/* * * Ruby BigDecimal(Variable decimal precision) extension library. * * Copyright(C) 2002 by Shigeo Kobayashi(shigeo@tinyforest.gr.jp) * * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file * of this BigDecimal distribution. * * NOTE: Change log in this source removed to reduce source code size. * See rev. 1.25 if needed. * */ #include "ruby/ruby.h" #include #include #include #include #include #include #include #include "math.h" #ifdef HAVE_IEEEFP_H #include #endif /* #define ENABLE_NUMERIC_STRING */ VALUE rb_cBigDecimal; #include "bigdecimal.h" /* MACRO's to guard objects from GC by keeping them in stack */ #define ENTER(n) volatile VALUE vStack[n];int iStack=0 #define PUSH(x) vStack[iStack++] = (unsigned long)(x); #define SAVE(p) PUSH(p->obj); #define GUARD_OBJ(p,y) {p=y;SAVE(p);} /* * ================== Ruby Interface part ========================== */ #define DoSomeOne(x,y,f) rb_num_coerce_bin(x,y,f) #if 0 /* BigDecimal provides arbitrary-precision floating point decimal arithmetic. * * Copyright (C) 2002 by Shigeo Kobayashi . * You may distribute under the terms of either the GNU General Public * License or the Artistic License, as specified in the README file * of the BigDecimal distribution. * * Documented by mathew . * * = Introduction * * Ruby provides built-in support for arbitrary precision integer arithmetic. * For example: * * 42**13 -> 1265437718438866624512 * * BigDecimal provides similar support for very large or very accurate floating * point numbers. * * Decimal arithmetic is also useful for general calculation, because it * provides the correct answers people expect--whereas normal binary floating * point arithmetic often introduces subtle errors because of the conversion * between base 10 and base 2. For example, try: * * sum = 0 * for i in (1..10000) * sum = sum + 0.0001 * end * print sum * * and contrast with the output from: * * require 'bigdecimal' * * sum = BigDecimal.new("0") * for i in (1..10000) * sum = sum + BigDecimal.new("0.0001") * end * print sum * * Similarly: * * (BigDecimal.new("1.2") - BigDecimal("1.0")) == BigDecimal("0.2") -> true * * (1.2 - 1.0) == 0.2 -> false * * = Special features of accurate decimal arithmetic * * Because BigDecimal is more accurate than normal binary floating point * arithmetic, it requires some special values. * * == Infinity * * BigDecimal sometimes needs to return infinity, for example if you divide * a value by zero. * * BigDecimal.new("1.0") / BigDecimal.new("0.0") -> infinity * * BigDecimal.new("-1.0") / BigDecimal.new("0.0") -> -infinity * * You can represent infinite numbers to BigDecimal using the strings * 'Infinity', '+Infinity' and '-Infinity' (case-sensitive) * * == Not a Number * * When a computation results in an undefined value, the special value NaN * (for 'not a number') is returned. * * Example: * * BigDecimal.new("0.0") / BigDecimal.new("0.0") -> NaN * * You can also create undefined values. NaN is never considered to be the * same as any other value, even NaN itself: * * n = BigDecimal.new('NaN') * * n == 0.0 -> nil * * n == n -> nil * * == Positive and negative zero * * If a computation results in a value which is too small to be represented as * a BigDecimal within the currently specified limits of precision, zero must * be returned. * * If the value which is too small to be represented is negative, a BigDecimal * value of negative zero is returned. If the value is positive, a value of * positive zero is returned. * * BigDecimal.new("1.0") / BigDecimal.new("-Infinity") -> -0.0 * * BigDecimal.new("1.0") / BigDecimal.new("Infinity") -> 0.0 * * (See BigDecimal.mode for how to specify limits of precision.) * * Note that -0.0 and 0.0 are considered to be the same for the purposes of * comparison. * * Note also that in mathematics, there is no particular concept of negative * or positive zero; true mathematical zero has no sign. */ void Init_BigDecimal() { /* This is a #if-ed out function to fool Rdoc into documenting the class. */ /* The real init function is Init_bigdecimal() further down. */ } #endif /* * Returns the BigDecimal version number. * * Ruby 1.8.0 returns 1.0.0. * Ruby 1.8.1 thru 1.8.3 return 1.0.1. */ static VALUE BigDecimal_version(VALUE self) { /* * 1.0.0: Ruby 1.8.0 * 1.0.1: Ruby 1.8.1 */ return rb_str_new2("1.0.1"); } /* * VP routines used in BigDecimal part */ static unsigned short VpGetException(void); static void VpSetException(unsigned short f); static void VpInternalRound(Real *c,int ixDigit,U_LONG vPrev,U_LONG v); static int VpLimitRound(Real *c,U_LONG ixDigit); /* * **** BigDecimal part **** */ static void BigDecimal_delete(Real *pv) { VpFree(pv); } static VALUE ToValue(Real *p) { if(VpIsNaN(p)) { VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'(Not a Number)",0); } else if(VpIsPosInf(p)) { VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",0); } else if(VpIsNegInf(p)) { VpException(VP_EXCEPTION_INFINITY,"Computation results to '-Infinity'",0); } return p->obj; } static Real * GetVpValue(VALUE v, int must) { Real *pv; VALUE bg; char szD[128]; switch(TYPE(v)) { case T_DATA: if(RDATA(v)->dfree ==(void *) BigDecimal_delete) { Data_Get_Struct(v, Real, pv); return pv; } else { goto SomeOneMayDoIt; } break; case T_FIXNUM: sprintf(szD, "%ld", FIX2LONG(v)); return VpCreateRbObject(VpBaseFig() * 2 + 1, szD); #ifdef ENABLE_NUMERIC_STRING case T_STRING: SafeStringValue(v); return VpCreateRbObject(strlen(RSTRING_PTR(v)) + VpBaseFig() + 1, RSTRING_PTR(v)); #endif /* ENABLE_NUMERIC_STRING */ case T_BIGNUM: bg = rb_big2str(v, 10); return VpCreateRbObject(strlen(RSTRING_PTR(bg)) + VpBaseFig() + 1, RSTRING_PTR(bg)); default: goto SomeOneMayDoIt; } SomeOneMayDoIt: if(must) { rb_raise(rb_eTypeError, "%s can't be coerced into BigDecimal", rb_special_const_p(v)? RSTRING_PTR(rb_inspect(v)): rb_obj_classname(v) ); } return NULL; /* NULL means to coerce */ } /* call-seq: * BigDecimal.double_fig * * The BigDecimal.double_fig class method returns the number of digits a * Float number is allowed to have. The result depends upon the CPU and OS * in use. */ static VALUE BigDecimal_double_fig(VALUE self) { return INT2FIX(VpDblFig()); } /* call-seq: * precs * * Returns an Array of two Integer values. * * The first value is the current number of significant digits in the * BigDecimal. The second value is the maximum number of significant digits * for the BigDecimal. */ static VALUE BigDecimal_prec(VALUE self) { ENTER(1); Real *p; VALUE obj; GUARD_OBJ(p,GetVpValue(self,1)); obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()), INT2NUM(p->MaxPrec*VpBaseFig())); return obj; } static VALUE BigDecimal_hash(VALUE self) { ENTER(1); Real *p; U_LONG hash,i; GUARD_OBJ(p,GetVpValue(self,1)); hash = (U_LONG)p->sign; /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */ if(hash==2) { for(i = 0; i < p->Prec;i++) { hash = 31 * hash + p->frac[i]; hash ^= p->frac[i]; } hash += p->exponent; } return INT2FIX(hash); } static VALUE BigDecimal_dump(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *vp; char *psz; VALUE dummy; volatile VALUE dump; rb_scan_args(argc, argv, "01", &dummy); GUARD_OBJ(vp,GetVpValue(self,1)); dump = rb_str_new(0,VpNumOfChars(vp,"E")+50); psz = RSTRING_PTR(dump); sprintf(psz,"%lu:",VpMaxPrec(vp)*VpBaseFig()); VpToString(vp, psz+strlen(psz), 0, 0); rb_str_resize(dump, strlen(psz)); return dump; } /* * Internal method used to provide marshalling support. See the Marshal module. */ static VALUE BigDecimal_load(VALUE self, VALUE str) { ENTER(2); Real *pv; unsigned char *pch; unsigned char ch; unsigned long m=0; SafeStringValue(str); pch = (unsigned char *)RSTRING_PTR(str); /* First get max prec */ while((*pch)!=(unsigned char)'\0' && (ch=*pch++)!=(unsigned char)':') { if(!ISDIGIT(ch)) { rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string"); } m = m*10 + (unsigned long)(ch-'0'); } if(m>VpBaseFig()) m -= VpBaseFig(); GUARD_OBJ(pv,VpNewRbClass(m,(char *)pch,self)); m /= VpBaseFig(); if(m && pv->MaxPrec>m) pv->MaxPrec = m+1; return ToValue(pv); } /* call-seq: * BigDecimal.mode(mode, value) * * Controls handling of arithmetic exceptions and rounding. If no value * is supplied, the current value is returned. * * Six values of the mode parameter control the handling of arithmetic * exceptions: * * BigDecimal::EXCEPTION_NaN * BigDecimal::EXCEPTION_INFINITY * BigDecimal::EXCEPTION_UNDERFLOW * BigDecimal::EXCEPTION_OVERFLOW * BigDecimal::EXCEPTION_ZERODIVIDE * BigDecimal::EXCEPTION_ALL * * For each mode parameter above, if the value set is false, computation * continues after an arithmetic exception of the appropriate type. * When computation continues, results are as follows: * * EXCEPTION_NaN:: NaN * EXCEPTION_INFINITY:: +infinity or -infinity * EXCEPTION_UNDERFLOW:: 0 * EXCEPTION_OVERFLOW:: +infinity or -infinity * EXCEPTION_ZERODIVIDE:: +infinity or -infinity * * One value of the mode parameter controls the rounding of numeric values: * BigDecimal::ROUND_MODE. The values it can take are: * * ROUND_UP:: round away from zero * ROUND_DOWN:: round towards zero (truncate) * ROUND_HALF_UP:: round up if the appropriate digit >= 5, otherwise truncate (default) * ROUND_HALF_DOWN:: round up if the appropriate digit >= 6, otherwise truncate * ROUND_HALF_EVEN:: round towards the even neighbor (Banker's rounding) * ROUND_CEILING:: round towards positive infinity (ceil) * ROUND_FLOOR:: round towards negative infinity (floor) * */ static VALUE BigDecimal_mode(int argc, VALUE *argv, VALUE self) { VALUE which; VALUE val; unsigned long f,fo; if(rb_scan_args(argc,argv,"11",&which,&val)==1) val = Qnil; Check_Type(which, T_FIXNUM); f = (unsigned long)FIX2INT(which); if(f&VP_EXCEPTION_ALL) { /* Exception mode setting */ fo = VpGetException(); if(val==Qnil) return INT2FIX(fo); if(val!=Qfalse && val!=Qtrue) { rb_raise(rb_eTypeError, "second argument must be true or false"); return Qnil; /* Not reached */ } if(f&VP_EXCEPTION_INFINITY) { VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_INFINITY): (fo&(~VP_EXCEPTION_INFINITY)))); } fo = VpGetException(); if(f&VP_EXCEPTION_NaN) { VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_NaN): (fo&(~VP_EXCEPTION_NaN)))); } fo = VpGetException(); if(f&VP_EXCEPTION_UNDERFLOW) { VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_UNDERFLOW): (fo&(~VP_EXCEPTION_UNDERFLOW)))); } fo = VpGetException(); if(f&VP_EXCEPTION_ZERODIVIDE) { VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_ZERODIVIDE): (fo&(~VP_EXCEPTION_ZERODIVIDE)))); } fo = VpGetException(); return INT2FIX(fo); } if(VP_ROUND_MODE==f) { /* Rounding mode setting */ fo = VpGetRoundMode(); if(val==Qnil) return INT2FIX(fo); Check_Type(val, T_FIXNUM); if(!VpIsRoundMode(FIX2INT(val))) { rb_raise(rb_eTypeError, "invalid rounding mode"); return Qnil; } fo = VpSetRoundMode((unsigned long)FIX2INT(val)); return INT2FIX(fo); } rb_raise(rb_eTypeError, "first argument for BigDecimal#mode invalid"); return Qnil; } static U_LONG GetAddSubPrec(Real *a, Real *b) { U_LONG mxs; U_LONG mx = a->Prec; S_INT d; if(!VpIsDef(a) || !VpIsDef(b)) return (-1L); if(mx < b->Prec) mx = b->Prec; if(a->exponent!=b->exponent) { mxs = mx; d = a->exponent - b->exponent; if(d<0) d = -d; mx = mx+(U_LONG)d; if(mxobj = (VALUE)Data_Wrap_Struct(klass, 0, BigDecimal_delete, pv); return pv; } VP_EXPORT Real * VpCreateRbObject(U_LONG mx, const char *str) { Real *pv = VpAlloc(mx,str); pv->obj = (VALUE)Data_Wrap_Struct(rb_cBigDecimal, 0, BigDecimal_delete, pv); return pv; } /* Returns True if the value is Not a Number */ static VALUE BigDecimal_IsNaN(VALUE self) { Real *p = GetVpValue(self,1); if(VpIsNaN(p)) return Qtrue; return Qfalse; } /* Returns True if the value is infinite */ static VALUE BigDecimal_IsInfinite(VALUE self) { Real *p = GetVpValue(self,1); if(VpIsPosInf(p)) return INT2FIX(1); if(VpIsNegInf(p)) return INT2FIX(-1); return Qnil; } /* Returns True if the value is finite (not NaN or infinite) */ static VALUE BigDecimal_IsFinite(VALUE self) { Real *p = GetVpValue(self,1); if(VpIsNaN(p)) return Qfalse; if(VpIsInf(p)) return Qfalse; return Qtrue; } static void BigDecimal_check_num(Real *p) { if(VpIsNaN(p)) { VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'(Not a Number)",1); } else if(VpIsPosInf(p)) { VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",1); } else if(VpIsNegInf(p)) { VpException(VP_EXCEPTION_INFINITY,"Computation results to '-Infinity'",1); } } /* Returns the value as an integer (Fixnum or Bignum). * * If the BigNumber is infinity or NaN, returns nil. */ static VALUE BigDecimal_to_i(VALUE self) { ENTER(5); int e,n,i,nf; U_LONG v,b,j; volatile VALUE str; char *psz,*pch; Real *p; GUARD_OBJ(p,GetVpValue(self,1)); BigDecimal_check_num(p); e = VpExponent10(p); if(e<=0) return INT2FIX(0); nf = VpBaseFig(); if(e<=nf) { e = VpGetSign(p)*p->frac[0]; return INT2FIX(e); } str = rb_str_new(0, e+nf+2); psz = RSTRING_PTR(str); n = (e+nf-1)/nf; pch = psz; if(VpGetSign(p)<0) *pch++ = '-'; for(i=0;i=(int)p->Prec) { while(b) { *pch++ = '0'; b /= 10; } continue; } v = p->frac[i]; while(b) { j = v/b; *pch++ = (char)(j + '0'); v -= j*b; b /= 10; } } *pch++ = 0; return rb_cstr2inum(psz,10); } /* Returns a new Float object having approximately the same value as the * BigDecimal number. Normal accuracy limits and built-in errors of binary * Float arithmetic apply. */ static VALUE BigDecimal_to_f(VALUE self) { ENTER(1); Real *p; double d; S_LONG e; char *buf; volatile VALUE str; GUARD_OBJ(p,GetVpValue(self,1)); if (VpVtoD(&d, &e, p)!