// This file is a fragment of the yjit.o compilation unit. See yjit.c. #include "internal.h" #include "gc.h" #include "internal/compile.h" #include "internal/class.h" #include "internal/hash.h" #include "internal/object.h" #include "internal/sanitizers.h" #include "internal/string.h" #include "internal/struct.h" #include "internal/variable.h" #include "internal/re.h" #include "probes.h" #include "probes_helper.h" #include "yjit.h" #include "yjit_iface.h" #include "yjit_core.h" #include "yjit_codegen.h" #include "yjit_asm.h" // Map from YARV opcodes to code generation functions static codegen_fn gen_fns[VM_INSTRUCTION_SIZE] = { NULL }; // Map from method entries to code generation functions static st_table *yjit_method_codegen_table = NULL; // Code for exiting back to the interpreter from the leave instruction static void *leave_exit_code; // Code for full logic of returning from C method and exiting to the interpreter static uint32_t outline_full_cfunc_return_pos; // For implementing global code invalidation struct codepage_patch { uint32_t inline_patch_pos; uint32_t outlined_target_pos; }; typedef rb_darray(struct codepage_patch) patch_array_t; static patch_array_t global_inval_patches = NULL; // Print the current source location for debugging purposes RBIMPL_ATTR_MAYBE_UNUSED() static void jit_print_loc(jitstate_t *jit, const char *msg) { char *ptr; long len; VALUE path = rb_iseq_path(jit->iseq); RSTRING_GETMEM(path, ptr, len); fprintf(stderr, "%s %.*s:%u\n", msg, (int)len, ptr, rb_iseq_line_no(jit->iseq, jit->insn_idx)); } // dump an object for debugging purposes RBIMPL_ATTR_MAYBE_UNUSED() static void jit_obj_info_dump(codeblock_t *cb, x86opnd_t opnd) { push_regs(cb); mov(cb, C_ARG_REGS[0], opnd); call_ptr(cb, REG0, (void *)rb_obj_info_dump); pop_regs(cb); } // Get the current instruction's opcode static int jit_get_opcode(jitstate_t *jit) { return jit->opcode; } // Get the index of the next instruction static uint32_t jit_next_insn_idx(jitstate_t *jit) { return jit->insn_idx + insn_len(jit_get_opcode(jit)); } // Get an instruction argument by index static VALUE jit_get_arg(jitstate_t *jit, size_t arg_idx) { RUBY_ASSERT(arg_idx + 1 < (size_t)insn_len(jit_get_opcode(jit))); return *(jit->pc + arg_idx + 1); } // Load a VALUE into a register and keep track of the reference if it is on the GC heap. static void jit_mov_gc_ptr(jitstate_t *jit, codeblock_t *cb, x86opnd_t reg, VALUE ptr) { RUBY_ASSERT(reg.type == OPND_REG && reg.num_bits == 64); // Load the pointer constant into the specified register mov(cb, reg, const_ptr_opnd((void*)ptr)); // The pointer immediate is encoded as the last part of the mov written out uint32_t ptr_offset = cb->write_pos - sizeof(VALUE); if (!SPECIAL_CONST_P(ptr)) { if (!rb_darray_append(&jit->block->gc_object_offsets, ptr_offset)) { rb_bug("allocation failed"); } } } // Check if we are compiling the instruction at the stub PC // Meaning we are compiling the instruction that is next to execute static bool jit_at_current_insn(jitstate_t *jit) { const VALUE *ec_pc = jit->ec->cfp->pc; return (ec_pc == jit->pc); } // Peek at the nth topmost value on the Ruby stack. // Returns the topmost value when n == 0. static VALUE jit_peek_at_stack(jitstate_t *jit, ctx_t *ctx, int n) { RUBY_ASSERT(jit_at_current_insn(jit)); // Note: this does not account for ctx->sp_offset because // this is only available when hitting a stub, and while // hitting a stub, cfp->sp needs to be up to date in case // codegen functions trigger GC. See :stub-sp-flush:. VALUE *sp = jit->ec->cfp->sp; return *(sp - 1 - n); } static VALUE jit_peek_at_self(jitstate_t *jit, ctx_t *ctx) { return jit->ec->cfp->self; } RBIMPL_ATTR_MAYBE_UNUSED() static VALUE jit_peek_at_local(jitstate_t *jit, ctx_t *ctx, int n) { RUBY_ASSERT(jit_at_current_insn(jit)); int32_t local_table_size = jit->iseq->body->local_table_size; RUBY_ASSERT(n < (int)jit->iseq->body->local_table_size); const VALUE *ep = jit->ec->cfp->ep; return ep[-VM_ENV_DATA_SIZE - local_table_size + n + 1]; } // Save the incremented PC on the CFP // This is necessary when calleees can raise or allocate static void jit_save_pc(jitstate_t *jit, x86opnd_t scratch_reg) { codeblock_t *cb = jit->cb; mov(cb, scratch_reg, const_ptr_opnd(jit->pc + insn_len(jit->opcode))); mov(cb, mem_opnd(64, REG_CFP, offsetof(rb_control_frame_t, pc)), scratch_reg); } // Save the current SP on the CFP // This realigns the interpreter SP with the JIT SP // Note: this will change the current value of REG_SP, // which could invalidate memory operands static void jit_save_sp(jitstate_t *jit, ctx_t *ctx) { if (ctx->sp_offset != 0) { x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0); codeblock_t *cb = jit->cb; lea(cb, REG_SP, stack_pointer); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP); ctx->sp_offset = 0; } } // jit_save_pc() + jit_save_sp(). Should be used before calling a routine that // could: // - Perform GC allocation // - Take the VM lock through RB_VM_LOCK_ENTER() // - Perform Ruby method call static void jit_prepare_routine_call(jitstate_t *jit, ctx_t *ctx, x86opnd_t scratch_reg) { jit->record_boundary_patch_point = true; jit_save_pc(jit, scratch_reg); jit_save_sp(jit, ctx); // In case the routine calls Ruby methods, it can set local variables // through Kernel#binding and other means. ctx_clear_local_types(ctx); } // Record the current codeblock write position for rewriting into a jump into // the outlined block later. Used to implement global code invalidation. static void record_global_inval_patch(const codeblock_t *cb, uint32_t outline_block_target_pos) { struct codepage_patch patch_point = { cb->write_pos, outline_block_target_pos }; if (!rb_darray_append(&global_inval_patches, patch_point)) rb_bug("allocation failed"); } static bool jit_guard_known_klass(jitstate_t *jit, ctx_t *ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit); #if YJIT_STATS // Add a comment at the current position in the code block static void _add_comment(codeblock_t *cb, const char *comment_str) { // We can't add comments to the outlined code block if (cb == ocb) return; // Avoid adding duplicate comment strings (can happen due to deferred codegen) size_t num_comments = rb_darray_size(yjit_code_comments); if (num_comments > 0) { struct yjit_comment last_comment = rb_darray_get(yjit_code_comments, num_comments - 1); if (last_comment.offset == cb->write_pos && strcmp(last_comment.comment, comment_str) == 0) { return; } } struct yjit_comment new_comment = (struct yjit_comment){ cb->write_pos, comment_str }; rb_darray_append(&yjit_code_comments, new_comment); } // Comments for generated machine code #define ADD_COMMENT(cb, comment) _add_comment((cb), (comment)) // Verify the ctx's types and mappings against the compile-time stack, self, // and locals. static void verify_ctx(jitstate_t *jit, ctx_t *ctx) { // Only able to check types when at current insn RUBY_ASSERT(jit_at_current_insn(jit)); VALUE self_val = jit_peek_at_self(jit, ctx); if (type_diff(yjit_type_of_value(self_val), ctx->self_type) == INT_MAX) { rb_bug("verify_ctx: ctx type (%s) incompatible with actual value of self: %s", yjit_type_name(ctx->self_type), rb_obj_info(self_val)); } for (int i = 0; i < ctx->stack_size && i < MAX_TEMP_TYPES; i++) { temp_type_mapping_t learned = ctx_get_opnd_mapping(ctx, OPND_STACK(i)); VALUE val = jit_peek_at_stack(jit, ctx, i); val_type_t detected = yjit_type_of_value(val); if (learned.mapping.kind == TEMP_SELF) { if (self_val != val) { rb_bug("verify_ctx: stack value was mapped to self, but values did not match\n" " stack: %s\n" " self: %s", rb_obj_info(val), rb_obj_info(self_val)); } } if (learned.mapping.kind == TEMP_LOCAL) { int local_idx = learned.mapping.idx; VALUE local_val = jit_peek_at_local(jit, ctx, local_idx); if (local_val != val) { rb_bug("verify_ctx: stack value was mapped to local, but values did not match\n" " stack: %s\n" " local %i: %s", rb_obj_info(val), local_idx, rb_obj_info(local_val)); } } if (type_diff(detected, learned.type) == INT_MAX) { rb_bug("verify_ctx: ctx type (%s) incompatible with actual value on stack: %s", yjit_type_name(learned.type), rb_obj_info(val)); } } int32_t local_table_size = jit->iseq->body->local_table_size; for (int i = 0; i < local_table_size && i < MAX_TEMP_TYPES; i++) { val_type_t learned = ctx->local_types[i]; VALUE val = jit_peek_at_local(jit, ctx, i); val_type_t detected = yjit_type_of_value(val); if (type_diff(detected, learned) == INT_MAX) { rb_bug("verify_ctx: ctx type (%s) incompatible with actual value of local: %s", yjit_type_name(learned), rb_obj_info(val)); } } } #else #define ADD_COMMENT(cb, comment) ((void)0) #define verify_ctx(jit, ctx) ((void)0) #endif // if YJIT_STATS #if YJIT_STATS // Increment a profiling counter with counter_name #define GEN_COUNTER_INC(cb, counter_name) _gen_counter_inc(cb, &(yjit_runtime_counters . counter_name)) static void _gen_counter_inc(codeblock_t *cb, int64_t *counter) { if (!rb_yjit_opts.gen_stats) return; // Use REG1 because there might be return value in REG0 mov(cb, REG1, const_ptr_opnd(counter)); cb_write_lock_prefix(cb); // for ractors. add(cb, mem_opnd(64, REG1, 0), imm_opnd(1)); } // Increment a counter then take an existing side exit. #define COUNTED_EXIT(jit, side_exit, counter_name) _counted_side_exit(jit, side_exit, &(yjit_runtime_counters . counter_name)) static uint8_t * _counted_side_exit(jitstate_t* jit, uint8_t *existing_side_exit, int64_t *counter) { if (!rb_yjit_opts.gen_stats) return existing_side_exit; uint8_t *start = cb_get_ptr(jit->ocb, jit->ocb->write_pos); _gen_counter_inc(jit->ocb, counter); jmp_ptr(jit->ocb, existing_side_exit); return start; } #else #define GEN_COUNTER_INC(cb, counter_name) ((void)0) #define COUNTED_EXIT(jit, side_exit, counter_name) side_exit #endif // if YJIT_STATS // Generate an exit to return to the interpreter static uint32_t yjit_gen_exit(VALUE *exit_pc, ctx_t *ctx, codeblock_t *cb) { const uint32_t code_pos = cb->write_pos; ADD_COMMENT(cb, "exit to interpreter"); // Generate the code to exit to the interpreters // Write the adjusted SP back into the CFP if (ctx->sp_offset != 0) { x86opnd_t stack_pointer = ctx_sp_opnd(ctx, 0); lea(cb, REG_SP, stack_pointer); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG_SP); } // Update CFP->PC mov(cb, RAX, const_ptr_opnd(exit_pc)); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), RAX); // Accumulate stats about interpreter exits #if YJIT_STATS if (rb_yjit_opts.gen_stats) { mov(cb, RDI, const_ptr_opnd(exit_pc)); call_ptr(cb, RSI, (void *)&yjit_count_side_exit_op); } #endif pop(cb, REG_SP); pop(cb, REG_EC); pop(cb, REG_CFP); mov(cb, RAX, imm_opnd(Qundef)); ret(cb); return code_pos; } // Generate a continuation for gen_leave() that exits to the interpreter at REG_CFP->pc. static uint8_t * yjit_gen_leave_exit(codeblock_t *cb) { uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos); // Note, gen_leave() fully reconstructs interpreter state and leaves the // return value in RAX before coming here. // Every exit to the interpreter should be counted GEN_COUNTER_INC(cb, leave_interp_return); pop(cb, REG_SP); pop(cb, REG_EC); pop(cb, REG_CFP); ret(cb); return code_ptr; } // Fill code_for_exit_from_stub. This is used by branch_stub_hit() to exit // to the interpreter when it cannot service a stub by generating new code. // Before coming here, branch_stub_hit() takes care of fully reconstructing // interpreter state. static void gen_code_for_exit_from_stub(void) { codeblock_t *cb = ocb; code_for_exit_from_stub = cb_get_ptr(cb, cb->write_pos); GEN_COUNTER_INC(cb, exit_from_branch_stub); pop(cb, REG_SP); pop(cb, REG_EC); pop(cb, REG_CFP); mov(cb, RAX, imm_opnd(Qundef)); ret(cb); } // :side-exit: // Get an exit for the current instruction in the outlined block. The code // for each instruction often begins with several guards before proceeding // to do work. When guards fail, an option we have is to exit to the // interpreter at an instruction boundary. The piece of code that takes // care of reconstructing interpreter state and exiting out of generated // code is called the side exit. // // No guards change the logic for reconstructing interpreter state at the // moment, so there is one unique side exit for each context. Note that // it's incorrect to jump to the side exit after any ctx stack push/pop operations // since they change the logic required for reconstructing interpreter state. static uint8_t * yjit_side_exit(jitstate_t *jit, ctx_t *ctx) { if (!jit->side_exit_for_pc) { codeblock_t *ocb = jit->ocb; uint32_t pos = yjit_gen_exit(jit->pc, ctx, ocb); jit->side_exit_for_pc = cb_get_ptr(ocb, pos); } return jit->side_exit_for_pc; } // Ensure that there is an exit for the start of the block being compiled. // Block invalidation uses this exit. static void jit_ensure_block_entry_exit(jitstate_t *jit) { block_t *block = jit->block; if (block->entry_exit) return; if (jit->insn_idx == block->blockid.idx) { // We are compiling the first instruction in the block. // Generate the exit with the cache in jitstate. block->entry_exit = yjit_side_exit(jit, &block->ctx); } else { VALUE *pc = yjit_iseq_pc_at_idx(block->blockid.iseq, block->blockid.idx); uint32_t pos = yjit_gen_exit(pc, &block->ctx, ocb); block->entry_exit = cb_get_ptr(ocb, pos); } } // Generate a runtime guard that ensures the PC is at the start of the iseq, // otherwise take a side exit. This is to handle the situation of optional // parameters. When a function with optional parameters is called, the entry // PC for the method isn't necessarily 0, but we always generated code that // assumes the entry point is 0. static void yjit_pc_guard(codeblock_t *cb, const rb_iseq_t *iseq) { RUBY_ASSERT(cb != NULL); mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, pc)); mov(cb, REG1, const_ptr_opnd(iseq->body->iseq_encoded)); xor(cb, REG0, REG1); // xor should impact ZF, so we can jz here uint32_t pc_is_zero = cb_new_label(cb, "pc_is_zero"); jz_label(cb, pc_is_zero); // We're not starting at the first PC, so we need to exit. GEN_COUNTER_INC(cb, leave_start_pc_non_zero); pop(cb, REG_SP); pop(cb, REG_EC); pop(cb, REG_CFP); mov(cb, RAX, imm_opnd(Qundef)); ret(cb); // PC should be at the beginning cb_write_label(cb, pc_is_zero); cb_link_labels(cb); } // The code we generate in gen_send_cfunc() doesn't fire the c_return TracePoint event // like the interpreter. When tracing for c_return is enabled, we patch the code after // the C method return to call into this to fire the event. static void full_cfunc_return(rb_execution_context_t *ec, VALUE return_value) { rb_control_frame_t *cfp = ec->cfp; RUBY_ASSERT_ALWAYS(cfp == GET_EC()->cfp); const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(cfp); RUBY_ASSERT_ALWAYS(RUBYVM_CFUNC_FRAME_P(cfp)); RUBY_ASSERT_ALWAYS(me->def->type == VM_METHOD_TYPE_CFUNC); // CHECK_CFP_CONSISTENCY("full_cfunc_return"); TODO revive this // Pop the C func's frame and fire the c_return TracePoint event // Note that this is the same order as vm_call_cfunc_with_frame(). rb_vm_pop_frame(ec); EXEC_EVENT_HOOK(ec, RUBY_EVENT_C_RETURN, cfp->self, me->def->original_id, me->called_id, me->owner, return_value); // Note, this deviates from the interpreter in that users need to enable // a c_return TracePoint for this DTrace hook to work. A reasonable change // since the Ruby return event works this way as well. RUBY_DTRACE_CMETHOD_RETURN_HOOK(ec, me->owner, me->def->original_id); // Push return value into the caller's stack. We know that it's a frame that // uses cfp->sp because we are patching a call done with gen_send_cfunc(). ec->cfp->sp[0] = return_value; ec->cfp->sp++; } // Landing code for when c_return tracing is enabled. See full_cfunc_return(). static void gen_full_cfunc_return(void) { codeblock_t *cb = ocb; outline_full_cfunc_return_pos = ocb->write_pos; // This chunk of code expect REG_EC to be filled properly and // RAX to contain the return value of the C method. // Call full_cfunc_return() mov(cb, C_ARG_REGS[0], REG_EC); mov(cb, C_ARG_REGS[1], RAX); call_ptr(cb, REG0, (void *)full_cfunc_return); // Count the exit GEN_COUNTER_INC(cb, traced_cfunc_return); // Return to the interpreter pop(cb, REG_SP); pop(cb, REG_EC); pop(cb, REG_CFP); mov(cb, RAX, imm_opnd(Qundef)); ret(cb); } /* Compile an interpreter entry block to be inserted into an iseq Returns `NULL` if compilation fails. */ static uint8_t * yjit_entry_prologue(codeblock_t *cb, const rb_iseq_t *iseq) { RUBY_ASSERT(cb != NULL); enum { MAX_PROLOGUE_SIZE = 1024 }; // Check if we have enough executable memory if (cb->write_pos + MAX_PROLOGUE_SIZE >= cb->mem_size) { return NULL; } const uint32_t old_write_pos = cb->write_pos; // Align the current write position to cache line boundaries cb_align_pos(cb, 64); uint8_t *code_ptr = cb_get_ptr(cb, cb->write_pos); ADD_COMMENT(cb, "yjit entry"); push(cb, REG_CFP); push(cb, REG_EC); push(cb, REG_SP); // We are passed EC and CFP mov(cb, REG_EC, C_ARG_REGS[0]); mov(cb, REG_CFP, C_ARG_REGS[1]); // Load the current SP from the CFP into REG_SP mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp)); // Setup cfp->jit_return // TODO: this could use an IP relative LEA instead of an 8 byte immediate mov(cb, REG0, const_ptr_opnd(leave_exit_code)); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0); // We're compiling iseqs that we *expect* to start at `insn_idx`. But in // the case of optional parameters, the interpreter can set the pc to a // different location depending on the optional parameters. If an iseq // has optional parameters, we'll add a runtime check that the PC we've // compiled for is the same PC that the interpreter wants us to run with. // If they don't match, then we'll take a side exit. if (iseq->body->param.flags.has_opt) { yjit_pc_guard(cb, iseq); } // Verify MAX_PROLOGUE_SIZE RUBY_ASSERT_ALWAYS(cb->write_pos - old_write_pos <= MAX_PROLOGUE_SIZE); return code_ptr; } // Generate code to check for interrupts and take a side-exit. // Warning: this function clobbers REG0 static void yjit_check_ints(codeblock_t *cb, uint8_t *side_exit) { // Check for interrupts // see RUBY_VM_CHECK_INTS(ec) macro ADD_COMMENT(cb, "RUBY_VM_CHECK_INTS(ec)"); mov(cb, REG0_32, member_opnd(REG_EC, rb_execution_context_t, interrupt_mask)); not(cb, REG0_32); test(cb, member_opnd(REG_EC, rb_execution_context_t, interrupt_flag), REG0_32); jnz_ptr(cb, side_exit); } // Generate a stubbed unconditional jump to the next bytecode instruction. // Blocks that are part of a guard chain can use this to share the same successor. static void jit_jump_to_next_insn(jitstate_t *jit, const ctx_t *current_context) { // Reset the depth since in current usages we only ever jump to to // chain_depth > 0 from the same instruction. ctx_t reset_depth = *current_context; reset_depth.chain_depth = 0; blockid_t jump_block = { jit->iseq, jit_next_insn_idx(jit) }; // We are at the end of the current instruction. Record the boundary. if (jit->record_boundary_patch_point) { uint32_t exit_pos = yjit_gen_exit(jit->pc + insn_len(jit->opcode), &reset_depth, jit->ocb); record_global_inval_patch(jit->cb, exit_pos); jit->record_boundary_patch_point = false; } // Generate the jump instruction gen_direct_jump( jit, &reset_depth, jump_block ); } // Compile a sequence of bytecode instructions for a given basic block version. // Part of gen_block_version(). static block_t * gen_single_block(blockid_t blockid, const ctx_t *start_ctx, rb_execution_context_t *ec) { RUBY_ASSERT(cb != NULL); verify_blockid(blockid); // Allocate the new block block_t *block = calloc(1, sizeof(block_t)); if (!block) { return NULL; } // Copy the starting context to avoid mutating it ctx_t ctx_copy = *start_ctx; ctx_t *ctx = &ctx_copy; // Limit the number of specialized versions for this block *ctx = limit_block_versions(blockid, ctx); // Save the starting context on the block. block->blockid = blockid; block->ctx = *ctx; RUBY_ASSERT(!