/********************************************************************** hash.c - $Author$ created at: Mon Nov 22 18:51:18 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby/internal/config.h" #include #ifdef __APPLE__ # ifdef HAVE_CRT_EXTERNS_H # include # else # include "missing/crt_externs.h" # endif #endif #include "debug_counter.h" #include "id.h" #include "internal.h" #include "internal/array.h" #include "internal/bignum.h" #include "internal/class.h" #include "internal/cont.h" #include "internal/error.h" #include "internal/hash.h" #include "internal/object.h" #include "internal/proc.h" #include "internal/symbol.h" #include "internal/time.h" #include "internal/vm.h" #include "probes.h" #include "ruby/st.h" #include "ruby/util.h" #include "ruby_assert.h" #include "symbol.h" #include "transient_heap.h" #ifndef HASH_DEBUG #define HASH_DEBUG 0 #endif #if HASH_DEBUG #include "gc.h" #endif #define HAS_EXTRA_STATES(hash, klass) ( \ ((klass = has_extra_methods(rb_obj_class(hash))) != 0) || \ FL_TEST((hash), FL_EXIVAR|RHASH_PROC_DEFAULT) || \ !NIL_P(RHASH_IFNONE(hash))) #define SET_DEFAULT(hash, ifnone) ( \ FL_UNSET_RAW(hash, RHASH_PROC_DEFAULT), \ RHASH_SET_IFNONE(hash, ifnone)) #define SET_PROC_DEFAULT(hash, proc) set_proc_default(hash, proc) #define COPY_DEFAULT(hash, hash2) copy_default(RHASH(hash), RHASH(hash2)) static inline void copy_default(struct RHash *hash, const struct RHash *hash2) { hash->basic.flags &= ~RHASH_PROC_DEFAULT; hash->basic.flags |= hash2->basic.flags & RHASH_PROC_DEFAULT; RHASH_SET_IFNONE(hash, RHASH_IFNONE((VALUE)hash2)); } static VALUE has_extra_methods(VALUE klass) { const VALUE base = rb_cHash; VALUE c = klass; while (c != base) { if (rb_class_has_methods(c)) return klass; c = RCLASS_SUPER(c); } return 0; } static VALUE rb_hash_s_try_convert(VALUE, VALUE); /* * Hash WB strategy: * 1. Check mutate st_* functions * * st_insert() * * st_insert2() * * st_update() * * st_add_direct() * 2. Insert WBs */ VALUE rb_hash_freeze(VALUE hash) { return rb_obj_freeze(hash); } VALUE rb_cHash; static VALUE envtbl; static ID id_hash, id_default, id_flatten_bang; static ID id_hash_iter_lev; VALUE rb_hash_set_ifnone(VALUE hash, VALUE ifnone) { RB_OBJ_WRITE(hash, (&RHASH(hash)->ifnone), ifnone); return hash; } static int rb_any_cmp(VALUE a, VALUE b) { if (a == b) return 0; if (RB_TYPE_P(a, T_STRING) && RBASIC(a)->klass == rb_cString && RB_TYPE_P(b, T_STRING) && RBASIC(b)->klass == rb_cString) { return rb_str_hash_cmp(a, b); } if (a == Qundef || b == Qundef) return -1; if (SYMBOL_P(a) && SYMBOL_P(b)) { return a != b; } return !rb_eql(a, b); } static VALUE hash_recursive(VALUE obj, VALUE arg, int recurse) { if (recurse) return INT2FIX(0); return rb_funcallv(obj, id_hash, 0, 0); } VALUE rb_hash(VALUE obj) { VALUE hval = rb_check_funcall_basic_kw(obj, id_hash, rb_mKernel, 0, 0, 0); if (hval == Qundef) { hval = rb_exec_recursive_outer(hash_recursive, obj, 0); } while (!FIXNUM_P(hval)) { if (RB_TYPE_P(hval, T_BIGNUM)) { int sign; unsigned long ul; sign = rb_integer_pack(hval, &ul, 1, sizeof(ul), 0, INTEGER_PACK_NATIVE_BYTE_ORDER); if (sign < 0) { hval = LONG2FIX(ul | FIXNUM_MIN); } else { hval = LONG2FIX(ul & FIXNUM_MAX); } } hval = rb_to_int(hval); } return hval; } static long rb_objid_hash(st_index_t index); static st_index_t dbl_to_index(double d) { union {double d; st_index_t i;} u; u.d = d; return u.i; } long rb_dbl_long_hash(double d) { /* normalize -0.0 to 0.0 */ if (d == 0.0) d = 0.0; #if SIZEOF_INT == SIZEOF_VOIDP return rb_memhash(&d, sizeof(d)); #else return rb_objid_hash(dbl_to_index(d)); #endif } static inline long any_hash(VALUE a, st_index_t (*other_func)(VALUE)) { VALUE hval; st_index_t hnum; switch (TYPE(a)) { case T_SYMBOL: if (STATIC_SYM_P(a)) { hnum = a >> (RUBY_SPECIAL_SHIFT + ID_SCOPE_SHIFT); hnum = rb_hash_start(hnum); } else { hnum = RSYMBOL(a)->hashval; } break; case T_FIXNUM: case T_TRUE: case T_FALSE: case T_NIL: hnum = rb_objid_hash((st_index_t)a); break; case T_STRING: hnum = rb_str_hash(a); break; case T_BIGNUM: hval = rb_big_hash(a); hnum = FIX2LONG(hval); break; case T_FLOAT: /* prevent pathological behavior: [Bug #10761] */ hnum = rb_dbl_long_hash(rb_float_value(a)); break; default: hnum = other_func(a); } if ((SIGNED_VALUE)hnum > 0) hnum &= FIXNUM_MAX; else hnum |= FIXNUM_MIN; return (long)hnum; } static st_index_t obj_any_hash(VALUE obj) { obj = rb_hash(obj); return FIX2LONG(obj); } static st_index_t rb_any_hash(VALUE a) { return any_hash(a, obj_any_hash); } /* Here is a hash function for 64-bit key. It is about 5 times faster (2 times faster when uint128 type is absent) on Haswell than tailored Spooky or City hash function can be. */ /* Here we two primes with random bit generation. */ static const uint64_t prime1 = ((uint64_t)0x2e0bb864 << 32) | 0xe9ea7df5; static const uint32_t prime2 = 0x830fcab9; static inline uint64_t mult_and_mix(uint64_t m1, uint64_t m2) { #if defined HAVE_UINT128_T uint128_t r = (uint128_t) m1 * (uint128_t) m2; return (uint64_t) (r >> 64) ^ (uint64_t) r; #else uint64_t hm1 = m1 >> 32, hm2 = m2 >> 32; uint64_t lm1 = m1, lm2 = m2; uint64_t v64_128 = hm1 * hm2; uint64_t v32_96 = hm1 * lm2 + lm1 * hm2; uint64_t v1_32 = lm1 * lm2; return (v64_128 + (v32_96 >> 32)) ^ ((v32_96 << 32) + v1_32); #endif } static inline uint64_t key64_hash(uint64_t key, uint32_t seed) { return mult_and_mix(key + seed, prime1); } /* Should cast down the result for each purpose */ #define st_index_hash(index) key64_hash(rb_hash_start(index), prime2) static long rb_objid_hash(st_index_t index) { return (long)st_index_hash(index); } static st_index_t objid_hash(VALUE obj) { VALUE object_id = rb_obj_id(obj); if (!FIXNUM_P(object_id)) object_id = rb_big_hash(object_id); #if SIZEOF_LONG == SIZEOF_VOIDP return (st_index_t)st_index_hash((st_index_t)NUM2LONG(object_id)); #elif SIZEOF_LONG_LONG == SIZEOF_VOIDP return (st_index_t)st_index_hash((st_index_t)NUM2LL(object_id)); #endif } /** * call-seq: * obj.hash -> integer * * Generates an Integer hash value for this object. This function must have the * property that a.eql?