=1) return rb_float_new(d); if (e > DBL_MAX_10_EXP) goto erange; str = rb_str_new(0, VpNumOfChars(p,"E")); buf = RSTRING_PTR(str); VpToString(p, buf, 0, 0); errno = 0; d = strtod(buf, 0); if(errno == ERANGE) { erange: VpException(VP_EXCEPTION_OVERFLOW,"BigDecimal to Float conversion",0); if(d>0.0) d = VpGetDoublePosInf(); else d = VpGetDoubleNegInf(); } return rb_float_new(d); } static VALUE BigDecimal_split(VALUE self); /* Converts a BigDecimal to a Rational. */ static VALUE BigDecimal_to_r(VALUE self) { Real *p; S_LONG sign, power, denomi_power; VALUE a, digits, numerator; p = GetVpValue(self,1); BigDecimal_check_num(p); sign = VpGetSign(p); power = VpExponent10(p); a = BigDecimal_split(self); digits = RARRAY_PTR(a)[1]; denomi_power = power - RSTRING_LEN(digits); numerator = rb_funcall(digits, rb_intern("to_i"), 0); if (sign < 0) { numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1)); } if (denomi_power < 0) { return rb_Rational(numerator, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(-denomi_power))); } else { return rb_Rational1(rb_funcall(numerator, '*', 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(denomi_power)))); } } /* The coerce method provides support for Ruby type coercion. It is not * enabled by default. * * This means that binary operations like + * / or - can often be performed * on a BigDecimal and an object of another type, if the other object can * be coerced into a BigDecimal value. * * e.g. * a = BigDecimal.new("1.0") * b = a / 2.0 -> 0.5 * * Note that coercing a String to a BigDecimal is not supported by default; * it requires a special compile-time option when building Ruby. */ static VALUE BigDecimal_coerce(VALUE self, VALUE other) { ENTER(2); VALUE obj; Real *b; switch (TYPE(other)) { case T_FLOAT: obj = rb_assoc_new(other, BigDecimal_to_f(self)); break; case T_RATIONAL: obj = rb_assoc_new(other, BigDecimal_to_r(self)); break; default: GUARD_OBJ(b,GetVpValue(other,1)); obj = rb_assoc_new(b->obj, self); } return obj; } static VALUE BigDecimal_uplus(VALUE self) { return self; } /* call-seq: * add(value, digits) * * Add the specified value. * * e.g. * c = a.add(b,n) * c = a + b * * digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. */ static VALUE BigDecimal_add(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); b = GetVpValue(r,0); if(!b) return DoSomeOne(self,r,'+'); SAVE(b); if(VpIsNaN(b)) return b->obj; if(VpIsNaN(a)) return a->obj; mx = GetAddSubPrec(a,b); if(mx==(-1L)) { GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0")); VpAddSub(c, a, b, 1); } else { GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0")); if(!mx) { VpSetInf(c,VpGetSign(a)); } else { VpAddSub(c, a, b, 1); } } return ToValue(c); } /* call-seq: * sub(value, digits) * * Subtract the specified value. * * e.g. * c = a.sub(b,n) * c = a - b * * digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. */ static VALUE BigDecimal_sub(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); b = GetVpValue(r,0); if(!b) return DoSomeOne(self,r,'-'); SAVE(b); if(VpIsNaN(b)) return b->obj; if(VpIsNaN(a)) return a->obj; mx = GetAddSubPrec(a,b); if(mx==(-1L)) { GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0")); VpAddSub(c, a, b, -1); } else { GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0")); if(!mx) { VpSetInf(c,VpGetSign(a)); } else { VpAddSub(c, a, b, -1); } } return ToValue(c); } static VALUE BigDecimalCmp(VALUE self, VALUE r,char op) { ENTER(5); S_INT e; Real *a, *b; GUARD_OBJ(a,GetVpValue(self,1)); b = GetVpValue(r,0); if(!b) { ID f = 0; switch(op) { case '*': f = rb_intern("<=>");break; case '=': f = rb_intern("=="); break; case '!': f = rb_intern("!="); break; case 'G': f = rb_intern(">="); break; case 'L': f = rb_intern("<="); break; case '>': case '<': f = (ID)op; break; } return rb_num_coerce_cmp(self,r,f); } SAVE(b); e = VpComp(a, b); if(e==999) return Qnil; switch(op) { case '*': return INT2FIX(e); /* any op */ case '=': if(e==0) return Qtrue ; return Qfalse; case '!': if(e!=0) return Qtrue ; return Qfalse; case 'G': if(e>=0) return Qtrue ; return Qfalse; case '>': if(e> 0) return Qtrue ; return Qfalse; case 'L': if(e<=0) return Qtrue ; return Qfalse; case '<': if(e< 0) return Qtrue ; return Qfalse; } rb_bug("Undefined operation in BigDecimalCmp()"); } /* Returns True if the value is zero. */ static VALUE BigDecimal_zero(VALUE self) { Real *a = GetVpValue(self,1); return VpIsZero(a) ? Qtrue : Qfalse; } /* Returns True if the value is non-zero. */ static VALUE BigDecimal_nonzero(VALUE self) { Real *a = GetVpValue(self,1); return VpIsZero(a) ? Qnil : self; } /* The comparison operator. * a <=> b is 0 if a == b, 1 if a > b, -1 if a < b. */ static VALUE BigDecimal_comp(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '*'); } /* * Tests for value equality; returns true if the values are equal. * * The == and === operators and the eql? method have the same implementation * for BigDecimal. * * Values may be coerced to perform the comparison: * * BigDecimal.new('1.0') == 1.0 -> true */ static VALUE BigDecimal_eq(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '='); } /* call-seq: * a < b * * Returns true if a is less than b. Values may be coerced to perform the * comparison (see ==, coerce). */ static VALUE BigDecimal_lt(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '<'); } /* call-seq: * a <= b * * Returns true if a is less than or equal to b. Values may be coerced to * perform the comparison (see ==, coerce). */ static VALUE BigDecimal_le(VALUE self, VALUE r) { return BigDecimalCmp(self, r, 'L'); } /* call-seq: * a > b * * Returns true if a is greater than b. Values may be coerced to * perform the comparison (see ==, coerce). */ static VALUE BigDecimal_gt(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '>'); } /* call-seq: * a >= b * * Returns true if a is greater than or equal to b. Values may be coerced to * perform the comparison (see ==, coerce) */ static VALUE BigDecimal_ge(VALUE self, VALUE r) { return BigDecimalCmp(self, r, 'G'); } static VALUE BigDecimal_neg(VALUE self) { ENTER(5); Real *c, *a; GUARD_OBJ(a,GetVpValue(self,1)); GUARD_OBJ(c,VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0")); VpAsgn(c, a, -1); return ToValue(c); } /* call-seq: * mult(value, digits) * * Multiply by the specified value. * * e.g. * c = a.mult(b,n) * c = a * b * * digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. */ static VALUE BigDecimal_mult(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); b = GetVpValue(r,0); if(!b) return DoSomeOne(self,r,'*'); SAVE(b); mx = a->Prec + b->Prec; GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0")); VpMult(c, a, b); return ToValue(c); } static VALUE BigDecimal_divide(Real **c, Real **res, Real **div, VALUE self, VALUE r) /* For c = self.div(r): with round operation */ { ENTER(5); Real *a, *b; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); b = GetVpValue(r,0); if(!b) return DoSomeOne(self,r,'/'); SAVE(b); *div = b; mx =(a->MaxPrec + b->MaxPrec + 1) * VpBaseFig(); GUARD_OBJ((*c),VpCreateRbObject(mx, "#0")); GUARD_OBJ((*res),VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0")); VpDivd(*c, *res, a, b); return (VALUE)0; } /* call-seq: * div(value, digits) * quo(value) * * Divide by the specified value. * * e.g. * c = a.div(b,n) * * digits:: If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode. * * If digits is 0, the result is the same as the / operator. If not, the * result is an integer BigDecimal, by analogy with Float#div. * * The alias quo is provided since div(value, 0) is the same as computing * the quotient; see divmod. */ static VALUE BigDecimal_div(VALUE self, VALUE r) /* For c = self/r: with round operation */ { ENTER(5); Real *c=NULL, *res=NULL, *div = NULL; r = BigDecimal_divide(&c, &res, &div, self, r); if(r!=(VALUE)0) return r; /* coerced by other */ SAVE(c);SAVE(res);SAVE(div); /* a/b = c + r/b */ /* c xxxxx r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE */ /* Round */ if(VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */ VpInternalRound(c,0,c->frac[c->Prec-1],(VpBaseVal()*res->frac[0])/div->frac[0]); } return ToValue(c); } /* * %: mod = a%b = a - (a.to_f/b).floor * b * div = (a.to_f/b).floor */ static VALUE BigDecimal_DoDivmod(VALUE self, VALUE r, Real **div, Real **mod) { ENTER(8); Real *c=NULL, *d=NULL, *res=NULL; Real *a, *b; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); b = GetVpValue(r,0); if(!b) return DoSomeOne(self,r,rb_intern("divmod")); SAVE(b); if(VpIsNaN(a) || VpIsNaN(b)) goto NaN; if(VpIsInf(a) || VpIsInf(b)) goto NaN; if(VpIsZero(b)) { rb_raise(rb_eZeroDivError, "divided by 0"); } if(VpIsZero(a)) { GUARD_OBJ(c,VpCreateRbObject(1, "0")); GUARD_OBJ(d,VpCreateRbObject(1, "0")); *div = d; *mod = c; return (VALUE)0; } mx = a->Prec; if(mxPrec) mx = b->Prec; mx =(mx + 1) * VpBaseFig(); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); GUARD_OBJ(res,VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0")); VpDivd(c, res, a, b); mx = c->Prec *(VpBaseFig() + 1); GUARD_OBJ(d,VpCreateRbObject(mx, "0")); VpActiveRound(d,c,VP_ROUND_DOWN,0); VpMult(res,d,b); VpAddSub(c,a,res,-1); if(!VpIsZero(c) && (VpGetSign(a)*VpGetSign(b)<0)) { VpAddSub(res,d,VpOne(),-1); VpAddSub(d ,c,b, 1); *div = res; *mod = d; } else { *div = d; *mod = c; } return (VALUE)0; NaN: GUARD_OBJ(c,VpCreateRbObject(1, "NaN")); GUARD_OBJ(d,VpCreateRbObject(1, "NaN")); *div = d; *mod = c; return (VALUE)0; } /* call-seq: * a % b * a.modulo(b) * * Returns the modulus from dividing by b. See divmod. */ static VALUE BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */ { ENTER(3); VALUE obj; Real *div=NULL, *mod=NULL; obj = BigDecimal_DoDivmod(self,r,&div,&mod); if(obj!=(VALUE)0) return obj; SAVE(div);SAVE(mod); return ToValue(mod); } static VALUE BigDecimal_divremain(VALUE self, VALUE r, Real **dv, Real **rv) { ENTER(10); U_LONG mx; Real *a=NULL, *b=NULL, *c=NULL, *res=NULL, *d=NULL, *rr=NULL, *ff=NULL; Real *f=NULL; GUARD_OBJ(a,GetVpValue(self,1)); b = GetVpValue(r,0); if(!b) return DoSomeOne(self,r,rb_intern("remainder")); SAVE(b); mx =(a->MaxPrec + b->MaxPrec) *VpBaseFig(); GUARD_OBJ(c ,VpCreateRbObject(mx, "0")); GUARD_OBJ(res,VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0")); GUARD_OBJ(rr ,VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0")); GUARD_OBJ(ff ,VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0")); VpDivd(c, res, a, b); mx = c->Prec *(VpBaseFig() + 1); GUARD_OBJ(d,VpCreateRbObject(mx, "0")); GUARD_OBJ(f,VpCreateRbObject(mx, "0")); VpActiveRound(d,c,VP_ROUND_DOWN,0); /* 0: round off */ VpFrac(f, c); VpMult(rr,f,b); VpAddSub(ff,res,rr,1); *dv = d; *rv = ff; return (VALUE)0; } /* Returns the remainder from dividing by the value. * * If the values divided are of the same sign, the remainder is the same as * the modulus (see divmod). * * Otherwise, the remainder is the modulus minus the value divided by. */ static VALUE BigDecimal_remainder(VALUE self, VALUE r) /* remainder */ { VALUE f; Real *d,*rv=0; f = BigDecimal_divremain(self,r,&d,&rv); if(f!