(blockid.idx == 0 && start_ctx->stack_size > 0)); const rb_iseq_t *iseq = block->blockid.iseq; const unsigned int iseq_size = iseq->body->iseq_size; uint32_t insn_idx = block->blockid.idx; const uint32_t starting_insn_idx = insn_idx; // Initialize a JIT state object jitstate_t jit = { .cb = cb, .ocb = ocb, .block = block, .iseq = iseq, .ec = ec }; // Mark the start position of the block block->start_addr = cb_get_write_ptr(cb); // For each instruction to compile while (insn_idx < iseq_size) { // Get the current pc and opcode VALUE *pc = yjit_iseq_pc_at_idx(iseq, insn_idx); int opcode = yjit_opcode_at_pc(iseq, pc); RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE); // opt_getinlinecache wants to be in a block all on its own. Cut the block short // if we run into it. See gen_opt_getinlinecache() for details. if (opcode == BIN(opt_getinlinecache) && insn_idx > starting_insn_idx) { jit_jump_to_next_insn(&jit, ctx); break; } // Set the current instruction jit.insn_idx = insn_idx; jit.opcode = opcode; jit.pc = pc; jit.side_exit_for_pc = NULL; // If previous instruction requested to record the boundary if (jit.record_boundary_patch_point) { // Generate an exit to this instruction and record it uint32_t exit_pos = yjit_gen_exit(jit.pc, ctx, ocb); record_global_inval_patch(cb, exit_pos); jit.record_boundary_patch_point = false; } // Verify our existing assumption (DEBUG) if (jit_at_current_insn(&jit)) { verify_ctx(&jit, ctx); } // Lookup the codegen function for this instruction codegen_fn gen_fn = gen_fns[opcode]; codegen_status_t status = YJIT_CANT_COMPILE; if (gen_fn) { if (0) { fprintf(stderr, "compiling %d: %s\n", insn_idx, insn_name(opcode)); print_str(cb, insn_name(opcode)); } // :count-placement: // Count bytecode instructions that execute in generated code. // Note that the increment happens even when the output takes side exit. GEN_COUNTER_INC(cb, exec_instruction); // Add a comment for the name of the YARV instruction ADD_COMMENT(cb, insn_name(opcode)); // Call the code generation function status = gen_fn(&jit, ctx, cb); } // If we can't compile this instruction // exit to the interpreter and stop compiling if (status == YJIT_CANT_COMPILE) { // TODO: if the codegen function makes changes to ctx and then return YJIT_CANT_COMPILE, // the exit this generates would be wrong. We could save a copy of the entry context // and assert that ctx is the same here. uint32_t exit_off = yjit_gen_exit(jit.pc, ctx, cb); // If this is the first instruction in the block, then we can use // the exit for block->entry_exit. if (insn_idx == block->blockid.idx) { block->entry_exit = cb_get_ptr(cb, exit_off); } break; } // For now, reset the chain depth after each instruction as only the // first instruction in the block can concern itself with the depth. ctx->chain_depth = 0; // Move to the next instruction to compile insn_idx += insn_len(opcode); // If the instruction terminates this block if (status == YJIT_END_BLOCK) { break; } } // Mark the end position of the block block->end_addr = cb_get_write_ptr(cb); // Store the index of the last instruction in the block block->end_idx = insn_idx; // We currently can't handle cases where the request is for a block that // doesn't go to the next instruction. RUBY_ASSERT(!jit.record_boundary_patch_point); // If code for the block doesn't fit, free the block and fail. if (cb->dropped_bytes || ocb->dropped_bytes) { yjit_free_block(block); return NULL; } if (YJIT_DUMP_MODE >= 2) { // Dump list of compiled instrutions fprintf(stderr, "Compiled the following for iseq=%p:\n", (void *)iseq); for (uint32_t idx = block->blockid.idx; idx < insn_idx; ) { int opcode = yjit_opcode_at_pc(iseq, yjit_iseq_pc_at_idx(iseq, idx)); fprintf(stderr, " %04d %s\n", idx, insn_name(opcode)); idx += insn_len(opcode); } } return block; } static codegen_status_t gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb); static codegen_status_t gen_nop(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Do nothing return YJIT_KEEP_COMPILING; } static codegen_status_t gen_dup(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Get the top value and its type x86opnd_t dup_val = ctx_stack_pop(ctx, 0); temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(0)); // Push the same value on top x86opnd_t loc0 = ctx_stack_push_mapping(ctx, mapping); mov(cb, REG0, dup_val); mov(cb, loc0, REG0); return YJIT_KEEP_COMPILING; } // duplicate stack top n elements static codegen_status_t gen_dupn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { rb_num_t n = (rb_num_t)jit_get_arg(jit, 0); // In practice, seems to be only used for n==2 if (n != 2) { return YJIT_CANT_COMPILE; } x86opnd_t opnd1 = ctx_stack_opnd(ctx, 1); x86opnd_t opnd0 = ctx_stack_opnd(ctx, 0); temp_type_mapping_t mapping1 = ctx_get_opnd_mapping(ctx, OPND_STACK(1)); temp_type_mapping_t mapping0 = ctx_get_opnd_mapping(ctx, OPND_STACK(0)); x86opnd_t dst1 = ctx_stack_push_mapping(ctx, mapping1); mov(cb, REG0, opnd1); mov(cb, dst1, REG0); x86opnd_t dst0 = ctx_stack_push_mapping(ctx, mapping0); mov(cb, REG0, opnd0); mov(cb, dst0, REG0); return YJIT_KEEP_COMPILING; } static void stack_swap(ctx_t *ctx, codeblock_t *cb, int offset0, int offset1, x86opnd_t reg0, x86opnd_t reg1) { x86opnd_t opnd0 = ctx_stack_opnd(ctx, offset0); x86opnd_t opnd1 = ctx_stack_opnd(ctx, offset1); temp_type_mapping_t mapping0 = ctx_get_opnd_mapping(ctx, OPND_STACK(offset0)); temp_type_mapping_t mapping1 = ctx_get_opnd_mapping(ctx, OPND_STACK(offset1)); mov(cb, reg0, opnd0); mov(cb, reg1, opnd1); mov(cb, opnd0, reg1); mov(cb, opnd1, reg0); ctx_set_opnd_mapping(ctx, OPND_STACK(offset0), mapping1); ctx_set_opnd_mapping(ctx, OPND_STACK(offset1), mapping0); } // Swap top 2 stack entries static codegen_status_t gen_swap(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { stack_swap(ctx , cb, 0, 1, REG0, REG1); return YJIT_KEEP_COMPILING; } // set Nth stack entry to stack top static codegen_status_t gen_setn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { rb_num_t n = (rb_num_t)jit_get_arg(jit, 0); // Set the destination x86opnd_t top_val = ctx_stack_pop(ctx, 0); x86opnd_t dst_opnd = ctx_stack_opnd(ctx, (int32_t)n); mov(cb, REG0, top_val); mov(cb, dst_opnd, REG0); temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(0)); ctx_set_opnd_mapping(ctx, OPND_STACK(n), mapping); return YJIT_KEEP_COMPILING; } // get nth stack value, then push it static codegen_status_t gen_topn(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int32_t n = (int32_t)jit_get_arg(jit, 0); // Get top n type / operand x86opnd_t top_n_val = ctx_stack_opnd(ctx, n); temp_type_mapping_t mapping = ctx_get_opnd_mapping(ctx, OPND_STACK(n)); x86opnd_t loc0 = ctx_stack_push_mapping(ctx, mapping); mov(cb, REG0, top_n_val); mov(cb, loc0, REG0); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_pop(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Decrement SP ctx_stack_pop(ctx, 1); return YJIT_KEEP_COMPILING; } // Pop n values off the stack static codegen_status_t gen_adjuststack(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { rb_num_t n = (rb_num_t)jit_get_arg(jit, 0); ctx_stack_pop(ctx, n); return YJIT_KEEP_COMPILING; } // new array initialized from top N values static codegen_status_t gen_newarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { rb_num_t n = (rb_num_t)jit_get_arg(jit, 0); // Save the PC and SP because we are allocating jit_prepare_routine_call(jit, ctx, REG0); x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)n)); // call rb_ec_ary_new_from_values(struct rb_execution_context_struct *ec, long n, const VALUE *elts); mov(cb, C_ARG_REGS[0], REG_EC); mov(cb, C_ARG_REGS[1], imm_opnd(n)); lea(cb, C_ARG_REGS[2], values_ptr); call_ptr(cb, REG0, (void *)rb_ec_ary_new_from_values); ctx_stack_pop(ctx, n); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } // dup array static codegen_status_t gen_duparray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { VALUE ary = jit_get_arg(jit, 0); // Save the PC and SP because we are allocating jit_prepare_routine_call(jit, ctx, REG0); // call rb_ary_resurrect(VALUE ary); jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], ary); call_ptr(cb, REG0, (void *)rb_ary_resurrect); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } // dup hash static codegen_status_t gen_duphash(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { VALUE hash = jit_get_arg(jit, 0); // Save the PC and SP because we are allocating jit_prepare_routine_call(jit, ctx, REG0); // call rb_hash_resurrect(VALUE hash); jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], hash); call_ptr(cb, REG0, (void *)rb_hash_resurrect); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } VALUE rb_vm_splat_array(VALUE flag, VALUE ary); // call to_a on the array on the stack static codegen_status_t gen_splatarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { VALUE flag = (VALUE) jit_get_arg(jit, 0); // Save the PC and SP because the callee may allocate // Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, REG0); // Get the operands from the stack x86opnd_t ary_opnd = ctx_stack_pop(ctx, 1); // Call rb_vm_splat_array(flag, ary) jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], flag); mov(cb, C_ARG_REGS[1], ary_opnd); call_ptr(cb, REG1, (void *) rb_vm_splat_array); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_ARRAY); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } // new range initialized from top 2 values static codegen_status_t gen_newrange(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { rb_num_t flag = (rb_num_t)jit_get_arg(jit, 0); // rb_range_new() allocates and can raise jit_prepare_routine_call(jit, ctx, REG0); // val = rb_range_new(low, high, (int)flag); mov(cb, C_ARG_REGS[0], ctx_stack_opnd(ctx, 1)); mov(cb, C_ARG_REGS[1], ctx_stack_opnd(ctx, 0)); mov(cb, C_ARG_REGS[2], imm_opnd(flag)); call_ptr(cb, REG0, (void *)rb_range_new); ctx_stack_pop(ctx, 2); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HEAP); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } static void guard_object_is_heap(codeblock_t *cb, x86opnd_t object_opnd, ctx_t *ctx, uint8_t *side_exit) { ADD_COMMENT(cb, "guard object is heap"); // Test that the object is not an immediate test(cb, object_opnd, imm_opnd(RUBY_IMMEDIATE_MASK)); jnz_ptr(cb, side_exit); // Test that the object is not false or nil cmp(cb, object_opnd, imm_opnd(Qnil)); RUBY_ASSERT(Qfalse < Qnil); jbe_ptr(cb, side_exit); } static inline void guard_object_is_array(codeblock_t *cb, x86opnd_t object_opnd, x86opnd_t flags_opnd, ctx_t *ctx, uint8_t *side_exit) { ADD_COMMENT(cb, "guard object is array"); // Pull out the type mask mov(cb, flags_opnd, member_opnd(object_opnd, struct RBasic, flags)); and(cb, flags_opnd, imm_opnd(RUBY_T_MASK)); // Compare the result with T_ARRAY cmp(cb, flags_opnd, imm_opnd(T_ARRAY)); jne_ptr(cb, side_exit); } // push enough nils onto the stack to fill out an array static codegen_status_t gen_expandarray(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int flag = (int) jit_get_arg(jit, 1); // If this instruction has the splat flag, then bail out. if (flag & 0x01) { GEN_COUNTER_INC(cb, expandarray_splat); return YJIT_CANT_COMPILE; } // If this instruction has the postarg flag, then bail out. if (flag & 0x02) { GEN_COUNTER_INC(cb, expandarray_postarg); return YJIT_CANT_COMPILE; } uint8_t *side_exit = yjit_side_exit(jit, ctx); // num is the number of requested values. If there aren't enough in the // array then we're going to push on nils. int num = (int)jit_get_arg(jit, 0); val_type_t array_type = ctx_get_opnd_type(ctx, OPND_STACK(0)); x86opnd_t array_opnd = ctx_stack_pop(ctx, 1); if (array_type.type == ETYPE_NIL) { // special case for a, b = nil pattern // push N nils onto the stack for (int i = 0; i < num; i++) { x86opnd_t push = ctx_stack_push(ctx, TYPE_NIL); mov(cb, push, imm_opnd(Qnil)); } return YJIT_KEEP_COMPILING; } // Move the array from the stack into REG0 and check that it's an array. mov(cb, REG0, array_opnd); guard_object_is_heap(cb, REG0, ctx, COUNTED_EXIT(jit, side_exit, expandarray_not_array)); guard_object_is_array(cb, REG0, REG1, ctx, COUNTED_EXIT(jit, side_exit, expandarray_not_array)); // If we don't actually want any values, then just return. if (num == 0) { return YJIT_KEEP_COMPILING; } // Pull out the embed flag to check if it's an embedded array. x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags); mov(cb, REG1, flags_opnd); // Move the length of the embedded array into REG1. and(cb, REG1, imm_opnd(RARRAY_EMBED_LEN_MASK)); shr(cb, REG1, imm_opnd(RARRAY_EMBED_LEN_SHIFT)); // Conditionally move the length of the heap array into REG1. test(cb, flags_opnd, imm_opnd(RARRAY_EMBED_FLAG)); cmovz(cb, REG1, member_opnd(REG0, struct RArray, as.heap.len)); // Only handle the case where the number of values in the array is greater // than or equal to the number of values requested. cmp(cb, REG1, imm_opnd(num)); jl_ptr(cb, COUNTED_EXIT(jit, side_exit, expandarray_rhs_too_small)); // Load the address of the embedded array into REG1. // (struct RArray *)(obj)->as.ary lea(cb, REG1, member_opnd(REG0, struct RArray, as.ary)); // Conditionally load the address of the heap array into REG1. // (struct RArray *)(obj)->as.heap.ptr test(cb, flags_opnd, imm_opnd(RARRAY_EMBED_FLAG)); cmovz(cb, REG1, member_opnd(REG0, struct RArray, as.heap.ptr)); // Loop backward through the array and push each element onto the stack. for (int32_t i = (int32_t) num - 1; i >= 0; i--) { x86opnd_t top = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, REG0, mem_opnd(64, REG1, i * SIZEOF_VALUE)); mov(cb, top, REG0); } return YJIT_KEEP_COMPILING; } // new hash initialized from top N values static codegen_status_t gen_newhash(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int32_t num = (int32_t)jit_get_arg(jit, 0); // Save the PC and SP because we are allocating jit_prepare_routine_call(jit, ctx, REG0); if (num) { // val = rb_hash_new_with_size(num / 2); mov(cb, C_ARG_REGS[0], imm_opnd(num / 2)); call_ptr(cb, REG0, (void *)rb_hash_new_with_size); // save the allocated hash as we want to push it after insertion push(cb, RAX); push(cb, RAX); // alignment // rb_hash_bulk_insert(num, STACK_ADDR_FROM_TOP(num), val); mov(cb, C_ARG_REGS[0], imm_opnd(num)); lea(cb, C_ARG_REGS[1], ctx_stack_opnd(ctx, num - 1)); mov(cb, C_ARG_REGS[2], RAX); call_ptr(cb, REG0, (void *)rb_hash_bulk_insert); pop(cb, RAX); // alignment pop(cb, RAX); ctx_stack_pop(ctx, num); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH); mov(cb, stack_ret, RAX); } else { // val = rb_hash_new(); call_ptr(cb, REG0, (void *)rb_hash_new); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HASH); mov(cb, stack_ret, RAX); } return YJIT_KEEP_COMPILING; } // Push a constant value to the stack, including type information. // The constant may be a heap object or a special constant. static void jit_putobject(jitstate_t *jit, ctx_t *ctx, VALUE arg) { val_type_t val_type = yjit_type_of_value(arg); x86opnd_t stack_top = ctx_stack_push(ctx, val_type); if (SPECIAL_CONST_P(arg)) { // Immediates will not move and do not need to be tracked for GC // Thanks to this we can mov directly to memory when possible. // NOTE: VALUE -> int64_t cast below is implementation defined. // Hopefully it preserves the the bit pattern or raise a signal. // See N1256 section 6.3.1.3. x86opnd_t imm = imm_opnd((int64_t)arg); // 64-bit immediates can't be directly written to memory if (imm.num_bits <= 32) { mov(cb, stack_top, imm); } else { mov(cb, REG0, imm); mov(cb, stack_top, REG0); } } else { // Load the value to push into REG0 // Note that this value may get moved by the GC jit_mov_gc_ptr(jit, cb, REG0, arg); // Write argument at SP mov(cb, stack_top, REG0); } } static codegen_status_t gen_putnil(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { jit_putobject(jit, ctx, Qnil); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_putobject(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { VALUE arg = jit_get_arg(jit, 0); jit_putobject(jit, ctx, arg); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_putstring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { VALUE put_val = jit_get_arg(jit, 0); // Save the PC and SP because the callee will allocate jit_prepare_routine_call(jit, ctx, REG0); mov(cb, C_ARG_REGS[0], REG_EC); jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], put_val); call_ptr(cb, REG0, (void *)rb_ec_str_resurrect); x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_STRING); mov(cb, stack_top, RAX); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_putobject_int2fix(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int opcode = jit_get_opcode(jit); int cst_val = (opcode == BIN(putobject_INT2FIX_0_))? 