(b) implies a.hash == b.hash. * * The hash value is used along with #eql? by the Hash class to determine if * two objects reference the same hash key. Any hash value that exceeds the * capacity of an Integer will be truncated before being used. * * The hash value for an object may not be identical across invocations or * implementations of Ruby. If you need a stable identifier across Ruby * invocations and implementations you will need to generate one with a custom * method. * * Certain core classes such as Integer use built-in hash calculations and * do not call the #hash method when used as a hash key. *-- * \private *++ */ VALUE rb_obj_hash(VALUE obj) { long hnum = any_hash(obj, objid_hash); return ST2FIX(hnum); } static const struct st_hash_type objhash = { rb_any_cmp, rb_any_hash, }; #define rb_ident_cmp st_numcmp static st_index_t rb_ident_hash(st_data_t n) { #ifdef USE_FLONUM /* RUBY */ /* * - flonum (on 64-bit) is pathologically bad, mix the actual * float value in, but do not use the float value as-is since * many integers get interpreted as 2.0 or -2.0 [Bug #10761] */ if (FLONUM_P(n)) { n ^= dbl_to_index(rb_float_value(n)); } #endif return (st_index_t)st_index_hash((st_index_t)n); } #define identhash rb_hashtype_ident const struct st_hash_type rb_hashtype_ident = { rb_ident_cmp, rb_ident_hash, }; typedef st_index_t st_hash_t; /* * RHASH_AR_TABLE_P(h): * * as.ar == NULL or * as.ar points ar_table. * * as.ar is allocated by transient heap or xmalloc. * * !RHASH_AR_TABLE_P(h): * * as.st points st_table. */ #define RHASH_AR_TABLE_MAX_BOUND RHASH_AR_TABLE_MAX_SIZE #define RHASH_AR_TABLE_REF(hash, n) (&RHASH_AR_TABLE(hash)->pairs[n]) #define RHASH_AR_CLEARED_HINT 0xff typedef struct ar_table_pair_struct { VALUE key; VALUE val; } ar_table_pair; typedef struct ar_table_struct { /* 64bit CPU: 8B * 2 * 8 = 128B */ ar_table_pair pairs[RHASH_AR_TABLE_MAX_SIZE]; } ar_table; size_t rb_hash_ar_table_size(void) { return sizeof(ar_table); } static inline st_hash_t ar_do_hash(st_data_t key) { return (st_hash_t)rb_any_hash(key); } static inline ar_hint_t ar_do_hash_hint(st_hash_t hash_value) { return (ar_hint_t)hash_value; } static inline ar_hint_t ar_hint(VALUE hash, unsigned int index) { return RHASH(hash)->ar_hint.ary[index]; } static inline void ar_hint_set_hint(VALUE hash, unsigned int index, ar_hint_t hint) { RHASH(hash)->ar_hint.ary[index] = hint; } static inline void ar_hint_set(VALUE hash, unsigned int index, st_hash_t hash_value) { ar_hint_set_hint(hash, index, ar_do_hash_hint(hash_value)); } static inline void ar_clear_entry(VALUE hash, unsigned int index) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index); pair->key = Qundef; ar_hint_set_hint(hash, index, RHASH_AR_CLEARED_HINT); } static inline int ar_cleared_entry(VALUE hash, unsigned int index) { if (ar_hint(hash, index) == RHASH_AR_CLEARED_HINT) { /* RHASH_AR_CLEARED_HINT is only a hint, not mean cleared entry, * so you need to check key == Qundef */ ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index); return pair->key == Qundef; } else { return FALSE; } } static inline void ar_set_entry(VALUE hash, unsigned int index, st_data_t key, st_data_t val, st_hash_t hash_value) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, index); pair->key = key; pair->val = val; ar_hint_set(hash, index, hash_value); } #define RHASH_AR_TABLE_SIZE(h) (HASH_ASSERT(RHASH_AR_TABLE_P(h)), \ RHASH_AR_TABLE_SIZE_RAW(h)) #define RHASH_AR_TABLE_BOUND_RAW(h) \ ((unsigned int)((RBASIC(h)->flags >> RHASH_AR_TABLE_BOUND_SHIFT) & \ (RHASH_AR_TABLE_BOUND_MASK >> RHASH_AR_TABLE_BOUND_SHIFT))) #define RHASH_AR_TABLE_BOUND(h) (HASH_ASSERT(RHASH_AR_TABLE_P(h)), \ RHASH_AR_TABLE_BOUND_RAW(h)) #define RHASH_ST_TABLE_SET(h, s) rb_hash_st_table_set(h, s) #define RHASH_TYPE(hash) (RHASH_AR_TABLE_P(hash) ? &objhash : RHASH_ST_TABLE(hash)->type) #define HASH_ASSERT(expr) RUBY_ASSERT_MESG_WHEN(HASH_DEBUG, expr, #expr) #if HASH_DEBUG #define hash_verify(hash) hash_verify_(hash, __FILE__, __LINE__) void rb_hash_dump(VALUE hash) { rb_obj_info_dump(hash); if (RHASH_AR_TABLE_P(hash)) { unsigned i, n = 0, bound = RHASH_AR_TABLE_BOUND(hash); fprintf(stderr, " size:%u bound:%u\n", RHASH_AR_TABLE_SIZE(hash), RHASH_AR_TABLE_BOUND(hash)); for (i=0; ikey; v = pair->val; fprintf(stderr, " %d key:%s val:%s hint:%02x\n", i, rb_raw_obj_info(b1, 0x100, k), rb_raw_obj_info(b2, 0x100, v), ar_hint(hash, i)); n++; } else { fprintf(stderr, " %d empty\n", i); } } } } static VALUE hash_verify_(VALUE hash, const char *file, int line) { HASH_ASSERT(RB_TYPE_P(hash, T_HASH)); if (RHASH_AR_TABLE_P(hash)) { unsigned i, n = 0, bound = RHASH_AR_TABLE_BOUND(hash); for (i=0; ikey; v = pair->val; HASH_ASSERT(k != Qundef); HASH_ASSERT(v != Qundef); n++; } } if (n != RHASH_AR_TABLE_SIZE(hash)) { rb_bug("n:%u, RHASH_AR_TABLE_SIZE:%u", n, RHASH_AR_TABLE_SIZE(hash)); } } else { HASH_ASSERT(RHASH_ST_TABLE(hash) != NULL); HASH_ASSERT(RHASH_AR_TABLE_SIZE_RAW(hash) == 0); HASH_ASSERT(RHASH_AR_TABLE_BOUND_RAW(hash) == 0); } #if USE_TRANSIENT_HEAP if (RHASH_TRANSIENT_P(hash)) { volatile st_data_t MAYBE_UNUSED(key) = RHASH_AR_TABLE_REF(hash, 0)->key; /* read */ HASH_ASSERT(RHASH_AR_TABLE(hash) != NULL); HASH_ASSERT(rb_transient_heap_managed_ptr_p(RHASH_AR_TABLE(hash))); } #endif return hash; } #else #define hash_verify(h) ((void)0) #endif static inline int RHASH_TABLE_NULL_P(VALUE hash) { if (RHASH(hash)->as.ar == NULL) { HASH_ASSERT(RHASH_AR_TABLE_P(hash)); return TRUE; } else { return FALSE; } } static inline int RHASH_TABLE_EMPTY_P(VALUE hash) { return RHASH_SIZE(hash) == 0; } int rb_hash_ar_table_p(VALUE hash) { if (FL_TEST_RAW((hash), RHASH_ST_TABLE_FLAG)) { HASH_ASSERT(RHASH(hash)->as.st != NULL); return FALSE; } else { return TRUE; } } ar_table * rb_hash_ar_table(VALUE hash) { HASH_ASSERT(RHASH_AR_TABLE_P(hash)); return RHASH(hash)->as.ar; } st_table * rb_hash_st_table(VALUE hash) { HASH_ASSERT(!RHASH_AR_TABLE_P(hash)); return RHASH(hash)->as.st; } void rb_hash_st_table_set(VALUE hash, st_table *st) { HASH_ASSERT(st != NULL); FL_SET_RAW((hash), RHASH_ST_TABLE_FLAG); RHASH(hash)->as.st = st; } static void hash_ar_table_set(VALUE hash, ar_table *ar) { HASH_ASSERT(RHASH_AR_TABLE_P(hash)); HASH_ASSERT((RHASH_TRANSIENT_P(hash) && ar == NULL) ? FALSE : TRUE); RHASH(hash)->as.ar = ar; hash_verify(hash); } #define RHASH_SET_ST_FLAG(h) FL_SET_RAW(h, RHASH_ST_TABLE_FLAG) #define RHASH_UNSET_ST_FLAG(h) FL_UNSET_RAW(h, RHASH_ST_TABLE_FLAG) static inline void RHASH_AR_TABLE_BOUND_SET(VALUE h, st_index_t n) { HASH_ASSERT(RHASH_AR_TABLE_P(h)); HASH_ASSERT(n <= RHASH_AR_TABLE_MAX_BOUND); RBASIC(h)->flags &= ~RHASH_AR_TABLE_BOUND_MASK; RBASIC(h)->flags |= n << RHASH_AR_TABLE_BOUND_SHIFT; } static inline void RHASH_AR_TABLE_SIZE_SET(VALUE h, st_index_t n) { HASH_ASSERT(RHASH_AR_TABLE_P(h)); HASH_ASSERT(n <= RHASH_AR_TABLE_MAX_SIZE); RBASIC(h)->flags &= ~RHASH_AR_TABLE_SIZE_MASK; RBASIC(h)->flags |= n << RHASH_AR_TABLE_SIZE_SHIFT; } static inline void HASH_AR_TABLE_SIZE_ADD(VALUE h, st_index_t n) { HASH_ASSERT(RHASH_AR_TABLE_P(h)); RHASH_AR_TABLE_SIZE_SET(h, RHASH_AR_TABLE_SIZE(h) + n); hash_verify(h); } #define RHASH_AR_TABLE_SIZE_INC(h) HASH_AR_TABLE_SIZE_ADD(h, 1) static inline void RHASH_AR_TABLE_SIZE_DEC(VALUE h) { HASH_ASSERT(RHASH_AR_TABLE_P(h)); int new_size = RHASH_AR_TABLE_SIZE(h) - 1; if (new_size != 0) { RHASH_AR_TABLE_SIZE_SET(h, new_size); } else { RHASH_AR_TABLE_SIZE_SET(h, 0); RHASH_AR_TABLE_BOUND_SET(h, 0); } hash_verify(h); } static inline void RHASH_AR_TABLE_CLEAR(VALUE h) { RBASIC(h)->flags &= ~RHASH_AR_TABLE_SIZE_MASK; RBASIC(h)->flags &= ~RHASH_AR_TABLE_BOUND_MASK; hash_ar_table_set(h, NULL); } static ar_table* ar_alloc_table(VALUE hash) { ar_table *tab = (ar_table*)rb_transient_heap_alloc(hash, sizeof(ar_table)); if (tab != NULL) { RHASH_SET_TRANSIENT_FLAG(hash); } else { RHASH_UNSET_TRANSIENT_FLAG(hash); tab = (ar_table*)ruby_xmalloc(sizeof(ar_table)); } RHASH_AR_TABLE_SIZE_SET(hash, 0); RHASH_AR_TABLE_BOUND_SET(hash, 0); hash_ar_table_set(hash, tab); return tab; } NOINLINE(static int ar_equal(VALUE x, VALUE y)); static int ar_equal(VALUE x, VALUE y) { return rb_any_cmp(x, y) == 0; } static unsigned ar_find_entry_hint(VALUE hash, ar_hint_t hint, st_data_t key) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); const ar_hint_t *hints = RHASH(hash)->ar_hint.ary; /* if table is NULL, then bound also should be 0 */ for (i = 0; i < bound; i++) { if (hints[i] == hint) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); if (ar_equal(key, pair->key)) { RB_DEBUG_COUNTER_INC(artable_hint_hit); return i; } else { #if 0 static int pid; static char fname[256]; static FILE *fp; if (pid != getpid()) { snprintf(fname, sizeof(fname), "/tmp/ruby-armiss.%d", pid = getpid()); if ((fp = fopen(fname, "w")) == NULL) rb_bug("fopen"); } st_hash_t h1 = ar_do_hash(key); st_hash_t h2 = ar_do_hash(pair->key); fprintf(fp, "miss: hash_eq:%d hints[%d]:%02x hint:%02x\n" " key :%016lx %s\n" " pair->key:%016lx %s\n", h1 == h2, i, hints[i], hint, h1, rb_obj_info(key), h2, rb_obj_info(pair->key)); #endif RB_DEBUG_COUNTER_INC(artable_hint_miss); } } } RB_DEBUG_COUNTER_INC(artable_hint_notfound); return RHASH_AR_TABLE_MAX_BOUND; } static unsigned ar_find_entry(VALUE hash, st_hash_t hash_value, st_data_t key) { ar_hint_t hint = ar_do_hash_hint(hash_value); return ar_find_entry_hint(hash, hint, key); } static inline void ar_free_and_clear_table(VALUE hash) { ar_table *tab = RHASH_AR_TABLE(hash); if (tab) { if (RHASH_TRANSIENT_P(hash)) { RHASH_UNSET_TRANSIENT_FLAG(hash); } else { ruby_xfree(RHASH_AR_TABLE(hash)); } RHASH_AR_TABLE_CLEAR(hash); } HASH_ASSERT(RHASH_AR_TABLE_SIZE(hash) == 0); HASH_ASSERT(RHASH_AR_TABLE_BOUND(hash) == 