=(VALUE)0) return f; return ToValue(rv); } /* Divides by the specified value, and returns the quotient and modulus * as BigDecimal numbers. The quotient is rounded towards negative infinity. * * For example: * * require 'bigdecimal' * * a = BigDecimal.new("42") * b = BigDecimal.new("9") * * q,m = a.divmod(b) * * c = q * b + m * * a == c -> true * * The quotient q is (a/b).floor, and the modulus is the amount that must be * added to q * b to get a. */ static VALUE BigDecimal_divmod(VALUE self, VALUE r) { ENTER(5); VALUE obj; Real *div=NULL, *mod=NULL; obj = BigDecimal_DoDivmod(self,r,&div,&mod); if(obj!=(VALUE)0) return obj; SAVE(div);SAVE(mod); obj = rb_assoc_new(BigDecimal_to_i(ToValue(div)), ToValue(mod)); return obj; } static VALUE BigDecimal_div2(int argc, VALUE *argv, VALUE self) { ENTER(5); VALUE b,n; int na = rb_scan_args(argc,argv,"11",&b,&n); if(na==1) { /* div in Float sense */ VALUE obj; Real *div=NULL; Real *mod; obj = BigDecimal_DoDivmod(self,b,&div,&mod); if(obj!=(VALUE)0) return obj; return BigDecimal_to_i(ToValue(div)); } else { /* div in BigDecimal sense */ U_LONG ix = (U_LONG)GetPositiveInt(n); if(ix==0) return BigDecimal_div(self,b); else { Real *res=NULL; Real *av=NULL, *bv=NULL, *cv=NULL; U_LONG mx = (ix+VpBaseFig()*2); U_LONG pl = VpSetPrecLimit(0); GUARD_OBJ(cv,VpCreateRbObject(mx,"0")); GUARD_OBJ(av,GetVpValue(self,1)); GUARD_OBJ(bv,GetVpValue(b,1)); mx = av->Prec + bv->Prec + 2; if(mx <= cv->MaxPrec) mx = cv->MaxPrec+1; GUARD_OBJ(res,VpCreateRbObject((mx * 2 + 2)*VpBaseFig(), "#0")); VpDivd(cv,res,av,bv); VpSetPrecLimit(pl); VpLeftRound(cv,VpGetRoundMode(),ix); return ToValue(cv); } } } static VALUE BigDecimal_add2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; U_LONG mx = (U_LONG)GetPositiveInt(n); if(mx==0) return BigDecimal_add(self,b); else { U_LONG pl = VpSetPrecLimit(0); VALUE c = BigDecimal_add(self,b); VpSetPrecLimit(pl); GUARD_OBJ(cv,GetVpValue(c,1)); VpLeftRound(cv,VpGetRoundMode(),mx); return ToValue(cv); } } static VALUE BigDecimal_sub2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; U_LONG mx = (U_LONG)GetPositiveInt(n); if(mx==0) return BigDecimal_sub(self,b); else { U_LONG pl = VpSetPrecLimit(0); VALUE c = BigDecimal_sub(self,b); VpSetPrecLimit(pl); GUARD_OBJ(cv,GetVpValue(c,1)); VpLeftRound(cv,VpGetRoundMode(),mx); return ToValue(cv); } } static VALUE BigDecimal_mult2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; U_LONG mx = (U_LONG)GetPositiveInt(n); if(mx==0) return BigDecimal_mult(self,b); else { U_LONG pl = VpSetPrecLimit(0); VALUE c = BigDecimal_mult(self,b); VpSetPrecLimit(pl); GUARD_OBJ(cv,GetVpValue(c,1)); VpLeftRound(cv,VpGetRoundMode(),mx); return ToValue(cv); } } /* Returns the absolute value. * * BigDecimal('5').abs -> 5 * * BigDecimal('-3').abs -> 3 */ static VALUE BigDecimal_abs(VALUE self) { ENTER(5); Real *c, *a; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpAsgn(c, a, 1); VpChangeSign(c,(S_INT)1); return ToValue(c); } /* call-seq: * sqrt(n) * * Returns the square root of the value. * * If n is specified, returns at least that many significant digits. */ static VALUE BigDecimal_sqrt(VALUE self, VALUE nFig) { ENTER(5); Real *c, *a; S_INT mx, n; GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); n = GetPositiveInt(nFig) + VpDblFig() + 1; if(mx <= n) mx = n; GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpSqrt(c, a); return ToValue(c); } /* Return the integer part of the number. */ static VALUE BigDecimal_fix(VALUE self) { ENTER(5); Real *c, *a; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpActiveRound(c,a,VP_ROUND_DOWN,0); /* 0: round off */ return ToValue(c); } /* call-seq: * round(n,mode) * * Round to the nearest 1 (by default), returning the result as a BigDecimal. * * BigDecimal('3.14159').round -> 3 * * BigDecimal('8.7').round -> 9 * * If n is specified and positive, the fractional part of the result has no * more than that many digits. * * If n is specified and negative, at least that many digits to the left of the * decimal point will be 0 in the result. * * BigDecimal('3.14159').round(3) -> 3.142 * * BigDecimal('13345.234').round(-2) -> 13300.0 * * The value of the optional mode argument can be used to determine how * rounding is performed; see BigDecimal.mode. */ static VALUE BigDecimal_round(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc = 0; U_LONG mx; VALUE vLoc; VALUE vRound; U_LONG pl; int sw = VpGetRoundMode(); int na = rb_scan_args(argc,argv,"02",&vLoc,&vRound); switch(na) { case 0: iLoc = 0; break; case 1: Check_Type(vLoc, T_FIXNUM); iLoc = FIX2INT(vLoc); break; case 2: Check_Type(vLoc, T_FIXNUM); iLoc = FIX2INT(vLoc); Check_Type(vRound, T_FIXNUM); sw = FIX2INT(vRound); if(!VpIsRoundMode(sw)) { rb_raise(rb_eTypeError, "invalid rounding mode"); return Qnil; } break; } pl = VpSetPrecLimit(0); GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c,a,sw,iLoc); if (argc == 0) { return BigDecimal_to_i(ToValue(c)); } return ToValue(c); } /* call-seq: * truncate(n) * * Truncate to the nearest 1, returning the result as a BigDecimal. * * BigDecimal('3.14159').truncate -> 3 * * BigDecimal('8.7').truncate -> 8 * * If n is specified and positive, the fractional part of the result has no * more than that many digits. * * If n is specified and negative, at least that many digits to the left of the * decimal point will be 0 in the result. * * BigDecimal('3.14159').truncate(3) -> 3.141 * * BigDecimal('13345.234').truncate(-2) -> 13300.0 */ static VALUE BigDecimal_truncate(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc; U_LONG mx; VALUE vLoc; U_LONG pl = VpSetPrecLimit(0); if(rb_scan_args(argc,argv,"01",&vLoc)==0) { iLoc = 0; } else { Check_Type(vLoc, T_FIXNUM); iLoc = FIX2INT(vLoc); } GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c,a,VP_ROUND_DOWN,iLoc); /* 0: truncate */ if (argc == 0) { return BigDecimal_to_i(ToValue(c)); } return ToValue(c); } /* Return the fractional part of the number. */ static VALUE BigDecimal_frac(VALUE self) { ENTER(5); Real *c, *a; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpFrac(c, a); return ToValue(c); } /* call-seq: * floor(n) * * Return the largest integer less than or equal to the value, as a BigDecimal. * * BigDecimal('3.14159').floor -> 3 * * BigDecimal('-9.1').floor -> -10 * * If n is specified and positive, the fractional part of the result has no * more than that many digits. * * If n is specified and negative, at least that * many digits to the left of the decimal point will be 0 in the result. * * BigDecimal('3.14159').floor(3) -> 3.141 * * BigDecimal('13345.234').floor(-2) -> 13300.0 */ static VALUE BigDecimal_floor(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; U_LONG mx; int iLoc; VALUE vLoc; U_LONG pl = VpSetPrecLimit(0); if(rb_scan_args(argc,argv,"01",&vLoc)==0) { iLoc = 0; } else { Check_Type(vLoc, T_FIXNUM); iLoc = FIX2INT(vLoc); } GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c,a,VP_ROUND_FLOOR,iLoc); if (argc == 0) { return BigDecimal_to_i(ToValue(c)); } return ToValue(c); } /* call-seq: * ceil(n) * * Return the smallest integer greater than or equal to the value, as a BigDecimal. * * BigDecimal('3.14159').ceil -> 4 * * BigDecimal('-9.1').ceil -> -9 * * If n is specified and positive, the fractional part of the result has no * more than that many digits. * * If n is specified and negative, at least that * many digits to the left of the decimal point will be 0 in the result. * * BigDecimal('3.14159').ceil(3) -> 3.142 * * BigDecimal('13345.234').ceil(-2) -> 13400.0 */ static VALUE BigDecimal_ceil(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; U_LONG mx; int iLoc; VALUE vLoc; U_LONG pl = VpSetPrecLimit(0); if(rb_scan_args(argc,argv,"01",&vLoc)==0) { iLoc = 0; } else { Check_Type(vLoc, T_FIXNUM); iLoc = FIX2INT(vLoc); } GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c,a,VP_ROUND_CEIL,iLoc); if (argc == 0) { return BigDecimal_to_i(ToValue(c)); } return ToValue(c); } /* call-seq: * to_s(s) * * Converts the value to a string. * * The default format looks like 0.xxxxEnn. * * The optional parameter s consists of either an integer; or an optional '+' * or ' ', followed by an optional number, followed by an optional 'E' or 'F'. * * If there is a '+' at the start of s, positive values are returned with * a leading '+'. * * A space at the start of s returns positive values with a leading space. * * If s contains a number, a space is inserted after each group of that many * fractional digits. * * If s ends with an 'E', engineering notation (0.xxxxEnn) is used. * * If s ends with an 'F', conventional floating point notation is used. * * Examples: * * BigDecimal.new('-123.45678901234567890').to_s('5F') -> '-123.45678 90123 45678 9' * * BigDecimal.new('123.45678901234567890').to_s('+8F') -> '+123.45678901 23456789' * * BigDecimal.new('123.45678901234567890').to_s(' F') -> ' 123.4567890123456789' */ static VALUE BigDecimal_to_s(int argc, VALUE *argv, VALUE self) { ENTER(5); int fmt=0; /* 0:E format */ int fPlus=0; /* =0:default,=1: set ' ' before digits ,set '+' before digits. */ Real *vp; volatile VALUE str; char *psz; char ch; U_LONG nc; S_INT mc = 0; VALUE f; GUARD_OBJ(vp,GetVpValue(self,1)); if(rb_scan_args(argc,argv,"01",&f)==1) { if(TYPE(f)==T_STRING) { SafeStringValue(f); psz = RSTRING_PTR(f); if(*psz==' ') { fPlus = 1; psz++; } else if(*psz=='+') { fPlus = 2; psz++; } while((ch=*psz++)!=0) { if(ISSPACE(ch)) continue; if(!ISDIGIT(ch)) { if(ch=='F' || ch=='f') fmt = 1; /* F format */ break; } mc = mc * 10 + ch - '0'; } } else { mc = GetPositiveInt(f); } } if(fmt) { nc = VpNumOfChars(vp,"F"); } else { nc = VpNumOfChars(vp,"E"); } if(mc>0) nc += (nc + mc - 1) / mc + 1; str = rb_str_new(0, nc); psz = RSTRING_PTR(str); if(fmt) { VpToFString(vp, psz, mc, fPlus); } else { VpToString (vp, psz, mc, fPlus); } rb_str_resize(str, strlen(psz)); return str; } /* Splits a BigDecimal number into four parts, returned as an array of values. * * The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 * if the BigDecimal is Not a Number. * * The second value is a string representing the significant digits of the * BigDecimal, with no leading zeros. * * The third value is the base used for arithmetic (currently always 10) as an * Integer. * * The fourth value is an Integer exponent. * * If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the * string of significant digits with no leading zeros, and n is the exponent. * * From these values, you can translate a BigDecimal to a float as follows: * * sign, significant_digits, base, exponent = a.split * f = sign * "0.#{significant_digits}".to_f * (base ** exponent) * * (Note that the to_f method is provided as a more convenient way to translate * a BigDecimal to a Float.) */ static VALUE BigDecimal_split(VALUE self) { ENTER(5); Real *vp; VALUE obj,str; S_LONG e; S_LONG s; char *psz1; GUARD_OBJ(vp,GetVpValue(self,1)); str = rb_str_new(0, VpNumOfChars(vp,"E")); psz1 = RSTRING_PTR(str); VpSzMantissa(vp,psz1); s = 1; if(psz1[0]=='-') { int len = strlen(psz1+1); memmove(psz1, psz1+1, len); psz1[len] = '\0'; s = -1; } if(psz1[0]=='N') s=0; /* NaN */ e = VpExponent10(vp); obj = rb_ary_new2(4); rb_ary_push(obj, INT2FIX(s)); rb_ary_push(obj, str); rb_str_resize(str, strlen(psz1)); rb_ary_push(obj, INT2FIX(10)); rb_ary_push(obj, INT2NUM(e)); return obj; } /* Returns the exponent of the BigDecimal number, as an Integer. * * If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string * of digits with no leading zeros, then n is the exponent. */ static VALUE BigDecimal_exponent(VALUE self) { S_LONG e = VpExponent10(GetVpValue(self,1)); return INT2NUM(e); } /* Returns debugging information about the value as a string of comma-separated * values in angle brackets with a leading #: * * BigDecimal.new("1234.5678").inspect -> * "#" * * The first part is the address, the second is the value as a string, and * the final part ss(mm) is the current number of significant digits and the * maximum number of significant digits, respectively. */ static VALUE BigDecimal_inspect(VALUE self) { ENTER(5); Real *vp; volatile VALUE obj; unsigned int nc; char *psz, *tmp; GUARD_OBJ(vp,GetVpValue(self,1)); nc = VpNumOfChars(vp,"E"); nc +=(nc + 9) / 10; obj = rb_str_new(0, nc+256); psz = RSTRING_PTR(obj); sprintf(psz,"#",VpPrec(vp)*VpBaseFig(),VpMaxPrec(vp)*VpBaseFig()); rb_str_resize(obj, strlen(psz)); return obj; } /* call-seq: * power(n) * * Returns the value raised to the power of n. Note that n must be an Integer. * * Also available as the operator ** */ static VALUE BigDecimal_power(VALUE self, VALUE