : "Infinity"); else if(isnan(value)) return rb_str_new2("NaN"); sprintf(buf, "%#.15g", value); /* ensure to print decimal point */ if (!(e = strchr(buf, 'e'))) { e = buf + strlen(buf); } if (!ISDIGIT(e[-1])) { /* reformat if ended with decimal point (ex 111111111111111.) */ sprintf(buf, "%#.14e", value); if (!(e = strchr(buf, 'e'))) { e = buf + strlen(buf); } } p = e; while (p[-1]=='0' && ISDIGIT(p[-2])) p--; memmove(p, e, strlen(e)+1); return rb_str_new2(buf); } /* * MISSING: documentation */ static VALUE flo_coerce(VALUE x, VALUE y) { return rb_assoc_new(rb_Float(y), x); } /* * call-seq: * -float => float * * Returns float, negated. */ static VALUE flo_uminus(VALUE flt) { return rb_float_new(-RFLOAT(flt)->value); } /* * call-seq: * float + other => float * * Returns a new float which is the sum of float * and other. */ static VALUE flo_plus(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return rb_float_new(RFLOAT(x)->value + (double)FIX2LONG(y)); case T_BIGNUM: return rb_float_new(RFLOAT(x)->value + rb_big2dbl(y)); case T_FLOAT: return rb_float_new(RFLOAT(x)->value + RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } } /* * call-seq: * float + other => float * * Returns a new float which is the difference of float * and other. */ static VALUE flo_minus(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return rb_float_new(RFLOAT(x)->value - (double)FIX2LONG(y)); case T_BIGNUM: return rb_float_new(RFLOAT(x)->value - rb_big2dbl(y)); case T_FLOAT: return rb_float_new(RFLOAT(x)->value - RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } } /* * call-seq: * float * other => float * * Returns a new float which is the product of float * and other. */ static VALUE flo_mul(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return rb_float_new(RFLOAT(x)->value * (double)FIX2LONG(y)); case T_BIGNUM: return rb_float_new(RFLOAT(x)->value * rb_big2dbl(y)); case T_FLOAT: return rb_float_new(RFLOAT(x)->value * RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } } /* * call-seq: * float / other => float * * Returns a new float which is the result of dividing * float by other. */ static VALUE flo_div(VALUE x, VALUE y) { long f_y; double d; switch (TYPE(y)) { case T_FIXNUM: f_y = FIX2LONG(y); return rb_float_new(RFLOAT(x)->value / (double)f_y); case T_BIGNUM: d = rb_big2dbl(y); return rb_float_new(RFLOAT(x)->value / d); case T_FLOAT: return rb_float_new(RFLOAT(x)->value / RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } } static void flodivmod(double x, double y, double *divp, double *modp) { double div, mod; #ifdef HAVE_FMOD mod = fmod(x, y); #else { double z; modf(x/y, &z); mod = x - z * y; } #endif div = (x - mod) / y; if (y*mod < 0) { mod += y; div -= 1.0; } if (modp) *modp = mod; if (divp) *divp = div; } /* * call-seq: * flt % other => float * flt.modulo(other) => float * * Return the modulo after division of flt by other. * * 6543.21.modulo(137) #=> 104.21 * 6543.21.modulo(137.24) #=> 92.9299999999996 */ static VALUE flo_mod(VALUE x, VALUE y) { double fy, mod; switch (TYPE(y)) { case T_FIXNUM: fy = (double)FIX2LONG(y); break; case T_BIGNUM: fy = rb_big2dbl(y); break; case T_FLOAT: fy = RFLOAT(y)->value; break; default: return rb_num_coerce_bin(x, y); } flodivmod(RFLOAT(x)->value, fy, 0, &mod); return rb_float_new(mod); } /* * call-seq: * flt.divmod(numeric) => array * * See Numeric#divmod. */ static VALUE flo_divmod(VALUE x, VALUE y) { double fy, div, mod, val; volatile VALUE a, b; switch (TYPE(y)) { case T_FIXNUM: fy = (double)FIX2LONG(y); break; case T_BIGNUM: fy = rb_big2dbl(y); break; case T_FLOAT: fy = RFLOAT(y)->value; break; default: return rb_num_coerce_bin(x, y); } flodivmod(RFLOAT(x)->value, fy, &div, &mod); if (FIXABLE(div)) { val = div; a = LONG2FIX(val); } else { a = rb_dbl2big(div); } b = rb_float_new(mod); return rb_assoc_new(a, b); } /* * call-seq: * * flt ** other => float * * Raises float the other power. */ static VALUE flo_pow(VALUE x, VALUE y) { switch (TYPE(y)) { case T_FIXNUM: return rb_float_new(pow(RFLOAT(x)->value, (double)FIX2LONG(y))); case T_BIGNUM: return rb_float_new(pow(RFLOAT(x)->value, rb_big2dbl(y))); case T_FLOAT: return rb_float_new(pow(RFLOAT(x)->value, RFLOAT(y)->value)); default: return rb_num_coerce_bin(x, y); } } /* * call-seq: * num.eql?(numeric) => true or false * * Returns true if num and numeric are the * same type and have equal values. * * 1 == 1.0 #=> true * 1.eql?(1.0) #=> false * (1.0).eql?(1.0) #=> true */ static VALUE num_eql(VALUE x, VALUE y) { if (TYPE(x) != TYPE(y)) return Qfalse; return rb_equal(x, y); } /* * call-seq: * num <=> other -> 0 or nil * * Returns zero if num equals other, nil * otherwise. */ static VALUE num_cmp(VALUE x, VALUE y) { if (x == y) return INT2FIX(0); return Qnil; } static VALUE num_equal(VALUE x, VALUE y) { if (x == y) return Qtrue; return rb_funcall(y, id_eq, 1, x); } /* * call-seq: * flt == obj => true or false * * Returns true only if obj has the same value * as flt. Contrast this with Float#eql?, which * requires obj to be a Float. * * 1.0 == 1 #=> true * */ static VALUE flo_eq(VALUE x, VALUE y) { volatile double a, b; switch (TYPE(y)) { case T_FIXNUM: b = FIX2LONG(y); break; case T_BIGNUM: b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT(y)->value; if (isnan(b)) return Qfalse; break; default: return num_equal(x, y); } a = RFLOAT(x)->value; if (isnan(a)) return Qfalse; return (a == b)?Qtrue:Qfalse; } /* * call-seq: * flt.hash => integer * * Returns a hash code for this float. */ static VALUE flo_hash(VALUE num) { double d; int hash; d = RFLOAT(num)->value; hash = rb_memhash(&d, sizeof(d)); return INT2FIX(hash); } VALUE rb_dbl_cmp(double a, double b) { if (isnan(a) || isnan(b)) return Qnil; if (a == b) return INT2FIX(0); if (a > b) return INT2FIX(1); if (a < b) return