0:1; jit_putobject(jit, ctx, INT2FIX(cst_val)); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_putself(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Load self from CFP mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self)); // Write it on the stack x86opnd_t stack_top = ctx_stack_push_self(ctx); mov(cb, stack_top, REG0); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_putspecialobject(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { enum vm_special_object_type type = (enum vm_special_object_type)jit_get_arg(jit, 0); if (type == VM_SPECIAL_OBJECT_VMCORE) { x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_HEAP); jit_mov_gc_ptr(jit, cb, REG0, rb_mRubyVMFrozenCore); mov(cb, stack_top, REG0); return YJIT_KEEP_COMPILING; } else { // TODO: implement for VM_SPECIAL_OBJECT_CBASE and // VM_SPECIAL_OBJECT_CONST_BASE return YJIT_CANT_COMPILE; } } // Get EP at level from CFP static void gen_get_ep(codeblock_t *cb, x86opnd_t reg, uint32_t level) { // Load environment pointer EP from CFP mov(cb, reg, member_opnd(REG_CFP, rb_control_frame_t, ep)); while (level--) { // Get the previous EP from the current EP // See GET_PREV_EP(ep) macro // VALUE *prev_ep = ((VALUE *)((ep)[VM_ENV_DATA_INDEX_SPECVAL] & ~0x03)) mov(cb, reg, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL)); and(cb, reg, imm_opnd(~0x03)); } } // Compute the local table index of a variable from its index relative to the // environment object. static uint32_t slot_to_local_idx(const rb_iseq_t *iseq, int32_t slot_idx) { // Layout illustration // This is an array of VALUE // | VM_ENV_DATA_SIZE | // v v // low addr <+-------+-------+-------+-------+------------------+ // |local 0|local 1| ... |local n| .... | // +-------+-------+-------+-------+------------------+ // ^ ^ ^ ^ // +-------+---local_table_size----+ cfp->ep--+ // | | // +------------------slot_idx----------------+ // // See usages of local_var_name() from iseq.c for similar calculation. // FIXME: unsigned to signed cast below can truncate int32_t local_table_size = iseq->body->local_table_size; int32_t op = slot_idx - VM_ENV_DATA_SIZE; int32_t local_idx = local_table_size - op - 1; RUBY_ASSERT(local_idx >= 0 && local_idx < local_table_size); return (uint32_t)local_idx; } static codegen_status_t gen_getlocal_wc0(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Compute the offset from BP to the local // TODO: Type is lindex_t in interpter. The following cast can truncate. // Not in the mood to dance around signed multiplication UB at the moment... int32_t slot_idx = (int32_t)jit_get_arg(jit, 0); const int32_t offs = -(SIZEOF_VALUE * slot_idx); uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx); // Load environment pointer EP (level 0) from CFP gen_get_ep(cb, REG0, 0); // Load the local from the EP mov(cb, REG0, mem_opnd(64, REG0, offs)); // Write the local at SP x86opnd_t stack_top = ctx_stack_push_local(ctx, local_idx); mov(cb, stack_top, REG0); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_getlocal_generic(ctx_t *ctx, uint32_t local_idx, uint32_t level) { gen_get_ep(cb, REG0, level); // Load the local from the block // val = *(vm_get_ep(GET_EP(), level) - idx); const int32_t offs = -(SIZEOF_VALUE * local_idx); mov(cb, REG0, mem_opnd(64, REG0, offs)); // Write the local at SP x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_top, REG0); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_getlocal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int32_t idx = (int32_t)jit_get_arg(jit, 0); int32_t level = (int32_t)jit_get_arg(jit, 1); return gen_getlocal_generic(ctx, idx, level); } static codegen_status_t gen_getlocal_wc1(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int32_t idx = (int32_t)jit_get_arg(jit, 0); return gen_getlocal_generic(ctx, idx, 1); } static codegen_status_t gen_setlocal_wc0(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { /* vm_env_write(const VALUE *ep, int index, VALUE v) { VALUE flags = ep[VM_ENV_DATA_INDEX_FLAGS]; if (LIKELY((flags & VM_ENV_FLAG_WB_REQUIRED) == 0)) { VM_STACK_ENV_WRITE(ep, index, v); } else { vm_env_write_slowpath(ep, index, v); } } */ int32_t slot_idx = (int32_t)jit_get_arg(jit, 0); uint32_t local_idx = slot_to_local_idx(jit->iseq, slot_idx); // Load environment pointer EP (level 0) from CFP gen_get_ep(cb, REG0, 0); // flags & VM_ENV_FLAG_WB_REQUIRED x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS); test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED)); // Create a side-exit to fall back to the interpreter uint8_t *side_exit = yjit_side_exit(jit, ctx); // if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0 jnz_ptr(cb, side_exit); // Set the type of the local variable in the context val_type_t temp_type = ctx_get_opnd_type(ctx, OPND_STACK(0)); ctx_set_local_type(ctx, local_idx, temp_type); // Pop the value to write from the stack x86opnd_t stack_top = ctx_stack_pop(ctx, 1); mov(cb, REG1, stack_top); // Write the value at the environment pointer const int32_t offs = -8 * slot_idx; mov(cb, mem_opnd(64, REG0, offs), REG1); return YJIT_KEEP_COMPILING; } // Push Qtrue or Qfalse depending on whether the given keyword was supplied by // the caller static codegen_status_t gen_checkkeyword(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // When a keyword is unspecified past index 32, a hash will be used // instead. This can only happen in iseqs taking more than 32 keywords. if (jit->iseq->body->param.keyword->num >= 32) { return YJIT_CANT_COMPILE; } // The EP offset to the undefined bits local int32_t bits_offset = (int32_t)jit_get_arg(jit, 0); // The index of the keyword we want to check int32_t index = (int32_t)jit_get_arg(jit, 1); // Load environment pointer EP gen_get_ep(cb, REG0, 0); // VALUE kw_bits = *(ep - bits); x86opnd_t bits_opnd = mem_opnd(64, REG0, sizeof(VALUE) * -bits_offset); // unsigned int b = (unsigned int)FIX2ULONG(kw_bits); // if ((b & (0x01 << idx))) { // // We can skip the FIX2ULONG conversion by shifting the bit we test int64_t bit_test = 0x01 << (index + 1); test(cb, bits_opnd, imm_opnd(bit_test)); mov(cb, REG0, imm_opnd(Qfalse)); mov(cb, REG1, imm_opnd(Qtrue)); cmovz(cb, REG0, REG1); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_IMM); mov(cb, stack_ret, REG0); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_setlocal_generic(jitstate_t *jit, ctx_t *ctx, uint32_t local_idx, uint32_t level) { // Load environment pointer EP at level gen_get_ep(cb, REG0, level); // flags & VM_ENV_FLAG_WB_REQUIRED x86opnd_t flags_opnd = mem_opnd(64, REG0, sizeof(VALUE) * VM_ENV_DATA_INDEX_FLAGS); test(cb, flags_opnd, imm_opnd(VM_ENV_FLAG_WB_REQUIRED)); // Create a side-exit to fall back to the interpreter uint8_t *side_exit = yjit_side_exit(jit, ctx); // if (flags & VM_ENV_FLAG_WB_REQUIRED) != 0 jnz_ptr(cb, side_exit); // Pop the value to write from the stack x86opnd_t stack_top = ctx_stack_pop(ctx, 1); mov(cb, REG1, stack_top); // Write the value at the environment pointer const int32_t offs = -(SIZEOF_VALUE * local_idx); mov(cb, mem_opnd(64, REG0, offs), REG1); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_setlocal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int32_t idx = (int32_t)jit_get_arg(jit, 0); int32_t level = (int32_t)jit_get_arg(jit, 1); return gen_setlocal_generic(jit, ctx, idx, level); } static codegen_status_t gen_setlocal_wc1(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int32_t idx = (int32_t)jit_get_arg(jit, 0); return gen_setlocal_generic(jit, ctx, idx, 1); } static void gen_jnz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) { switch (shape) { case SHAPE_NEXT0: case SHAPE_NEXT1: RUBY_ASSERT(false); break; case SHAPE_DEFAULT: jnz_ptr(cb, target0); break; } } static void gen_jz_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) { switch (shape) { case SHAPE_NEXT0: case SHAPE_NEXT1: RUBY_ASSERT(false); break; case SHAPE_DEFAULT: jz_ptr(cb, target0); break; } } static void gen_jbe_to_target0(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) { switch (shape) { case SHAPE_NEXT0: case SHAPE_NEXT1: RUBY_ASSERT(false); break; case SHAPE_DEFAULT: jbe_ptr(cb, target0); break; } } enum jcc_kinds { JCC_JNE, JCC_JNZ, JCC_JZ, JCC_JE, JCC_JBE, JCC_JNA, }; // Generate a jump to a stub that recompiles the current YARV instruction on failure. // When depth_limitk is exceeded, generate a jump to a side exit. static void jit_chain_guard(enum jcc_kinds jcc, jitstate_t *jit, const ctx_t *ctx, uint8_t depth_limit, uint8_t *side_exit) { branchgen_fn target0_gen_fn; switch (jcc) { case JCC_JNE: case JCC_JNZ: target0_gen_fn = gen_jnz_to_target0; break; case JCC_JZ: case JCC_JE: target0_gen_fn = gen_jz_to_target0; break; case JCC_JBE: case JCC_JNA: target0_gen_fn = gen_jbe_to_target0; break; default: rb_bug("yjit: unimplemented jump kind"); break; }; if (ctx->chain_depth < depth_limit) { ctx_t deeper = *ctx; deeper.chain_depth++; gen_branch( jit, ctx, (blockid_t) { jit->iseq, jit->insn_idx }, &deeper, BLOCKID_NULL, NULL, target0_gen_fn ); } else { target0_gen_fn(cb, side_exit, NULL, SHAPE_DEFAULT); } } enum { GETIVAR_MAX_DEPTH = 10, // up to 5 different classes, and embedded or not for each OPT_AREF_MAX_CHAIN_DEPTH = 2, // hashes and arrays SEND_MAX_DEPTH = 5, // up to 5 different classes }; VALUE rb_vm_set_ivar_idx(VALUE obj, uint32_t idx, VALUE val); // Codegen for setting an instance variable. // Preconditions: // - receiver is in REG0 // - receiver has the same class as CLASS_OF(comptime_receiver) // - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled static codegen_status_t gen_set_ivar(jitstate_t *jit, ctx_t *ctx, VALUE recv, VALUE klass, ID ivar_name) { // Save the PC and SP because the callee may allocate // Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, REG0); // Get the operands from the stack x86opnd_t val_opnd = ctx_stack_pop(ctx, 1); x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1); uint32_t ivar_index = rb_obj_ensure_iv_index_mapping(recv, ivar_name); // Call rb_vm_set_ivar_idx with the receiver, the index of the ivar, and the value mov(cb, C_ARG_REGS[0], recv_opnd); mov(cb, C_ARG_REGS[1], imm_opnd(ivar_index)); mov(cb, C_ARG_REGS[2], val_opnd); call_ptr(cb, REG0, (void *)rb_vm_set_ivar_idx); x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, out_opnd, RAX); return YJIT_KEEP_COMPILING; } // Codegen for getting an instance variable. // Preconditions: // - receiver is in REG0 // - receiver has the same class as CLASS_OF(comptime_receiver) // - no stack push or pops to ctx since the entry to the codegen of the instruction being compiled static codegen_status_t gen_get_ivar(jitstate_t *jit, ctx_t *ctx, const int max_chain_depth, VALUE comptime_receiver, ID ivar_name, insn_opnd_t reg0_opnd, uint8_t *side_exit) { VALUE comptime_val_klass = CLASS_OF(comptime_receiver); const ctx_t starting_context = *ctx; // make a copy for use with jit_chain_guard // If the class uses the default allocator, instances should all be T_OBJECT // NOTE: This assumes nobody changes the allocator of the class after allocation. // Eventually, we can encode whether an object is T_OBJECT or not // inside object shapes. if (!RB_TYPE_P(comptime_receiver, T_OBJECT) || rb_get_alloc_func(comptime_val_klass) != rb_class_allocate_instance) { // General case. Call rb_ivar_get(). // VALUE rb_ivar_get(VALUE obj, ID id) ADD_COMMENT(cb, "call rb_ivar_get()"); // The function could raise exceptions. jit_prepare_routine_call(jit, ctx, REG1); mov(cb, C_ARG_REGS[0], REG0); mov(cb, C_ARG_REGS[1], imm_opnd((int64_t)ivar_name)); call_ptr(cb, REG1, (void *)rb_ivar_get); if (!reg0_opnd.is_self) { (void)ctx_stack_pop(ctx, 1); } // Push the ivar on the stack x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, out_opnd, RAX); // Jump to next instruction. This allows guard chains to share the same successor. jit_jump_to_next_insn(jit, ctx); return YJIT_END_BLOCK; } /* // FIXME: // This check was added because of a failure in a test involving the // Nokogiri Document class where we see a T_DATA that still has the default // allocator. // Aaron Patterson argues that this is a bug in the C extension, because // people could call .allocate() on the class and still get a T_OBJECT // For now I added an extra dynamic check that the receiver is T_OBJECT // so we can safely pass all the tests in Shopify Core. // // Guard that the receiver is T_OBJECT // #define RB_BUILTIN_TYPE(x) (int)(((struct RBasic*)(x))->flags & RUBY_T_MASK) ADD_COMMENT(cb, "guard receiver is T_OBJECT"); mov(cb, REG1, member_opnd(REG0, struct RBasic, flags)); and(cb, REG1, imm_opnd(RUBY_T_MASK)); cmp(cb, REG1, imm_opnd(T_OBJECT)); jit_chain_guard(JCC_JNE, jit, &starting_context, max_chain_depth, side_exit); */ // FIXME: Mapping the index could fail when there is too many ivar names. If we're // compiling for a branch stub that can cause the exception to be thrown from the // wrong PC. uint32_t ivar_index = rb_obj_ensure_iv_index_mapping(comptime_receiver, ivar_name); // Pop receiver if it's on the temp stack if (!reg0_opnd.is_self) { (void)ctx_stack_pop(ctx, 1); } // Compile time self is embedded and the ivar index lands within the object if (RB_FL_TEST_RAW(comptime_receiver, ROBJECT_EMBED) && ivar_index < ROBJECT_EMBED_LEN_MAX) { // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h // Guard that self is embedded // TODO: BT and JC is shorter ADD_COMMENT(cb, "guard embedded getivar"); x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags); test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED)); jit_chain_guard(JCC_JZ, jit, &starting_context, max_chain_depth, COUNTED_EXIT(jit, side_exit, getivar_megamorphic)); // Load the variable x86opnd_t ivar_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.ary) + ivar_index * SIZEOF_VALUE); mov(cb, REG1, ivar_opnd); // Guard that the variable is not Qundef cmp(cb, REG1, imm_opnd(Qundef)); mov(cb, REG0, imm_opnd(Qnil)); cmove(cb, REG1, REG0); // Push the ivar on the stack x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, out_opnd, REG1); } else { // Compile time value is *not* embedded. // Guard that value is *not* embedded // See ROBJECT_IVPTR() from include/ruby/internal/core/robject.h ADD_COMMENT(cb, "guard extended getivar"); x86opnd_t flags_opnd = member_opnd(REG0, struct RBasic, flags); test(cb, flags_opnd, imm_opnd(ROBJECT_EMBED)); jit_chain_guard(JCC_JNZ, jit, &starting_context, max_chain_depth, COUNTED_EXIT(jit, side_exit, getivar_megamorphic)); // check that the extended table is big enough if (ivar_index >= ROBJECT_EMBED_LEN_MAX + 1) { // Check that the slot is inside the extended table (num_slots > index) x86opnd_t num_slots = mem_opnd(32, REG0, offsetof(struct RObject, as.heap.numiv)); cmp(cb, num_slots, imm_opnd(ivar_index)); jle_ptr(cb, COUNTED_EXIT(jit, side_exit, getivar_idx_out_of_range)); } // Get a pointer to the extended table x86opnd_t tbl_opnd = mem_opnd(64, REG0, offsetof(struct RObject, as.heap.ivptr)); mov(cb, REG0, tbl_opnd); // Read the ivar from the extended table x86opnd_t ivar_opnd = mem_opnd(64, REG0, sizeof(VALUE) * ivar_index); mov(cb, REG0, ivar_opnd); // Check that the ivar is not Qundef cmp(cb, REG0, imm_opnd(Qundef)); mov(cb, REG1, imm_opnd(Qnil)); cmove(cb, REG0, REG1); // Push the ivar on the stack x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, out_opnd, REG0); } // Jump to next instruction. This allows guard chains to share the same successor. jit_jump_to_next_insn(jit, ctx); return YJIT_END_BLOCK; } static codegen_status_t gen_getinstancevariable(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Defer compilation so we can specialize on a runtime `self` if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } ID ivar_name = (ID)jit_get_arg(jit, 0); VALUE comptime_val = jit_peek_at_self(jit, ctx); VALUE comptime_val_klass = CLASS_OF(comptime_val); // Generate a side exit uint8_t *side_exit = yjit_side_exit(jit, ctx); // Guard that the receiver has the same class as the one from compile time. mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, self)); jit_guard_known_klass(jit, ctx, comptime_val_klass, OPND_SELF, comptime_val, GETIVAR_MAX_DEPTH, side_exit); return gen_get_ivar(jit, ctx, GETIVAR_MAX_DEPTH, comptime_val, ivar_name, OPND_SELF, side_exit); } void rb_vm_setinstancevariable(const rb_iseq_t *iseq, VALUE obj, ID id, VALUE val, IVC ic); static codegen_status_t gen_setinstancevariable(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { ID id = (ID)jit_get_arg(jit, 0); IVC ic = (IVC)jit_get_arg(jit, 1); // Save the PC and SP because the callee may allocate // Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, REG0); // Get the operands from the stack x86opnd_t val_opnd = ctx_stack_pop(ctx, 1); // Call rb_vm_setinstancevariable(iseq, obj, id, val, ic); mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self)); mov(cb, C_ARG_REGS[3], val_opnd); mov(cb, C_ARG_REGS[2], imm_opnd(id)); mov(cb, C_ARG_REGS[4], const_ptr_opnd(ic)); jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], (VALUE)jit->iseq); call_ptr(cb, REG0, (void *)rb_vm_setinstancevariable); return YJIT_KEEP_COMPILING; } bool rb_vm_defined(rb_execution_context_t *ec, rb_control_frame_t *reg_cfp, rb_num_t op_type, VALUE obj, VALUE v); static codegen_status_t gen_defined(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { rb_num_t op_type = (rb_num_t)jit_get_arg(jit, 0); VALUE obj = (VALUE)jit_get_arg(jit, 1); VALUE pushval = (VALUE)jit_get_arg(jit, 2); // Save the PC and SP because the callee may allocate // Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, REG0); // Get the operands from the stack x86opnd_t v_opnd = ctx_stack_pop(ctx, 1); // Call vm_defined(ec, reg_cfp, op_type, obj, v) mov(cb, C_ARG_REGS[0], REG_EC); mov(cb, C_ARG_REGS[1], REG_CFP); mov(cb, C_ARG_REGS[2], imm_opnd(op_type)); jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)obj); mov(cb, C_ARG_REGS[4], v_opnd); call_ptr(cb, REG0, (void *)rb_vm_defined); // if (vm_defined(ec, GET_CFP(), op_type, obj, v)) { // val = pushval; // } jit_mov_gc_ptr(jit, cb, REG1, (VALUE)pushval); cmp(cb, AL, imm_opnd(0)); mov(cb, RAX, imm_opnd(Qnil)); cmovnz(cb, RAX, REG1); // Push the return value onto the stack val_type_t out_type = SPECIAL_CONST_P(pushval)? TYPE_IMM:TYPE_UNKNOWN; x86opnd_t stack_ret = ctx_stack_push(ctx, out_type); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_checktype(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { enum ruby_value_type type_val = (enum ruby_value_type)jit_get_arg(jit, 0); // Only three types are emitted by compile.c if (type_val == T_STRING || type_val == T_ARRAY || type_val == T_HASH) { val_type_t val_type = ctx_get_opnd_type(ctx, OPND_STACK(0)); x86opnd_t val = ctx_stack_pop(ctx, 1); x86opnd_t stack_ret; // Check if we know from type information if ((type_val == T_STRING && val_type.type == ETYPE_STRING) || (type_val == T_ARRAY && val_type.type == ETYPE_ARRAY) || (type_val == T_HASH && val_type.type == ETYPE_HASH)) { // guaranteed type match stack_ret = ctx_stack_push(ctx, TYPE_TRUE); mov(cb, stack_ret, imm_opnd(Qtrue)); return YJIT_KEEP_COMPILING; } else if (val_type.is_imm || val_type.type != ETYPE_UNKNOWN) { // guaranteed not to match T_STRING/T_ARRAY/T_HASH stack_ret = ctx_stack_push(ctx, TYPE_FALSE); mov(cb, stack_ret, imm_opnd(Qfalse)); return YJIT_KEEP_COMPILING; } mov(cb, REG0, val); mov(cb, REG1, imm_opnd(Qfalse)); uint32_t ret = cb_new_label(cb, "ret"); if (!val_type.is_heap) { // if (SPECIAL_CONST_P(val)) { // Return Qfalse via REG1 if not on heap test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK)); jnz_label(cb, ret); cmp(cb, REG0, imm_opnd(Qnil)); jbe_label(cb, ret); } // Check type on object mov(cb, REG0, mem_opnd(64, REG0, offsetof(struct RBasic, flags))); and(cb, REG0, imm_opnd(RUBY_T_MASK)); cmp(cb, REG0, imm_opnd(type_val)); mov(cb, REG0, imm_opnd(Qtrue)); // REG1 contains Qfalse from above cmove(cb, REG1, REG0); cb_write_label(cb, ret); stack_ret = ctx_stack_push(ctx, TYPE_IMM); mov(cb, stack_ret, REG1); cb_link_labels(cb); return YJIT_KEEP_COMPILING; } else { return YJIT_CANT_COMPILE; } } static codegen_status_t gen_concatstrings(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { rb_num_t n = (rb_num_t)jit_get_arg(jit, 0); // Save the PC and SP because we are allocating jit_prepare_routine_call(jit, ctx, REG0); x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)n)); // call rb_str_concat_literals(long n, const VALUE *strings); mov(cb, C_ARG_REGS[0], imm_opnd(n)); lea(cb, C_ARG_REGS[1], values_ptr); call_ptr(cb, REG0, (void *)rb_str_concat_literals); ctx_stack_pop(ctx, n); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } static void guard_two_fixnums(ctx_t *ctx, uint8_t *side_exit) { // Get the stack operand types val_type_t arg1_type = ctx_get_opnd_type(ctx, OPND_STACK(0)); val_type_t arg0_type = ctx_get_opnd_type(ctx, OPND_STACK(1)); if (arg0_type.is_heap || arg1_type.is_heap) { jmp_ptr(cb, side_exit); return; } if (arg0_type.type != ETYPE_FIXNUM && arg0_type.type != ETYPE_UNKNOWN) { jmp_ptr(cb, side_exit); return; } if (arg1_type.type != ETYPE_FIXNUM && arg1_type.type != ETYPE_UNKNOWN) { jmp_ptr(cb, side_exit); return; } RUBY_ASSERT(!arg0_type.is_heap); RUBY_ASSERT(!arg1_type.is_heap); RUBY_ASSERT(arg0_type.type == ETYPE_FIXNUM || arg0_type.type == ETYPE_UNKNOWN); RUBY_ASSERT(arg1_type.type == ETYPE_FIXNUM || arg1_type.type == ETYPE_UNKNOWN); // Get stack operands without popping them x86opnd_t arg1 = ctx_stack_opnd(ctx, 0); x86opnd_t arg0 = ctx_stack_opnd(ctx, 1); // If not fixnums, fall back if (arg0_type.type != ETYPE_FIXNUM) { ADD_COMMENT(cb, "guard arg0 fixnum"); test(cb, arg0, imm_opnd(RUBY_FIXNUM_FLAG)); jz_ptr(cb, side_exit); } if (arg1_type.type != ETYPE_FIXNUM) { ADD_COMMENT(cb, "guard arg1 fixnum"); test(cb, arg1, imm_opnd(RUBY_FIXNUM_FLAG)); jz_ptr(cb, side_exit); } // Set stack types in context ctx_upgrade_opnd_type(ctx, OPND_STACK(0), TYPE_FIXNUM); ctx_upgrade_opnd_type(ctx, OPND_STACK(1), TYPE_FIXNUM); } // Conditional move operation used by comparison operators typedef void (*cmov_fn)(codeblock_t *cb, x86opnd_t opnd0, x86opnd_t opnd1); static codegen_status_t gen_fixnum_cmp(jitstate_t *jit, ctx_t *ctx, cmov_fn cmov_op) { // Defer compilation so we can specialize base on a runtime receiver if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { // Create a side-exit to fall back to the interpreter // Note: we generate the side-exit before popping operands from the stack uint8_t *side_exit = yjit_side_exit(jit, ctx); if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_LT)) { return YJIT_CANT_COMPILE; } // Check that both operands are fixnums guard_two_fixnums(ctx, side_exit); // Get the operands from the stack x86opnd_t arg1 = ctx_stack_pop(ctx, 1); x86opnd_t arg0 = ctx_stack_pop(ctx, 1); // Compare the arguments xor(cb, REG0_32, REG0_32); // REG0 = Qfalse mov(cb, REG1, arg0); cmp(cb, REG1, arg1); mov(cb, REG1, imm_opnd(Qtrue)); cmov_op(cb, REG0, REG1); // Push the output on the stack x86opnd_t dst = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, dst, REG0); return YJIT_KEEP_COMPILING; } else { return gen_opt_send_without_block(jit, ctx, cb); } } static codegen_status_t gen_opt_lt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { return gen_fixnum_cmp(jit, ctx, cmovl); } static codegen_status_t gen_opt_le(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { return gen_fixnum_cmp(jit, ctx, cmovle); } static codegen_status_t gen_opt_ge(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { return gen_fixnum_cmp(jit, ctx, cmovge); } static codegen_status_t gen_opt_gt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { return gen_fixnum_cmp(jit, ctx, cmovg); } // Implements specialized equality for either two fixnum or two strings // Returns true if code was generated, otherwise false static bool gen_equality_specialized(jitstate_t *jit, ctx_t *ctx, uint8_t *side_exit) { VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); x86opnd_t a_opnd = ctx_stack_opnd(ctx, 1); x86opnd_t b_opnd = ctx_stack_opnd(ctx, 0); if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_EQ)) { // if overridden, emit the generic version return false; } guard_two_fixnums(ctx, side_exit); mov(cb, REG0, a_opnd); cmp(cb, REG0, b_opnd); mov(cb, REG0, imm_opnd(Qfalse)); mov(cb, REG1, imm_opnd(Qtrue)); cmove(cb, REG0, REG1); // Push the output on the stack ctx_stack_pop(ctx, 2); x86opnd_t dst = ctx_stack_push(ctx, TYPE_IMM); mov(cb, dst, REG0); return true; } else if (CLASS_OF(comptime_a) == rb_cString && CLASS_OF(comptime_b) == rb_cString) { if (!assume_bop_not_redefined(jit, STRING_REDEFINED_OP_FLAG, BOP_EQ)) { // if overridden, emit the generic version return false; } // Load a and b in preparation for call later mov(cb, C_ARG_REGS[0], a_opnd); mov(cb, C_ARG_REGS[1], b_opnd); // Guard that a is a String mov(cb, REG0, C_ARG_REGS[0]); jit_guard_known_klass(jit, ctx, rb_cString, OPND_STACK(1), comptime_a, SEND_MAX_DEPTH, side_exit); uint32_t ret = cb_new_label(cb, "ret"); // If they are equal by identity, return true cmp(cb, C_ARG_REGS[0], C_ARG_REGS[1]); mov(cb, RAX, imm_opnd(Qtrue)); je_label(cb, ret); // Otherwise guard that b is a T_STRING (from type info) or String (from runtime guard) if (ctx_get_opnd_type(ctx, OPND_STACK(0)).type != ETYPE_STRING) { mov(cb, REG0, C_ARG_REGS[1]); // Note: any T_STRING is valid here, but we check for a ::String for simplicity jit_guard_known_klass(jit, ctx, rb_cString, OPND_STACK(0), comptime_b, SEND_MAX_DEPTH, side_exit); } // Call rb_str_eql_internal(a, b) call_ptr(cb, REG0, (void *)rb_str_eql_internal); // Push the output on the stack cb_write_label(cb, ret); ctx_stack_pop(ctx, 2); x86opnd_t dst = ctx_stack_push(ctx, TYPE_IMM); mov(cb, dst, RAX); cb_link_labels(cb); return true; } else { return false; } } static codegen_status_t gen_opt_eq(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Defer compilation so we can specialize base on a runtime receiver if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } // Create a side-exit to fall back to the interpreter uint8_t *side_exit = yjit_side_exit(jit, ctx); if (gen_equality_specialized(jit, ctx, side_exit)) { jit_jump_to_next_insn(jit, ctx); return YJIT_END_BLOCK; } else { return gen_opt_send_without_block(jit, ctx, cb); } } static codegen_status_t gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block); static codegen_status_t gen_opt_neq(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // opt_neq is passed two rb_call_data as arguments: // first for ==, second for != struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 1); return gen_send_general(jit, ctx, cd, NULL); } static codegen_status_t gen_opt_aref(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { struct rb_call_data * cd = (struct rb_call_data *)jit_get_arg(jit, 0); int32_t argc = (int32_t)vm_ci_argc(cd->ci); // Only JIT one arg calls like `ary[6]` if (argc != 1) { GEN_COUNTER_INC(cb, oaref_argc_not_one); return YJIT_CANT_COMPILE; } // Defer compilation so we can specialize base on a runtime receiver if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } // Remember the context on entry for adding guard chains const ctx_t starting_context = *ctx; // Specialize base on compile time values VALUE comptime_idx = jit_peek_at_stack(jit, ctx, 0); VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 1); // Create a side-exit to fall back to the interpreter uint8_t *side_exit = yjit_side_exit(jit, ctx); if (CLASS_OF(comptime_recv) == rb_cArray && RB_FIXNUM_P(comptime_idx)) { if (!assume_bop_not_redefined(jit, ARRAY_REDEFINED_OP_FLAG, BOP_AREF)) { return YJIT_CANT_COMPILE; } // Pop the stack operands x86opnd_t idx_opnd = ctx_stack_pop(ctx, 1); x86opnd_t recv_opnd = ctx_stack_pop(ctx, 1); mov(cb, REG0, recv_opnd); // if (SPECIAL_CONST_P(recv)) { // Bail if receiver is not a heap object test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK)); jnz_ptr(cb, side_exit); cmp(cb, REG0, imm_opnd(Qfalse)); je_ptr(cb, side_exit); cmp(cb, REG0, imm_opnd(Qnil)); je_ptr(cb, side_exit); // Bail if recv has a class other than ::Array. // BOP_AREF check above is only good for ::Array. mov(cb, REG1, mem_opnd(64, REG0, offsetof(struct RBasic, klass))); mov(cb, REG0, const_ptr_opnd((void *)rb_cArray)); cmp(cb, REG0, REG1); jit_chain_guard(JCC_JNE, jit, &starting_context, OPT_AREF_MAX_CHAIN_DEPTH, side_exit); // Bail if idx is not a FIXNUM mov(cb, REG1, idx_opnd); test(cb, REG1, imm_opnd(RUBY_FIXNUM_FLAG)); jz_ptr(cb, COUNTED_EXIT(jit, side_exit, oaref_arg_not_fixnum)); // Call VALUE rb_ary_entry_internal(VALUE ary, long offset). // It never raises or allocates, so we don't need to write to cfp->pc. { mov(cb, RDI, recv_opnd); sar(cb, REG1, imm_opnd(1)); // Convert fixnum to int mov(cb, RSI, REG1); call_ptr(cb, REG0, (void *)rb_ary_entry_internal); // Push the return value onto the stack x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); } // Jump to next instruction. This allows guard chains to share the same successor. jit_jump_to_next_insn(jit, ctx); return YJIT_END_BLOCK; } else if (CLASS_OF(comptime_recv) == rb_cHash) { if (!assume_bop_not_redefined(jit, HASH_REDEFINED_OP_FLAG, BOP_AREF)) { return YJIT_CANT_COMPILE; } x86opnd_t key_opnd = ctx_stack_opnd(ctx, 0); x86opnd_t recv_opnd = ctx_stack_opnd(ctx, 1); // Guard that the receiver is a hash mov(cb, REG0, recv_opnd); jit_guard_known_klass(jit, ctx, rb_cHash, OPND_STACK(1), comptime_recv, OPT_AREF_MAX_CHAIN_DEPTH, side_exit); // Setup arguments for rb_hash_aref(). mov(cb, C_ARG_REGS[0], REG0); mov(cb, C_ARG_REGS[1], key_opnd); // Prepare to call rb_hash_aref(). It might call #hash on the key. jit_prepare_routine_call(jit, ctx, REG0); call_ptr(cb, REG0, (void *)rb_hash_aref); // Pop the key and the receiver (void)ctx_stack_pop(ctx, 2); // Push the return value onto the stack x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); // Jump to next instruction. This allows guard chains to share the same successor. jit_jump_to_next_insn(jit, ctx); return YJIT_END_BLOCK; } else { // General case. Call the [] method. return gen_opt_send_without_block(jit, ctx, cb); } } static codegen_status_t gen_opt_aset(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Defer compilation so we can specialize on a runtime `self` if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 2); VALUE comptime_key = jit_peek_at_stack(jit, ctx, 1); // Get the operands from the stack x86opnd_t recv = ctx_stack_opnd(ctx, 2); x86opnd_t key = ctx_stack_opnd(ctx, 1); x86opnd_t val = ctx_stack_opnd(ctx, 0); if (CLASS_OF(comptime_recv) == rb_cArray && FIXNUM_P(comptime_key)) { uint8_t *side_exit = yjit_side_exit(jit, ctx); // Guard receiver is an Array mov(cb, REG0, recv); jit_guard_known_klass(jit, ctx, rb_cArray, OPND_STACK(2), comptime_recv, SEND_MAX_DEPTH, side_exit); // Guard key is a fixnum mov(cb, REG0, key); jit_guard_known_klass(jit, ctx, rb_cInteger, OPND_STACK(1), comptime_key, SEND_MAX_DEPTH, side_exit); // Call rb_ary_store mov(cb, C_ARG_REGS[0], recv); mov(cb, C_ARG_REGS[1], key); sar(cb, C_ARG_REGS[1], imm_opnd(1)); // FIX2LONG(key) mov(cb, C_ARG_REGS[2], val); // We might allocate or raise jit_prepare_routine_call(jit, ctx, REG0); call_ptr(cb, REG0, (void *)rb_ary_store); // rb_ary_store returns void // stored value should still be on stack mov(cb, REG0, ctx_stack_opnd(ctx, 0)); // Push the return value onto the stack ctx_stack_pop(ctx, 3); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, REG0); jit_jump_to_next_insn(jit, ctx); return YJIT_END_BLOCK; } else if (CLASS_OF(comptime_recv) == rb_cHash) { uint8_t *side_exit = yjit_side_exit(jit, ctx); // Guard receiver is a Hash mov(cb, REG0, recv); jit_guard_known_klass(jit, ctx, rb_cHash, OPND_STACK(2), comptime_recv, SEND_MAX_DEPTH, side_exit); // Call rb_hash_aset mov(cb, C_ARG_REGS[0], recv); mov(cb, C_ARG_REGS[1], key); mov(cb, C_ARG_REGS[2], val); // We might allocate or raise jit_prepare_routine_call(jit, ctx, REG0); call_ptr(cb, REG0, (void *)rb_hash_aset); // Push the return value onto the stack ctx_stack_pop(ctx, 3); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); jit_jump_to_next_insn(jit, ctx); return YJIT_END_BLOCK; } else { return gen_opt_send_without_block(jit, ctx, cb); } } static codegen_status_t gen_opt_and(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Defer compilation so we can specialize on a runtime `self` if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { // Create a side-exit to fall back to the interpreter // Note: we generate the side-exit before popping operands from the stack uint8_t *side_exit = yjit_side_exit(jit, ctx); if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_AND)) { return YJIT_CANT_COMPILE; } // Check that both operands are fixnums guard_two_fixnums(ctx, side_exit); // Get the operands and destination from the stack x86opnd_t arg1 = ctx_stack_pop(ctx, 1); x86opnd_t arg0 = ctx_stack_pop(ctx, 1); // Do the bitwise and arg0 & arg1 mov(cb, REG0, arg0); and(cb, REG0, arg1); // Push the output on the stack x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM); mov(cb, dst, REG0); return YJIT_KEEP_COMPILING; } else { // Delegate to send, call the method on the recv return gen_opt_send_without_block(jit, ctx, cb); } } static codegen_status_t gen_opt_or(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Defer compilation so we can specialize on a runtime `self` if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { // Create a side-exit to fall back to the interpreter // Note: we generate the side-exit before popping operands from the stack uint8_t *side_exit = yjit_side_exit(jit, ctx); if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_OR)) { return YJIT_CANT_COMPILE; } // Check that both operands are fixnums guard_two_fixnums(ctx, side_exit); // Get the operands and destination from the stack x86opnd_t arg1 = ctx_stack_pop(ctx, 1); x86opnd_t arg0 = ctx_stack_pop(ctx, 1); // Do the bitwise or arg0 | arg1 mov(cb, REG0, arg0); or(cb, REG0, arg1); // Push the output on the stack x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM); mov(cb, dst, REG0); return YJIT_KEEP_COMPILING; } else { // Delegate to send, call the method on the recv return gen_opt_send_without_block(jit, ctx, cb); } } static codegen_status_t gen_opt_minus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Defer compilation so we can specialize on a runtime `self` if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { // Create a side-exit to fall back to the interpreter // Note: we generate the side-exit before popping operands from the stack uint8_t *side_exit = yjit_side_exit(jit, ctx); if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_MINUS)) { return YJIT_CANT_COMPILE; } // Check that both operands are fixnums guard_two_fixnums(ctx, side_exit); // Get the operands and destination from the stack x86opnd_t arg1 = ctx_stack_pop(ctx, 1); x86opnd_t arg0 = ctx_stack_pop(ctx, 1); // Subtract arg0 - arg1 and test for overflow mov(cb, REG0, arg0); sub(cb, REG0, arg1); jo_ptr(cb, side_exit); add(cb, REG0, imm_opnd(1)); // Push the output on the stack x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM); mov(cb, dst, REG0); return YJIT_KEEP_COMPILING; } else { // Delegate to send, call the method on the recv return gen_opt_send_without_block(jit, ctx, cb); } } static codegen_status_t gen_opt_plus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Defer compilation so we can specialize on a runtime `self` if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } VALUE comptime_a = jit_peek_at_stack(jit, ctx, 1); VALUE comptime_b = jit_peek_at_stack(jit, ctx, 0); if (FIXNUM_P(comptime_a) && FIXNUM_P(comptime_b)) { // Create a side-exit to fall back to the interpreter // Note: we generate the side-exit before popping operands from the stack uint8_t *side_exit = yjit_side_exit(jit, ctx); if (!assume_bop_not_redefined(jit, INTEGER_REDEFINED_OP_FLAG, BOP_PLUS)) { return YJIT_CANT_COMPILE; } // Check that both operands are fixnums guard_two_fixnums(ctx, side_exit); // Get the operands and destination from the stack x86opnd_t arg1 = ctx_stack_pop(ctx, 1); x86opnd_t arg0 = ctx_stack_pop(ctx, 1); // Add arg0 + arg1 and test for overflow mov(cb, REG0, arg0); sub(cb, REG0, imm_opnd(1)); add(cb, REG0, arg1); jo_ptr(cb, side_exit); // Push the output on the stack x86opnd_t dst = ctx_stack_push(ctx, TYPE_FIXNUM); mov(cb, dst, REG0); return YJIT_KEEP_COMPILING; } else { // Delegate to send, call the method on the recv return gen_opt_send_without_block(jit, ctx, cb); } } static codegen_status_t gen_opt_mult(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Delegate to send, call the method on the recv return gen_opt_send_without_block(jit, ctx, cb); } static codegen_status_t gen_opt_div(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Delegate to send, call the method on the recv return gen_opt_send_without_block(jit, ctx, cb); } VALUE rb_vm_opt_mod(VALUE recv, VALUE obj); static codegen_status_t gen_opt_mod(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Save the PC and SP because the callee may allocate bignums // Note that this modifies REG_SP, which is why we do it first jit_prepare_routine_call(jit, ctx, REG0); uint8_t *side_exit = yjit_side_exit(jit, ctx); // Get the operands from the stack x86opnd_t arg1 = ctx_stack_pop(ctx, 1); x86opnd_t arg0 = ctx_stack_pop(ctx, 1); // Call rb_vm_opt_mod(VALUE recv, VALUE obj) mov(cb, C_ARG_REGS[0], arg0); mov(cb, C_ARG_REGS[1], arg1); call_ptr(cb, REG0, (void *)rb_vm_opt_mod); // If val == Qundef, bail to do a method call cmp(cb, RAX, imm_opnd(Qundef)); je_ptr(cb, side_exit); // Push the return value onto the stack x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_opt_ltlt(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Delegate to send, call the method on the recv return gen_opt_send_without_block(jit, ctx, cb); } static codegen_status_t gen_opt_nil_p(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Delegate to send, call the method on the recv return gen_opt_send_without_block(jit, ctx, cb); } static codegen_status_t gen_opt_empty_p(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Delegate to send, call the method on the recv return gen_opt_send_without_block(jit, ctx, cb); } static codegen_status_t gen_opt_str_freeze(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { if (!assume_bop_not_redefined(jit, STRING_REDEFINED_OP_FLAG, BOP_FREEZE)) { return YJIT_CANT_COMPILE; } VALUE str = jit_get_arg(jit, 0); jit_mov_gc_ptr(jit, cb, REG0, str); // Push the return value onto the stack x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING); mov(cb, stack_ret, REG0); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_opt_str_uminus(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { if (!assume_bop_not_redefined(jit, STRING_REDEFINED_OP_FLAG, BOP_UMINUS)) { return YJIT_CANT_COMPILE; } VALUE str = jit_get_arg(jit, 0); jit_mov_gc_ptr(jit, cb, REG0, str); // Push the return value onto the stack x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING); mov(cb, stack_ret, REG0); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_opt_not(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { return gen_opt_send_without_block(jit, ctx, cb); } static codegen_status_t gen_opt_size(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { return gen_opt_send_without_block(jit, ctx, cb); } static codegen_status_t gen_opt_length(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { return gen_opt_send_without_block(jit, ctx, cb); } static codegen_status_t gen_opt_regexpmatch2(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { return gen_opt_send_without_block(jit, ctx, cb); } static codegen_status_t gen_opt_case_dispatch(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Normally this instruction would lookup the key in a hash and jump to an // offset based on that. // Instead we can take the fallback case and continue with the next // instruction. // We'd hope that our jitted code will be sufficiently fast without the // hash lookup, at least for small hashes, but it's worth revisiting this // assumption in the future. ctx_stack_pop(ctx, 1); return YJIT_KEEP_COMPILING; // continue with the next instruction } static void gen_branchif_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) { switch (shape) { case SHAPE_NEXT0: jz_ptr(cb, target1); break; case SHAPE_NEXT1: jnz_ptr(cb, target0); break; case SHAPE_DEFAULT: jnz_ptr(cb, target0); jmp_ptr(cb, target1); break; } } static codegen_status_t gen_branchif(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int32_t jump_offset = (int32_t)jit_get_arg(jit, 0); // Check for interrupts, but only on backward branches that may create loops if (jump_offset < 0) { uint8_t *side_exit = yjit_side_exit(jit, ctx); yjit_check_ints(cb, side_exit); } // Test if any bit (outside of the Qnil bit) is on // RUBY_Qfalse /* ...0000 0000 */ // RUBY_Qnil /* ...0000 1000 */ x86opnd_t val_opnd = ctx_stack_pop(ctx, 1); test(cb, val_opnd, imm_opnd(~Qnil)); // Get the branch target instruction offsets uint32_t next_idx = jit_next_insn_idx(jit); uint32_t jump_idx = next_idx + jump_offset; blockid_t next_block = { jit->iseq, next_idx }; blockid_t jump_block = { jit->iseq, jump_idx }; // Generate the branch instructions gen_branch( jit, ctx, jump_block, ctx, next_block, ctx, gen_branchif_branch ); return YJIT_END_BLOCK; } static void gen_branchunless_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) { switch (shape) { case SHAPE_NEXT0: jnz_ptr(cb, target1); break; case SHAPE_NEXT1: jz_ptr(cb, target0); break; case SHAPE_DEFAULT: jz_ptr(cb, target0); jmp_ptr(cb, target1); break; } } static codegen_status_t gen_branchunless(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int32_t jump_offset = (int32_t)jit_get_arg(jit, 0); // Check for interrupts, but only on backward branches that may create loops if (jump_offset < 0) { uint8_t *side_exit = yjit_side_exit(jit, ctx); yjit_check_ints(cb, side_exit); } // Test if any bit (outside of the Qnil bit) is on // RUBY_Qfalse /* ...0000 0000 */ // RUBY_Qnil /* ...0000 1000 */ x86opnd_t val_opnd = ctx_stack_pop(ctx, 1); test(cb, val_opnd, imm_opnd(~Qnil)); // Get the branch target instruction offsets uint32_t next_idx = jit_next_insn_idx(jit); uint32_t jump_idx = next_idx + jump_offset; blockid_t next_block = { jit->iseq, next_idx }; blockid_t jump_block = { jit->iseq, jump_idx }; // Generate the branch instructions gen_branch( jit, ctx, jump_block, ctx, next_block, ctx, gen_branchunless_branch ); return YJIT_END_BLOCK; } static void gen_branchnil_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) { switch (shape) { case SHAPE_NEXT0: jne_ptr(cb, target1); break; case SHAPE_NEXT1: je_ptr(cb, target0); break; case SHAPE_DEFAULT: je_ptr(cb, target0); jmp_ptr(cb, target1); break; } } static codegen_status_t gen_branchnil(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int32_t jump_offset = (int32_t)jit_get_arg(jit, 0); // Check for interrupts, but only on backward branches that may create loops if (jump_offset < 0) { uint8_t *side_exit = yjit_side_exit(jit, ctx); yjit_check_ints(cb, side_exit); } // Test if the value is Qnil // RUBY_Qnil /* ...0000 1000 */ x86opnd_t val_opnd = ctx_stack_pop(ctx, 1); cmp(cb, val_opnd, imm_opnd(Qnil)); // Get the branch target instruction offsets uint32_t next_idx = jit_next_insn_idx(jit); uint32_t jump_idx = next_idx + jump_offset; blockid_t next_block = { jit->iseq, next_idx }; blockid_t jump_block = { jit->iseq, jump_idx }; // Generate the branch instructions gen_branch( jit, ctx, jump_block, ctx, next_block, ctx, gen_branchnil_branch ); return YJIT_END_BLOCK; } static codegen_status_t gen_jump(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { int32_t jump_offset = (int32_t)jit_get_arg(jit, 0); // Check for interrupts, but only on backward branches that may create loops if (jump_offset < 0) { uint8_t *side_exit = yjit_side_exit(jit, ctx); yjit_check_ints(cb, side_exit); } // Get the branch target instruction offsets uint32_t jump_idx = jit_next_insn_idx(jit) + jump_offset; blockid_t jump_block = { jit->iseq, jump_idx }; // Generate the jump instruction gen_direct_jump( jit, ctx, jump_block ); return YJIT_END_BLOCK; } /* Guard that self or a stack operand has the same class as `known_klass`, using `sample_instance` to speculate about the shape of the runtime value. FIXNUM and on-heap integers are treated as if they have distinct classes, and the guard generated for one will fail for the other. Recompile as contingency if possible, or take side exit a last resort. */ static bool jit_guard_known_klass(jitstate_t *jit, ctx_t *ctx, VALUE known_klass, insn_opnd_t insn_opnd, VALUE sample_instance, const int max_chain_depth, uint8_t *side_exit) { val_type_t val_type = ctx_get_opnd_type(ctx, insn_opnd); if (known_klass == rb_cNilClass) { RUBY_ASSERT(!val_type.is_heap); if (val_type.type != ETYPE_NIL) { RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); ADD_COMMENT(cb, "guard object is nil"); cmp(cb, REG0, imm_opnd(Qnil)); jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_NIL); } } else if (known_klass == rb_cTrueClass) { RUBY_ASSERT(!val_type.is_heap); if (val_type.type != ETYPE_TRUE) { RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); ADD_COMMENT(cb, "guard object is true"); cmp(cb, REG0, imm_opnd(Qtrue)); jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_TRUE); } } else if (known_klass == rb_cFalseClass) { RUBY_ASSERT(!val_type.is_heap); if (val_type.type != ETYPE_FALSE) { RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); ADD_COMMENT(cb, "guard object is false"); STATIC_ASSERT(qfalse_is_zero, Qfalse == 0); test(cb, REG0, REG0); jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit); ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FALSE); } } else if (known_klass == rb_cInteger && FIXNUM_P(sample_instance)) { RUBY_ASSERT(!val_type.is_heap); // We will guard fixnum and bignum as though they were separate classes // BIGNUM can be handled by the general else case below if (val_type.type != ETYPE_FIXNUM || !val_type.is_imm) { RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); ADD_COMMENT(cb, "guard object is fixnum"); test(cb, REG0, imm_opnd(RUBY_FIXNUM_FLAG)); jit_chain_guard(JCC_JZ, jit, ctx, max_chain_depth, side_exit); ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FIXNUM); } } else if (known_klass == rb_cSymbol && STATIC_SYM_P(sample_instance)) { RUBY_ASSERT(!val_type.is_heap); // We will guard STATIC vs DYNAMIC as though they were separate classes // DYNAMIC symbols can be handled by the general else case below if (val_type.type != ETYPE_SYMBOL || !val_type.is_imm) { RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); ADD_COMMENT(cb, "guard object is static symbol"); STATIC_ASSERT(special_shift_is_8, RUBY_SPECIAL_SHIFT == 8); cmp(cb, REG0_8, imm_opnd(RUBY_SYMBOL_FLAG)); jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_STATIC_SYMBOL); } } else if (known_klass == rb_cFloat && FLONUM_P(sample_instance)) { RUBY_ASSERT(!val_type.is_heap); if (val_type.type != ETYPE_FLONUM || !val_type.is_imm) { RUBY_ASSERT(val_type.type == ETYPE_UNKNOWN); // We will guard flonum vs heap float as though they were separate classes ADD_COMMENT(cb, "guard object is flonum"); mov(cb, REG1, REG0); and(cb, REG1, imm_opnd(RUBY_FLONUM_MASK)); cmp(cb, REG1, imm_opnd(RUBY_FLONUM_FLAG)); jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_FLONUM); } } else if (FL_TEST(known_klass, FL_SINGLETON) && sample_instance == rb_attr_get(known_klass, id__attached__)) { // Singleton classes are attached to one specific object, so we can // avoid one memory access (and potentially the is_heap check) by // looking for the expected object directly. // Note that in case the sample instance has a singleton class that // doesn't attach to the sample instance, it means the sample instance // has an empty singleton class that hasn't been materialized yet. In // this case, comparing against the sample instance doesn't guarantee // that its singleton class is empty, so we can't avoid the memory // access. As an example, `Object.new.singleton_class` is an object in // this situation. ADD_COMMENT(cb, "guard known object with singleton class"); // TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the object. jit_mov_gc_ptr(jit, cb, REG1, sample_instance); cmp(cb, REG0, REG1); jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); } else { RUBY_ASSERT(!val_type.is_imm); // Check that the receiver is a heap object // Note: if we get here, the class doesn't have immediate instances. if (!val_type.is_heap) { ADD_COMMENT(cb, "guard not immediate"); RUBY_ASSERT(Qfalse < Qnil); test(cb, REG0, imm_opnd(RUBY_IMMEDIATE_MASK)); jit_chain_guard(JCC_JNZ, jit, ctx, max_chain_depth, side_exit); cmp(cb, REG0, imm_opnd(Qnil)); jit_chain_guard(JCC_JBE, jit, ctx, max_chain_depth, side_exit); ctx_upgrade_opnd_type(ctx, insn_opnd, TYPE_HEAP); } x86opnd_t klass_opnd = mem_opnd(64, REG0, offsetof(struct RBasic, klass)); // Bail if receiver class is different from known_klass // TODO: jit_mov_gc_ptr keeps a strong reference, which leaks the class. ADD_COMMENT(cb, "guard known class"); jit_mov_gc_ptr(jit, cb, REG1, known_klass); cmp(cb, klass_opnd, REG1); jit_chain_guard(JCC_JNE, jit, ctx, max_chain_depth, side_exit); } return true; } // Generate ancestry guard for protected callee. // Calls to protected callees only go through when self.is_a?(klass_that_defines_the_callee). static void jit_protected_callee_ancestry_guard(jitstate_t *jit, codeblock_t *cb, const rb_callable_method_entry_t *cme, uint8_t *side_exit) { // See vm_call_method(). mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, self)); jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], cme->defined_class); // Note: PC isn't written to current control frame as rb_is_kind_of() shouldn't raise. // VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass); call_ptr(cb, REG0, (void *)&rb_obj_is_kind_of); test(cb, RAX, RAX); jz_ptr(cb, COUNTED_EXIT(jit, side_exit, send_se_protected_check_failed)); } // Return true when the codegen function generates code. // known_recv_klass is non-NULL when the caller has used jit_guard_known_klass(). // See yjit_reg_method(). typedef bool (*method_codegen_t)(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass); // Register a specialized codegen function for a particular method. Note that // the if the function returns true, the code it generates runs without a // control frame and without interrupt checks. To avoid creating observable // behavior changes, the codegen function should only target simple code paths // that do not allocate and do not make method calls. static void yjit_reg_method(VALUE klass, const char *mid_str, method_codegen_t gen_fn) { ID mid = rb_intern(mid_str); const rb_method_entry_t *me = rb_method_entry_at(klass, mid); if (!me) { rb_bug("undefined optimized method: %s", rb_id2name(mid)); } // For now, only cfuncs are supported RUBY_ASSERT(me && me->def); RUBY_ASSERT(me->def->type == VM_METHOD_TYPE_CFUNC); st_insert(yjit_method_codegen_table, (st_data_t)me->def->method_serial, (st_data_t)gen_fn); } // Codegen for rb_obj_not(). // Note, caller is responsible for generating all the right guards, including // arity guards. static bool jit_rb_obj_not(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass) { const val_type_t recv_opnd = ctx_get_opnd_type(ctx, OPND_STACK(0)); if (recv_opnd.type == ETYPE_NIL || recv_opnd.type == ETYPE_FALSE) { ADD_COMMENT(cb, "rb_obj_not(nil_or_false)"); ctx_stack_pop(ctx, 1); x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_TRUE); mov(cb, out_opnd, imm_opnd(Qtrue)); } else if (recv_opnd.is_heap || recv_opnd.type != ETYPE_UNKNOWN) { // Note: recv_opnd.type != ETYPE_NIL && recv_opnd.type != ETYPE_FALSE. ADD_COMMENT(cb, "rb_obj_not(truthy)"); ctx_stack_pop(ctx, 1); x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_FALSE); mov(cb, out_opnd, imm_opnd(Qfalse)); } else { // jit_guard_known_klass() already ran on the receiver which should // have deduced deduced the type of the receiver. This case should be // rare if not unreachable. return false; } return true; } // Codegen for rb_true() static bool jit_rb_true(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass) { ADD_COMMENT(cb, "nil? == true"); ctx_stack_pop(ctx, 1); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_TRUE); mov(cb, stack_ret, imm_opnd(Qtrue)); return true; } // Codegen for rb_false() static bool jit_rb_false(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass) { ADD_COMMENT(cb, "nil? == false"); ctx_stack_pop(ctx, 1); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_FALSE); mov(cb, stack_ret, imm_opnd(Qfalse)); return true; } // Codegen for rb_obj_equal() // object identity comparison static bool jit_rb_obj_equal(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass) { ADD_COMMENT(cb, "equal?"); x86opnd_t obj1 = ctx_stack_pop(ctx, 1); x86opnd_t obj2 = ctx_stack_pop(ctx, 1); mov(cb, REG0, obj1); cmp(cb, REG0, obj2); mov(cb, REG0, imm_opnd(Qtrue)); mov(cb, REG1, imm_opnd(Qfalse)); cmovne(cb, REG0, REG1); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_IMM); mov(cb, stack_ret, REG0); return true; } static VALUE yjit_str_bytesize(VALUE str) { return LONG2NUM(RSTRING_LEN(str)); } static bool jit_rb_str_bytesize(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *known_recv_klass) { ADD_COMMENT(cb, "String#bytesize"); x86opnd_t recv = ctx_stack_pop(ctx, 1); mov(cb, C_ARG_REGS[0], recv); call_ptr(cb, REG0, (void *)&yjit_str_bytesize); x86opnd_t out_opnd = ctx_stack_push(ctx, TYPE_FIXNUM); mov(cb, out_opnd, RAX); return true; } // Codegen for rb_str_to_s() // When String#to_s is called on a String instance, the method returns self and // most of the overhead comes from setting up the method call. We observed that // this situation happens a lot in some workloads. static bool jit_rb_str_to_s(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass) { if (recv_known_klass && *recv_known_klass == rb_cString) { ADD_COMMENT(cb, "to_s on plain string"); // The method returns the receiver, which is already on the stack. // No stack movement. return true; } return false; } static bool jit_thread_s_current(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass) { ADD_COMMENT(cb, "Thread.current"); ctx_stack_pop(ctx, 1); // ec->thread_ptr mov(cb, REG0, member_opnd(REG_EC, rb_execution_context_t, thread_ptr)); // thread->self mov(cb, REG0, member_opnd(REG0, rb_thread_t, self)); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_HEAP); mov(cb, stack_ret, REG0); return true; } // Check if we know how to codegen for a particular cfunc method static method_codegen_t lookup_cfunc_codegen(const rb_method_definition_t *def) { method_codegen_t gen_fn; if (st_lookup(yjit_method_codegen_table, def->method_serial, (st_data_t *)&gen_fn)) { return gen_fn; } return NULL; } // Is anyone listening for :c_call and :c_return event currently? static bool c_method_tracing_currently_enabled(const jitstate_t *jit) { rb_event_flag_t tracing_events; if (rb_multi_ractor_p()) { tracing_events = ruby_vm_event_enabled_global_flags; } else { // At the time of writing, events are never removed from // ruby_vm_event_enabled_global_flags so always checking using it would // mean we don't compile even after tracing is disabled. tracing_events = rb_ec_ractor_hooks(jit->ec)->events; } return tracing_events & (RUBY_EVENT_C_CALL | RUBY_EVENT_C_RETURN); } // Called at runtime to build hashes of passed kwargs static VALUE yjit_runtime_build_kwhash(const struct rb_callinfo *ci, const VALUE *sp) { // similar to args_kw_argv_to_hash const VALUE *const passed_keywords = vm_ci_kwarg(ci)->keywords; const int kw_len = vm_ci_kwarg(ci)->keyword_len; const VALUE h = rb_hash_new_with_size(kw_len); for (int i = 0; i < kw_len; i++) { rb_hash_aset(h, passed_keywords[i], (sp - kw_len)[i]); } return h; } static codegen_status_t gen_send_cfunc(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, const int32_t argc, VALUE *recv_known_klass) { const rb_method_cfunc_t *cfunc = UNALIGNED_MEMBER_PTR(cme->def, body.cfunc); const struct rb_callinfo_kwarg *kw_arg = vm_ci_kwarg(ci); const int kw_arg_num = kw_arg ? kw_arg->keyword_len : 0; // Number of args which will be passed through to the callee // This is adjusted by the kwargs being combined into a hash. const int passed_argc = kw_arg ? argc - kw_arg_num + 1 : argc; // If the argument count doesn't match if (cfunc->argc >= 0 && cfunc->argc != passed_argc) { GEN_COUNTER_INC(cb, send_cfunc_argc_mismatch); return YJIT_CANT_COMPILE; } // Don't JIT functions that need C stack arguments for now if (cfunc->argc >= 0 && passed_argc + 1 > NUM_C_ARG_REGS) { GEN_COUNTER_INC(cb, send_cfunc_toomany_args); return YJIT_CANT_COMPILE; } if (c_method_tracing_currently_enabled(jit)) { // Don't JIT if tracing c_call or c_return GEN_COUNTER_INC(cb, send_cfunc_tracing); return YJIT_CANT_COMPILE; } // Delegate to codegen for C methods if we have it. { method_codegen_t known_cfunc_codegen; if (!kw_arg && (known_cfunc_codegen = lookup_cfunc_codegen(cme->def))) { if (known_cfunc_codegen(jit, ctx, ci, cme, block, argc, recv_known_klass)) { // cfunc codegen generated code. Terminate the block so // there isn't multiple calls in the same block. jit_jump_to_next_insn(jit, ctx); return YJIT_END_BLOCK; } } } // Callee method ID //ID mid = vm_ci_mid(ci); //printf("JITting call to C function \"%s\", argc: %lu\n", rb_id2name(mid), argc); //print_str(cb, ""); //print_str(cb, "calling CFUNC:"); //print_str(cb, rb_id2name(mid)); //print_str(cb, "recv"); //print_ptr(cb, recv); // Create a side-exit to fall back to the interpreter uint8_t *side_exit = yjit_side_exit(jit, ctx); // Check for interrupts yjit_check_ints(cb, side_exit); // Stack overflow check // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin) // REG_CFP <= REG_SP + 4 * sizeof(VALUE) + sizeof(rb_control_frame_t) lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 4 + 2 * sizeof(rb_control_frame_t))); cmp(cb, REG_CFP, REG0); jle_ptr(cb, COUNTED_EXIT(jit, side_exit, send_se_cf_overflow)); // Points to the receiver operand on the stack x86opnd_t recv = ctx_stack_opnd(ctx, argc); // Store incremented PC into current control frame in case callee raises. jit_save_pc(jit, REG0); if (block) { // Change cfp->block_code in the current frame. See vm_caller_setup_arg_block(). // VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases // with cfp->block_code. jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0); } // Increment the stack pointer by 3 (in the callee) // sp += 3 lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * 3)); // Write method entry at sp[-3] // sp[-3] = me; // Put compile time cme into REG1. It's assumed to be valid because we are notified when // any cme we depend on become outdated. See rb_yjit_method_lookup_change(). jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme); mov(cb, mem_opnd(64, REG0, 8 * -3), REG1); // Write block handler at sp[-2] // sp[-2] = block_handler; if (block) { // reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp)); lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self)); or(cb, REG1, imm_opnd(1)); mov(cb, mem_opnd(64, REG0, 8 * -2), REG1); } else { mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE)); } // Write env flags at sp[-1] // sp[-1] = frame_type; uint64_t frame_type = VM_FRAME_MAGIC_CFUNC | VM_FRAME_FLAG_CFRAME | VM_ENV_FLAG_LOCAL; if (kw_arg) { frame_type |= VM_FRAME_FLAG_CFRAME_KW; } mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type)); // Allocate a new CFP (ec->cfp--) sub( cb, member_opnd(REG_EC, rb_execution_context_t, cfp), imm_opnd(sizeof(rb_control_frame_t)) ); // Setup the new frame // *cfp = (const struct rb_control_frame_struct) { // .pc = 0, // .sp = sp, // .iseq = 0, // .self = recv, // .ep = sp - 1, // .block_code = 0, // .