p) { ENTER(5); Real *x, *y; S_LONG mp, ma, n; Check_Type(p, T_FIXNUM); n = FIX2INT(p); ma = n; if(ma < 0) ma = -ma; if(ma == 0) ma = 1; GUARD_OBJ(x,GetVpValue(self,1)); if(VpIsDef(x)) { mp = x->Prec *(VpBaseFig() + 1); GUARD_OBJ(y,VpCreateRbObject(mp *(ma + 1), "0")); } else { GUARD_OBJ(y,VpCreateRbObject(1, "0")); } VpPower(y, x, n); return ToValue(y); } static VALUE BigDecimal_global_new(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *pv; S_LONG mf; VALUE nFig; VALUE iniValue; if(rb_scan_args(argc,argv,"11",&iniValue,&nFig)==1) { mf = 0; } else { mf = GetPositiveInt(nFig); } SafeStringValue(iniValue); GUARD_OBJ(pv,VpCreateRbObject(mf, RSTRING_PTR(iniValue))); return ToValue(pv); } /* call-seq: * new(initial, digits) * * Create a new BigDecimal object. * * initial:: The initial value, as a String. Spaces are ignored, unrecognized characters terminate the value. * * digits:: The number of significant digits, as a Fixnum. If omitted or 0, the number of significant digits is determined from the initial value. * * The actual number of significant digits used in computation is usually * larger than the specified number. */ static VALUE BigDecimal_new(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *pv; S_LONG mf; VALUE nFig; VALUE iniValue; if(rb_scan_args(argc,argv,"11",&iniValue,&nFig)==1) { mf = 0; } else { mf = GetPositiveInt(nFig); } SafeStringValue(iniValue); GUARD_OBJ(pv,VpNewRbClass(mf, RSTRING_PTR(iniValue),self)); return ToValue(pv); } /* call-seq: * BigDecimal.limit(digits) * * Limit the number of significant digits in newly created BigDecimal * numbers to the specified value. Rounding is performed as necessary, * as specified by BigDecimal.mode. * * A limit of 0, the default, means no upper limit. * * The limit specified by this method takes less priority over any limit * specified to instance methods such as ceil, floor, truncate, or round. */ static VALUE BigDecimal_limit(int argc, VALUE *argv, VALUE self) { VALUE nFig; VALUE nCur = INT2NUM(VpGetPrecLimit()); if(rb_scan_args(argc,argv,"01",&nFig)==1) { int nf; if(nFig==Qnil) return nCur; Check_Type(nFig, T_FIXNUM); nf = FIX2INT(nFig); if(nf<0) { rb_raise(rb_eArgError, "argument must be positive"); } VpSetPrecLimit(nf); } return nCur; } /* Returns the sign of the value. * * Returns a positive value if > 0, a negative value if < 0, and a * zero if == 0. * * The specific value returned indicates the type and sign of the BigDecimal, * as follows: * * BigDecimal::SIGN_NaN:: value is Not a Number * BigDecimal::SIGN_POSITIVE_ZERO:: value is +0 * BigDecimal::SIGN_NEGATIVE_ZERO:: value is -0 * BigDecimal::SIGN_POSITIVE_INFINITE:: value is +infinity * BigDecimal::SIGN_NEGATIVE_INFINITE:: value is -infinity * BigDecimal::SIGN_POSITIVE_FINITE:: value is positive * BigDecimal::SIGN_NEGATIVE_FINITE:: value is negative */ static VALUE BigDecimal_sign(VALUE self) { /* sign */ int s = GetVpValue(self,1)->sign; return INT2FIX(s); } void Init_bigdecimal(void) { /* Initialize VP routines */ VpInit((U_LONG)0); /* Class and method registration */ rb_cBigDecimal = rb_define_class("BigDecimal",rb_cNumeric); /* Global function */ rb_define_global_function("BigDecimal", BigDecimal_global_new, -1); /* Class methods */ rb_define_singleton_method(rb_cBigDecimal, "new", BigDecimal_new, -1); rb_define_singleton_method(rb_cBigDecimal, "mode", BigDecimal_mode, -1); rb_define_singleton_method(rb_cBigDecimal, "limit", BigDecimal_limit, -1); rb_define_singleton_method(rb_cBigDecimal, "double_fig", BigDecimal_double_fig, 0); rb_define_singleton_method(rb_cBigDecimal, "_load", BigDecimal_load, 1); rb_define_singleton_method(rb_cBigDecimal, "ver", BigDecimal_version, 0); /* Constants definition */ /* * Base value used in internal calculations. On a 32 bit system, BASE * is 10000, indicating that calculation is done in groups of 4 digits. * (If it were larger, BASE**2 wouldn't fit in 32 bits, so you couldn't * guarantee that two groups could always be multiplied together without * overflow.) */ rb_define_const(rb_cBigDecimal, "BASE", INT2FIX((S_INT)VpBaseVal())); /* Exceptions */ /* * 0xff: Determines whether overflow, underflow or zero divide result in * an exception being thrown. See BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "EXCEPTION_ALL",INT2FIX(VP_EXCEPTION_ALL)); /* * 0x02: Determines what happens when the result of a computation is not a * number (NaN). See BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "EXCEPTION_NaN",INT2FIX(VP_EXCEPTION_NaN)); /* * 0x01: Determines what happens when the result of a computation is * infinity. See BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "EXCEPTION_INFINITY",INT2FIX(VP_EXCEPTION_INFINITY)); /* * 0x04: Determines what happens when the result of a computation is an * underflow (a result too small to be represented). See BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "EXCEPTION_UNDERFLOW",INT2FIX(VP_EXCEPTION_UNDERFLOW)); /* * 0x01: Determines what happens when the result of a computation is an * overflow (a result too large to be represented). See BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "EXCEPTION_OVERFLOW",INT2FIX(VP_EXCEPTION_OVERFLOW)); /* * 0x01: Determines what happens when a division by zero is performed. * See BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "EXCEPTION_ZERODIVIDE",INT2FIX(VP_EXCEPTION_ZERODIVIDE)); /* * 0x100: Determines what happens when a result must be rounded in order to * fit in the appropriate number of significant digits. See * BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "ROUND_MODE",INT2FIX(VP_ROUND_MODE)); /* 1: Indicates that values should be rounded away from zero. See * BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "ROUND_UP",INT2FIX(VP_ROUND_UP)); /* 2: Indicates that values should be rounded towards zero. See * BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "ROUND_DOWN",INT2FIX(VP_ROUND_DOWN)); /* 3: Indicates that digits >= 5 should be rounded up, others rounded down. * See BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "ROUND_HALF_UP",INT2FIX(VP_ROUND_HALF_UP)); /* 4: Indicates that digits >= 6 should be rounded up, others rounded down. * See BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "ROUND_HALF_DOWN",INT2FIX(VP_ROUND_HALF_DOWN)); /* 5: Round towards +infinity. See BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "ROUND_CEILING",INT2FIX(VP_ROUND_CEIL)); /* 6: Round towards -infinity. See BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "ROUND_FLOOR",INT2FIX(VP_ROUND_FLOOR)); /* 7: Round towards the even neighbor. See BigDecimal.mode. */ rb_define_const(rb_cBigDecimal, "ROUND_HALF_EVEN",INT2FIX(VP_ROUND_HALF_EVEN)); /* 0: Indicates that a value is not a number. See BigDecimal.sign. */ rb_define_const(rb_cBigDecimal, "SIGN_NaN",INT2FIX(VP_SIGN_NaN)); /* 1: Indicates that a value is +0. See BigDecimal.sign. */ rb_define_const(rb_cBigDecimal, "SIGN_POSITIVE_ZERO",INT2FIX(VP_SIGN_POSITIVE_ZERO)); /* -1: Indicates that a value is -0. See BigDecimal.sign. */ rb_define_const(rb_cBigDecimal, "SIGN_NEGATIVE_ZERO",INT2FIX(VP_SIGN_NEGATIVE_ZERO)); /* 2: Indicates that a value is positive and finite. See BigDecimal.sign. */ rb_define_const(rb_cBigDecimal, "SIGN_POSITIVE_FINITE",INT2FIX(VP_SIGN_POSITIVE_FINITE)); /* -2: Indicates that a value is negative and finite. See BigDecimal.sign. */ rb_define_const(rb_cBigDecimal, "SIGN_NEGATIVE_FINITE",INT2FIX(VP_SIGN_NEGATIVE_FINITE)); /* 3: Indicates that a value is positive and infinite. See BigDecimal.sign. */ rb_define_const(rb_cBigDecimal, "SIGN_POSITIVE_INFINITE",INT2FIX(VP_SIGN_POSITIVE_INFINITE)); /* -3: Indicates that a value is negative and infinite. See BigDecimal.sign. */ rb_define_const(rb_cBigDecimal, "SIGN_NEGATIVE_INFINITE",INT2FIX(VP_SIGN_NEGATIVE_INFINITE)); /* instance methods */ rb_define_method(rb_cBigDecimal, "precs", BigDecimal_prec, 0); rb_define_method(rb_cBigDecimal, "add", BigDecimal_add2, 2); rb_define_method(rb_cBigDecimal, "sub", BigDecimal_sub2, 2); rb_define_method(rb_cBigDecimal, "mult", BigDecimal_mult2, 2); rb_define_method(rb_cBigDecimal, "div", BigDecimal_div2, -1); rb_define_method(rb_cBigDecimal, "hash", BigDecimal_hash, 0); rb_define_method(rb_cBigDecimal, "to_s", BigDecimal_to_s, -1); rb_define_method(rb_cBigDecimal, "to_i", BigDecimal_to_i, 0); rb_define_method(rb_cBigDecimal, "to_int", BigDecimal_to_i, 0); rb_define_method(rb_cBigDecimal, "to_r", BigDecimal_to_r, 0); rb_define_method(rb_cBigDecimal, "split", BigDecimal_split, 0); rb_define_method(rb_cBigDecimal, "+", BigDecimal_add, 1); rb_define_method(rb_cBigDecimal, "-", BigDecimal_sub, 1); rb_define_method(rb_cBigDecimal, "+@", BigDecimal_uplus, 0); rb_define_method(rb_cBigDecimal, "-@", BigDecimal_neg, 0); rb_define_method(rb_cBigDecimal, "*", BigDecimal_mult, 1); rb_define_method(rb_cBigDecimal, "/", BigDecimal_div, 1); rb_define_method(rb_cBigDecimal, "quo", BigDecimal_div, 1); rb_define_method(rb_cBigDecimal, "%", BigDecimal_mod, 1); rb_define_method(rb_cBigDecimal, "modulo", BigDecimal_mod, 1); rb_define_method(rb_cBigDecimal, "remainder", BigDecimal_remainder, 1); rb_define_method(rb_cBigDecimal, "divmod", BigDecimal_divmod, 1); /* rb_define_method(rb_cBigDecimal, "dup", BigDecimal_dup, 0); */ rb_define_method(rb_cBigDecimal, "to_f", BigDecimal_to_f, 0); rb_define_method(rb_cBigDecimal, "abs", BigDecimal_abs, 0); rb_define_method(rb_cBigDecimal, "sqrt", BigDecimal_sqrt, 1); rb_define_method(rb_cBigDecimal, "fix", BigDecimal_fix, 0); rb_define_method(rb_cBigDecimal, "round", BigDecimal_round, -1); rb_define_method(rb_cBigDecimal, "frac", BigDecimal_frac, 0); rb_define_method(rb_cBigDecimal, "floor", BigDecimal_floor, -1); rb_define_method(rb_cBigDecimal, "ceil", BigDecimal_ceil, -1); rb_define_method(rb_cBigDecimal, "power", BigDecimal_power, 1); rb_define_method(rb_cBigDecimal, "**", BigDecimal_power, 1); rb_define_method(rb_cBigDecimal, "<=>", BigDecimal_comp, 1); rb_define_method(rb_cBigDecimal, "==", BigDecimal_eq, 1); rb_define_method(rb_cBigDecimal, "===", BigDecimal_eq, 1); rb_define_method(rb_cBigDecimal, "eql?", BigDecimal_eq, 1); rb_define_method(rb_cBigDecimal, "<", BigDecimal_lt, 1); rb_define_method(rb_cBigDecimal, "<=", BigDecimal_le, 1); rb_define_method(rb_cBigDecimal, ">", BigDecimal_gt, 1); rb_define_method(rb_cBigDecimal, ">=", BigDecimal_ge, 1); rb_define_method(rb_cBigDecimal, "zero?", BigDecimal_zero, 0); rb_define_method(rb_cBigDecimal, "nonzero?", BigDecimal_nonzero, 0); rb_define_method(rb_cBigDecimal, "coerce", BigDecimal_coerce, 1); rb_define_method(rb_cBigDecimal, "inspect", BigDecimal_inspect, 0); rb_define_method(rb_cBigDecimal, "exponent", BigDecimal_exponent, 0); rb_define_method(rb_cBigDecimal, "sign", BigDecimal_sign, 0); rb_define_method(rb_cBigDecimal, "nan?", BigDecimal_IsNaN, 0); rb_define_method(rb_cBigDecimal, "infinite?", BigDecimal_IsInfinite, 0); rb_define_method(rb_cBigDecimal, "finite?", BigDecimal_IsFinite, 0); rb_define_method(rb_cBigDecimal, "truncate", BigDecimal_truncate, -1); rb_define_method(rb_cBigDecimal, "_dump", BigDecimal_dump, -1); } /* * * ============================================================================ * * vp_ routines begin from here. * * ============================================================================ * */ #ifdef _DEBUG static int gfDebug = 1; /* Debug switch */ #if 0 static int gfCheckVal = 1; /* Value checking flag in VpNmlz() */ #endif #endif /* _DEBUG */ static U_LONG gnPrecLimit = 0; /* Global upper limit of the precision newly allocated */ static U_LONG gfRoundMode = VP_ROUND_HALF_UP; /* Mode for general rounding operation */ #ifndef BASE_FIG static U_LONG BASE_FIG = 4; /* =log10(BASE) */ static U_LONG BASE = 10000L; /* Base value(value must be 10**BASE_FIG) */ /* The value of BASE**2 + BASE must be represented */ /* within one U_LONG. */ static U_LONG HALF_BASE = 5000L;/* =BASE/2 */ static U_LONG BASE1 = 1000L; /* =BASE/10 */ #else #ifndef BASE #error BASE_FIG is defined but BASE is not #endif #define HALF_BASE (BASE/2) #define BASE1 (BASE/10) #endif #ifndef DBLE_FIG #define DBLE_FIG (DBL_DIG+1) /* figure of double */ #endif static Real *VpConstOne; /* constant 1.0 */ static Real *VpPt5; /* constant 0.5 */ #define maxnr 100UL /* Maximum iterations for calcurating sqrt. */ /* used in VpSqrt() */ /* ETC */ #define MemCmp(x,y,z) memcmp(x,y,z) #define StrCmp(x,y) strcmp(x,y) static int VpIsDefOP(Real *c,Real *a,Real *b,int sw); static int AddExponent(Real *a,S_INT n); static U_LONG VpAddAbs(Real *a,Real *b,Real *c); static U_LONG VpSubAbs(Real *a,Real *b,Real *c); static U_LONG VpSetPTR(Real *a,Real *b,Real *c,U_LONG *a_pos,U_LONG *b_pos,U_LONG *c_pos,U_LONG *av,U_LONG *bv); static int VpNmlz(Real *a); static void VpFormatSt(char *psz,S_INT fFmt); static int VpRdup(Real *m,U_LONG ind_m); #ifdef _DEBUG static int gnAlloc=0; /* Memory allocation counter */ #endif /* _DEBUG */ VP_EXPORT void * VpMemAlloc(U_LONG mb) { void *p = xmalloc((unsigned int)mb); if(!p) { VpException(VP_EXCEPTION_MEMORY,"failed to allocate memory",1); } memset(p,0,mb); #ifdef _DEBUG gnAlloc++; /* Count allocation call */ #endif /* _DEBUG */ return p; } VP_EXPORT void VpFree(Real *pv) { if(pv != NULL) { xfree(pv); #ifdef _DEBUG gnAlloc--; /* Decrement allocation count */ if(gnAlloc==0) { printf(" *************** All memories allocated freed ****************"); getchar(); } if(gnAlloc<0) { printf(" ??????????? Too many memory free calls(%d) ?????????????