INT2FIX(-1); return Qnil; } /* * call-seq: * flt <=> numeric => -1, 0, +1 * * Returns -1, 0, or +1 depending on whether flt is less than, * equal to, or greater than numeric. This is the basis for the * tests in Comparable. */ static VALUE flo_cmp(VALUE x, VALUE y) { double a, b; a = RFLOAT(x)->value; switch (TYPE(y)) { case T_FIXNUM: b = (double)FIX2LONG(y); break; case T_BIGNUM: b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT(y)->value; break; default: return rb_num_coerce_cmp(x, y); } return rb_dbl_cmp(a, b); } /* * call-seq: * flt > other => true or false * * true if flt is greater than other. */ static VALUE flo_gt(VALUE x, VALUE y) { double a, b; a = RFLOAT(x)->value; switch (TYPE(y)) { case T_FIXNUM: b = (double)FIX2LONG(y); break; case T_BIGNUM: b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT(y)->value; if (isnan(b)) return Qfalse; break; default: return rb_num_coerce_relop(x, y); } if (isnan(a)) return Qfalse; return (a > b)?Qtrue:Qfalse; } /* * call-seq: * flt >= other => true or false * * true if flt is greater than * or equal to other. */ static VALUE flo_ge(VALUE x, VALUE y) { double a, b; a = RFLOAT(x)->value; switch (TYPE(y)) { case T_FIXNUM: b = (double)FIX2LONG(y); break; case T_BIGNUM: b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT(y)->value; if (isnan(b)) return Qfalse; break; default: return rb_num_coerce_relop(x, y); } if (isnan(a)) return Qfalse; return (a >= b)?Qtrue:Qfalse; } /* * call-seq: * flt < other => true or false * * true if flt is less than other. */ static VALUE flo_lt(VALUE x, VALUE y) { double a, b; a = RFLOAT(x)->value; switch (TYPE(y)) { case T_FIXNUM: b = (double)FIX2LONG(y); break; case T_BIGNUM: b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT(y)->value; if (isnan(b)) return Qfalse; break; default: return rb_num_coerce_relop(x, y); } if (isnan(a)) return Qfalse; return (a < b)?Qtrue:Qfalse; } /* * call-seq: * flt <= other => true or false * * true if flt is less than * or equal to other. */ static VALUE flo_le(VALUE x, VALUE y) { double a, b; a = RFLOAT(x)->value; switch (TYPE(y)) { case T_FIXNUM: b = (double)FIX2LONG(y); break; case T_BIGNUM: b = rb_big2dbl(y); break; case T_FLOAT: b = RFLOAT(y)->value; if (isnan(b)) return Qfalse; break; default: return rb_num_coerce_relop(x, y); } if (isnan(a)) return Qfalse; return (a <= b)?Qtrue:Qfalse; } /* * call-seq: * flt.eql?(obj) => true or false * * Returns true only if obj is a * Float with the same value as flt. Contrast this * with Float#==, which performs type conversions. * * 1.0.eql?(1) #=> false */ static VALUE flo_eql(VALUE x, VALUE y) { if (TYPE(y) == T_FLOAT) { double a = RFLOAT(x)->value; double b = RFLOAT(y)->value; if (isnan(a) || isnan(b)) return Qfalse; if (a == b) return Qtrue; } return Qfalse; } /* * call-seq: * flt.to_f => flt * * As flt is already a float, returns self. */ static VALUE flo_to_f(VALUE num) { return num; } /* * call-seq: * flt.abs => float * * Returns the absolute value of flt. * * (-34.56).abs #=> 34.56 * -34.56.abs #=> 34.56 * */ static VALUE flo_abs(VALUE flt) { double val = fabs(RFLOAT(flt)->value); return rb_float_new(val); } /* * call-seq: * flt.zero? -> true or false * * Returns true if flt is 0.0. * */ static VALUE flo_zero_p(VALUE num) { if (RFLOAT(num)->value == 0.0) { return Qtrue; } return Qfalse; } /* * call-seq: * flt.nan? -> true or false * * Returns true if flt is an invalid IEEE floating * point number. * * a = -1.0 #=> -1.0 * a.nan? #=> false * a = 0.0/0.0 #=> NaN * a.nan? #=> true */ static VALUE flo_is_nan_p(VALUE num) { double value = RFLOAT(num)->value; return isnan(value) ? Qtrue : Qfalse; } /* * call-seq: * flt.infinite? -> nil, -1, +1 * * Returns nil, -1, or +1 depending on whether flt * is finite, -infinity, or +infinity. * * (0.0).infinite? #=> nil * (-1.0/0.0).infinite? #=> -1 * (+1.0/0.0).infinite? #=> 1 */ static VALUE flo_is_infinite_p(VALUE num) { double value = RFLOAT(num)->value; if (isinf(value)) { return INT2FIX( value < 0 ? -1 : 1 ); } return Qnil; } /* * call-seq: * flt.finite? -> true or false * * Returns true if flt is a valid IEEE floating * point number (it is not infinite, and nan? is * false). * */ static VALUE flo_is_finite_p(VALUE num) { double value = RFLOAT(num)->value; #if HAVE_FINITE if (!finite(value)) return Qfalse; #else if (isinf(value) || isnan(value)) return Qfalse; #endif return Qtrue; } /* * call-seq: * flt.floor => integer * * Returns the largest integer less than or equal to flt. * * 1.2.floor #=> 1 * 2.0.floor #=> 2 * (-1.2).floor #=> -2 * (-2.0).floor #=> -2 */ static VALUE flo_floor(VALUE num) { double f = floor(RFLOAT(num)->value); long val; if (!FIXABLE(f)) { return rb_dbl2big(f); } val = f; return LONG2FIX(val); } /* * call-seq: * flt.ceil => integer * * Returns the smallest Integer greater than or equal to * flt. * * 1.2.ceil #=> 2 * 2.0.ceil #=> 2 * (-1.2).ceil #=> -1 * (-2.0).ceil #=> -2 */ static VALUE flo_ceil(VALUE num) { double f = ceil(RFLOAT(num)->value); long val; if (!FIXABLE(f)) { return rb_dbl2big(f); } val = f; return LONG2FIX(val); } /* * call-seq: * flt.round([ndigits]) => integer or float * * Rounds flt to a given precision in decimal digits (default 0 digits). * Precision may be negative. Returns a a floating point number when ndigits * is more than one. * * 1.5.round #=> 2 * (-1.5).round #=> -2 */ static VALUE flo_round(int argc, VALUE *argv, VALUE num) { VALUE nd; double number, f; int ndigits = 0, i; long val; if (rb_scan_args(argc, argv, "01", &nd) == 1) { ndigits = NUM2INT(nd); } number = RFLOAT(num)->value; f = 1.0; i = abs(ndigits); while (--i >= 0) f = f*10.0; if (ndigits < 0) number /= f; else number *= f; if (number > 0.0) number = floor(number+0.5); if (number < 0.0) number = ceil(number-0.5); if (ndigits < 0) number *= f; else number /= f; if (ndigits > 0) return rb_float_new(number); if (!FIXABLE(f)) { return rb_dbl2big(number); } val = number; return LONG2FIX(val); } /* * call-seq: * flt.to_i => integer * flt.to_int => integer * flt.truncate => integer * * Returns flt truncated to an Integer. */ static VALUE flo_truncate(VALUE num) { double f = RFLOAT(num)->value; long val; if (f > 0.0) f = floor(f); if (f < 0.0) f = ceil(f); if (!FIXABLE(f)) { return rb_dbl2big(f); } val = f; return LONG2FIX(val); } /* * call-seq: * num.floor => integer * * Returns the largest integer less than or equal to num. * Numeric implements this by converting anInteger * to a Float and invoking Float#floor. * * 1.floor #=> 1 * (-1).floor #=> -1 */ static VALUE num_floor(VALUE num) { return flo_floor(rb_Float(num)); } /* * call-seq: * num.ceil => integer * * Returns the smallest Integer greater than or equal to * num. Class Numeric achieves this by converting * itself to a Float then invoking * Float#ceil. * * 1.ceil #=> 1 * 1.2.ceil #=> 2 * (-1.2).ceil #=> -1 * (-1.0).ceil #=> -1 */ static VALUE num_ceil(VALUE num) { return flo_ceil(rb_Float(num)); } /* * call-seq: * num.round([ndigits]) => integer or float * * Rounds num to a given precision in decimal digits (default 0 digits). * Precision may be negative. Returns a a floating point number when ndigits * is more than one. Numeric implements this by converting itself * to a Float and invoking Float#round. */ static VALUE num_round(int argc, VALUE* argv, VALUE num) { VALUE nd; rb_scan_args(argc, argv, "01", &nd); nd = rb_Float(nd); return flo_round(argc, &nd, num); } /* * call-seq: * num.truncate => integer * * Returns num truncated to an integer. Numeric * implements this by converting its value to a float and invoking * Float#truncate. */ static VALUE num_truncate(VALUE num) { return flo_truncate(rb_Float(num)); } /* * call-seq: * num.step(limit, step ) {|i| block } => num * * Invokes block with the sequence of numbers starting at * num, incremented by step on each call. The loop * finishes when the value to be passed to the block is greater than * limit (if step is positive) or less than * limit (if step is negative). If all the arguments are * integers, the loop operates using an integer counter. If any of the * arguments are floating point numbers, all are converted to floats, * and the loop is executed floor(n + n*epsilon)+ 1 times, * where n = (limit - num)/step. Otherwise, the loop * starts at num, uses either the < or * > operator to compare the counter against * limit, and increments itself using the + * operator. * * 1.step(10, 2) { |i| print i, " " } * Math::E.step(Math::PI, 0.2) { |f| print f, " " } * * produces: * * 1 3 5 7 9 * 2.71828182845905 2.91828182845905 3.11828182845905 */ static VALUE num_step(int argc, VALUE *argv, VALUE from) { VALUE to, step; RETURN_ENUMERATOR(from, argc, argv); if (argc == 1) { to = argv[0]; step = INT2FIX(1); } else { if (argc == 2) { to = argv[0]; step = argv[1]; } else { rb_raise(rb_eArgError, "wrong number of arguments"); } if (rb_equal(step, INT2FIX(0))) { rb_raise(rb_eArgError, "step can't be 0"); } } if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) { long i, end, diff; i = FIX2LONG(from); end = FIX2LONG(to); diff = FIX2LONG(step); if (diff > 0) { while (i <= end) { rb_yield(LONG2FIX(i)); i += diff; } } else { while (i >= end) { rb_yield(LONG2FIX(i)); i += diff; } } } else if (TYPE(from) == T_FLOAT || TYPE(to) == T_FLOAT || TYPE(step) == T_FLOAT) { const double epsilon = DBL_EPSILON; double beg = NUM2DBL(from); double end = NUM2DBL(to); double unit = NUM2DBL(step); double n = (end - beg)/unit; double err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon; long i; if (err>0.5) err=0.5; n = floor(n + err) + 1; for (i=0; i', 1, INT2FIX(0)))) { cmp = '>'; } else { cmp = '<'; } for (;;) { if (RTEST(rb_funcall(i, cmp, 1, to))) break; rb_yield(i); i = rb_funcall(i, '+', 1, step); } } return from; } SIGNED_VALUE rb_num2long(VALUE val) { if (NIL_P(val)) { rb_raise(rb_eTypeError, "no implicit conversion from nil to integer"); } if (FIXNUM_P(val)) return FIX2LONG(val); switch (TYPE(val)) { case T_FLOAT: if (RFLOAT(val)->value <= (double)LONG_MAX && RFLOAT(val)->value >= (double)LONG_MIN) { return (SIGNED_VALUE)(RFLOAT(val)->value); } else { char buf[24]; char *s; sprintf(buf, "%-.10g", RFLOAT(val)->value); if ((s = strchr(buf, ' ')) != 0) *s = '\0'; rb_raise(rb_eRangeError, "float %s out of range of integer", buf); } case T_BIGNUM: return rb_big2long(val); default: val = rb_to_int(val); return NUM2LONG(val); } } VALUE rb_num2ulong(VALUE val) { if (TYPE(val) == T_BIGNUM) { return rb_big2ulong(val); } return (VALUE)rb_num2long(val); } #if SIZEOF_INT < SIZEOF_VALUE static void check_int(SIGNED_VALUE num) { const char *s; if (num < INT_MIN) { s = "small"; } else if (num > INT_MAX) { s = "big"; } else { return; } #if LONG_LONG_VALUE rb_raise(rb_eRangeError, "integer %lld too %s to convert to `int'", num, s); #else rb_raise(rb_eRangeError, "integer %ld too %s to convert to `int'", num, s); #endif } static void check_uint(VALUE num) { if (num > UINT_MAX) { #if LONG_LONG_VALUE rb_raise(rb_eRangeError, "integer %llu too big to convert to `unsigned int'", num); #else rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned int'", num); #endif } } long rb_num2int(VALUE val) { long num = rb_num2long(val); check_int(num); return num; } long rb_fix2int(VALUE val) { long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val); check_int(num); return num; } unsigned long rb_num2uint(VALUE val) { unsigned long num = rb_num2ulong(val); if (RTEST(rb_funcall(INT2FIX(0), '<', 1, val))) { check_uint(num); } return num; } unsigned long rb_fix2uint(VALUE val) { unsigned long num; if (!FIXNUM_P(val)) { return rb_num2uint(val); } num = FIX2ULONG(val); if (FIX2LONG(val) > 0) { check_uint(num); } return num; } #else long rb_num2int(VALUE val) { return rb_num2long(val); } long rb_fix2int(VALUE val) { return FIX2INT(val); } #endif VALUE rb_num2fix(VALUE val) { long v; if (FIXNUM_P(val)) return val; v = rb_num2long(val); if (!FIXABLE(v)) rb_raise(rb_eRangeError, "integer %ld out of range of fixnum", v); return LONG2FIX(v); } #if HAVE_LONG_LONG LONG_LONG rb_num2ll(VALUE val) { if (NIL_P(val)) { rb_raise(rb_eTypeError, "no implicit conversion from nil"); } if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val); switch (TYPE(val)) { case T_FLOAT: if (RFLOAT(val)->value <= (double)LLONG_MAX && RFLOAT(val)->value >= (double)LLONG_MIN) { return (LONG_LONG)(RFLOAT(val)->value); } else { char buf[24]; char *s; sprintf(buf, "%-.10g", RFLOAT(val)->value); if ((s = strchr(buf, ' ')) != 0) *s = '\0'; rb_raise(rb_eRangeError, "float %s out of range of long long", buf); } case T_BIGNUM: return rb_big2ll(val); case T_STRING: rb_raise(rb_eTypeError, "no implicit conversion from string"); return Qnil; /* not reached */ case T_TRUE: case T_FALSE: rb_raise(rb_eTypeError, "no implicit conversion from boolean"); return Qnil; /* not reached */ default: val = rb_to_int(val); return NUM2LL(val); } } unsigned LONG_LONG rb_num2ull(VALUE val) { if (TYPE(val) == T_BIGNUM) { return rb_big2ull(val); } return (unsigned LONG_LONG)rb_num2ll(val); } #endif /* HAVE_LONG_LONG */ /* * Document-class: Integer * * Integer is the basis for the two concrete classes that * hold whole numbers, Bignum and Fixnum. * */ /* * call-seq: * int.to_i => int * int.to_int => int * int.floor => int * int.ceil => int * int.round => int * int.truncate => int * * As int is already an Integer, all these * methods simply return the receiver. */ static VALUE int_to_i(VALUE num) { return num; } /* * call-seq: * int.integer? -> true * * Always returns true. */ static VALUE int_int_p(VALUE num) { return Qtrue; } /* * call-seq: * int.odd? -> true or false * * Returns true if int is an odd number. */ static VALUE int_odd_p(VALUE num) { if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) { return Qtrue; } return Qfalse; } /* * call-seq: * int.even? -> true or false * * Returns true if int is an even number. */ static VALUE int_even_p(VALUE num) { if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) { return Qtrue; } return Qfalse; } /* * call-seq: * fixnum.next => integer * fixnum.succ => integer * * Returns the Integer equal to int + 1. * * 1.next #=> 2 * (-1).next #=> 0 */ static VALUE fix_succ(VALUE num) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } /* * call-seq: * int.next => integer * int.succ => integer * * Returns the Integer equal to int + 1. * * 1.next #=> 2 * (-1).next #=> 0 */ static VALUE int_succ(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) + 1; return LONG2NUM(i); } return rb_funcall(num, '+', 1, INT2FIX(1)); } /* * call-seq: * int.pred => integer * * Returns the Integer equal to int - 1. * * 1.pred #=> 0 * (-1).pred #=> -2 */ static VALUE int_pred(VALUE num) { if (FIXNUM_P(num)) { long i = FIX2LONG(num) - 1; return LONG2NUM(i); } return rb_funcall(num, '-', 1, INT2FIX(1)); } /* * call-seq: * int.chr => string * * Returns a string containing the ASCII character represented by the * receiver's value. * * 65.chr #=> "A" * 230.chr #=> "\346" */ static VALUE int_chr(VALUE num) { char c; long i = NUM2LONG(num); if (i < 0 || 0xff < i) rb_raise(rb_eRangeError, "%ld out of char range", i); c = i; return rb_str_new(&c, 1); } /******************************************************************** * * Document-class: Fixnum * * A Fixnum holds Integer values that can be * represented in a native machine word (minus 1 bit). If any operation * on a Fixnum exceeds this range, the value is * automatically converted to a Bignum. * * Fixnum objects have immediate value. This means that * when they are assigned or passed as parameters, the actual object is * passed, rather than a reference to that object. Assignment does not * alias Fixnum objects. There is effectively only one * Fixnum object instance for any given integer value, so, * for example, you cannot add a singleton method to a * Fixnum. */ /* * call-seq: * Fixnum.induced_from(obj) => fixnum * * Convert obj to a Fixnum. Works with numeric parameters. * Also works with Symbols, but this is deprecated. */ static VALUE rb_fix_induced_from(VALUE klass, VALUE x) { return rb_num2fix(x); } /* * call-seq: * Integer.induced_from(obj) => fixnum, bignum * * Convert obj to an Integer. */ static VALUE rb_int_induced_from(VALUE klass, VALUE x) { switch (TYPE(x)) { case T_FIXNUM: case T_BIGNUM: return x; case T_FLOAT: return rb_funcall(x, id_to_i, 0); default: rb_raise(rb_eTypeError, "failed to convert %s into Integer", rb_obj_classname(x)); } } /* * call-seq: * Float.induced_from(obj) => float * * Convert obj to a float. */ static VALUE rb_flo_induced_from(VALUE klass, VALUE x) { switch (TYPE(x)) { case T_FIXNUM: case T_BIGNUM: return rb_funcall(x, rb_intern("to_f"), 0); case T_FLOAT: return x; default: rb_raise(rb_eTypeError, "failed to convert %s into Float", rb_obj_classname(x)); } } /* * call-seq: * -fix => integer * * Negates fix (which might return a Bignum). */ static VALUE fix_uminus(VALUE num) { return LONG2NUM(-FIX2LONG(num)); } VALUE rb_fix2str(VALUE x, int base) { extern const char ruby_digitmap[]; char buf[SIZEOF_VALUE*CHAR_BIT + 2], *b = buf + sizeof buf; long val = FIX2LONG(x); int neg = 0; if (base < 2 || 36 < base) { rb_raise(rb_eArgError, "illegal radix %d", base); } if (val == 0) { return rb_str_new2("0"); } if (val < 0) { val = -val; neg = 1; } *--b = '\0'; do { *--b = ruby_digitmap[(int)(val % base)]; } while (val /= base); if (neg) { *--b = '-'; } return rb_str_new2(b); } /* * call-seq: * fix.to_s( base=10 ) -> aString * * Returns a string containing the representation of fix radix * base (between 2 and 36). * * 12345.to_s #=> "12345" * 12345.to_s(2) #=> "11000000111001" * 12345.to_s(8) #=> "30071" * 12345.to_s(10) #=> "12345" * 12345.to_s(16) #=> "3039" * 12345.to_s(36) #=> "9ix" * */ static VALUE fix_to_s(int argc, VALUE *argv, VALUE x) { VALUE b; int base; rb_scan_args(argc, argv, "01", &b); if (argc == 0) base = 10; else base = NUM2INT(b); return rb_fix2str(x, base); } /* * call-seq: * fix + numeric => numeric_result * * Performs addition: the class of the resulting object depends on * the class of numeric and on the magnitude of the * result. */ static VALUE fix_plus(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long a, b, c; VALUE r; a = FIX2LONG(x); b = FIX2LONG(y); c = a + b; r = LONG2NUM(c); return r; } switch (TYPE(y)) { case T_BIGNUM: return rb_big_plus(y, x); case T_FLOAT: return rb_float_new((double)FIX2LONG(x) + RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } } /* * call-seq: * fix - numeric => numeric_result * * Performs subtraction: the class of the resulting object depends on * the class of numeric and on the magnitude of the * result. */ static VALUE fix_minus(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long a, b, c; VALUE r; a = FIX2LONG(x); b = FIX2LONG(y); c = a - b; r = LONG2NUM(c); return r; } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_minus(x, y); case T_FLOAT: return rb_float_new((double)FIX2LONG(x) - RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } } /* * call-seq: * fix * numeric => numeric_result * * Performs multiplication: the class of the resulting object depends on * the class of numeric and on the magnitude of the * result. */ static VALUE fix_mul(VALUE x, VALUE y) { if (FIXNUM_P(y)) { #ifdef __HP_cc /* avoids an optimization bug of HP aC++/ANSI C B3910B A.06.05 [Jul 25 2005] */ volatile #endif SIGNED_VALUE a, b; #if SIZEOF_VALUE * 2 <= SIZEOF_LONG_LONG LONG_LONG d; #else SIGNED_VALUE c; VALUE r; #endif a = FIX2LONG(x); b = FIX2LONG(y); #if SIZEOF_VALUE * 2 <= SIZEOF_LONG_LONG d = (LONG_LONG)a * b; if (FIXABLE(d)) return LONG2FIX(d); return rb_ll2inum(d); #else # define SQRT_LONG_MAX ((SIGNED_VALUE)1<<((SIZEOF_VALUE*CHAR_BIT-1)/2)) /*tests if N*N would overflow*/ # define FIT_SQRT_LONG(n) (((n)=-SQRT_LONG_MAX)) if (FIT_SQRT_LONG(a) && FIT_SQRT_LONG(b)) return LONG2FIX(a*b); c = a * b; r = LONG2FIX(c); if (a == 0) return x; if (FIX2LONG(r) != c || c/a != b) { r = rb_big_mul(rb_int2big(a), rb_int2big(b)); } return r; #endif } switch (TYPE(y)) { case T_BIGNUM: return rb_big_mul(y, x); case T_FLOAT: return rb_float_new((double)FIX2LONG(x) * RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } } static void fixdivmod(long x, long y, long *divp, long *modp) { long div, mod; if (y == 0) rb_num_zerodiv(); if (y < 0) { if (x < 0) div = -x / -y; else div = - (x / -y); } else { if (x < 0) div = - (-x / y); else div = x / y; } mod = x - div*y; if ((mod < 0 && y > 0) || (mod > 0 && y < 0)) { mod += y; div -= 1; } if (divp) *divp = div; if (modp) *modp = mod; } /* * call-seq: * fix.quo(numeric) => float * fix.fdiv(numeric) => float * * Returns the floating point result of dividing fix by * numeric. * * 654321.quo(13731) #=> 47.6528293642124 * 654321.quo(13731.24) #=> 47.6519964693647 * */ static VALUE fix_quo(VALUE x, VALUE y) { if (FIXNUM_P(y)) { return rb_float_new((double)FIX2LONG(x) / (double)FIX2LONG(y)); } switch (TYPE(y)) { case T_BIGNUM: return rb_float_new((double)FIX2LONG(y) / rb_big2dbl(y)); case T_FLOAT: return rb_float_new((double)FIX2LONG(x) / RFLOAT(y)->value); default: return rb_num_coerce_bin(x, y); } } static VALUE fix_divide(VALUE x, VALUE y, int flo) { if (FIXNUM_P(y)) { long div; fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, 0); return LONG2NUM(div); } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_div(x, y); case T_FLOAT: if (flo) { return rb_float_new((double)FIX2LONG(x) / RFLOAT(y)->value); } else { long div = (double)FIX2LONG(x) / RFLOAT(y)->value; return LONG2NUM(div); } default: return rb_num_coerce_bin(x, y); } } /* * call-seq: * fix / numeric => numeric_result * * Performs division: the class of the resulting object depends on * the class of numeric and on the magnitude of the * result. */ static VALUE fix_div(VALUE x, VALUE y) { return fix_divide(x, y, Qtrue); } /* * call-seq: * fix.div(numeric) => numeric_result * * Performs integer division: returns integer value. */ static VALUE fix_idiv(VALUE x, VALUE y) { return fix_divide(x, y, Qfalse); } /* * call-seq: * fix % other => Numeric * fix.modulo(other) => Numeric * * Returns fix modulo other. * See Numeric.divmod for more information. */ static VALUE fix_mod(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long mod; fixdivmod(FIX2LONG(x), FIX2LONG(y), 0, &mod); return LONG2NUM(mod); } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_modulo(x, y); case T_FLOAT: { double mod; flodivmod((double)FIX2LONG(x), RFLOAT(y)->value, 0, &mod); return rb_float_new(mod); } default: return rb_num_coerce_bin(x, y); } } /* * call-seq: * fix.divmod(numeric) => array * * See Numeric#divmod. */ static VALUE fix_divmod(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long div, mod; fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, &mod); return rb_assoc_new(LONG2NUM(div), LONG2NUM(mod)); } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_divmod(x, y); case T_FLOAT: { double div, mod; volatile VALUE a, b; flodivmod((double)FIX2LONG(x), RFLOAT(y)->value, &div, &mod); a = rb_float_new(div); b = rb_float_new(mod); return rb_assoc_new(a, b); } default: return rb_num_coerce_bin(x, y); } } static VALUE int_pow(long x, unsigned long y) { int neg = x < 0; long z = 1; if (neg) x = -x; if (y & 1) z = x; y &= ~1; do { while (y % 2 == 0) { long x2 = x * x; if (x2 < x || !POSFIXABLE(x2)) { VALUE v; bignum: v = rb_big_pow(rb_int2big(neg ? -x : x), LONG2NUM(y)); if (z != 1) v = rb_big_mul(rb_int2big(z), v); return v; } x = x2; y >>= 1; } { long xz = x * z; if (!POSFIXABLE(xz) || xz / x != z) { goto bignum; } z = xz; } } while (--y); if (neg) z = -z; return LONG2NUM(z); } /* * call-seq: * fix ** other => Numeric * * Raises fix to the other power, which may * be negative or fractional. * * 2 ** 3 #=> 8 * 2 ** -1 #=> 0.5 * 2 ** 0.5 #=> 1.4142135623731 */ static VALUE fix_pow(VALUE x, VALUE y) { if (FIXNUM_P(y)) { long a, b; b = FIX2LONG(y); if (b == 0) return INT2FIX(1); if (b == 1) return x; a = FIX2LONG(x); if (b > 0) { return int_pow(a, b); } return rb_float_new(pow((double)a, (double)b)); } switch (TYPE(y)) { case T_BIGNUM: x = rb_int2big(FIX2LONG(x)); return rb_big_pow(x, y); case T_FLOAT: return rb_float_new(pow((double)FIX2LONG(x), RFLOAT(y)->value)); default: return rb_num_coerce_bin(x, y); } } /* * call-seq: * fix == other * * Return true if fix equals other * numerically. * * 1 == 2 #=> false * 1 == 1.0 #=> true */ static VALUE fix_equal(VALUE x, VALUE y) { if (x == y) return Qtrue; if (FIXNUM_P(y)) return Qfalse; switch (TYPE(y)) { case T_BIGNUM: return rb_big_eq(y, x); case T_FLOAT: return (double)FIX2LONG(x) == RFLOAT(y)->value ? Qtrue : Qfalse; default: return num_equal(x, y); } } /* * call-seq: * fix <=> numeric => -1, 0, +1 * * Comparison---Returns -1, 0, or +1 depending on whether fix is * less than, equal to, or greater than numeric. This is the * basis for the tests in Comparable. */ static VALUE fix_cmp(VALUE x, VALUE y) { if (x == y) return INT2FIX(0); if (FIXNUM_P(y)) { if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1); return INT2FIX(-1); } switch (TYPE(y)) { case T_BIGNUM: return rb_big_cmp(rb_int2big(FIX2LONG(x)), y); case T_FLOAT: return rb_dbl_cmp((double)FIX2LONG(x), RFLOAT(y)->value); default: return rb_num_coerce_cmp(x, y); } } /* * call-seq: * fix > other => true or false * * Returns true if the value of fix is * greater than that of other. */ static VALUE fix_gt(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) > FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) > 0 ? Qtrue : Qfalse; case T_FLOAT: return (double)FIX2LONG(x) > RFLOAT(y)->value ? Qtrue : Qfalse; default: return rb_num_coerce_relop(x, y); } } /* * call-seq: * fix >= other => true or false * * Returns true if the value of fix is * greater than or equal to that of other. */ static VALUE fix_ge(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) >= FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) >= 0 ? Qtrue : Qfalse; case T_FLOAT: return (double)FIX2LONG(x) >= RFLOAT(y)->value ? Qtrue : Qfalse; default: return rb_num_coerce_relop(x, y); } } /* * call-seq: * fix < other => true or false * * Returns true if the value of fix is * less than that of other. */ static VALUE fix_lt(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) < FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) < 0 ? Qtrue : Qfalse; case T_FLOAT: return (double)FIX2LONG(x) < RFLOAT(y)->value ? Qtrue : Qfalse; default: return rb_num_coerce_relop(x, y); } } /* * call-seq: * fix <= other => true or false * * Returns true if the value of fix is * less thanor equal to that of other. */ static VALUE fix_le(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(x) <= FIX2LONG(y)) return Qtrue; return Qfalse; } switch (TYPE(y)) { case T_BIGNUM: return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) <= 0 ? Qtrue : Qfalse; case T_FLOAT: return (double)FIX2LONG(x) <= RFLOAT(y)->value ? Qtrue : Qfalse; default: return rb_num_coerce_relop(x, y); } } /* * call-seq: * ~fix => integer * * One's complement: returns a number where each bit is flipped. */ static VALUE fix_rev(VALUE num) { long val = FIX2LONG(num); val = ~val; return LONG2NUM(val); } /* * call-seq: * fix & other => integer * * Bitwise AND. */ static VALUE fix_and(VALUE x, VALUE y) { long val; if (TYPE(y) == T_BIGNUM) { return rb_big_and(y, x); } val = FIX2LONG(x) & NUM2LONG(y); return LONG2NUM(val); } /* * call-seq: * fix | other => integer * * Bitwise OR. */ static VALUE fix_or(VALUE x, VALUE y) { long val; if (TYPE(y) == T_BIGNUM) { return rb_big_or(y, x); } val = FIX2LONG(x) | NUM2LONG(y); return LONG2NUM(val); } /* * call-seq: * fix ^ other => integer * * Bitwise EXCLUSIVE OR. */ static VALUE fix_xor(VALUE x, VALUE y) { long val; if (TYPE(y) == T_BIGNUM) { return rb_big_xor(y, x); } val = FIX2LONG(x) ^ NUM2LONG(y); return LONG2NUM(val); } static VALUE fix_rshift(VALUE, VALUE); /* * call-seq: * fix << count => integer * * Shifts _fix_ left _count_ positions (right if _count_ is negative). */ static VALUE fix_lshift(VALUE x, VALUE y) { long val, width; val = NUM2LONG(x); width = NUM2LONG(y); if (width < 0) return fix_rshift(x, LONG2FIX(-width)); if (width > (sizeof(VALUE)*CHAR_BIT-1) || ((unsigned long)val)>>(sizeof(VALUE)*CHAR_BIT-1-width) > 0) { return rb_big_lshift(rb_int2big(val), y); } val = val << width; return LONG2NUM(val); } /* * call-seq: * fix >> count => integer * * Shifts _fix_ right _count_ positions (left if _count_ is negative). */ static VALUE fix_rshift(VALUE x, VALUE y) { long i, val; i = NUM2LONG(y); if (i < 0) return fix_lshift(x, LONG2FIX(-i)); if (i == 0) return x; val = FIX2LONG(x); if (i >= sizeof(long)*CHAR_BIT-1) { if (val < 0) return INT2FIX(-1); return INT2FIX(0); } val = RSHIFT(val, i); return LONG2FIX(val); } /* * call-seq: * fix[n] => 0, 1 * * Bit Reference---Returns the nth bit in the binary * representation of fix, where fix[0] is the least * significant bit. * * a = 0b11001100101010 * 30.downto(0) do |n| print a[n] end * * produces: * * 0000000000000000011001100101010 */ static VALUE fix_aref(VALUE fix, VALUE idx) { long