__bp__ = sp, // }; mov(cb, REG1, member_opnd(REG_EC, rb_execution_context_t, cfp)); mov(cb, member_opnd(REG1, rb_control_frame_t, pc), imm_opnd(0)); mov(cb, member_opnd(REG1, rb_control_frame_t, sp), REG0); mov(cb, member_opnd(REG1, rb_control_frame_t, iseq), imm_opnd(0)); mov(cb, member_opnd(REG1, rb_control_frame_t, block_code), imm_opnd(0)); mov(cb, member_opnd(REG1, rb_control_frame_t, __bp__), REG0); sub(cb, REG0, imm_opnd(sizeof(VALUE))); mov(cb, member_opnd(REG1, rb_control_frame_t, ep), REG0); mov(cb, REG0, recv); mov(cb, member_opnd(REG1, rb_control_frame_t, self), REG0); // Verify that we are calling the right function if (YJIT_CHECK_MODE > 0) { // Call check_cfunc_dispatch mov(cb, C_ARG_REGS[0], recv); jit_mov_gc_ptr(jit, cb, C_ARG_REGS[1], (VALUE)ci); mov(cb, C_ARG_REGS[2], const_ptr_opnd((void *)cfunc->func)); jit_mov_gc_ptr(jit, cb, C_ARG_REGS[3], (VALUE)cme); call_ptr(cb, REG0, (void *)&check_cfunc_dispatch); } if (kw_arg) { // Build a hash from all kwargs passed jit_mov_gc_ptr(jit, cb, C_ARG_REGS[0], (VALUE)ci); lea(cb, C_ARG_REGS[1], ctx_sp_opnd(ctx, 0)); call_ptr(cb, REG0, (void *)&yjit_runtime_build_kwhash); // Replace the stack location at the start of kwargs with the new hash x86opnd_t stack_opnd = ctx_stack_opnd(ctx, argc - passed_argc); mov(cb, stack_opnd, RAX); } // Non-variadic method if (cfunc->argc >= 0) { // Copy the arguments from the stack to the C argument registers // self is the 0th argument and is at index argc from the stack top for (int32_t i = 0; i < passed_argc + 1; ++i) { x86opnd_t stack_opnd = ctx_stack_opnd(ctx, argc - i); x86opnd_t c_arg_reg = C_ARG_REGS[i]; mov(cb, c_arg_reg, stack_opnd); } } // Variadic method if (cfunc->argc == -1) { // The method gets a pointer to the first argument // rb_f_puts(int argc, VALUE *argv, VALUE recv) mov(cb, C_ARG_REGS[0], imm_opnd(passed_argc)); lea(cb, C_ARG_REGS[1], ctx_stack_opnd(ctx, argc - 1)); mov(cb, C_ARG_REGS[2], ctx_stack_opnd(ctx, argc)); } // Variadic method with Ruby array if (cfunc->argc == -2) { // Create a Ruby array from the arguments. // // This follows similar behaviour to vm_call_cfunc_with_frame() and // call_cfunc_m2(). We use rb_ec_ary_new_from_values() instead of // rb_ary_new4() since we have REG_EC available. // // Before getting here we will have set the new CFP in the EC, and the // stack at CFP's SP will contain the values we are inserting into the // Array, so they will be properly marked if we hit a GC. // rb_ec_ary_new_from_values(rb_execution_context_t *ec, long n, const VLAUE *elts) mov(cb, C_ARG_REGS[0], REG_EC); mov(cb, C_ARG_REGS[1], imm_opnd(passed_argc)); lea(cb, C_ARG_REGS[2], ctx_stack_opnd(ctx, argc - 1)); call_ptr(cb, REG0, (void *)rb_ec_ary_new_from_values); // rb_file_s_join(VALUE recv, VALUE args) mov(cb, C_ARG_REGS[0], ctx_stack_opnd(ctx, argc)); mov(cb, C_ARG_REGS[1], RAX); } // Pop the C function arguments from the stack (in the caller) ctx_stack_pop(ctx, argc + 1); // Write interpreter SP into CFP. // Needed in case the callee yields to the block. jit_save_sp(jit, ctx); // Call the C function // VALUE ret = (cfunc->func)(recv, argv[0], argv[1]); // cfunc comes from compile-time cme->def, which we assume to be stable. // Invalidation logic is in rb_yjit_method_lookup_change() call_ptr(cb, REG0, (void*)cfunc->func); // Record code position for TracePoint patching. See full_cfunc_return(). record_global_inval_patch(cb, outline_full_cfunc_return_pos); // Push the return value on the Ruby stack x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); // Pop the stack frame (ec->cfp++) add( cb, member_opnd(REG_EC, rb_execution_context_t, cfp), imm_opnd(sizeof(rb_control_frame_t)) ); // cfunc calls may corrupt types ctx_clear_local_types(ctx); // Note: the return block of gen_send_iseq() has ctx->sp_offset == 1 // which allows for sharing the same successor. // Jump (fall through) to the call continuation block // We do this to end the current block after the call jit_jump_to_next_insn(jit, ctx); return YJIT_END_BLOCK; } static void gen_return_branch(codeblock_t *cb, uint8_t *target0, uint8_t *target1, uint8_t shape) { switch (shape) { case SHAPE_NEXT0: case SHAPE_NEXT1: RUBY_ASSERT(false); break; case SHAPE_DEFAULT: mov(cb, REG0, const_ptr_opnd(target0)); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, jit_return), REG0); break; } } // If true, the iseq is leaf and it can be replaced by a single C call. static bool rb_leaf_invokebuiltin_iseq_p(const rb_iseq_t *iseq) { unsigned int invokebuiltin_len = insn_len(BIN(opt_invokebuiltin_delegate_leave)); unsigned int leave_len = insn_len(BIN(leave)); return (iseq->body->iseq_size == (invokebuiltin_len + leave_len) && rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[0]) == BIN(opt_invokebuiltin_delegate_leave) && rb_vm_insn_addr2opcode((void *)iseq->body->iseq_encoded[invokebuiltin_len]) == BIN(leave) && iseq->body->builtin_inline_p ); } // Return an rb_builtin_function if the iseq contains only that leaf builtin function. static const struct rb_builtin_function* rb_leaf_builtin_function(const rb_iseq_t *iseq) { if (!rb_leaf_invokebuiltin_iseq_p(iseq)) return NULL; return (const struct rb_builtin_function *)iseq->body->iseq_encoded[1]; } static codegen_status_t gen_send_iseq(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, rb_iseq_t *block, int32_t argc) { const rb_iseq_t *iseq = def_iseq_ptr(cme->def); // When you have keyword arguments, there is an extra object that gets // placed on the stack the represents a bitmap of the keywords that were not // specified at the call site. We need to keep track of the fact that this // value is present on the stack in order to properly set up the callee's // stack pointer. const bool doing_kw_call = iseq->body->param.flags.has_kw; const bool supplying_kws = vm_ci_flag(ci) & VM_CALL_KWARG; if (vm_ci_flag(ci) & VM_CALL_TAILCALL) { // We can't handle tailcalls GEN_COUNTER_INC(cb, send_iseq_tailcall); return YJIT_CANT_COMPILE; } // No support for callees with these parameters yet as they require allocation // or complex handling. if (iseq->body->param.flags.has_rest || iseq->body->param.flags.has_post || iseq->body->param.flags.has_kwrest) { GEN_COUNTER_INC(cb, send_iseq_complex_callee); return YJIT_CANT_COMPILE; } // If we have keyword arguments being passed to a callee that only takes // positionals, then we need to allocate a hash. For now we're going to // call that too complex and bail. if (supplying_kws && !iseq->body->param.flags.has_kw) { GEN_COUNTER_INC(cb, send_iseq_complex_callee); return YJIT_CANT_COMPILE; } // If we have a method accepting no kwargs (**nil), exit if we have passed // it any kwargs. if (supplying_kws && iseq->body->param.flags.accepts_no_kwarg) { GEN_COUNTER_INC(cb, send_iseq_complex_callee); return YJIT_CANT_COMPILE; } // For computing number of locals to setup for the callee int num_params = iseq->body->param.size; // Block parameter handling. This mirrors setup_parameters_complex(). if (iseq->body->param.flags.has_block) { if (iseq->body->local_iseq == iseq) { // Block argument is passed through EP and not setup as a local in // the callee. num_params--; } else { // In this case (param.flags.has_block && local_iseq != iseq), // the block argument is setup as a local variable and requires // materialization (allocation). Bail. GEN_COUNTER_INC(cb, send_iseq_complex_callee); return YJIT_CANT_COMPILE; } } uint32_t start_pc_offset = 0; const int required_num = iseq->body->param.lead_num; // This struct represents the metadata about the caller-specified // keyword arguments. const struct rb_callinfo_kwarg *kw_arg = vm_ci_kwarg(ci); const int kw_arg_num = kw_arg ? kw_arg->keyword_len : 0; // Arity handling and optional parameter setup const int opts_filled = argc - required_num - kw_arg_num; const int opt_num = iseq->body->param.opt_num; const int opts_missing = opt_num - opts_filled; if (opts_filled < 0 || opts_filled > opt_num) { GEN_COUNTER_INC(cb, send_iseq_arity_error); return YJIT_CANT_COMPILE; } // If we have unfilled optional arguments and keyword arguments then we // would need to move adjust the arguments location to account for that. // For now we aren't handling this case. if (doing_kw_call && opts_missing > 0) { GEN_COUNTER_INC(cb, send_iseq_complex_callee); return YJIT_CANT_COMPILE; } if (opt_num > 0) { num_params -= opt_num - opts_filled; start_pc_offset = (uint32_t)iseq->body->param.opt_table[opts_filled]; } if (doing_kw_call) { // Here we're calling a method with keyword arguments and specifying // keyword arguments at this call site. // This struct represents the metadata about the callee-specified // keyword parameters. const struct rb_iseq_param_keyword *keyword = iseq->body->param.keyword; int required_kwargs_filled = 0; if (keyword->num > 30) { // We have so many keywords that (1 << num) encoded as a FIXNUM // (which shifts it left one more) no longer fits inside a 32-bit // immediate. GEN_COUNTER_INC(cb, send_iseq_complex_callee); return YJIT_CANT_COMPILE; } // Check that the kwargs being passed are valid if (supplying_kws) { // This is the list of keyword arguments that the callee specified // in its initial declaration. const ID *callee_kwargs = keyword->table; // Here we're going to build up a list of the IDs that correspond to // the caller-specified keyword arguments. If they're not in the // same order as the order specified in the callee declaration, then // we're going to need to generate some code to swap values around // on the stack. ID *caller_kwargs = ALLOCA_N(VALUE, kw_arg->keyword_len); for (int kwarg_idx = 0; kwarg_idx < kw_arg->keyword_len; kwarg_idx++) caller_kwargs[kwarg_idx] = SYM2ID(kw_arg->keywords[kwarg_idx]); // First, we're going to be sure that the names of every // caller-specified keyword argument correspond to a name in the // list of callee-specified keyword parameters. for (int caller_idx = 0; caller_idx < kw_arg->keyword_len; caller_idx++) { int callee_idx; for (callee_idx = 0; callee_idx < keyword->num; callee_idx++) { if (caller_kwargs[caller_idx] == callee_kwargs[callee_idx]) { break; } } // If the keyword was never found, then we know we have a // mismatch in the names of the keyword arguments, so we need to // bail. if (callee_idx == keyword->num) { GEN_COUNTER_INC(cb, send_iseq_kwargs_mismatch); return YJIT_CANT_COMPILE; } // Keep a count to ensure all required kwargs are specified if (callee_idx < keyword->required_num) { required_kwargs_filled++; } } } RUBY_ASSERT(required_kwargs_filled <= keyword->required_num); if (required_kwargs_filled != keyword->required_num) { GEN_COUNTER_INC(cb, send_iseq_kwargs_mismatch); return YJIT_CANT_COMPILE; } } // Number of locals that are not parameters const int num_locals = iseq->body->local_table_size - num_params; // Create a side-exit to fall back to the interpreter uint8_t *side_exit = yjit_side_exit(jit, ctx); // Check for interrupts yjit_check_ints(cb, side_exit); const struct rb_builtin_function *leaf_builtin = rb_leaf_builtin_function(iseq); if (leaf_builtin && !block && leaf_builtin->argc + 1 <= NUM_C_ARG_REGS) { ADD_COMMENT(cb, "inlined leaf builtin"); // Call the builtin func (ec, recv, arg1, arg2, ...) mov(cb, C_ARG_REGS[0], REG_EC); // Copy self and arguments for (int32_t i = 0; i < leaf_builtin->argc + 1; i++) { x86opnd_t stack_opnd = ctx_stack_opnd(ctx, leaf_builtin->argc - i); x86opnd_t c_arg_reg = C_ARG_REGS[i + 1]; mov(cb, c_arg_reg, stack_opnd); } ctx_stack_pop(ctx, leaf_builtin->argc + 1); call_ptr(cb, REG0, (void *)leaf_builtin->func_ptr); // Push the return value x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); // Note: assuming that the leaf builtin doesn't change local variables here. // Seems like a safe assumption. return YJIT_KEEP_COMPILING; } // Stack overflow check // Note that vm_push_frame checks it against a decremented cfp, hence the multiply by 2. // #define CHECK_VM_STACK_OVERFLOW0(cfp, sp, margin) ADD_COMMENT(cb, "stack overflow check"); lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (num_locals + iseq->body->stack_max) + 2 * sizeof(rb_control_frame_t))); cmp(cb, REG_CFP, REG0); jle_ptr(cb, COUNTED_EXIT(jit, side_exit, send_se_cf_overflow)); if (doing_kw_call) { // Here we're calling a method with keyword arguments and specifying // keyword arguments at this call site. // Number of positional arguments the callee expects before the first // keyword argument const int args_before_kw = required_num + opt_num; // This struct represents the metadata about the caller-specified // keyword arguments. int caller_keyword_len = 0; const VALUE *caller_keywords = NULL; if (vm_ci_kwarg(ci)) { caller_keyword_len = vm_ci_kwarg(ci)->keyword_len; caller_keywords = &vm_ci_kwarg(ci)->keywords[0]; } // This struct represents the metadata about the callee-specified // keyword parameters. const struct rb_iseq_param_keyword *const keyword = iseq->body->param.keyword; ADD_COMMENT(cb, "keyword args"); // This is the list of keyword arguments that the callee specified // in its initial declaration. const ID *callee_kwargs = keyword->table; int total_kwargs = keyword->num; // Here we're going to build up a list of the IDs that correspond to // the caller-specified keyword arguments. If they're not in the // same order as the order specified in the callee declaration, then // we're going to need to generate some code to swap values around // on the stack. ID *caller_kwargs = ALLOCA_N(VALUE, total_kwargs); int kwarg_idx; for (kwarg_idx = 0; kwarg_idx < caller_keyword_len; kwarg_idx++) { caller_kwargs[kwarg_idx] = SYM2ID(caller_keywords[kwarg_idx]); } int unspecified_bits = 0; for (int callee_idx = keyword->required_num; callee_idx < total_kwargs; callee_idx++) { bool already_passed = false; ID callee_kwarg = callee_kwargs[callee_idx]; for (int caller_idx = 0; caller_idx < caller_keyword_len; caller_idx++) { if (caller_kwargs[caller_idx] == callee_kwarg) { already_passed = true; break; } } if (!already_passed) { // Reserve space on the stack for each default value we'll be // filling in (which is done in the next loop). Also increments // argc so that the callee's SP is recorded correctly. argc++; x86opnd_t default_arg = ctx_stack_push(ctx, TYPE_UNKNOWN); VALUE default_value = keyword->default_values[callee_idx - keyword->required_num]; if (default_value == Qundef) { // Qundef means that this value is not constant and must be // recalculated at runtime, so we record it in unspecified_bits // (Qnil is then used as a placeholder instead of Qundef). unspecified_bits |= 0x01 << (callee_idx - keyword->required_num); default_value = Qnil; } // GC might move default_value. jit_mov_gc_ptr(jit, cb, REG0, default_value); mov(cb, default_arg, REG0); caller_kwargs[kwarg_idx++] = callee_kwarg; } } RUBY_ASSERT(kwarg_idx == total_kwargs); // Next, we're going to loop through every keyword that was // specified by the caller and make sure that it's in the correct // place. If it's not we're going to swap it around with another one. for (kwarg_idx = 0; kwarg_idx < total_kwargs; kwarg_idx++) { ID callee_kwarg = callee_kwargs[kwarg_idx]; // If the argument is already in the right order, then we don't // need to generate any code since the expected value is already // in the right place on the stack. if (callee_kwarg == caller_kwargs[kwarg_idx]) continue; // In this case the argument is not in the right place, so we // need to find its position where it _should_ be and swap with // that location. for (int swap_idx = kwarg_idx + 1; swap_idx < total_kwargs; swap_idx++) { if (callee_kwarg == caller_kwargs[swap_idx]) { // First we're going to generate the code that is going // to perform the actual swapping at runtime. stack_swap(ctx, cb, argc - 1 - swap_idx - args_before_kw, argc - 1 - kwarg_idx - args_before_kw, REG1, REG0); // Next we're going to do some bookkeeping on our end so // that we know the order that the arguments are // actually in now. ID tmp = caller_kwargs[kwarg_idx]; caller_kwargs[kwarg_idx] = caller_kwargs[swap_idx]; caller_kwargs[swap_idx] = tmp; break; } } } // Keyword arguments cause a special extra local variable to be // pushed onto the stack that represents the parameters that weren't // explicitly given a value and have a non-constant default. mov(cb, ctx_stack_opnd(ctx, -1), imm_opnd(INT2FIX(unspecified_bits))); } // Points to the receiver operand on the stack x86opnd_t recv = ctx_stack_opnd(ctx, argc); // Store the updated SP on the current frame (pop arguments and receiver) ADD_COMMENT(cb, "store caller sp"); lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * -(argc + 1))); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0); // Store the next PC in the current frame jit_save_pc(jit, REG0); if (block) { // Change cfp->block_code in the current frame. See vm_caller_setup_arg_block(). // VM_CFP_TO_CAPTURED_BLCOK does &cfp->self, rb_captured_block->code.iseq aliases // with cfp->block_code. jit_mov_gc_ptr(jit, cb, REG0, (VALUE)block); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), REG0); } // Adjust the callee's stack pointer lea(cb, REG0, ctx_sp_opnd(ctx, sizeof(VALUE) * (3 + num_locals + doing_kw_call))); // Initialize local variables to Qnil for (int i = 0; i < num_locals; i++) { mov(cb, mem_opnd(64, REG0, sizeof(VALUE) * (i - num_locals - 3)), imm_opnd(Qnil)); } ADD_COMMENT(cb, "push env"); // Put compile time cme into REG1. It's assumed to be valid because we are notified when // any cme we depend on become outdated. See rb_yjit_method_lookup_change(). jit_mov_gc_ptr(jit, cb, REG1, (VALUE)cme); // Write method entry at sp[-3] // sp[-3] = me; mov(cb, mem_opnd(64, REG0, 8 * -3), REG1); // Write block handler at sp[-2] // sp[-2] = block_handler; if (block) { // reg1 = VM_BH_FROM_ISEQ_BLOCK(VM_CFP_TO_CAPTURED_BLOCK(reg_cfp)); lea(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, self)); or(cb, REG1, imm_opnd(1)); mov(cb, mem_opnd(64, REG0, 8 * -2), REG1); } else { mov(cb, mem_opnd(64, REG0, 8 * -2), imm_opnd(VM_BLOCK_HANDLER_NONE)); } // Write env flags at sp[-1] // sp[-1] = frame_type; uint64_t frame_type = VM_FRAME_MAGIC_METHOD | VM_ENV_FLAG_LOCAL; mov(cb, mem_opnd(64, REG0, 8 * -1), imm_opnd(frame_type)); ADD_COMMENT(cb, "push callee CFP"); // Allocate a new CFP (ec->cfp--) sub(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t))); mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP); // Setup the new frame // *cfp = (const struct rb_control_frame_struct) { // .pc = pc, // .sp = sp, // .iseq = iseq, // .self = recv, // .ep = sp - 1, // .block_code = 0, // .