\n",gnAlloc); getchar(); } #endif /* _DEBUG */ } } /* * EXCEPTION Handling. */ static unsigned short gfDoException = 0; /* Exception flag */ static unsigned short VpGetException (void) { return gfDoException; } static void VpSetException(unsigned short f) { gfDoException = f; } /* These 2 functions added at v1.1.7 */ VP_EXPORT U_LONG VpGetPrecLimit(void) { return gnPrecLimit; } VP_EXPORT U_LONG VpSetPrecLimit(U_LONG n) { U_LONG s = gnPrecLimit; gnPrecLimit = n; return s; } VP_EXPORT unsigned long VpGetRoundMode(void) { return gfRoundMode; } VP_EXPORT int VpIsRoundMode(unsigned long n) { if(n==VP_ROUND_UP || n==VP_ROUND_DOWN || n==VP_ROUND_HALF_UP || n==VP_ROUND_HALF_DOWN || n==VP_ROUND_CEIL || n==VP_ROUND_FLOOR || n==VP_ROUND_HALF_EVEN ) return 1; return 0; } VP_EXPORT unsigned long VpSetRoundMode(unsigned long n) { if(VpIsRoundMode(n)) gfRoundMode = n; return gfRoundMode; } /* * 0.0 & 1.0 generator * These gZero_..... and gOne_..... can be any name * referenced from nowhere except Zero() and One(). * gZero_..... and gOne_..... must have global scope * (to let the compiler know they may be changed in outside * (... but not actually..)). */ volatile const double gZero_ABCED9B1_CE73__00400511F31D = 0.0; volatile const double gOne_ABCED9B4_CE73__00400511F31D = 1.0; static double Zero(void) { return gZero_ABCED9B1_CE73__00400511F31D; } static double One(void) { return gOne_ABCED9B4_CE73__00400511F31D; } VP_EXPORT U_LONG VpBaseFig(void) { return BASE_FIG; } VP_EXPORT U_LONG VpDblFig(void) { return DBLE_FIG; } VP_EXPORT U_LONG VpBaseVal(void) { return BASE; } /* ---------------------------------------------------------------- Value of sign in Real structure is reserved for future use. short sign; ==0 : NaN 1 : Positive zero -1 : Negative zero 2 : Positive number -2 : Negative number 3 : Positive infinite number -3 : Negative infinite number ---------------------------------------------------------------- */ VP_EXPORT double VpGetDoubleNaN(void) /* Returns the value of NaN */ { static double fNaN = 0.0; if(fNaN==0.0) fNaN = Zero()/Zero(); return fNaN; } VP_EXPORT double VpGetDoublePosInf(void) /* Returns the value of +Infinity */ { static double fInf = 0.0; if(fInf==0.0) fInf = One()/Zero(); return fInf; } VP_EXPORT double VpGetDoubleNegInf(void) /* Returns the value of -Infinity */ { static double fInf = 0.0; if(fInf==0.0) fInf = -(One()/Zero()); return fInf; } VP_EXPORT double VpGetDoubleNegZero(void) /* Returns the value of -0 */ { static double nzero = 1000.0; if(nzero!=0.0) nzero = (One()/VpGetDoubleNegInf()); return nzero; } #if 0 /* unused */ VP_EXPORT int VpIsNegDoubleZero(double v) { double z = VpGetDoubleNegZero(); return MemCmp(&v,&z,sizeof(v))==0; } #endif VP_EXPORT int VpException(unsigned short f, const char *str,int always) { VALUE exc; int fatal=0; if(f==VP_EXCEPTION_OP || f==VP_EXCEPTION_MEMORY) always = 1; if(always||(gfDoException&f)) { switch(f) { /* case VP_EXCEPTION_OVERFLOW: */ case VP_EXCEPTION_ZERODIVIDE: case VP_EXCEPTION_INFINITY: case VP_EXCEPTION_NaN: case VP_EXCEPTION_UNDERFLOW: case VP_EXCEPTION_OP: exc = rb_eFloatDomainError; goto raise; case VP_EXCEPTION_MEMORY: fatal = 1; goto raise; default: fatal = 1; goto raise; } } return 0; /* 0 Means VpException() raised no exception */ raise: if(fatal) rb_fatal("%s", str); else rb_raise(exc, "%s", str); return 0; } /* Throw exception or returns 0,when resulting c is Inf or NaN */ /* sw=1:+ 2:- 3:* 4:/ */ static int VpIsDefOP(Real *c,Real *a,Real *b,int sw) { if(VpIsNaN(a) || VpIsNaN(b)) { /* at least a or b is NaN */ VpSetNaN(c); goto NaN; } if(VpIsInf(a)) { if(VpIsInf(b)) { switch(sw) { case 1: /* + */ if(VpGetSign(a)==VpGetSign(b)) { VpSetInf(c,VpGetSign(a)); goto Inf; } else { VpSetNaN(c); goto NaN; } case 2: /* - */ if(VpGetSign(a)!=VpGetSign(b)) { VpSetInf(c,VpGetSign(a)); goto Inf; } else { VpSetNaN(c); goto NaN; } break; case 3: /* * */ VpSetInf(c,VpGetSign(a)*VpGetSign(b)); goto Inf; break; case 4: /* / */ VpSetNaN(c); goto NaN; } VpSetNaN(c); goto NaN; } /* Inf op Finite */ switch(sw) { case 1: /* + */ case 2: /* - */ VpSetInf(c,VpGetSign(a)); break; case 3: /* * */ if(VpIsZero(b)) { VpSetNaN(c); goto NaN; } VpSetInf(c,VpGetSign(a)*VpGetSign(b)); break; case 4: /* / */ VpSetInf(c,VpGetSign(a)*VpGetSign(b)); } goto Inf; } if(VpIsInf(b)) { switch(sw) { case 1: /* + */ VpSetInf(c,VpGetSign(b)); break; case 2: /* - */ VpSetInf(c,-VpGetSign(b)); break; case 3: /* * */ if(VpIsZero(a)) { VpSetNaN(c); goto NaN; } VpSetInf(c,VpGetSign(a)*VpGetSign(b)); break; case 4: /* / */ VpSetZero(c,VpGetSign(a)*VpGetSign(b)); } goto Inf; } return 1; /* Results OK */ Inf: return VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",0); NaN: return VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'",0); } /* ---------------------------------------------------------------- */ /* * returns number of chars needed to represent vp in specified format. */ VP_EXPORT U_LONG VpNumOfChars(Real *vp,const char *pszFmt) { S_INT ex; U_LONG nc; if(vp == NULL) return BASE_FIG*2+6; if(!VpIsDef(vp)) return 32; /* not sure,may be OK */ switch(*pszFmt) { case 'F': nc = BASE_FIG*(vp->Prec + 1)+2; ex = vp->exponent; if(ex<0) { nc += BASE_FIG*(-ex); } else { if(ex > (S_INT)vp->Prec) { nc += BASE_FIG*(ex - (S_INT)vp->Prec); } } break; case 'E': default: nc = BASE_FIG*(vp->Prec + 2)+6; /* 3: sign + exponent chars */ } return nc; } /* * Initializer for Vp routines and constants used. * [Input] * BaseVal: Base value(assigned to BASE) for Vp calculation. * It must be the form BaseVal=10**n.(n=1,2,3,...) * If Base <= 0L,then the BASE will be calcurated so * that BASE is as large as possible satisfying the * relation MaxVal <= BASE*(BASE+1). Where the value * MaxVal is the largest value which can be represented * by one U_LONG word(LONG) in the computer used. * * [Returns] * DBLE_FIG ... OK */ VP_EXPORT U_LONG VpInit(U_LONG BaseVal) { /* Setup +/- Inf NaN -0 */ VpGetDoubleNaN(); VpGetDoublePosInf(); VpGetDoubleNegInf(); VpGetDoubleNegZero(); #ifndef BASE_FIG if(BaseVal <= 0) { U_LONG w; /* Base <= 0, then determine Base by calcuration. */ BASE = 1; while( (BASE > 0) && ((w = BASE *(BASE + 1)) > BASE) &&((w / BASE) ==(BASE + 1)) ) { BaseVal = BASE; BASE = BaseVal * 10L; } } /* Set Base Values */ BASE = BaseVal; HALF_BASE = BASE / 2; BASE1 = BASE / 10; BASE_FIG = 0; while(BaseVal /= 10) ++BASE_FIG; #endif /* Allocates Vp constants. */ VpConstOne = VpAlloc((U_LONG)1, "1"); VpPt5 = VpAlloc((U_LONG)1, ".5"); #ifdef _DEBUG gnAlloc = 0; #endif /* _DEBUG */ #ifdef _DEBUG if(gfDebug) { printf("VpInit: BaseVal = %lu\n", BaseVal); printf(" BASE = %lu\n", BASE); printf(" HALF_BASE = %lu\n", HALF_BASE); printf(" BASE1 = %lu\n", BASE1); printf(" BASE_FIG = %d\n", BASE_FIG); printf(" DBLE_FIG = %d\n", DBLE_FIG); } #endif /* _DEBUG */ return DBLE_FIG; } VP_EXPORT Real * VpOne(void) { return VpConstOne; } /* If exponent overflows,then raise exception or returns 0 */ static int AddExponent(Real *a,S_INT n) { S_INT e = a->exponent; S_INT m = e+n; S_INT eb,mb; if(e>0) { if(n>0) { mb = m*BASE_FIG; eb = e*BASE_FIG; if(mbeb) goto underflow; } a->exponent = m; return 1; /* Overflow/Underflow ==> Raise exception or returns 0 */ underflow: VpSetZero(a,VpGetSign(a)); return VpException(VP_EXCEPTION_UNDERFLOW,"Exponent underflow",0); overflow: VpSetInf(a,VpGetSign(a)); return VpException(VP_EXCEPTION_OVERFLOW,"Exponent overflow",0); } /* * Allocates variable. * [Input] * mx ... allocation unit, if zero then mx is determined by szVal. * The mx is the number of effective digits can to be stored. * szVal ... value assigned(char). If szVal==NULL,then zero is assumed. * If szVal[0]=='#' then Max. Prec. will not be considered(1.1.7), * full precision specified by szVal is allocated. * * [Returns] * Pointer to the newly allocated variable, or * NULL be returned if memory allocation is failed,or any error. */ VP_EXPORT Real * VpAlloc(U_LONG mx, const char *szVal) { U_LONG i, ni, ipn, ipf, nf, ipe, ne, nalloc; char v,*psz; int sign=1; Real *vp = NULL; U_LONG mf = VpGetPrecLimit(); volatile VALUE buf; mx = (mx + BASE_FIG - 1) / BASE_FIG + 1; /* Determine allocation unit. */ if(szVal) { while(ISSPACE(*szVal)) szVal++; if(*szVal!='#') { if(mf) { mf = (mf + BASE_FIG - 1) / BASE_FIG + 2; /* Needs 1 more for div */ if(mx>mf) { mx = mf; } } } else { ++szVal; } } else { /* necessary to be able to store */ /* at least mx digits. */ /* szVal==NULL ==> allocate zero value. */ vp = (Real *) VpMemAlloc(sizeof(Real) + mx * sizeof(U_LONG)); /* xmalloc() alway returns(or throw interruption) */ vp->MaxPrec = mx; /* set max precision */ VpSetZero(vp,1); /* initialize vp to zero. */ return vp; } /* Skip all '_' after digit: 2006-6-30 */ ni = 0; buf = rb_str_new(0,strlen(szVal)+1); psz = RSTRING_PTR(buf); i = 0; ipn = 0; while((psz[i]=szVal[ipn])!=0) { if(ISDIGIT(psz[i])) ++ni; if(psz[i]=='_') { if(ni>0) {ipn++;continue;} psz[i]=0; break; } ++i; ++ipn; } /* Skip trailing spaces */ while((--i)>0) { if(ISSPACE(psz[i])) psz[i] = 0; else break; } szVal = psz; /* Check on Inf & NaN */ if(StrCmp(szVal,SZ_PINF)==0 || StrCmp(szVal,SZ_INF)==0 ) { vp = (Real *) VpMemAlloc(sizeof(Real) + sizeof(U_LONG)); vp->MaxPrec = 1; /* set max precision */ VpSetPosInf(vp); return vp; } if(StrCmp(szVal,SZ_NINF)==0) { vp = (Real *) VpMemAlloc(sizeof(Real) + sizeof(U_LONG)); vp->MaxPrec = 1; /* set max precision */ VpSetNegInf(vp); return vp; } if(StrCmp(szVal,SZ_NaN)==0) { vp = (Real *) VpMemAlloc(sizeof(Real) + sizeof(U_LONG)); vp->MaxPrec = 1; /* set max precision */ VpSetNaN(vp); return vp; } /* check on number szVal[] */ ipn = i = 0; if (szVal[i] == '-') {sign=-1;++i;} else if(szVal[i] == '+') ++i; /* Skip digits */ ni = 0; /* digits in mantissa */ while((v = szVal[i]) != 0) { if(!ISDIGIT(v)) break; ++i; ++ni; } nf = 0; ipf = 0; ipe = 0; ne = 0; if(v) { /* other than digit nor \0 */ if(szVal[i] == '.') { /* xxx. */ ++i; ipf = i; while((v = szVal[i]) != 0) { /* get fraction part. */ if(!ISDIGIT(v)) break; ++i; ++nf; } } ipe = 0; /* Exponent */ switch(szVal[i]) { case '\0': break; case 'e': case 'E': case 'd': case 'D': ++i; ipe = i; v = szVal[i]; if((v == '-') ||(v == '+')) ++i; while((v=szVal[i])!=0) { if(!ISDIGIT(v)) break; ++i; ++ne; } break; default: break; } } nalloc =(ni + nf + BASE_FIG - 1) / BASE_FIG + 1; /* set effective allocation */ /* units for szVal[] */ if(mx <= 0) mx = 1; nalloc = Max(nalloc, mx); mx = nalloc; vp =(Real *) VpMemAlloc(sizeof(Real) + mx * sizeof(U_LONG)); /* xmalloc() alway returns(or throw interruption) */ vp->MaxPrec = mx; /* set max precision */ VpSetZero(vp,sign); VpCtoV(vp, &(szVal[ipn]), ni, &(szVal[ipf]), nf, &(szVal[ipe]), ne); return vp; } /* * Assignment(c=a). * [Input] * a ... RHSV * isw ... switch for assignment. * c = a when isw > 0 * c = -a when isw < 0 * if c->MaxPrec < a->Prec,then round operation * will be performed. * [Output] * c ... LHSV */ VP_EXPORT int VpAsgn(Real *c, Real *a, int isw) { U_LONG n; if(VpIsNaN(a)) { VpSetNaN(c); return 0; } if(VpIsInf(a)) { VpSetInf(c,isw*VpGetSign(a)); return 0; } /* check if the RHS is zero */ if(!VpIsZero(a)) { c->exponent = a->exponent; /* store exponent */ VpSetSign(c,(isw*VpGetSign(a))); /* set sign */ n =(a->Prec < c->MaxPrec) ?(a->Prec) :(c->MaxPrec); c->Prec = n; memcpy(c->frac, a->frac, n * sizeof(U_LONG)); /* Needs round ? */ if(isw!