val = FIX2LONG(fix); long i; if (TYPE(idx) == T_BIGNUM) { idx = rb_big_norm(idx); if (!FIXNUM_P(idx)) { if (!RBIGNUM(idx)->sign || val >= 0) return INT2FIX(0); return INT2FIX(1); } } i = NUM2LONG(idx); if (i < 0) return INT2FIX(0); if (sizeof(VALUE)*CHAR_BIT-1 < i) { if (val < 0) return INT2FIX(1); return INT2FIX(0); } if (val & (1L< float * * Converts fix to a Float. * */ static VALUE fix_to_f(VALUE num) { double val; val = (double)FIX2LONG(num); return rb_float_new(val); } /* * call-seq: * fix.abs -> aFixnum * * Returns the absolute value of fix. * * -12345.abs #=> 12345 * 12345.abs #=> 12345 * */ static VALUE fix_abs(VALUE fix) { long i = FIX2LONG(fix); if (i < 0) i = -i; return LONG2NUM(i); } /* * call-seq: * fix.id2name -> string or nil * * Returns the name of the object whose symbol id is fix. If * there is no symbol in the symbol table with this value, returns * nil. id2name has nothing to do with the * Object.id method. See also Fixnum#to_sym, * String#intern, and class Symbol. * * symbol = :@inst_var #=> :@inst_var * id = symbol.to_i #=> 9818 * id.id2name #=> "@inst_var" */ static VALUE fix_id2name(VALUE fix) { const char *name = rb_id2name(FIX2UINT(fix)); if (name) return rb_str_new2(name); return Qnil; } /* * call-seq: * fix.to_sym -> aSymbol * * Returns the symbol whose integer value is fix. See also * Fixnum#id2name. * * fred = :fred.to_i * fred.id2name #=> "fred" * fred.to_sym #=> :fred */ static VALUE fix_to_sym(VALUE fix) { ID id = FIX2UINT(fix); if (rb_id2name(id)) { return ID2SYM(id); } return Qnil; } /* * call-seq: * fix.size -> fixnum * * Returns the number of bytes in the machine representation * of a Fixnum. * * 1.size #=> 4 * -1.size #=> 4 * 2147483647.size #=> 4 */ static VALUE fix_size(VALUE fix) { return INT2FIX(sizeof(long)); } /* * call-seq: * int.upto(limit) {|i| block } => int * * Iterates block, passing in integer values from int * up to and including limit. * * 5.upto(10) { |i| print i, " " } * * produces: * * 5 6 7 8 9 10 */ static VALUE int_upto(VALUE from, VALUE to) { RETURN_ENUMERATOR(from, 1, &to); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i = FIX2LONG(from); i <= end; i++) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '>', 1, to))) { rb_yield(i); i = rb_funcall(i, '+', 1, INT2FIX(1)); } if (NIL_P(c)) rb_cmperr(i, to); } return from; } /* * call-seq: * int.downto(limit) {|i| block } => int * * Iterates block, passing decreasing values from int * down to and including limit. * * 5.downto(1) { |n| print n, ".. " } * print " Liftoff!\n" * * produces: * * 5.. 4.. 3.. 2.. 1.. Liftoff! */ static VALUE int_downto(VALUE from, VALUE to) { RETURN_ENUMERATOR(from, 1, &to); if (FIXNUM_P(from) && FIXNUM_P(to)) { long i, end; end = FIX2LONG(to); for (i=FIX2LONG(from); i >= end; i--) { rb_yield(LONG2FIX(i)); } } else { VALUE i = from, c; while (!(c = rb_funcall(i, '<', 1, to))) { rb_yield(i); i = rb_funcall(i, '-', 1, INT2FIX(1)); } if (NIL_P(c)) rb_cmperr(i, to); } return from; } /* * call-seq: * int.times {|i| block } => int * * Iterates block int times, passing in values from zero to * int - 1. * * 5.times do |i| * print i, " " * end * * produces: * * 0 1 2 3 4 */ VALUE yarv_invoke_Integer_times_special_block(VALUE); static VALUE int_dotimes(VALUE num) { VALUE val; RETURN_ENUMERATOR(num, 0, 0); if((val = yarv_invoke_Integer_times_special_block(num)) != Qundef){ return val; } if (FIXNUM_P(num)) { long i, end; end = FIX2LONG(num); for (i=0; i true or false * * Returns true if fix is zero. * */ static VALUE fix_zero_p(VALUE num) { if (FIX2LONG(num) == 0) { return Qtrue; } return Qfalse; } /* * call-seq: * fix.odd? -> true or false * * Returns true if fix is an odd number. */ static VALUE fix_odd_p(VALUE num) { if (num & 2) { return Qtrue; } return Qfalse; } /* * call-seq: * fix.even? -> true or false * * Returns true if fix is an even number. */ static VALUE fix_even_p(VALUE num) { if (num & 2) { return Qfalse; } return Qtrue; } void Init_Numeric(void) { #if defined(__FreeBSD__) && __FreeBSD__ < 4 /* allow divide by zero -- Inf */ fpsetmask(fpgetmask() & ~(FP_X_DZ|FP_X_INV|FP_X_OFL)); #elif defined(_UNICOSMP) /* Turn off floating point exceptions for divide by zero, etc. */ _set_Creg(0, 0); #elif defined(__BORLANDC__) /* Turn off floating point exceptions for overflow, etc. */ _control87(MCW_EM, MCW_EM); #endif id_coerce = rb_intern("coerce"); id_to_i = rb_intern("to_i"); id_eq = rb_intern("=="); rb_eZeroDivError = rb_define_class("ZeroDivisionError", rb_eStandardError); rb_eFloatDomainError = rb_define_class("FloatDomainError", rb_eRangeError); rb_cNumeric = rb_define_class("Numeric", rb_cObject); rb_define_method(rb_cNumeric, "singleton_method_added", num_sadded, 1); rb_include_module(rb_cNumeric, rb_mComparable); rb_define_method(rb_cNumeric, "initialize_copy", num_init_copy, 1); rb_define_method(rb_cNumeric, "coerce", num_coerce, 1); rb_define_method(rb_cNumeric, "+@", num_uplus, 0); rb_define_method(rb_cNumeric, "-@", num_uminus, 0); rb_define_method(rb_cNumeric, "<=>", num_cmp, 1); rb_define_method(rb_cNumeric, "eql?", num_eql, 1); rb_define_method(rb_cNumeric, "quo", num_quo, 1); rb_define_method(rb_cNumeric, "fdiv", num_quo, 1); rb_define_method(rb_cNumeric, "div", num_div, 1); rb_define_method(rb_cNumeric, "divmod", num_divmod, 1); rb_define_method(rb_cNumeric, "modulo", num_modulo, 1); rb_define_method(rb_cNumeric, "remainder", num_remainder, 1); rb_define_method(rb_cNumeric, "abs", num_abs, 0); rb_define_method(rb_cNumeric, "to_int", num_to_int, 0); rb_define_method(rb_cNumeric, "scalar?", num_scalar_p, 0); rb_define_method(rb_cNumeric, "integer?", num_int_p, 0); rb_define_method(rb_cNumeric, "zero?", num_zero_p, 0); rb_define_method(rb_cNumeric, "nonzero?", num_nonzero_p, 0); rb_define_method(rb_cNumeric, "floor", num_floor, 