__bp__ = sp, // }; mov(cb, REG1, recv); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, self), REG1); mov(cb, REG_SP, REG0); // Switch to the callee's REG_SP mov(cb, member_opnd(REG_CFP, rb_control_frame_t, sp), REG0); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, __bp__), REG0); sub(cb, REG0, imm_opnd(sizeof(VALUE))); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, ep), REG0); jit_mov_gc_ptr(jit, cb, REG0, (VALUE)iseq); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, iseq), REG0); mov(cb, member_opnd(REG_CFP, rb_control_frame_t, block_code), imm_opnd(0)); // No need to set cfp->pc since the callee sets it whenever calling into routines // that could look at it through jit_save_pc(). // mov(cb, REG0, const_ptr_opnd(start_pc)); // mov(cb, member_opnd(REG_CFP, rb_control_frame_t, pc), REG0); // Stub so we can return to JITted code blockid_t return_block = { jit->iseq, jit_next_insn_idx(jit) }; // Create a context for the callee ctx_t callee_ctx = DEFAULT_CTX; // Set the argument types in the callee's context for (int32_t arg_idx = 0; arg_idx < argc; ++arg_idx) { val_type_t arg_type = ctx_get_opnd_type(ctx, OPND_STACK(argc - arg_idx - 1)); ctx_set_local_type(&callee_ctx, arg_idx, arg_type); } val_type_t recv_type = ctx_get_opnd_type(ctx, OPND_STACK(argc)); ctx_upgrade_opnd_type(&callee_ctx, OPND_SELF, recv_type); // The callee might change locals through Kernel#binding and other means. ctx_clear_local_types(ctx); // Pop arguments and receiver in return context, push the return value // After the return, sp_offset will be 1. The codegen for leave writes // the return value in case of JIT-to-JIT return. ctx_t return_ctx = *ctx; ctx_stack_pop(&return_ctx, argc + 1); ctx_stack_push(&return_ctx, TYPE_UNKNOWN); return_ctx.sp_offset = 1; return_ctx.chain_depth = 0; // Write the JIT return address on the callee frame gen_branch( jit, ctx, return_block, &return_ctx, return_block, &return_ctx, gen_return_branch ); //print_str(cb, "calling Ruby func:"); //print_str(cb, rb_id2name(vm_ci_mid(ci))); // Directly jump to the entry point of the callee gen_direct_jump( jit, &callee_ctx, (blockid_t){ iseq, start_pc_offset } ); return YJIT_END_BLOCK; } static codegen_status_t gen_struct_aref(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, VALUE comptime_recv, VALUE comptime_recv_klass) { if (vm_ci_argc(ci) != 0) { return YJIT_CANT_COMPILE; } const unsigned int off = cme->def->body.optimized.index; // Confidence checks RUBY_ASSERT_ALWAYS(RB_TYPE_P(comptime_recv, T_STRUCT)); RUBY_ASSERT_ALWAYS((long)off < RSTRUCT_LEN(comptime_recv)); // We are going to use an encoding that takes a 4-byte immediate which // limits the offset to INT32_MAX. { uint64_t native_off = (uint64_t)off * (uint64_t)SIZEOF_VALUE; if (native_off > (uint64_t)INT32_MAX) { return YJIT_CANT_COMPILE; } } // All structs from the same Struct class should have the same // length. So if our comptime_recv is embedded all runtime // structs of the same class should be as well, and the same is // true of the converse. bool embedded = FL_TEST_RAW(comptime_recv, RSTRUCT_EMBED_LEN_MASK); ADD_COMMENT(cb, "struct aref"); x86opnd_t recv = ctx_stack_pop(ctx, 1); mov(cb, REG0, recv); if (embedded) { mov(cb, REG0, member_opnd_idx(REG0, struct RStruct, as.ary, off)); } else { mov(cb, REG0, member_opnd(REG0, struct RStruct, as.heap.ptr)); mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * off)); } x86opnd_t ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, ret, REG0); jit_jump_to_next_insn(jit, ctx); return YJIT_END_BLOCK; } static codegen_status_t gen_struct_aset(jitstate_t *jit, ctx_t *ctx, const struct rb_callinfo *ci, const rb_callable_method_entry_t *cme, VALUE comptime_recv, VALUE comptime_recv_klass) { if (vm_ci_argc(ci) != 1) { return YJIT_CANT_COMPILE; } const unsigned int off = cme->def->body.optimized.index; // Confidence checks RUBY_ASSERT_ALWAYS(RB_TYPE_P(comptime_recv, T_STRUCT)); RUBY_ASSERT_ALWAYS((long)off < RSTRUCT_LEN(comptime_recv)); ADD_COMMENT(cb, "struct aset"); x86opnd_t val = ctx_stack_pop(ctx, 1); x86opnd_t recv = ctx_stack_pop(ctx, 1); mov(cb, C_ARG_REGS[0], recv); mov(cb, C_ARG_REGS[1], imm_opnd(off)); mov(cb, C_ARG_REGS[2], val); call_ptr(cb, REG0, (void *)RSTRUCT_SET); x86opnd_t ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, ret, RAX); jit_jump_to_next_insn(jit, ctx); return YJIT_END_BLOCK; } const rb_callable_method_entry_t * rb_aliased_callable_method_entry(const rb_callable_method_entry_t *me); static codegen_status_t gen_send_general(jitstate_t *jit, ctx_t *ctx, struct rb_call_data *cd, rb_iseq_t *block) { // Relevant definitions: // rb_execution_context_t : vm_core.h // invoker, cfunc logic : method.h, vm_method.c // rb_callinfo : vm_callinfo.h // rb_callable_method_entry_t : method.h // vm_call_cfunc_with_frame : vm_insnhelper.c // // For a general overview for how the interpreter calls methods, // see vm_call_method(). const struct rb_callinfo *ci = cd->ci; // info about the call site int32_t argc = (int32_t)vm_ci_argc(ci); ID mid = vm_ci_mid(ci); // Don't JIT calls with keyword splat if (vm_ci_flag(ci) & VM_CALL_KW_SPLAT) { GEN_COUNTER_INC(cb, send_kw_splat); return YJIT_CANT_COMPILE; } // Don't JIT calls that aren't simple // Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block. if ((vm_ci_flag(ci) & VM_CALL_ARGS_SPLAT) != 0) { GEN_COUNTER_INC(cb, send_args_splat); return YJIT_CANT_COMPILE; } if ((vm_ci_flag(ci) & VM_CALL_ARGS_BLOCKARG) != 0) { GEN_COUNTER_INC(cb, send_block_arg); return YJIT_CANT_COMPILE; } // Defer compilation so we can specialize on class of receiver if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc); VALUE comptime_recv_klass = CLASS_OF(comptime_recv); // Guard that the receiver has the same class as the one from compile time uint8_t *side_exit = yjit_side_exit(jit, ctx); // Points to the receiver operand on the stack x86opnd_t recv = ctx_stack_opnd(ctx, argc); insn_opnd_t recv_opnd = OPND_STACK(argc); mov(cb, REG0, recv); if (!jit_guard_known_klass(jit, ctx, comptime_recv_klass, recv_opnd, comptime_recv, SEND_MAX_DEPTH, side_exit)) { return YJIT_CANT_COMPILE; } // Do method lookup const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_recv_klass, mid); if (!cme) { // TODO: counter return YJIT_CANT_COMPILE; } switch (METHOD_ENTRY_VISI(cme)) { case METHOD_VISI_PUBLIC: // Can always call public methods break; case METHOD_VISI_PRIVATE: if (!(vm_ci_flag(ci) & VM_CALL_FCALL)) { // Can only call private methods with FCALL callsites. // (at the moment they are callsites without a receiver or an explicit `self` receiver) return YJIT_CANT_COMPILE; } break; case METHOD_VISI_PROTECTED: jit_protected_callee_ancestry_guard(jit, cb, cme, side_exit); break; case METHOD_VISI_UNDEF: RUBY_ASSERT(false && "cmes should always have a visibility"); break; } // Register block for invalidation RUBY_ASSERT(cme->called_id == mid); assume_method_lookup_stable(comptime_recv_klass, cme, jit); // To handle the aliased method case (VM_METHOD_TYPE_ALIAS) while (true) { // switch on the method type switch (cme->def->type) { case VM_METHOD_TYPE_ISEQ: return gen_send_iseq(jit, ctx, ci, cme, block, argc); case VM_METHOD_TYPE_CFUNC: return gen_send_cfunc(jit, ctx, ci, cme, block, argc, &comptime_recv_klass); case VM_METHOD_TYPE_IVAR: if (argc != 0) { // Argument count mismatch. Getters take no arguments. GEN_COUNTER_INC(cb, send_getter_arity); return YJIT_CANT_COMPILE; } if (c_method_tracing_currently_enabled(jit)) { // Can't generate code for firing c_call and c_return events // :attr-tracing: // Handling the C method tracing events for attr_accessor // methods is easier than regular C methods as we know the // "method" we are calling into never enables those tracing // events. Once global invalidation runs, the code for the // attr_accessor is invalidated and we exit at the closest // instruction boundary which is always outside of the body of // the attr_accessor code. GEN_COUNTER_INC(cb, send_cfunc_tracing); return YJIT_CANT_COMPILE; } mov(cb, REG0, recv); ID ivar_name = cme->def->body.attr.id; return gen_get_ivar(jit, ctx, SEND_MAX_DEPTH, comptime_recv, ivar_name, recv_opnd, side_exit); case VM_METHOD_TYPE_ATTRSET: if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) { GEN_COUNTER_INC(cb, send_attrset_kwargs); return YJIT_CANT_COMPILE; } else if (argc != 1 || !RB_TYPE_P(comptime_recv, T_OBJECT)) { GEN_COUNTER_INC(cb, send_ivar_set_method); return YJIT_CANT_COMPILE; } else if (c_method_tracing_currently_enabled(jit)) { // Can't generate code for firing c_call and c_return events // See :attr-tracing: GEN_COUNTER_INC(cb, send_cfunc_tracing); return YJIT_CANT_COMPILE; } else { ID ivar_name = cme->def->body.attr.id; return gen_set_ivar(jit, ctx, comptime_recv, comptime_recv_klass, ivar_name); } // Block method, e.g. define_method(:foo) { :my_block } case VM_METHOD_TYPE_BMETHOD: GEN_COUNTER_INC(cb, send_bmethod); return YJIT_CANT_COMPILE; case VM_METHOD_TYPE_ZSUPER: GEN_COUNTER_INC(cb, send_zsuper_method); return YJIT_CANT_COMPILE; case VM_METHOD_TYPE_ALIAS: { // Retrieve the alised method and re-enter the switch cme = rb_aliased_callable_method_entry(cme); continue; } case VM_METHOD_TYPE_UNDEF: GEN_COUNTER_INC(cb, send_undef_method); return YJIT_CANT_COMPILE; case VM_METHOD_TYPE_NOTIMPLEMENTED: GEN_COUNTER_INC(cb, send_not_implemented_method); return YJIT_CANT_COMPILE; // Send family of methods, e.g. call/apply case VM_METHOD_TYPE_OPTIMIZED: switch (cme->def->body.optimized.type) { case OPTIMIZED_METHOD_TYPE_SEND: GEN_COUNTER_INC(cb, send_optimized_method_send); return YJIT_CANT_COMPILE; case OPTIMIZED_METHOD_TYPE_CALL: GEN_COUNTER_INC(cb, send_optimized_method_call); return YJIT_CANT_COMPILE; case OPTIMIZED_METHOD_TYPE_BLOCK_CALL: GEN_COUNTER_INC(cb, send_optimized_method_block_call); return YJIT_CANT_COMPILE; case OPTIMIZED_METHOD_TYPE_STRUCT_AREF: return gen_struct_aref(jit, ctx, ci, cme, comptime_recv, comptime_recv_klass); case OPTIMIZED_METHOD_TYPE_STRUCT_ASET: return gen_struct_aset(jit, ctx, ci, cme, comptime_recv, comptime_recv_klass); default: rb_bug("unknown optimized method type (%d)", cme->def->body.optimized.type); UNREACHABLE_RETURN(YJIT_CANT_COMPILE); } case VM_METHOD_TYPE_MISSING: GEN_COUNTER_INC(cb, send_missing_method); return YJIT_CANT_COMPILE; case VM_METHOD_TYPE_REFINED: GEN_COUNTER_INC(cb, send_refined_method); return YJIT_CANT_COMPILE; // no default case so compiler issues a warning if this is not exhaustive } // Unreachable RUBY_ASSERT(false); } } static codegen_status_t gen_opt_send_without_block(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0); return gen_send_general(jit, ctx, cd, NULL); } static codegen_status_t gen_send(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0); rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1); return gen_send_general(jit, ctx, cd, block); } static codegen_status_t gen_invokesuper(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0); rb_iseq_t *block = (rb_iseq_t *)jit_get_arg(jit, 1); // Defer compilation so we can specialize on class of receiver if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } const rb_callable_method_entry_t *me = rb_vm_frame_method_entry(jit->ec->cfp); if (!me) { return YJIT_CANT_COMPILE; } // FIXME: We should track and invalidate this block when this cme is invalidated VALUE current_defined_class = me->defined_class; ID mid = me->def->original_id; if (me != rb_callable_method_entry(current_defined_class, me->called_id)) { // Though we likely could generate this call, as we are only concerned // with the method entry remaining valid, assume_method_lookup_stable // below requires that the method lookup matches as well return YJIT_CANT_COMPILE; } // vm_search_normal_superclass if (BUILTIN_TYPE(current_defined_class) == T_ICLASS && FL_TEST_RAW(RBASIC(current_defined_class)->klass, RMODULE_IS_REFINEMENT)) { return YJIT_CANT_COMPILE; } VALUE comptime_superclass = RCLASS_SUPER(RCLASS_ORIGIN(current_defined_class)); const struct rb_callinfo *ci = cd->ci; int32_t argc = (int32_t)vm_ci_argc(ci); // Don't JIT calls that aren't simple // Note, not using VM_CALL_ARGS_SIMPLE because sometimes we pass a block. if ((vm_ci_flag(ci) & VM_CALL_ARGS_SPLAT) != 0) { GEN_COUNTER_INC(cb, send_args_splat); return YJIT_CANT_COMPILE; } if ((vm_ci_flag(ci) & VM_CALL_KWARG) != 0) { GEN_COUNTER_INC(cb, send_keywords); return YJIT_CANT_COMPILE; } if ((vm_ci_flag(ci) & VM_CALL_KW_SPLAT) != 0) { GEN_COUNTER_INC(cb, send_kw_splat); return YJIT_CANT_COMPILE; } if ((vm_ci_flag(ci) & VM_CALL_ARGS_BLOCKARG) != 0) { GEN_COUNTER_INC(cb, send_block_arg); return YJIT_CANT_COMPILE; } // Ensure we haven't rebound this method onto an incompatible class. // In the interpreter we try to avoid making this check by performing some // cheaper calculations first, but since we specialize on the method entry // and so only have to do this once at compile time this is fine to always // check and side exit. VALUE comptime_recv = jit_peek_at_stack(jit, ctx, argc); if (!rb_obj_is_kind_of(comptime_recv, current_defined_class)) { return YJIT_CANT_COMPILE; } // Do method lookup const rb_callable_method_entry_t *cme = rb_callable_method_entry(comptime_superclass, mid); if (!cme) { return YJIT_CANT_COMPILE; } // Check that we'll be able to write this method dispatch before generating checks switch (cme->def->type) { case VM_METHOD_TYPE_ISEQ: case VM_METHOD_TYPE_CFUNC: break; default: // others unimplemented return YJIT_CANT_COMPILE; } // Guard that the receiver has the same class as the one from compile time uint8_t *side_exit = yjit_side_exit(jit, ctx); if (jit->ec->cfp->ep[VM_ENV_DATA_INDEX_ME_CREF] != (VALUE)me) { // This will be the case for super within a block return YJIT_CANT_COMPILE; } ADD_COMMENT(cb, "guard known me"); mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep)); x86opnd_t ep_me_opnd = mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_ME_CREF); jit_mov_gc_ptr(jit, cb, REG1, (VALUE)me); cmp(cb, ep_me_opnd, REG1); jne_ptr(cb, COUNTED_EXIT(jit, side_exit, invokesuper_me_changed)); if (!block) { // Guard no block passed // rb_vm_frame_block_handler(GET_EC()->cfp) == VM_BLOCK_HANDLER_NONE // note, we assume VM_ASSERT(VM_ENV_LOCAL_P(ep)) // // TODO: this could properly forward the current block handler, but // would require changes to gen_send_* ADD_COMMENT(cb, "guard no block given"); // EP is in REG0 from above x86opnd_t ep_specval_opnd = mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL); cmp(cb, ep_specval_opnd, imm_opnd(VM_BLOCK_HANDLER_NONE)); jne_ptr(cb, COUNTED_EXIT(jit, side_exit, invokesuper_block)); } // Points to the receiver operand on the stack x86opnd_t recv = ctx_stack_opnd(ctx, argc); mov(cb, REG0, recv); // We need to assume that both our current method entry and the super // method entry we invoke remain stable assume_method_lookup_stable(current_defined_class, me, jit); assume_method_lookup_stable(comptime_superclass, cme, jit); // Method calls may corrupt types ctx_clear_local_types(ctx); switch (cme->def->type) { case VM_METHOD_TYPE_ISEQ: return gen_send_iseq(jit, ctx, ci, cme, block, argc); case VM_METHOD_TYPE_CFUNC: return gen_send_cfunc(jit, ctx, ci, cme, block, argc, NULL); default: break; } RUBY_ASSERT_ALWAYS(false); } static codegen_status_t gen_leave(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Only the return value should be on the stack RUBY_ASSERT(ctx->stack_size == 1); // Create a side-exit to fall back to the interpreter uint8_t *side_exit = yjit_side_exit(jit, ctx); // Load environment pointer EP from CFP mov(cb, REG1, member_opnd(REG_CFP, rb_control_frame_t, ep)); // Check for interrupts ADD_COMMENT(cb, "check for interrupts"); yjit_check_ints(cb, COUNTED_EXIT(jit, side_exit, leave_se_interrupt)); // Load the return value mov(cb, REG0, ctx_stack_pop(ctx, 1)); // Pop the current frame (ec->cfp++) // Note: the return PC is already in the previous CFP add(cb, REG_CFP, imm_opnd(sizeof(rb_control_frame_t))); mov(cb, member_opnd(REG_EC, rb_execution_context_t, cfp), REG_CFP); // Reload REG_SP for the caller and write the return value. // Top of the stack is REG_SP[0] since the caller has sp_offset=1. mov(cb, REG_SP, member_opnd(REG_CFP, rb_control_frame_t, sp)); mov(cb, mem_opnd(64, REG_SP, 0), REG0); // Jump to the JIT return address on the frame that was just popped const int32_t offset_to_jit_return = -((int32_t)sizeof(rb_control_frame_t)) + (int32_t)offsetof(rb_control_frame_t, jit_return); jmp_rm(cb, mem_opnd(64, REG_CFP, offset_to_jit_return)); return YJIT_END_BLOCK; } RUBY_EXTERN rb_serial_t ruby_vm_global_constant_state; static codegen_status_t gen_getglobal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { ID gid = jit_get_arg(jit, 0); // Save the PC and SP because we might make a Ruby call for warning jit_prepare_routine_call(jit, ctx, REG0); mov(cb, C_ARG_REGS[0], imm_opnd(gid)); call_ptr(cb, REG0, (void *)&rb_gvar_get); x86opnd_t top = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, top, RAX); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_setglobal(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { ID gid = jit_get_arg(jit, 0); // Save the PC and SP because we might make a Ruby call for // Kernel#trace_var jit_prepare_routine_call(jit, ctx, REG0); mov(cb, C_ARG_REGS[0], imm_opnd(gid)); x86opnd_t val = ctx_stack_pop(ctx, 1); mov(cb, C_ARG_REGS[1], val); call_ptr(cb, REG0, (void *)&rb_gvar_set); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_anytostring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Might allocate in rb_obj_as_string_result(). jit_prepare_routine_call(jit, ctx, REG0); x86opnd_t str = ctx_stack_pop(ctx, 1); x86opnd_t val = ctx_stack_pop(ctx, 1); mov(cb, C_ARG_REGS[0], str); mov(cb, C_ARG_REGS[1], val); call_ptr(cb, REG0, (void *)&rb_obj_as_string_result); // Push the return value x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_STRING); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_objtostring(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { if (!jit_at_current_insn(jit)) { defer_compilation(jit, ctx); return YJIT_END_BLOCK; } x86opnd_t recv = ctx_stack_opnd(ctx, 0); VALUE comptime_recv = jit_peek_at_stack(jit, ctx, 0); if (RB_TYPE_P(comptime_recv, T_STRING)) { uint8_t *side_exit = yjit_side_exit(jit, ctx); mov(cb, REG0, recv); jit_guard_known_klass(jit, ctx, CLASS_OF(comptime_recv), OPND_STACK(0), comptime_recv, SEND_MAX_DEPTH, side_exit); // No work needed. The string value is already on the top of the stack. return YJIT_KEEP_COMPILING; } else { struct rb_call_data *cd = (struct rb_call_data *)jit_get_arg(jit, 0); return gen_send_general(jit, ctx, cd, NULL); } } static codegen_status_t gen_toregexp(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { rb_num_t opt = jit_get_arg(jit, 0); rb_num_t cnt = jit_get_arg(jit, 1); // Save the PC and SP because this allocates an object and could // raise an exception. jit_prepare_routine_call(jit, ctx, REG0); x86opnd_t values_ptr = ctx_sp_opnd(ctx, -(sizeof(VALUE) * (uint32_t)cnt)); ctx_stack_pop(ctx, cnt); mov(cb, C_ARG_REGS[0], imm_opnd(0)); mov(cb, C_ARG_REGS[1], imm_opnd(cnt)); lea(cb, C_ARG_REGS[2], values_ptr); call_ptr(cb, REG0, (void *)&rb_ary_tmp_new_from_values); // Save the array so we can clear it later push(cb, RAX); push(cb, RAX); // Alignment mov(cb, C_ARG_REGS[0], RAX); mov(cb, C_ARG_REGS[1], imm_opnd(opt)); call_ptr(cb, REG0, (void *)&rb_reg_new_ary); // The actual regex is in RAX now. Pop the temp array from // rb_ary_tmp_new_from_values into C arg regs so we can clear it pop(cb, REG1); // Alignment pop(cb, C_ARG_REGS[0]); // The value we