=10) { /* Not in ActiveRound */ if(c->Prec < a->Prec) { VpInternalRound(c,n,(n>0)?a->frac[n-1]:0,a->frac[n]); } else { VpLimitRound(c,0); } } } else { /* The value of 'a' is zero. */ VpSetZero(c,isw*VpGetSign(a)); return 1; } return c->Prec*BASE_FIG; } /* * c = a + b when operation = 1 or 2 * = a - b when operation = -1 or -2. * Returns number of significant digits of c */ VP_EXPORT int VpAddSub(Real *c, Real *a, Real *b, int operation) { S_INT sw, isw; Real *a_ptr, *b_ptr; U_LONG n, na, nb, i; U_LONG mrv; #ifdef _DEBUG if(gfDebug) { VPrint(stdout, "VpAddSub(enter) a=% \n", a); VPrint(stdout, " b=% \n", b); printf(" operation=%d\n", operation); } #endif /* _DEBUG */ if(!VpIsDefOP(c,a,b,(operation>0)?1:2)) return 0; /* No significant digits */ /* check if a or b is zero */ if(VpIsZero(a)) { /* a is zero,then assign b to c */ if(!VpIsZero(b)) { VpAsgn(c, b, operation); } else { /* Both a and b are zero. */ if(VpGetSign(a)<0 && operation*VpGetSign(b)<0) { /* -0 -0 */ VpSetZero(c,-1); } else { VpSetZero(c,1); } return 1; /* 0: 1 significant digits */ } return c->Prec*BASE_FIG; } if(VpIsZero(b)) { /* b is zero,then assign a to c. */ VpAsgn(c, a, 1); return c->Prec*BASE_FIG; } if(operation < 0) sw = -1; else sw = 1; /* compare absolute value. As a result,|a_ptr|>=|b_ptr| */ if(a->exponent > b->exponent) { a_ptr = a; b_ptr = b; } /* |a|>|b| */ else if(a->exponent < b->exponent) { a_ptr = b; b_ptr = a; } /* |a|<|b| */ else { /* Exponent part of a and b is the same,then compare fraction */ /* part */ na = a->Prec; nb = b->Prec; n = Min(na, nb); for(i=0;i < n; ++i) { if(a->frac[i] > b->frac[i]) { a_ptr = a; b_ptr = b; goto end_if; } else if(a->frac[i] < b->frac[i]) { a_ptr = b; b_ptr = a; goto end_if; } } if(na > nb) { a_ptr = a; b_ptr = b; goto end_if; } else if(na < nb) { a_ptr = b; b_ptr = a; goto end_if; } /* |a| == |b| */ if(VpGetSign(a) + sw *VpGetSign(b) == 0) { VpSetZero(c,1); /* abs(a)=abs(b) and operation = '-' */ return c->Prec*BASE_FIG; } a_ptr = a; b_ptr = b; } end_if: isw = VpGetSign(a) + sw *VpGetSign(b); /* * isw = 0 ...( 1)+(-1),( 1)-( 1),(-1)+(1),(-1)-(-1) * = 2 ...( 1)+( 1),( 1)-(-1) * =-2 ...(-1)+(-1),(-1)-( 1) * If isw==0, then c =(Sign a_ptr)(|a_ptr|-|b_ptr|) * else c =(Sign ofisw)(|a_ptr|+|b_ptr|) */ if(isw) { /* addition */ VpSetSign(c,(S_INT)1); mrv = VpAddAbs(a_ptr, b_ptr, c); VpSetSign(c,isw / 2); } else { /* subtraction */ VpSetSign(c,(S_INT)1); mrv = VpSubAbs(a_ptr, b_ptr, c); if(a_ptr == a) { VpSetSign(c,VpGetSign(a)); } else { VpSetSign(c,VpGetSign(a_ptr) * sw); } } VpInternalRound(c,0,(c->Prec>0)?c->frac[c->Prec-1]:0,mrv); #ifdef _DEBUG if(gfDebug) { VPrint(stdout, "VpAddSub(result) c=% \n", c); VPrint(stdout, " a=% \n", a); VPrint(stdout, " b=% \n", b); printf(" operation=%d\n", operation); } #endif /* _DEBUG */ return c->Prec*BASE_FIG; } /* * Addition of two variable precisional variables * a and b assuming abs(a)>abs(b). * c = abs(a) + abs(b) ; where |a|>=|b| */ static U_LONG VpAddAbs(Real *a, Real *b, Real *c) { U_LONG word_shift; U_LONG carry; U_LONG ap; U_LONG bp; U_LONG cp; U_LONG a_pos; U_LONG b_pos; U_LONG c_pos; U_LONG av, bv, mrv; #ifdef _DEBUG if(gfDebug) { VPrint(stdout, "VpAddAbs called: a = %\n", a); VPrint(stdout, " b = %\n", b); } #endif /* _DEBUG */ word_shift = VpSetPTR(a, b, c, &ap, &bp, &cp, &av, &bv); a_pos = ap; b_pos = bp; c_pos = cp; if(word_shift==-1L) return 0; /* Overflow */ if(b_pos == -1L) goto Assign_a; mrv = av + bv; /* Most right val. Used for round. */ /* Just assign the last few digits of b to c because a has no */ /* corresponding digits to be added. */ while(b_pos + word_shift > a_pos) { --c_pos; if(b_pos > 0) { c->frac[c_pos] = b->frac[--b_pos]; } else { --word_shift; c->frac[c_pos] = 0; } } /* Just assign the last few digits of a to c because b has no */ /* corresponding digits to be added. */ bv = b_pos + word_shift; while(a_pos > bv) { c->frac[--c_pos] = a->frac[--a_pos]; } carry = 0; /* set first carry be zero */ /* Now perform addition until every digits of b will be */ /* exhausted. */ while(b_pos > 0) { c->frac[--c_pos] = a->frac[--a_pos] + b->frac[--b_pos] + carry; if(c->frac[c_pos] >= BASE) { c->frac[c_pos] -= BASE; carry = 1; } else { carry = 0; } } /* Just assign the first few digits of a with considering */ /* the carry obtained so far because b has been exhausted. */ while(a_pos > 0) { c->frac[--c_pos] = a->frac[--a_pos] + carry; if(c->frac[c_pos] >= BASE) { c->frac[c_pos] -= BASE; carry = 1; } else { carry = 0; } } if(c_pos) c->frac[c_pos - 1] += carry; goto Exit; Assign_a: VpAsgn(c, a, 1); mrv = 0; Exit: #ifdef _DEBUG if(gfDebug) { VPrint(stdout, "VpAddAbs exit: c=% \n", c); } #endif /* _DEBUG */ return mrv; } /* * c = abs(a) - abs(b) */ static U_LONG VpSubAbs(Real *a, Real *b, Real *c) { U_LONG word_shift; U_LONG mrv; U_LONG borrow; U_LONG ap; U_LONG bp; U_LONG cp; U_LONG a_pos; U_LONG b_pos; U_LONG c_pos; U_LONG av, bv; #ifdef _DEBUG if(gfDebug) { VPrint(stdout, "VpSubAbs called: a = %\n", a); VPrint(stdout, " b = %\n", b); } #endif /* _DEBUG */ word_shift = VpSetPTR(a, b, c, &ap, &bp, &cp, &av, &bv); a_pos = ap; b_pos = bp; c_pos = cp; if(word_shift==-1L) return 0; /* Overflow */ if(b_pos == -1L) goto Assign_a; if(av >= bv) { mrv = av - bv; borrow = 0; } else { mrv = 0; borrow = 1; } /* Just assign the values which are the BASE subtracted by */ /* each of the last few digits of the b because the a has no */ /* corresponding digits to be subtracted. */ if(b_pos + word_shift > a_pos) { while(b_pos + word_shift > a_pos) { --c_pos; if(b_pos > 0) { c->frac[c_pos] = BASE - b->frac[--b_pos] - borrow; } else { --word_shift; c->frac[c_pos] = BASE - borrow; } borrow = 1; } } /* Just assign the last few digits of a to c because b has no */ /* corresponding digits to subtract. */ bv = b_pos + word_shift; while(a_pos > bv) { c->frac[--c_pos] = a->frac[--a_pos]; } /* Now perform subtraction until every digits of b will be */ /* exhausted. */ while(b_pos > 0) { --c_pos; if(a->frac[--a_pos] < b->frac[--b_pos] + borrow) { c->frac[c_pos] = BASE + a->frac[a_pos] - b->frac[b_pos] - borrow; borrow = 1; } else { c->frac[c_pos] = a->frac[a_pos] - b->frac[b_pos] - borrow; borrow = 0; } } /* Just assign the first few digits of a with considering */ /* the borrow obtained so far because b has been exhausted. */ while(a_pos > 0) { --c_pos; if(a->frac[--a_pos] < borrow) { c->frac[c_pos] = BASE + a->frac[a_pos] - borrow; borrow = 1; } else { c->frac[c_pos] = a->frac[a_pos] - borrow; borrow = 0; } } if(c_pos) c->frac[c_pos - 1] -= borrow; goto Exit; Assign_a: VpAsgn(c, a, 1); mrv = 0; Exit: #ifdef _DEBUG if(gfDebug) { VPrint(stdout, "VpSubAbs exit: c=% \n", c); } #endif /* _DEBUG */ return mrv; } /* * Note: If(av+bv)>= HALF_BASE,then 1 will be added to the least significant * digit of c(In case of addition). * ------------------------- figure of output ----------------------------------- * a = xxxxxxxxxxx * b = xxxxxxxxxx * c =xxxxxxxxxxxxxxx * word_shift = | | * right_word = | | (Total digits in RHSV) * left_word = | | (Total digits in LHSV) * a_pos = | * b_pos = | * c_pos = | */ static U_LONG VpSetPTR(Real *a, Real *b, Real *c, U_LONG *a_pos, U_LONG *b_pos, U_LONG *c_pos, U_LONG *av, U_LONG *bv) { U_LONG left_word, right_word, word_shift; c->frac[0] = 0; *av = *bv = 0; word_shift =((a->exponent) -(b->exponent)); left_word = b->Prec + word_shift; right_word = Max((a->Prec),left_word); left_word =(c->MaxPrec) - 1; /* -1 ... prepare for round up */ /* * check if 'round' is needed. */ if(right_word > left_word) { /* round ? */ /*--------------------------------- * Actual size of a = xxxxxxAxx * Actual size of b = xxxBxxxxx * Max. size of c = xxxxxx * Round off = |-----| * c_pos = | * right_word = | * a_pos = | */ *c_pos = right_word = left_word + 1; /* Set resulting precision */ /* be equal to that of c */ if((a->Prec) >=(c->MaxPrec)) { /* * a = xxxxxxAxxx * c = xxxxxx * a_pos = | */ *a_pos = left_word; *av = a->frac[*a_pos]; /* av is 'A' shown in above. */ } else { /* * a = xxxxxxx * c = xxxxxxxxxx * a_pos = | */ *a_pos = a->Prec; } if((b->Prec + word_shift) >= c->MaxPrec) { /* * a = xxxxxxxxx * b = xxxxxxxBxxx * c = xxxxxxxxxxx * b_pos = | */ if(c->MaxPrec >=(word_shift + 1)) { *b_pos = c->MaxPrec - word_shift - 1; *bv = b->frac[*b_pos]; } else { *b_pos = -1L; } } else { /* * a = xxxxxxxxxxxxxxxx * b = xxxxxx * c = xxxxxxxxxxxxx * b_pos = | */ *b_pos = b->Prec; } } else { /* The MaxPrec of c - 1 > The Prec of a + b */ /* * a = xxxxxxx * b = xxxxxx * c = xxxxxxxxxxx * c_pos = | */ *b_pos = b->Prec; *a_pos = a->Prec; *c_pos = right_word + 1; } c->Prec = *c_pos; c->exponent = a->exponent; if(!AddExponent(c,(S_LONG)1)) return (-1L); return word_shift; } /* * Return number og significant digits * c = a * b , Where a = a0a1a2 ... an * b = b0b1b2 ... bm * c = c0c1c2 ... cl * a0 a1 ... an * bm * a0 a1 ... an * bm-1 * . . . * . . . * a0 a1 .... an * b0 * +_____________________________ * c0 c1 c2 ...... cl * nc <---| * MaxAB |--------------------| */ VP_EXPORT int VpMult(Real *c, Real *a, Real *b) { U_LONG MxIndA, MxIndB, MxIndAB, MxIndC; U_LONG ind_c, i, ii, nc; U_LONG ind_as, ind_ae, ind_bs, ind_be; U_LONG Carry, s; Real *w; #ifdef _DEBUG if(gfDebug) { VPrint(stdout, "VpMult(Enter): a=% \n", a); VPrint(stdout, " b=% \n", b); } #endif /* _DEBUG */ if(!VpIsDefOP(c,a,b,3)) return 0; /* No significant digit */ if(VpIsZero(a) || VpIsZero(b)) { /* at least a or b is zero */ VpSetZero(c,VpGetSign(a)*VpGetSign(b)); return 1; /* 0: 1 significant digit */ } if(VpIsOne(a)) { VpAsgn(c, b, VpGetSign(a)); goto Exit; } if(VpIsOne(b)) { VpAsgn(c, a, VpGetSign(b)); goto Exit; } if((b->Prec) >(a->Prec)) { /* Adjust so that digits(a)>digits(b) */ w = a; a = b; b = w; } w = NULL; MxIndA = a->Prec - 1; MxIndB = b->Prec - 1; MxIndC = c->MaxPrec - 1; MxIndAB = a->Prec + b->Prec - 1; if(MxIndC < MxIndAB) { /* The Max. prec. of c < Prec(a)+Prec(b) */ w = c; c = VpAlloc((U_LONG)((MxIndAB + 1) * BASE_FIG), "#0"); MxIndC = MxIndAB; } /* set LHSV c info */ c->exponent = a->exponent; /* set exponent */ if(!AddExponent(c,b->exponent)) { if(w) VpFree(c); return 0; } VpSetSign(c,VpGetSign(a)*VpGetSign(b)); /* set sign */ Carry = 0; nc = ind_c = MxIndAB; memset(c->frac, 0, (nc + 1) * sizeof(U_LONG)); /* Initialize c */ c->Prec = nc + 1; /* set precision */ for(nc = 0; nc < MxIndAB; ++nc, --ind_c) { if(nc < MxIndB) { /* The left triangle of the Fig. */ ind_as = MxIndA - nc; ind_ae = MxIndA; ind_bs = MxIndB; ind_be = MxIndB - nc; } else if(nc <= MxIndA) { /* The middle rectangular of the Fig. */ ind_as = MxIndA - nc; ind_ae = MxIndA -(nc - MxIndB); ind_bs = MxIndB; ind_be = 0; } else if(nc > MxIndA) { /* The right triangle of the Fig. */ ind_as = 0; ind_ae = MxIndAB - nc - 1; ind_bs = MxIndB -(nc - MxIndA); ind_be = 0; } for(i = ind_as; i <= ind_ae; ++i) { s =((a->frac[i]) *(b->frac[ind_bs--])); Carry = s / BASE; s = s -(Carry * BASE); c->frac[ind_c] += s; if(c->frac[ind_c] >= BASE) { s = c->frac[ind_c] / BASE; Carry += s; c->frac[ind_c] -= (s * BASE); } if(Carry) { ii = ind_c; while((--ii) >= 0) { c->frac[ii] += Carry; if(c->frac[ii] >= BASE) { Carry = c->frac[ii] / BASE; c->frac[ii] -=(Carry * BASE); } else { break; } } } } } if(w != NULL) { /* free work variable */ VpNmlz(c); VpAsgn(w, c, 1); VpFree(c); c = w; } else { VpLimitRound(c,0); } Exit: #ifdef _DEBUG if(gfDebug) { VPrint(stdout, "VpMult(c=a*b): c=% \n", c); VPrint(stdout, " a=% \n", a); VPrint(stdout, " b=% \n", b); } #endif /*_DEBUG */ return c->Prec*BASE_FIG; } /* * c = a / b, remainder = r */ VP_EXPORT int VpDivd(Real *c, Real *r, Real *a, Real *b) { U_LONG word_a, word_b, word_c, word_r; U_LONG i, n, ind_a, ind_b, ind_c, ind_r; U_LONG nLoop; U_LONG q, b1, b1p1, b1b2, b1b2p1, r1r2; U_LONG borrow, borrow1, borrow2, qb; #ifdef _DEBUG if(gfDebug) { VPrint(stdout, " VpDivd(c=a/b) a=% \n", a); VPrint(stdout, " b=% \n", b); } #endif /*_DEBUG */ VpSetNaN(r); if(!VpIsDefOP(c,a,b,4)) goto Exit; if(VpIsZero(a)&&VpIsZero(b)) { VpSetNaN(c); return VpException(VP_EXCEPTION_NaN,"(VpDivd) 0/0 not defined(NaN)",0); } if(VpIsZero(b)) { VpSetInf(c,VpGetSign(a)*VpGetSign(b)); return VpException(VP_EXCEPTION_ZERODIVIDE,"(VpDivd) Divide by zero",0); } if(VpIsZero(a)) { /* numerator a is zero */ VpSetZero(c,VpGetSign(a)*VpGetSign(b)); VpSetZero(r,VpGetSign(a)*VpGetSign(b)); goto Exit; } if(VpIsOne(b)) { /* divide by one */ VpAsgn(c, a, VpGetSign(b)); VpSetZero(r,VpGetSign(a)); goto Exit; } word_a = a->Prec; word_b = b->Prec; word_c = c->MaxPrec; word_r = r->MaxPrec; ind_c = 0; ind_r = 1; if(word_a >= word_r) goto space_error; r->frac[0] = 0; while(ind_r <= word_a) { r->frac[ind_r] = a->frac[ind_r - 1]; ++ind_r; } while(ind_r < word_r) r->frac[ind_r++] = 0; while(ind_c < word_c) c->frac[ind_c++] = 0; /* initial procedure */ b1 = b1p1 = b->frac[0]; if(b->Prec <= 1) { b1b2p1 = b1b2 = b1p1 * BASE; } else { b1p1 = b1 + 1; b1b2p1 = b1b2 = b1 * BASE + b->frac[1]; if(b->Prec > 2) ++b1b2p1; } /* */ /* loop start */ ind_c = word_r - 1; nLoop = Min(word_c,ind_c); ind_c = 1; while(ind_c < nLoop) { if(r->frac[ind_c] == 0) { ++ind_c; continue; } r1r2 = r->frac[ind_c] * BASE + r->frac[ind_c + 1]; if(r1r2 == b1b2) { /* The first two word digits is the same */ ind_b = 2; ind_a = ind_c + 2; while(ind_b < word_b) { if(r->frac[ind_a] < b->frac[ind_b]) goto div_b1p1; if(r->frac[ind_a] > b->frac[ind_b]) break; ++ind_a; ++ind_b; } /* The first few word digits of r and b is the same and */ /* the first different word digit of w is greater than that */ /* of b, so quotinet is 1 and just subtract b from r. */ borrow = 0; /* quotient=1, then just r-b */ ind_b = b->Prec - 1; ind_r = ind_c + ind_b; if(ind_r >= word_r) goto space_error; n = ind_b; for(i = 0; i <= n; ++i) { if(r->frac[ind_r] < b->frac[ind_b] + borrow) { r->frac[ind_r] +=(BASE -(b->frac[ind_b] + borrow)); borrow = 1; } else { r->frac[ind_r] = r->frac[ind_r] - b->frac[ind_b] - borrow; borrow = 0; } --ind_r; --ind_b; } ++(c->frac[ind_c]); goto carry; } /* The first two word digits is not the same, */ /* then compare magnitude, and divide actually. */ if(r1r2 >= b1b2p1) { q = r1r2 / b1b2p1; c->frac[ind_c] += q; ind_r = b->Prec + ind_c - 1; goto sub_mult; } div_b1p1: if(ind_c + 1 >= word_c) goto out_side; q = r1r2 / b1p1; c->frac[ind_c + 1] += q; ind_r = b->Prec + ind_c; sub_mult: borrow1 = borrow2 = 0; ind_b = word_b - 1; if(ind_r >= word_r) goto space_error; n = ind_b; for(i = 0; i <= n; ++i) { /* now, perform r = r - q * b */ qb = q *(b->frac[ind_b]); if(qb < BASE) borrow1 = 0; else { borrow1 = qb / BASE; qb = qb - borrow1 * BASE; } if(r->frac[ind_r] < qb) { r->frac[ind_r] +=(BASE - qb); borrow2 = borrow2 + borrow1 + 1; } else { r->frac[ind_r] -= qb; borrow2 += borrow1; } if(borrow2) { if(r->frac[ind_r - 1] < borrow2) { r->frac[ind_r - 1] +=(BASE - borrow2); borrow2 = 1; } else { r->frac[ind_r - 1] -= borrow2; borrow2 = 0; } } --ind_r; --ind_b; } r->frac[ind_r] -= borrow2; carry: ind_r = ind_c; while(c->frac[ind_r] >= BASE) { c->frac[ind_r] -= BASE; --ind_r; ++(c->frac[ind_r]); } } /* End of operation, now final arrangement */ out_side: c->Prec = word_c; c->exponent = a->exponent; if(!AddExponent(c,(S_LONG)2)) return 0; if(!AddExponent(c,-(b->exponent))) return 0; VpSetSign(c,VpGetSign(a)*VpGetSign(b)); VpNmlz(c); /* normalize c */ r->Prec = word_r; r->exponent = a->exponent; if(!AddExponent(r,(S_LONG)1)) return 0; VpSetSign(r,VpGetSign(a)); VpNmlz(r); /* normalize r(remainder) */ goto Exit; space_error: #ifdef _DEBUG if(gfDebug) { printf(" word_a=%lu\n", word_a); printf(" word_b=%lu\n", word_b); printf(" word_c=%lu\n", word_c); printf(" word_r=%lu\n", word_r); printf(" ind_r =%lu\n", ind_r); } #endif /* _DEBUG */ rb_bug("ERROR(VpDivd): space for remainder too small."); Exit: #ifdef _DEBUG if(gfDebug) { VPrint(stdout, " VpDivd(c=a/b), c=% \n", c); VPrint(stdout, " r=% \n", r); } #endif /* _DEBUG */ return c->Prec*BASE_FIG; } /* * Input a = 00000xxxxxxxx En(5 preceeding zeros) * Output a = xxxxxxxx En-5 */ static int VpNmlz(Real *a) { U_LONG ind_a, i; if(!VpIsDef(a)) goto NoVal; if(VpIsZero(a)) goto NoVal; ind_a = a->Prec; while(ind_a--) { if(a->frac[ind_a]) { a->Prec = ind_a + 1; i = 0; while(a->frac[i] == 0) ++i; /* skip the first few zeros */ if(i) { a->Prec -= i; if(!AddExponent(a,-((S_INT)i))) return 0; memmove(&(a->frac[0]),&(a->frac[i]),(a->Prec)*sizeof(U_LONG)); } return 1; } } /* a is zero(no non-zero digit) */ VpSetZero(a,VpGetSign(a)); return 0; NoVal: a->frac[0] = 0; a->Prec=1; return 0; } /* * VpComp = 0 ... if a=b, * Pos ... a>b, * Neg ... asign - b->sign; else e = a->sign; if(e>0) return 1; else if(e<0) return -1; else return 0; } if(!VpIsDef(b)) { e = -b->sign; if(e>0) return 1; else return -1; } /* Zero check */ if(VpIsZero(a)) { if(VpIsZero(b)) return 0; /* both zero */ val = -VpGetSign(b); goto Exit; } if(VpIsZero(b)) { val = VpGetSign(a); goto Exit; } /* compare sign */ if(VpGetSign(a) > VpGetSign(b)) { val = 1; /* a>b */ goto Exit; } if(VpGetSign(a) < VpGetSign(b)) { val = -1; /* aexponent) >(b->exponent)) { val = VpGetSign(a); goto Exit; } if((a->exponent) <(b->exponent)) { val = -VpGetSign(b); goto Exit; } /* a and b have same exponent, then compare significand. */ mx =((a->Prec) <(b->Prec)) ?(a->Prec) :(b->Prec); ind = 0; while(ind < mx) { if((a->frac[ind]) >(b->frac[ind])) { val = VpGetSign(a); goto Exit; } if((a->frac[ind]) <(b->frac[ind])) { val = -VpGetSign(b); goto Exit; } ++ind; } if((a->Prec) >(b->Prec)) { val = VpGetSign(a); } else if((a->Prec) <(b->Prec)) { val = -VpGetSign(b); } Exit: if (val> 1) val = 1; else if(val<-1) val = -1; #ifdef _DEBUG if(gfDebug) { VPrint(stdout, " VpComp a=%\n", a); VPrint(stdout, " b=%\n", b); printf(" ans=%d\n", val); } #endif /* _DEBUG */ return (int)val; } #ifdef _DEBUG /* * cntl_chr ... ASCIIZ Character, print control characters * Available control codes: * % ... VP variable. To print '%', use '%%'. * \n ... new line * \b ... backspace * ... tab * Note: % must must not appear more than once * a ... VP variable to be printed */ VP_EXPORT int VPrint(FILE *fp, const char *cntl_chr, Real *a) { U_LONG i, j, nc, nd, ZeroSup; U_LONG n, m, e, nn; /* Check if NaN & Inf. */ if(VpIsNaN(a)) { fprintf(fp,SZ_NaN); return 8; } if(VpIsPosInf(a)) { fprintf(fp,SZ_INF); return 8; } if(VpIsNegInf(a)) { fprintf(fp,SZ_NINF); return 9; } if(VpIsZero(a)) { fprintf(fp,"0.0"); return 3; } j = 0; nd = nc = 0; /* nd : number of digits in fraction part(every 10 digits, */ /* nd<=10). */ /* nc : number of caracters printed */ ZeroSup = 1; /* Flag not to print the leading zeros as 0.00xxxxEnn */ while(*(cntl_chr + j)) { if((*(cntl_chr + j) == '%') &&(*(cntl_chr + j + 1) != '%')) { nc = 0; if(!VpIsZero(a)) { if(VpGetSign(a) < 0) { fprintf(fp, "-"); ++nc; } nc += fprintf(fp, "0."); n = a->Prec; for(i=0;i < n;++i) { m = BASE1; e = a->frac[i]; while(m) { nn = e / m; if((!ZeroSup) || nn) { nc += fprintf(fp, "%lu", nn); /* The leading zero(s) */ /* as 0.00xx will not */ /* be printed. */ ++nd; ZeroSup = 0; /* Set to print succeeding zeros */ } if(nd >= 10) { /* print ' ' after every 10 digits */ nd = 0; nc += fprintf(fp, " "); } e = e - nn * m; m /= 10; } } nc += fprintf(fp, "E%ld", VpExponent10(a)); } else { nc += fprintf(fp, "0.0"); } } else { ++nc; if(*(cntl_chr + j) == '\\') { switch(*(cntl_chr + j + 1)) { case 'n': fprintf(fp, "\n"); ++j; break; case 't': fprintf(fp, "\t"); ++j; break; case 'b': fprintf(fp, "\n"); ++j; break; default: fprintf(fp, "%c", *(cntl_chr + j)); break; } } else { fprintf(fp, "%c", *(cntl_chr + j)); if(*(cntl_chr + j) == '%') ++j; } } j++; } return (int)nc; } #endif /* _DEBUG */ static void VpFormatSt(char *psz,S_INT fFmt) { U_LONG ie; U_LONG i; S_INT nf = 0; char ch; if(fFmt<=0) return; ie = strlen(psz); for(i = 0; i < ie; ++i) { ch = psz[i]; if(!ch) break; if(ISSPACE(ch) || ch=='-' || ch=='+') continue; if(ch == '.') { nf = 0;continue;} if(ch == 'E') break; nf++; if(nf > fFmt) { memmove(psz + i + 1, psz + i, ie - i + 1); ++ie; nf = 0; psz[i] = ' '; } } } VP_EXPORT S_LONG VpExponent10(Real *a) { S_LONG ex; U_LONG n; if(!VpHasVal(a)) return 0; ex =(a->exponent) * BASE_FIG; n = BASE1; while((a->frac[0] / n) == 0) { --ex; n /= 10; } return ex; } VP_EXPORT void VpSzMantissa(Real *a,char *psz) { U_LONG i, ZeroSup; U_LONG n, m, e, nn; if(VpIsNaN(a)) { sprintf(psz,SZ_NaN); return; } if(VpIsPosInf(a)) { sprintf(psz,SZ_INF); return; } if(VpIsNegInf(a)) { sprintf(psz,SZ_NINF); return; } ZeroSup = 1; /* Flag not to print the leading zeros as 0.00xxxxEnn */ if(!VpIsZero(a)) { if(VpGetSign(a) < 0) *psz++ = '-'; n = a->Prec; for(i=0;i < n;++i) { m = BASE1; e = a->frac[i]; while(m) { nn = e / m; if((!ZeroSup) || nn) { sprintf(psz, "%lu", nn); /* The leading zero(s) */ psz += strlen(psz); /* as 0.00xx will be ignored. */ ZeroSup = 0; /* Set to print succeeding zeros */ } e = e - nn * m; m /= 10; } } *psz = 0; while(psz[-1]=='0') *(--psz) = 0; } else { if(VpIsPosZero(a)) sprintf(psz, "0"); else sprintf(psz, "-0"); } } VP_EXPORT int VpToSpecialString(Real *a,char *psz,int fPlus) /* fPlus =0:default, =1: set ' ' before digits , =2: set '+' before digits. */ { if(VpIsNaN(a)) { sprintf(psz,SZ_NaN); return 1; } if(VpIsPosInf(a)) { if(fPlus==1) { *psz++ = ' '; } else if(fPlus==2) { *psz++ = '+'; } sprintf(psz,SZ_INF); return 1; } if(VpIsNegInf(a)) { sprintf(psz,SZ_NINF); return 1; } if(VpIsZero(a)) { if(VpIsPosZero(a)) { if(fPlus==1) sprintf(psz, " 0.0"); else if(fPlus==2) sprintf(psz, "+0.0"); else sprintf(psz, "0.0"); } else sprintf(psz, "-0.0"); return 1; } return 0; } VP_EXPORT void VpToString(Real *a,char *psz,int fFmt,int fPlus) /* fPlus =0:default, =1: set ' ' before digits , =2:set '+' before digits. */ { U_LONG i, ZeroSup; U_LONG n, m, e, nn; char *pszSav = psz; S_LONG ex; if(VpToSpecialString(a,psz,fPlus)) return; ZeroSup = 1; /* Flag not to print the leading zeros as 0.00xxxxEnn */ if(VpGetSign(a) < 0) *psz++ = '-'; else if(fPlus==1) *psz++ = ' '; else if(fPlus==2) *psz++ = '+'; *psz++ = '0'; *psz++ = '.'; n = a->Prec; for(i=0;i < n;++i) { m = BASE1; e = a->frac[i]; while(m) { nn = e / m; if((!ZeroSup) || nn) { sprintf(psz, "%lu", nn); /* The reading zero(s) */ psz += strlen(psz); /* as 0.00xx will be ignored. */ ZeroSup = 0; /* Set to print succeeding zeros */ } e = e - nn * m; m /= 10; } } ex =(a->exponent) * BASE_FIG; n = BASE1; while((a->frac[0] / n) == 0) { --ex; n /= 10; } while(psz[-1]=='0') *(--psz) = 0; sprintf(psz, "E%ld", ex); if(fFmt) VpFormatSt(pszSav, fFmt); } VP_EXPORT void VpToFString(Real *a,char *psz,int fFmt,int fPlus) /* fPlus =0:default,=1: set ' ' before digits ,set '+' before digits. */ { U_LONG i; U_LONG n, m, e, nn; char *pszSav = psz; S_LONG ex; if(VpToSpecialString(a,psz,fPlus)) return; if(VpGetSign(a) < 0) *psz++ = '-'; else if(fPlus==1) *psz++ = ' '; else if(fPlus==2) *psz++ = '+'; n = a->Prec; ex = a->exponent; if(ex<=0) { *psz++ = '0';*psz++ = '.'; while(ex<0) { for(i=0;i= 0) { sprintf(psz, "%lu", a->frac[i]); psz += strlen(psz); } else { m = BASE1; e = a->frac[i]; while(m) { nn = e / m; *psz++ = (char)(nn + '0'); e = e - nn * m; m /= 10; } } if(ex == 0) *psz++ = '.'; } while(--ex>=0) { m = BASE; while(m/=10) *psz++ = '0'; if(ex == 0) *psz++ = '.'; } *psz = 0; while(psz[-1]=='0') *(--psz) = 0; if(psz[-1]=='.') sprintf(psz, "0"); if(fFmt) VpFormatSt(pszSav, fFmt); } /* * [Output] * a[] ... variable to be assigned the value. * [Input] * int_chr[] ... integer part(may include '+/-'). * ni ... number of characters in int_chr[],not including '+/-'. * frac[] ... fraction part. * nf ... number of characters in frac[]. * exp_chr[] ... exponent part(including '+/-'). * ne ... number of characters in exp_chr[],not including '+/-'. */ VP_EXPORT int VpCtoV(Real *a, const char *int_chr, U_LONG ni, const char *frac, U_LONG nf, const char *exp_chr, U_LONG ne) { U_LONG i, j, ind_a, ma, mi, me; U_LONG loc; S_INT e,es, eb, ef; S_INT sign, signe; /* get exponent part */ e = 0; ma = a->MaxPrec; mi = ni; me = ne; signe = 1; memset(a->frac, 0, ma * sizeof(U_LONG)); if(ne > 0) { i = 0; if(exp_chr[0] == '-') { signe = -1; ++i; ++me; } else if(exp_chr[0] == '+') { ++i; ++me; } while(i < me) { es = e*((S_INT)BASE_FIG); e = e * 10 + exp_chr[i] - '0'; if(es>e*((S_INT)BASE_FIG)) { VpException(VP_EXCEPTION_INFINITY,"exponent overflow",0); sign = 1; if(int_chr[0] == '-') sign = -1; if(signe > 0) VpSetInf(a, sign); else VpSetZero(a, sign); return 1; } ++i; } } /* get integer part */ i = 0; sign = 1; if(ni >= 0) { if(int_chr[0] == '-') { sign = -1; ++i; ++mi; } else if(int_chr[0] == '+') { ++i; ++mi; } } e = signe * e; /* e: The value of exponent part. */ e = e + ni; /* set actual exponent size. */ if(e > 0) signe = 1; else signe = -1; /* Adjust the exponent so that it is the multiple of BASE_FIG. */ j = 0; ef = 1; while(ef) { if(e>=0) eb = e; else eb = -e; ef = eb / ((S_INT)BASE_FIG); ef = eb - ef * ((S_INT)BASE_FIG); if(ef) { ++j; /* Means to add one more preceeding zero */ ++e; } } eb = e / ((S_INT)BASE_FIG); ind_a = 0; while(i < mi) { a->frac[ind_a] = 0; while((j < (U_LONG)BASE_FIG) &&(i < mi)) { a->frac[ind_a] = a->frac[ind_a] * 10 + int_chr[i] - '0'; ++j; ++i; } if(i < mi) { ++ind_a; if(ind_a >= ma) goto over_flow; j = 0; } } loc = 1; /* get fraction part */ i = 0; while(i < nf) { while((j < (U_LONG)BASE_FIG) &&(i < nf)) { a->frac[ind_a] = a->frac[ind_a] * 10 + frac[i] - '0'; ++j; ++i; } if(i < nf) { ++ind_a; if(ind_a >= ma) goto over_flow; j = 0; } } goto Final; over_flow: rb_warn("Conversion from String to BigDecimal overflow (last few digits discarded)."); Final: if(ind_a >= ma) ind_a = ma - 1; while(j < (U_LONG)BASE_FIG) { a->frac[ind_a] = a->frac[ind_a] * 10; ++j; } a->Prec = ind_a + 1; a->exponent = eb; VpSetSign(a,sign); VpNmlz(a); return 1; } /* * [Input] * *m ... Real * [Output] * *d ... fraction part of m(d = 0.xxxxxxx). where # of 'x's is fig. * *e ... U_LONG,exponent of m. * DBLE_FIG ... Number of digits in a double variable. * * m -> d*10**e, 0Prec)); *d = 0.0; div = 1.; while(ind_m < mm) { div /=(double)((S_INT)BASE); *d = *d +((double) ((S_INT)m->frac[ind_m++])) * div; } *e = m->exponent * ((S_INT)BASE_FIG); *d *= VpGetSign(m); Exit: #ifdef _DEBUG if(gfDebug) { VPrint(stdout, " VpVtoD: m=%\n", m); printf(" d=%e * 10 **%ld\n", *d, *e); printf(" DBLE_FIG = %d\n", DBLE_FIG); } #endif /*_DEBUG */ return f; } /* * m <- d */ VP_EXPORT void VpDtoV(Real *m, double d) { U_LONG i, ind_m, mm; U_LONG ne; double val, val2; if(isnan(d)) { VpSetNaN(m); goto Exit; } if(isinf(d)) { if(d>0.0) VpSetPosInf(m); else VpSetNegInf(m); goto Exit; } if(d == 0.0) { VpSetZero(m,1); goto Exit; } val =(d > 0.) ? d :(-d); ne = 0; if(val >= 1.0) { while(val >= 1.0) { val /=(double)((S_INT)BASE); ++ne; } } else { val2 = 1.0 /(double)((S_INT)BASE); while(val < val2) { val *=(double)((S_INT)BASE); --ne; } } /* Now val = 0.xxxxx*BASE**ne */ mm = m->MaxPrec; memset(m->frac, 0, mm * sizeof(U_LONG)); for(ind_m = 0;val > 0.0 && ind_m < mm;ind_m++) { val *=(double)((S_INT)BASE); i =(U_LONG) val; val -=(double)((S_INT)i); m->frac[ind_m] = i; } if(ind_m >= mm) ind_m = mm - 1; if(d > 0.0) { VpSetSign(m, (S_INT)1); } else { VpSetSign(m,-(S_INT)1); } m->Prec = ind_m + 1; m->exponent = ne; VpInternalRound(m,0,(m->Prec>0)?m->frac[m->Prec-1]:0, (U_LONG)(val*((double)((S_INT)BASE)))); Exit: #ifdef _DEBUG if(gfDebug) { printf("VpDtoV d=%30.30e\n", d); VPrint(stdout, " m=%\n", m); } #endif /* _DEBUG */ return; } /* * m <- ival */ #if 0 /* unused */ VP_EXPORT void VpItoV(Real *m, S_INT ival) { U_LONG mm, ind_m; U_LONG val, v1, v2, v; int isign; S_INT ne; if(ival == 0) { VpSetZero(m,1); goto Exit; } isign = 1; val = ival; if(ival < 0) { isign = -1; val =(U_LONG)(-ival); } ne = 0; ind_m = 0; mm = m->MaxPrec; while(ind_m < mm) { m->frac[ind_m] = 0; ++ind_m; } ind_m = 0; while(val > 0) { if(val) { v1 = val; v2 = 1; while(v1 >= BASE) { v1 /= BASE; v2 *= BASE; } val = val - v2 * v1; v = v1; } else { v = 0; } m->frac[ind_m] = v; ++ind_m; ++ne; } m->Prec = ind_m - 1; m->exponent = ne; VpSetSign(m,isign); VpNmlz(m); Exit: #ifdef _DEBUG if(gfDebug) { printf(" VpItoV i=%d\n", ival); VPrint(stdout, " m=%\n", m); } #endif /* _DEBUG */ return; } #endif /* * y = SQRT(x), y*y - x =>0 */ VP_EXPORT int VpSqrt(Real *y, Real *x) { Real *f = NULL; Real *r = NULL; S_LONG y_prec, f_prec; S_LONG n; S_LONG e; S_LONG prec; S_LONG nr; double val; /* Zero, NaN or Infinity ? */ if(!VpHasVal(x)) { if(VpIsZero(x)||VpGetSign(x)>0) { VpAsgn(y,x,1); goto Exit; } VpSetNaN(y); return VpException(VP_EXCEPTION_OP,"(VpSqrt) SQRT(NaN or negative value)",0); goto Exit; } /* Negative ? */ if(VpGetSign(x) < 0) { VpSetNaN(y); return VpException(VP_EXCEPTION_OP,"(VpSqrt) SQRT(negative value)",0); } /* One ? */ if(VpIsOne(x)) { VpSetOne(y); goto Exit; } n = (S_LONG)y->MaxPrec; if((S_LONG)x->MaxPrec > n) n = (S_LONG)x->MaxPrec; /* allocate temporally variables */ f = VpAlloc(y->MaxPrec *(BASE_FIG + 2), "#1"); r = VpAlloc((n + n) *(BASE_FIG + 2), "#1"); nr = 0; y_prec = (S_LONG)y->MaxPrec; f_prec = (S_LONG)f->MaxPrec; prec = x->exponent; if(prec > 0) ++prec; else --prec; prec = prec - (S_LONG)y->MaxPrec; VpVtoD(&val, &e, x); /* val <- x */ e /= ((S_LONG)BASE_FIG); n = e / 2; if(e - n * 2 != 0) { val /=(double)((S_INT)BASE); n =(e + 1) / 2; } VpDtoV(y, sqrt(val)); /* y <- sqrt(val) */ y->exponent += n; n = (DBLE_FIG + BASE_FIG - 1) / BASE_FIG; y->MaxPrec = (U_LONG)Min(n , y_prec); f->MaxPrec = y->MaxPrec + 1; n = y_prec*((S_LONG)BASE_FIG); if((U_LONG)nMaxPrec *= 2; if(y->MaxPrec > (U_LONG)y_prec) y->MaxPrec = (U_LONG)y_prec; f->MaxPrec = y->MaxPrec; VpDivd(f, r, x, y); /* f = x/y */ VpAddSub(r, f, y, -1); /* r = f - y */ VpMult(f, VpPt5, r); /* f = 0.5*r */ if(VpIsZero(f)) goto converge; VpAddSub(r, f, y, 1); /* r = y + f */ VpAsgn(y, r, 1); /* y = r */ if(f->exponent <= prec) goto converge; } while(++nr < n); /* */ #ifdef _DEBUG if(gfDebug) { printf("ERROR(VpSqrt): did not converge within %ld iterations.\n", nr); } #endif /* _DEBUG */ y->MaxPrec = y_prec; converge: VpChangeSign(y,(S_INT)1); #ifdef _DEBUG if(gfDebug) { VpMult(r, y, y); VpAddSub(f, x, r, -1); printf("VpSqrt: iterations = %lu\n", nr); VPrint(stdout, " y =% \n", y); VPrint(stdout, " x =% \n", x); VPrint(stdout, " x-y*y = % \n", f); } #endif /* _DEBUG */ y->MaxPrec = y_prec; Exit: VpFree(f); VpFree(r); return 1; } /* * * nf: digit position for operation. * */ VP_EXPORT int VpMidRound(Real *y, int f, int nf) /* * Round reletively from the decimal point. * f: rounding mode * nf: digit location to round from the the decimal point. */ { /* fracf: any positive digit under rounding position? */ /* exptoadd: number of digits needed to compensate negative nf */ int n,i,ix,ioffset,fracf,exptoadd; U_LONG v,shifter; U_LONG div; nf += y->exponent*((int)BASE_FIG); exptoadd=0; if (nf < 0) { /* rounding position too left(large). */ if((f!=VP_ROUND_CEIL) && (f!=VP_ROUND_FLOOR)) { VpSetZero(y,VpGetSign(y)); /* truncate everything */ return 0; } exptoadd = -nf; nf = 0; } /* ix: x->fraq[ix] contains round position */ ix = nf/(int)BASE_FIG; if(((U_LONG)ix)>=y->Prec) return 0; /* rounding position too right(small). */ ioffset = nf - ix*((int)BASE_FIG); v = y->frac[ix]; /* drop digits after pointed digit */ n = BASE_FIG - ioffset - 1; for(shifter=1,i=0;i 0); v /= shifter; div = v/10; v = v - div*10; if (fracf == 0) { for(i=ix+1;iPrec;i++) { if (y->frac[i]%BASE) { fracf = 1; break; } } } memset(y->frac+ix+1, 0, (y->Prec - (ix+1)) * sizeof(U_LONG)); switch(f) { case VP_ROUND_DOWN: /* Truncate */ break; case VP_ROUND_UP: /* Roundup */ if(fracf) ++div; break; case VP_ROUND_HALF_UP: /* Round half up */ if(v>=5) ++div; break; case VP_ROUND_HALF_DOWN: /* Round half down */ if(v>=6) ++div; break; case VP_ROUND_CEIL: /* ceil */ if(fracf && (VpGetSign(y)>0)) ++div; break; case VP_ROUND_FLOOR: /* floor */ if(fracf && (VpGetSign(y)<0)) ++div; break; case VP_ROUND_HALF_EVEN: /* Banker's rounding */ if(v>5) ++div; else if(v==5) { if((U_LONG)i==(BASE_FIG-1)) { if(ix && (y->frac[ix-1]%2)) ++div; } else { if(div%2) ++div; } } break; } for(i=0;i<=n;++i) div *= 10; if(div>=BASE) { if(ix) { y->frac[ix] = 0; VpRdup(y,ix); } else { S_INT s = VpGetSign(y); int e = y->exponent; VpSetOne(y); VpSetSign(y,s); y->exponent = e+1; } } else { y->frac[ix] = div; VpNmlz(y); } if (exptoadd > 0) { y->exponent += exptoadd/BASE_FIG; exptoadd %= BASE_FIG; for(i=0;ifrac[0] *= 10; if (y->frac[0] >= BASE) { y->frac[0] /= BASE; y->exponent++; } } } return 1; } VP_EXPORT int VpLeftRound(Real *y, int f, int nf) /* * Round from the left hand side of the digits. */ { U_LONG v; if(!VpHasVal(y)) return 0; /* Unable to round */ v = y->frac[0]; nf -= VpExponent(y)*BASE_FIG; while((v /= 10) != 0) nf--; nf += (BASE_FIG-1); return VpMidRound(y,f,nf); } VP_EXPORT int VpActiveRound(Real *y, Real *x, int f, int nf) { /* First,assign whole value in truncation mode */ if(VpAsgn(y, x, 10)<=1) return 0; /* Zero,NaN,or Infinity */ return VpMidRound(y,f,nf); } static int VpLimitRound(Real *c,U_LONG ixDigit) { U_LONG ix = VpGetPrecLimit(); if(!VpNmlz(c)) return -1; if(!ix) return 0; if(!ixDigit) ixDigit = c->Prec-1; if((ix+BASE_FIG-1)/BASE_FIG > ixDigit+1) return 0; return VpLeftRound(c,VpGetRoundMode(),ix); } static void VpInternalRound(Real *c,int ixDigit,U_LONG vPrev,U_LONG v) { int f = 0; if(VpLimitRound(c,ixDigit)) return; if(!v) return; v /= BASE1; switch(gfRoundMode) { case VP_ROUND_DOWN: break; case VP_ROUND_UP: if(v) f = 1; break; case VP_ROUND_HALF_UP: if(v >= 5) f = 1; break; case VP_ROUND_HALF_DOWN: if(v >= 6) f = 1; break; case VP_ROUND_CEIL: /* ceil */ if(v && (VpGetSign(c)>0)) f = 1; break; case VP_ROUND_FLOOR: /* floor */ if(v && (VpGetSign(c)<0)) f = 1; break; case VP_ROUND_HALF_EVEN: /* Banker's rounding */ if(v>5) f = 1; else if(v==5 && vPrev%2) f = 1; break; } if(f) { VpRdup(c,ixDigit); /* round up */ VpNmlz(c); } } /* * Rounds up m(plus one to final digit of m). */ static int VpRdup(Real *m,U_LONG ind_m) { U_LONG carry; if(!ind_m) ind_m = m->Prec; carry = 1; while(carry > 0 && (ind_m--)) { m->frac[ind_m] += carry; if(m->frac[ind_m] >= BASE) m->frac[ind_m] -= BASE; else carry = 0; } if(carry > 0) { /* Overflow,count exponent and set fraction part be 1 */ if(!AddExponent(m,(S_LONG)1)) return 0; m->Prec = m->frac[0] = 1; } else { VpNmlz(m); } return 1; } /* * y = x - fix(x) */ VP_EXPORT void VpFrac(Real *y, Real *x) { U_LONG my, ind_y, ind_x; if(!VpHasVal(x)) { VpAsgn(y,x,1); goto Exit; } if(x->exponent > 0 && (U_LONG)x->exponent >= x->Prec) { VpSetZero(y,VpGetSign(x)); goto Exit; } else if(x->exponent <= 0) { VpAsgn(y, x, 1); goto Exit; } y->Prec = x->Prec -(U_LONG) x->exponent; y->Prec = Min(y->Prec, y->MaxPrec); y->exponent = 0; VpSetSign(y,VpGetSign(x)); ind_y = 0; my = y->Prec; ind_x = x->exponent; while(ind_y < my) { y->frac[ind_y] = x->frac[ind_x]; ++ind_y; ++ind_x; } VpNmlz(y); Exit: #ifdef _DEBUG if(gfDebug) { VPrint(stdout, "VpFrac y=%\n", y); VPrint(stdout, " x=%\n", x); } #endif /* _DEBUG */ return; } /* * y = x ** n */ VP_EXPORT int VpPower(Real *y, Real *x, S_INT n) { U_LONG s, ss; S_LONG sign; Real *w1 = NULL; Real *w2 = NULL; if(VpIsZero(x)) { if(n==0) { VpSetOne(y); goto Exit; } sign = VpGetSign(x); if(n<0) { n = -n; if(sign<0) sign = (n%2)?(-1):(1); VpSetInf (y,sign); } else { if(sign<0) sign = (n%2)?(-1):(1); VpSetZero(y,sign); } goto Exit; } if(VpIsNaN(x)) { VpSetNaN(y); goto Exit; } if(VpIsInf(x)) { if(n==0) { VpSetOne(y); goto Exit; } if(n>0) { VpSetInf(y, (n%2==0 || VpIsPosInf(x)) ? 1 : -1); goto Exit; } VpSetZero(y, (n%2==0 || VpIsPosInf(x)) ? 1 : -1); goto Exit; } if((x->exponent == 1) &&(x->Prec == 1) &&(x->frac[0] == 1)) { /* abs(x) = 1 */ VpSetOne(y); if(VpGetSign(x) > 0) goto Exit; if((n % 2) == 0) goto Exit; VpSetSign(y,-(S_INT)1); goto Exit; } if(n > 0) sign = 1; else if(n < 0) { sign = -1; n = -n; } else { VpSetOne(y); goto Exit; } /* Allocate working variables */ w1 = VpAlloc((y->MaxPrec + 2) * BASE_FIG, "#0"); w2 = VpAlloc((w1->MaxPrec * 2 + 1) * BASE_FIG, "#0"); /* calculation start */ VpAsgn(y, x, 1); --n; while(n > 0) { VpAsgn(w1, x, 1); s = 1; loop1: ss = s; s += s; if(s >(U_LONG) n) goto out_loop1; VpMult(w2, w1, w1); VpAsgn(w1, w2, 1); goto loop1; out_loop1: n -= ss; VpMult(w2, y, w1); VpAsgn(y, w2, 1); } if(sign < 0) { VpDivd(w1, w2, VpConstOne, y); VpAsgn(y, w1, 1); } Exit: #ifdef _DEBUG if(gfDebug) { VPrint(stdout, "VpPower y=%\n", y); VPrint(stdout, "VpPower x=%\n", x); printf(" n=%d\n", n); } #endif /* _DEBUG */ VpFree(w2); VpFree(w1); return 1; } #ifdef _DEBUG int VpVarCheck(Real * v) /* * Checks the validity of the Real variable v. * [Input] * v ... Real *, variable to be checked. * [Returns] * 0 ... correct v. * other ... error */ { U_LONG i; if(v->MaxPrec <= 0) { printf("ERROR(VpVarCheck): Illegal Max. Precision(=%lu)\n", v->MaxPrec); return 1; } if((v->Prec <= 0) ||((v->Prec) >(v->MaxPrec))) { printf("ERROR(VpVarCheck): Illegal Precision(=%lu)\n", v->Prec); printf(" Max. Prec.=%lu\n", v->MaxPrec); return 2; } for(i = 0; i < v->Prec; ++i) { if((v->frac[i] >= BASE)) { printf("ERROR(VpVarCheck): Illegal fraction\n"); printf(" Frac[%ld]=%lu\n", i, v->frac[i]); printf(" Prec. =%lu\n", v->Prec); printf(" Exp. =%d\n", v->exponent); printf(" BASE =%lu\n", BASE); return 3; } } return 0; } #endif /* _DEBUG */