0); rb_define_method(rb_cNumeric, "ceil", num_ceil, 0); rb_define_method(rb_cNumeric, "round", num_round, -1); rb_define_method(rb_cNumeric, "truncate", num_truncate, 0); rb_define_method(rb_cNumeric, "step", num_step, -1); rb_cInteger = rb_define_class("Integer", rb_cNumeric); rb_undef_alloc_func(rb_cInteger); rb_undef_method(CLASS_OF(rb_cInteger), "new"); rb_define_method(rb_cInteger, "integer?", int_int_p, 0); rb_define_method(rb_cInteger, "odd?", int_odd_p, 0); rb_define_method(rb_cInteger, "even?", int_even_p, 0); rb_define_method(rb_cInteger, "upto", int_upto, 1); rb_define_method(rb_cInteger, "downto", int_downto, 1); rb_define_method(rb_cInteger, "times", int_dotimes, 0); rb_include_module(rb_cInteger, rb_mPrecision); rb_define_method(rb_cInteger, "succ", int_succ, 0); rb_define_method(rb_cInteger, "next", int_succ, 0); rb_define_method(rb_cInteger, "pred", int_pred, 0); rb_define_method(rb_cInteger, "chr", int_chr, 0); rb_define_method(rb_cInteger, "to_i", int_to_i, 0); rb_define_method(rb_cInteger, "to_int", int_to_i, 0); rb_define_method(rb_cInteger, "floor", int_to_i, 0); rb_define_method(rb_cInteger, "ceil", int_to_i, 0); rb_define_method(rb_cInteger, "round", int_to_i, 0); rb_define_method(rb_cInteger, "truncate", int_to_i, 0); rb_cFixnum = rb_define_class("Fixnum", rb_cInteger); rb_include_module(rb_cFixnum, rb_mPrecision); rb_define_singleton_method(rb_cFixnum, "induced_from", rb_fix_induced_from, 1); rb_define_singleton_method(rb_cInteger, "induced_from", rb_int_induced_from, 1); rb_define_method(rb_cFixnum, "to_s", fix_to_s, -1); rb_define_method(rb_cFixnum, "id2name", fix_id2name, 0); rb_define_method(rb_cFixnum, "to_sym", fix_to_sym, 0); rb_define_method(rb_cFixnum, "-@", fix_uminus, 0); rb_define_method(rb_cFixnum, "+", fix_plus, 1); rb_define_method(rb_cFixnum, "-", fix_minus, 1); rb_define_method(rb_cFixnum, "*", fix_mul, 1); rb_define_method(rb_cFixnum, "/", fix_div, 1); rb_define_method(rb_cFixnum, "div", fix_idiv, 1); rb_define_method(rb_cFixnum, "%", fix_mod, 1); rb_define_method(rb_cFixnum, "modulo", fix_mod, 1); rb_define_method(rb_cFixnum, "divmod", fix_divmod, 1); rb_define_method(rb_cFixnum, "quo", fix_quo, 1); rb_define_method(rb_cFixnum, "fdiv", fix_quo, 1); rb_define_method(rb_cFixnum, "**", fix_pow, 1); rb_define_method(rb_cFixnum, "abs", fix_abs, 0); rb_define_method(rb_cFixnum, "==", fix_equal, 1); rb_define_method(rb_cFixnum, "<=>", fix_cmp, 1); rb_define_method(rb_cFixnum, ">", fix_gt, 1); rb_define_method(rb_cFixnum, ">=", fix_ge, 1); rb_define_method(rb_cFixnum, "<", fix_lt, 1); rb_define_method(rb_cFixnum, "<=", fix_le, 1); rb_define_method(rb_cFixnum, "~", fix_rev, 0); rb_define_method(rb_cFixnum, "&", fix_and, 1); rb_define_method(rb_cFixnum, "|", fix_or, 1); rb_define_method(rb_cFixnum, "^", fix_xor, 1); rb_define_method(rb_cFixnum, "[]", fix_aref, 1); rb_define_method(rb_cFixnum, "<<", fix_lshift, 1); rb_define_method(rb_cFixnum, ">>", fix_rshift, 1); rb_define_method(rb_cFixnum, "to_f", fix_to_f, 0); rb_define_method(rb_cFixnum, "size", fix_size, 0); rb_define_method(rb_cFixnum, "zero?", fix_zero_p, 0); rb_define_method(rb_cFixnum, "odd?", fix_odd_p, 0); rb_define_method(rb_cFixnum, "even?", fix_even_p, 0); rb_define_method(rb_cFixnum, "succ", fix_succ, 0); rb_cFloat = rb_define_class("Float", rb_cNumeric); rb_undef_alloc_func(rb_cFloat); rb_undef_method(CLASS_OF(rb_cFloat), "new"); rb_define_singleton_method(rb_cFloat, "induced_from", rb_flo_induced_from, 1); rb_include_module(rb_cFloat, rb_mPrecision); rb_define_const(rb_cFloat, "ROUNDS", INT2FIX(FLT_ROUNDS)); rb_define_const(rb_cFloat, "RADIX", INT2FIX(FLT_RADIX)); rb_define_const(rb_cFloat, "MANT_DIG", INT2FIX(DBL_MANT_DIG)); rb_define_const(rb_cFloat, "DIG", INT2FIX(DBL_DIG)); rb_define_const(rb_cFloat, "MIN_EXP", INT2FIX(DBL_MIN_EXP)); rb_define_const(rb_cFloat, "MAX_EXP", INT2FIX(DBL_MAX_EXP)); rb_define_const(rb_cFloat, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP)); rb_define_const(rb_cFloat, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP)); rb_define_const(rb_cFloat, "MIN", rb_float_new(DBL_MIN)); rb_define_const(rb_cFloat, "MAX", rb_float_new(DBL_MAX)); rb_define_const(rb_cFloat, "EPSILON", rb_float_new(DBL_EPSILON)); rb_define_method(rb_cFloat, "to_s", flo_to_s, 0); rb_define_method(rb_cFloat, "coerce", flo_coerce, 1); rb_define_method(rb_cFloat, "-@", flo_uminus, 0); rb_define_method(rb_cFloat, "+", flo_plus, 1); rb_define_method(rb_cFloat, "-", flo_minus, 1); rb_define_method(rb_cFloat, "*", flo_mul, 1); rb_define_method(rb_cFloat, "/", flo_div, 1); rb_define_method(rb_cFloat, "%", flo_mod, 1); rb_define_method(rb_cFloat, "modulo", flo_mod, 1); rb_define_method(rb_cFloat, "divmod", flo_divmod, 1); rb_define_method(rb_cFloat, "**", flo_pow, 1); rb_define_method(rb_cFloat, "==", flo_eq, 1); rb_define_method(rb_cFloat, "<=>", flo_cmp, 1); rb_define_method(rb_cFloat, ">", flo_gt, 1); rb_define_method(rb_cFloat, ">=", flo_ge, 1); rb_define_method(rb_cFloat, "<", flo_lt, 1); rb_define_method(rb_cFloat, "<=", flo_le, 1); rb_define_method(rb_cFloat, "eql?", flo_eql, 1); rb_define_method(rb_cFloat, "hash", flo_hash, 0); rb_define_method(rb_cFloat, "to_f", flo_to_f, 0); rb_define_method(rb_cFloat, "abs", flo_abs, 0); rb_define_method(rb_cFloat, "zero?", flo_zero_p, 0); rb_define_method(rb_cFloat, "to_i", flo_truncate, 0); rb_define_method(rb_cFloat, "to_int", flo_truncate, 0); rb_define_method(rb_cFloat, "floor", flo_floor, 0); rb_define_method(rb_cFloat, "ceil", flo_ceil, 0); rb_define_method(rb_cFloat, "round", flo_round, -1); rb_define_method(rb_cFloat, "truncate", flo_truncate, 0); rb_define_method(rb_cFloat, "nan?", flo_is_nan_p, 0); rb_define_method(rb_cFloat, "infinite?", flo_is_infinite_p, 0); rb_define_method(rb_cFloat, "finite?", flo_is_finite_p, 0); }