want to push on the stack is in RAX right now x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); // Clear the temp array. call_ptr(cb, REG0, (void *)&rb_ary_clear); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_intern(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // Save the PC and SP because we might allocate jit_prepare_routine_call(jit, ctx, REG0); x86opnd_t str = ctx_stack_pop(ctx, 1); mov(cb, C_ARG_REGS[0], str); call_ptr(cb, REG0, (void *)&rb_str_intern); // Push the return value x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_getspecial(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // This takes two arguments, key and type // key is only used when type == 0 // A non-zero type determines which type of backref to fetch //rb_num_t key = jit_get_arg(jit, 0); rb_num_t type = jit_get_arg(jit, 1); if (type == 0) { // not yet implemented return YJIT_CANT_COMPILE; } else if (type & 0x01) { // Fetch a "special" backref based on a char encoded by shifting by 1 // Can raise if matchdata uninitialized jit_prepare_routine_call(jit, ctx, REG0); // call rb_backref_get() ADD_COMMENT(cb, "rb_backref_get"); call_ptr(cb, REG0, (void *)rb_backref_get); mov(cb, C_ARG_REGS[0], RAX); switch (type >> 1) { case '&': ADD_COMMENT(cb, "rb_reg_last_match"); call_ptr(cb, REG0, (void *)rb_reg_last_match); break; case '`': ADD_COMMENT(cb, "rb_reg_match_pre"); call_ptr(cb, REG0, (void *)rb_reg_match_pre); break; case '\'': ADD_COMMENT(cb, "rb_reg_match_post"); call_ptr(cb, REG0, (void *)rb_reg_match_post); break; case '+': ADD_COMMENT(cb, "rb_reg_match_last"); call_ptr(cb, REG0, (void *)rb_reg_match_last); break; default: rb_bug("invalid back-ref"); } x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } else { // Fetch the N-th match from the last backref based on type shifted by 1 // Can raise if matchdata uninitialized jit_prepare_routine_call(jit, ctx, REG0); // call rb_backref_get() ADD_COMMENT(cb, "rb_backref_get"); call_ptr(cb, REG0, (void *)rb_backref_get); // rb_reg_nth_match((int)(type >> 1), backref); ADD_COMMENT(cb, "rb_reg_nth_match"); mov(cb, C_ARG_REGS[0], imm_opnd(type >> 1)); mov(cb, C_ARG_REGS[1], RAX); call_ptr(cb, REG0, (void *)rb_reg_nth_match); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } } VALUE rb_vm_getclassvariable(const rb_iseq_t *iseq, const rb_control_frame_t *cfp, ID id, ICVARC ic); static codegen_status_t gen_getclassvariable(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb) { // rb_vm_getclassvariable can raise exceptions. jit_prepare_routine_call(jit, ctx, REG0); mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, iseq)); mov(cb, C_ARG_REGS[1], REG_CFP); mov(cb, C_ARG_REGS[2], imm_opnd(jit_get_arg(jit, 0))); mov(cb, C_ARG_REGS[3], imm_opnd(jit_get_arg(jit, 1))); call_ptr(cb, REG0, (void *)rb_vm_getclassvariable); x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_top, RAX); return YJIT_KEEP_COMPILING; } VALUE rb_vm_setclassvariable(const rb_iseq_t *iseq, const rb_control_frame_t *cfp, ID id, VALUE val, ICVARC ic); static codegen_status_t gen_setclassvariable(jitstate_t* jit, ctx_t* ctx, codeblock_t* cb) { // rb_vm_setclassvariable can raise exceptions. jit_prepare_routine_call(jit, ctx, REG0); mov(cb, C_ARG_REGS[0], member_opnd(REG_CFP, rb_control_frame_t, iseq)); mov(cb, C_ARG_REGS[1], REG_CFP); mov(cb, C_ARG_REGS[2], imm_opnd(jit_get_arg(jit, 0))); mov(cb, C_ARG_REGS[3], ctx_stack_pop(ctx, 1)); mov(cb, C_ARG_REGS[4], imm_opnd(jit_get_arg(jit, 1))); call_ptr(cb, REG0, (void *)rb_vm_setclassvariable); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_opt_getinlinecache(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { VALUE jump_offset = jit_get_arg(jit, 0); VALUE const_cache_as_value = jit_get_arg(jit, 1); IC ic = (IC)const_cache_as_value; // See vm_ic_hit_p(). The same conditions are checked in yjit_constant_ic_update(). struct iseq_inline_constant_cache_entry *ice = ic->entry; if (!ice || // cache not filled GET_IC_SERIAL(ice) != ruby_vm_global_constant_state /* cache out of date */) { // In these cases, leave a block that unconditionally side exits // for the interpreter to invalidate. return YJIT_CANT_COMPILE; } // Make sure there is an exit for this block as the interpreter might want // to invalidate this block from yjit_constant_ic_update(). jit_ensure_block_entry_exit(jit); if (ice->ic_cref) { // Cache is keyed on a certain lexical scope. Use the interpreter's cache. uint8_t *side_exit = yjit_side_exit(jit, ctx); // Call function to verify the cache. It doesn't allocate or call methods. bool rb_vm_ic_hit_p(IC ic, const VALUE *reg_ep); mov(cb, C_ARG_REGS[0], const_ptr_opnd((void *)ic)); mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, ep)); call_ptr(cb, REG0, (void *)rb_vm_ic_hit_p); // Check the result. _Bool is one byte in SysV. test(cb, AL, AL); jz_ptr(cb, COUNTED_EXIT(jit, side_exit, opt_getinlinecache_miss)); // Push ic->entry->value mov(cb, REG0, const_ptr_opnd((void *)ic)); mov(cb, REG0, member_opnd(REG0, struct iseq_inline_constant_cache, entry)); x86opnd_t stack_top = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, REG0, member_opnd(REG0, struct iseq_inline_constant_cache_entry, value)); mov(cb, stack_top, REG0); } else { // Optimize for single ractor mode. // FIXME: This leaks when st_insert raises NoMemoryError if (!assume_single_ractor_mode(jit)) return YJIT_CANT_COMPILE; // Invalidate output code on any and all constant writes // FIXME: This leaks when st_insert raises NoMemoryError assume_stable_global_constant_state(jit); jit_putobject(jit, ctx, ice->value); } // Jump over the code for filling the cache uint32_t jump_idx = jit_next_insn_idx(jit) + (int32_t)jump_offset; gen_direct_jump( jit, ctx, (blockid_t){ .iseq = jit->iseq, .idx = jump_idx } ); return YJIT_END_BLOCK; } // Push the explicit block parameter onto the temporary stack. Part of the // interpreter's scheme for avoiding Proc allocations when delegating // explicit block parameters. static codegen_status_t gen_getblockparamproxy(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { // A mirror of the interpreter code. Checking for the case // where it's pushing rb_block_param_proxy. uint8_t *side_exit = yjit_side_exit(jit, ctx); // EP level uint32_t level = (uint32_t)jit_get_arg(jit, 1); // Load environment pointer EP from CFP gen_get_ep(cb, REG0, level); // Bail when VM_ENV_FLAGS(ep, VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM) is non zero test(cb, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_FLAGS), imm_opnd(VM_FRAME_FLAG_MODIFIED_BLOCK_PARAM)); jnz_ptr(cb, COUNTED_EXIT(jit, side_exit, gbpp_block_param_modified)); // Load the block handler for the current frame // note, VM_ASSERT(VM_ENV_LOCAL_P(ep)) mov(cb, REG0, mem_opnd(64, REG0, SIZEOF_VALUE * VM_ENV_DATA_INDEX_SPECVAL)); // Block handler is a tagged pointer. Look at the tag. 0x03 is from VM_BH_ISEQ_BLOCK_P(). and(cb, REG0_8, imm_opnd(0x3)); // Bail unless VM_BH_ISEQ_BLOCK_P(bh). This also checks for null. cmp(cb, REG0_8, imm_opnd(0x1)); jnz_ptr(cb, COUNTED_EXIT(jit, side_exit, gbpp_block_handler_not_iseq)); // Push rb_block_param_proxy. It's a root, so no need to use jit_mov_gc_ptr. mov(cb, REG0, const_ptr_opnd((void *)rb_block_param_proxy)); RUBY_ASSERT(!SPECIAL_CONST_P(rb_block_param_proxy)); x86opnd_t top = ctx_stack_push(ctx, TYPE_HEAP); mov(cb, top, REG0); return YJIT_KEEP_COMPILING; } static codegen_status_t gen_invokebuiltin(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { const struct rb_builtin_function *bf = (struct rb_builtin_function *)jit_get_arg(jit, 0); // ec, self, and arguments if (bf->argc + 2 > NUM_C_ARG_REGS) { return YJIT_CANT_COMPILE; } // If the calls don't allocate, do they need up to date PC, SP? jit_prepare_routine_call(jit, ctx, REG0); // Call the builtin func (ec, recv, arg1, arg2, ...) mov(cb, C_ARG_REGS[0], REG_EC); mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self)); // Copy arguments from locals for (int32_t i = 0; i < bf->argc; i++) { x86opnd_t stack_opnd = ctx_stack_opnd(ctx, bf->argc - i - 1); x86opnd_t c_arg_reg = C_ARG_REGS[2 + i]; mov(cb, c_arg_reg, stack_opnd); } call_ptr(cb, REG0, (void *)bf->func_ptr); // Push the return value ctx_stack_pop(ctx, bf->argc); x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } // opt_invokebuiltin_delegate calls a builtin function, like // invokebuiltin does, but instead of taking arguments from the top of the // stack uses the argument locals (and self) from the current method. static codegen_status_t gen_opt_invokebuiltin_delegate(jitstate_t *jit, ctx_t *ctx, codeblock_t *cb) { const struct rb_builtin_function *bf = (struct rb_builtin_function *)jit_get_arg(jit, 0); int32_t start_index = (int32_t)jit_get_arg(jit, 1); // ec, self, and arguments if (bf->argc + 2 > NUM_C_ARG_REGS) { return YJIT_CANT_COMPILE; } // If the calls don't allocate, do they need up to date PC, SP? jit_prepare_routine_call(jit, ctx, REG0); if (bf->argc > 0) { // Load environment pointer EP from CFP mov(cb, REG0, member_opnd(REG_CFP, rb_control_frame_t, ep)); } // Call the builtin func (ec, recv, arg1, arg2, ...) mov(cb, C_ARG_REGS[0], REG_EC); mov(cb, C_ARG_REGS[1], member_opnd(REG_CFP, rb_control_frame_t, self)); // Copy arguments from locals for (int32_t i = 0; i < bf->argc; i++) { const int32_t offs = -jit->iseq->body->local_table_size - VM_ENV_DATA_SIZE + 1 + start_index + i; x86opnd_t local_opnd = mem_opnd(64, REG0, offs * SIZEOF_VALUE); x86opnd_t c_arg_reg = C_ARG_REGS[i + 2]; mov(cb, c_arg_reg, local_opnd); } call_ptr(cb, REG0, (void *)bf->func_ptr); // Push the return value x86opnd_t stack_ret = ctx_stack_push(ctx, TYPE_UNKNOWN); mov(cb, stack_ret, RAX); return YJIT_KEEP_COMPILING; } static int tracing_invalidate_all_i(void *vstart, void *vend, size_t stride, void *data); static void invalidate_all_blocks_for_tracing(const rb_iseq_t *iseq); // Invalidate all generated code and patch C method return code to contain // logic for firing the c_return TracePoint event. Once rb_vm_barrier() // returns, all other ractors are pausing inside RB_VM_LOCK_ENTER(), which // means they are inside a C routine. If there are any generated code on-stack, // they are waiting for a return from a C routine. For every routine call, we // patch in an exit after the body of the containing VM instruction. This makes // it so all the invalidated code exit as soon as execution logically reaches // the next VM instruction. The interpreter takes care of firing the tracing // event if it so happens that the next VM instruction has one attached. // // The c_return event needs special handling as our codegen never outputs code // that contains tracing logic. If we let the normal output code run until the // start of the next VM instruction by relying on the patching scheme above, we // would fail to fire the c_return event. The interpreter doesn't fire the // event at an instruction boundary, so simply exiting to the interpreter isn't // enough. To handle it, we patch in the full logic at the return address. See // full_cfunc_return(). // // In addition to patching, we prevent future entries into invalidated code by // removing all live blocks from their iseq. void rb_yjit_tracing_invalidate_all(void) { if (!rb_yjit_enabled_p()) return; // Stop other ractors since we are going to patch machine code. RB_VM_LOCK_ENTER(); rb_vm_barrier(); // Make it so all live block versions are no longer valid branch targets rb_objspace_each_objects(tracing_invalidate_all_i, NULL); // Apply patches const uint32_t old_pos = cb->write_pos; rb_darray_for(global_inval_patches, patch_idx) { struct codepage_patch patch = rb_darray_get(global_inval_patches, patch_idx); cb_set_pos(cb, patch.inline_patch_pos); uint8_t *jump_target = cb_get_ptr(ocb, patch.outlined_target_pos); jmp_ptr(cb, jump_target); } cb_set_pos(cb, old_pos); // Freeze invalidated part of the codepage. We only want to wait for // running instances of the code to exit from now on, so we shouldn't // change the code. There could be other ractors sleeping in // branch_stub_hit(), for example. We could harden this by changing memory // protection on the frozen range. RUBY_ASSERT_ALWAYS(yjit_codepage_frozen_bytes <= old_pos && "frozen bytes should increase monotonically"); yjit_codepage_frozen_bytes = old_pos; cb_mark_all_executable(ocb); cb_mark_all_executable(cb); RB_VM_LOCK_LEAVE(); } static int tracing_invalidate_all_i(void *vstart, void *vend, size_t stride, void *data) { VALUE v = (VALUE)vstart; for (; v != (VALUE)vend; v += stride) { void *ptr = asan_poisoned_object_p(v); asan_unpoison_object(v, false); if (rb_obj_is_iseq(v)) { rb_iseq_t *iseq = (rb_iseq_t *)v; invalidate_all_blocks_for_tracing(iseq); } asan_poison_object_if(ptr, v); } return 0; } static void invalidate_all_blocks_for_tracing(const rb_iseq_t *iseq) { struct rb_iseq_constant_body *body = iseq->body; if (!body) return; // iseq yet to be initialized ASSERT_vm_locking(); // Empty all blocks on the iseq so we don't compile new blocks that jump to the // invalidted region. // TODO Leaking the blocks for now since we might have situations where // a different ractor is waiting in branch_stub_hit(). If we free the block // that ractor can wake up with a dangling block. rb_darray_for(body->yjit_blocks, version_array_idx) { rb_yjit_block_array_t version_array = rb_darray_get(body->yjit_blocks, version_array_idx); rb_darray_for(version_array, version_idx) { // Stop listening for invalidation events like basic operation redefinition. block_t *block = rb_darray_get(version_array, version_idx); yjit_unlink_method_lookup_dependency(block); yjit_block_assumptions_free(block); } rb_darray_free(version_array); } rb_darray_free(body->yjit_blocks); body->yjit_blocks = NULL; #if USE_MJIT // Reset output code entry point body->jit_func = NULL; #endif } static void yjit_reg_op(int opcode, codegen_fn gen_fn) { RUBY_ASSERT(opcode >= 0 && opcode < VM_INSTRUCTION_SIZE); // Check that the op wasn't previously registered RUBY_ASSERT(gen_fns[opcode] == NULL); gen_fns[opcode] = gen_fn; } void yjit_init_codegen(void) { // Initialize the code blocks uint32_t mem_size = rb_yjit_opts.exec_mem_size * 1024 * 1024; uint8_t *mem_block = alloc_exec_mem(mem_size); cb = █ cb_init(cb, mem_block, mem_size/2); ocb = &outline_block; cb_init(ocb, mem_block + mem_size/2, mem_size/2); // Generate the interpreter exit code for leave leave_exit_code = yjit_gen_leave_exit(cb); // Generate full exit code for C func gen_full_cfunc_return(); cb_mark_all_executable(cb); // Map YARV opcodes to the corresponding codegen functions yjit_reg_op(BIN(nop), gen_nop); yjit_reg_op(BIN(dup), gen_dup); yjit_reg_op(BIN(dupn), gen_dupn); yjit_reg_op(BIN(swap), gen_swap); yjit_reg_op(BIN(setn), gen_setn); yjit_reg_op(BIN(topn), gen_topn); yjit_reg_op(BIN(pop), gen_pop); yjit_reg_op(BIN(adjuststack), gen_adjuststack); yjit_reg_op(BIN(newarray), gen_newarray); yjit_reg_op(BIN(duparray), gen_duparray); yjit_reg_op(BIN(duphash), gen_duphash); yjit_reg_op(BIN(splatarray), gen_splatarray); yjit_reg_op(BIN(expandarray), gen_expandarray); yjit_reg_op(BIN(newhash), gen_newhash); yjit_reg_op(BIN(newrange), gen_newrange); yjit_reg_op(BIN(concatstrings), gen_concatstrings); yjit_reg_op(BIN(putnil), gen_putnil); yjit_reg_op(BIN(putobject), gen_putobject); yjit_reg_op(BIN(putstring), gen_putstring); yjit_reg_op(BIN(putobject_INT2FIX_0_), gen_putobject_int2fix); yjit_reg_op(BIN(putobject_INT2FIX_1_), gen_putobject_int2fix); yjit_reg_op(BIN(putself), gen_putself); yjit_reg_op(BIN(putspecialobject), gen_putspecialobject); yjit_reg_op(BIN(getlocal), gen_getlocal); yjit_reg_op(BIN(getlocal_WC_0), gen_getlocal_wc0); yjit_reg_op(BIN(getlocal_WC_1), gen_getlocal_wc1); yjit_reg_op(BIN(setlocal), gen_setlocal); yjit_reg_op(BIN(setlocal_WC_0), gen_setlocal_wc0); yjit_reg_op(BIN(setlocal_WC_1), gen_setlocal_wc1); yjit_reg_op(BIN(getinstancevariable), gen_getinstancevariable); yjit_reg_op(BIN(setinstancevariable), gen_setinstancevariable); yjit_reg_op(BIN(defined), gen_defined); yjit_reg_op(BIN(checktype), gen_checktype); yjit_reg_op(BIN(checkkeyword), gen_checkkeyword); yjit_reg_op(BIN(opt_lt), gen_opt_lt); yjit_reg_op(BIN(opt_le), gen_opt_le); yjit_reg_op(BIN(opt_ge), gen_opt_ge); yjit_reg_op(BIN(opt_gt), gen_opt_gt); yjit_reg_op(BIN(opt_eq), gen_opt_eq); yjit_reg_op(BIN(opt_neq), gen_opt_neq); yjit_reg_op(BIN(opt_aref), gen_opt_aref); yjit_reg_op(BIN(opt_aset), gen_opt_aset); yjit_reg_op(BIN(opt_and), gen_opt_and); yjit_reg_op(BIN(opt_or), gen_opt_or); yjit_reg_op(BIN(opt_minus), gen_opt_minus); yjit_reg_op(BIN(opt_plus), gen_opt_plus); yjit_reg_op(BIN(opt_mult), gen_opt_mult); yjit_reg_op(BIN(opt_div), gen_opt_div); yjit_reg_op(BIN(opt_mod), gen_opt_mod); yjit_reg_op(BIN(opt_ltlt), gen_opt_ltlt); yjit_reg_op(BIN(opt_nil_p), gen_opt_nil_p); yjit_reg_op(BIN(opt_empty_p), gen_opt_empty_p); yjit_reg_op(BIN(opt_str_freeze), gen_opt_str_freeze); yjit_reg_op(BIN(opt_str_uminus), gen_opt_str_uminus); yjit_reg_op(BIN(opt_not), gen_opt_not); yjit_reg_op(BIN(opt_size), gen_opt_size); yjit_reg_op(BIN(opt_length), gen_opt_length); yjit_reg_op(BIN(opt_regexpmatch2), gen_opt_regexpmatch2); yjit_reg_op(BIN(opt_getinlinecache), gen_opt_getinlinecache); yjit_reg_op(BIN(invokebuiltin), gen_invokebuiltin); yjit_reg_op(BIN(opt_invokebuiltin_delegate), gen_opt_invokebuiltin_delegate); yjit_reg_op(BIN(opt_invokebuiltin_delegate_leave), gen_opt_invokebuiltin_delegate); yjit_reg_op(BIN(opt_case_dispatch), gen_opt_case_dispatch); yjit_reg_op(BIN(branchif), gen_branchif); yjit_reg_op(BIN(branchunless), gen_branchunless); yjit_reg_op(BIN(branchnil), gen_branchnil); yjit_reg_op(BIN(jump), gen_jump); yjit_reg_op(BIN(getblockparamproxy), gen_getblockparamproxy); yjit_reg_op(BIN(opt_send_without_block), gen_opt_send_without_block); yjit_reg_op(BIN(send), gen_send); yjit_reg_op(BIN(invokesuper), gen_invokesuper); yjit_reg_op(BIN(leave), gen_leave); yjit_reg_op(BIN(getglobal), gen_getglobal); yjit_reg_op(BIN(setglobal), gen_setglobal); yjit_reg_op(BIN(anytostring), gen_anytostring); yjit_reg_op(BIN(objtostring), gen_objtostring); yjit_reg_op(BIN(toregexp), gen_toregexp); yjit_reg_op(BIN(intern), gen_intern); yjit_reg_op(BIN(getspecial), gen_getspecial); yjit_reg_op(BIN(getclassvariable), gen_getclassvariable); yjit_reg_op(BIN(setclassvariable), gen_setclassvariable); yjit_method_codegen_table = st_init_numtable(); // Specialization for C methods. See yjit_reg_method() for details. yjit_reg_method(rb_cBasicObject, "!", jit_rb_obj_not); yjit_reg_method(rb_cNilClass, "nil?", jit_rb_true); yjit_reg_method(rb_mKernel, "nil?", jit_rb_false); yjit_reg_method(rb_cBasicObject, "==", jit_rb_obj_equal); yjit_reg_method(rb_cBasicObject, "equal?", jit_rb_obj_equal); yjit_reg_method(rb_mKernel, "eql?", jit_rb_obj_equal); yjit_reg_method(rb_cModule, "==", jit_rb_obj_equal); yjit_reg_method(rb_cSymbol, "==", jit_rb_obj_equal); yjit_reg_method(rb_cSymbol, "===", jit_rb_obj_equal); // rb_str_to_s() methods in string.c yjit_reg_method(rb_cString, "to_s", jit_rb_str_to_s); yjit_reg_method(rb_cString, "to_str", jit_rb_str_to_s); yjit_reg_method(rb_cString, "bytesize", jit_rb_str_bytesize); // Thread.current yjit_reg_method(rb_singleton_class(rb_cThread), "current", jit_thread_s_current); }