0); HASH_ASSERT(RHASH_TRANSIENT_P(hash) == 0); } static void ar_try_convert_table(VALUE hash) { if (!RHASH_AR_TABLE_P(hash)) return; const unsigned size = RHASH_AR_TABLE_SIZE(hash); st_table *new_tab; st_index_t i; if (size < RHASH_AR_TABLE_MAX_SIZE) { return; } new_tab = st_init_table_with_size(&objhash, size * 2); for (i = 0; i < RHASH_AR_TABLE_MAX_BOUND; i++) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); st_add_direct(new_tab, pair->key, pair->val); } ar_free_and_clear_table(hash); RHASH_ST_TABLE_SET(hash, new_tab); return; } static st_table * ar_force_convert_table(VALUE hash, const char *file, int line) { st_table *new_tab; if (RHASH_ST_TABLE_P(hash)) { return RHASH_ST_TABLE(hash); } if (RHASH_AR_TABLE(hash)) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); #if RHASH_CONVERT_TABLE_DEBUG rb_obj_info_dump(hash); fprintf(stderr, "force_convert: %s:%d\n", file, line); RB_DEBUG_COUNTER_INC(obj_hash_force_convert); #endif new_tab = st_init_table_with_size(&objhash, RHASH_AR_TABLE_SIZE(hash)); for (i = 0; i < bound; i++) { if (ar_cleared_entry(hash, i)) continue; ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); st_add_direct(new_tab, pair->key, pair->val); } ar_free_and_clear_table(hash); } else { new_tab = st_init_table(&objhash); } RHASH_ST_TABLE_SET(hash, new_tab); return new_tab; } static ar_table * hash_ar_table(VALUE hash) { if (RHASH_TABLE_NULL_P(hash)) { ar_alloc_table(hash); } return RHASH_AR_TABLE(hash); } static int ar_compact_table(VALUE hash) { const unsigned bound = RHASH_AR_TABLE_BOUND(hash); const unsigned size = RHASH_AR_TABLE_SIZE(hash); if (size == bound) { return size; } else { unsigned i, j=0; ar_table_pair *pairs = RHASH_AR_TABLE(hash)->pairs; for (i=0; i= RHASH_AR_TABLE_MAX_SIZE) { return 1; } else { if (UNLIKELY(bin >= RHASH_AR_TABLE_MAX_BOUND)) { bin = ar_compact_table(hash); hash_ar_table(hash); } HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND); ar_set_entry(hash, bin, key, val, hash_value); RHASH_AR_TABLE_BOUND_SET(hash, bin+1); RHASH_AR_TABLE_SIZE_INC(hash); return 0; } } static int ar_general_foreach(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg) { if (RHASH_AR_TABLE_SIZE(hash) > 0) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); for (i = 0; i < bound; i++) { if (ar_cleared_entry(hash, i)) continue; ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); enum st_retval retval = (*func)(pair->key, pair->val, arg, 0); /* pair may be not valid here because of theap */ switch (retval) { case ST_CONTINUE: break; case ST_CHECK: case ST_STOP: return 0; case ST_REPLACE: if (replace) { VALUE key = pair->key; VALUE val = pair->val; retval = (*replace)(&key, &val, arg, TRUE); // TODO: pair should be same as pair before. ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); pair->key = key; pair->val = val; } break; case ST_DELETE: ar_clear_entry(hash, i); RHASH_AR_TABLE_SIZE_DEC(hash); break; } } } return 0; } static int ar_foreach_with_replace(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg) { return ar_general_foreach(hash, func, replace, arg); } struct functor { st_foreach_callback_func *func; st_data_t arg; }; static int apply_functor(st_data_t k, st_data_t v, st_data_t d, int _) { const struct functor *f = (void *)d; return f->func(k, v, f->arg); } static int ar_foreach(VALUE hash, st_foreach_callback_func *func, st_data_t arg) { const struct functor f = { func, arg }; return ar_general_foreach(hash, apply_functor, NULL, (st_data_t)&f); } static int ar_foreach_check(VALUE hash, st_foreach_check_callback_func *func, st_data_t arg, st_data_t never) { if (RHASH_AR_TABLE_SIZE(hash) > 0) { unsigned i, ret = 0, bound = RHASH_AR_TABLE_BOUND(hash); enum st_retval retval; st_data_t key; ar_table_pair *pair; ar_hint_t hint; for (i = 0; i < bound; i++) { if (ar_cleared_entry(hash, i)) continue; pair = RHASH_AR_TABLE_REF(hash, i); key = pair->key; hint = ar_hint(hash, i); retval = (*func)(key, pair->val, arg, 0); hash_verify(hash); switch (retval) { case ST_CHECK: { pair = RHASH_AR_TABLE_REF(hash, i); if (pair->key == never) break; ret = ar_find_entry_hint(hash, hint, key); if (ret == RHASH_AR_TABLE_MAX_BOUND) { retval = (*func)(0, 0, arg, 1); return 2; } } case ST_CONTINUE: break; case ST_STOP: case ST_REPLACE: return 0; case ST_DELETE: { if (!ar_cleared_entry(hash, i)) { ar_clear_entry(hash, i); RHASH_AR_TABLE_SIZE_DEC(hash); } break; } } } } return 0; } static int ar_update(VALUE hash, st_data_t key, st_update_callback_func *func, st_data_t arg) { int retval, existing; unsigned bin = RHASH_AR_TABLE_MAX_BOUND; st_data_t value = 0, old_key; st_hash_t hash_value = ar_do_hash(key); if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) { // `#hash` changes ar_table -> st_table return -1; } if (RHASH_AR_TABLE_SIZE(hash) > 0) { bin = ar_find_entry(hash, hash_value, key); existing = (bin != RHASH_AR_TABLE_MAX_BOUND) ? TRUE : FALSE; } else { hash_ar_table(hash); /* allocate ltbl if needed */ existing = FALSE; } if (existing) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin); key = pair->key; value = pair->val; } old_key = key; retval = (*func)(&key, &value, arg, existing); /* pair can be invalid here because of theap */ switch (retval) { case ST_CONTINUE: if (!existing) { if (ar_add_direct_with_hash(hash, key, value, hash_value)) { return -1; } } else { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin); if (old_key != key) { pair->key = key; } pair->val = value; } break; case ST_DELETE: if (existing) { ar_clear_entry(hash, bin); RHASH_AR_TABLE_SIZE_DEC(hash); } break; } return existing; } static int ar_insert(VALUE hash, st_data_t key, st_data_t value) { unsigned bin = RHASH_AR_TABLE_BOUND(hash); st_hash_t hash_value = ar_do_hash(key); if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) { // `#hash` changes ar_table -> st_table return -1; } hash_ar_table(hash); /* prepare ltbl */ bin = ar_find_entry(hash, hash_value, key); if (bin == RHASH_AR_TABLE_MAX_BOUND) { if (RHASH_AR_TABLE_SIZE(hash) >= RHASH_AR_TABLE_MAX_SIZE) { return -1; } else if (bin >= RHASH_AR_TABLE_MAX_BOUND) { bin = ar_compact_table(hash); hash_ar_table(hash); } HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND); ar_set_entry(hash, bin, key, value, hash_value); RHASH_AR_TABLE_BOUND_SET(hash, bin+1); RHASH_AR_TABLE_SIZE_INC(hash); return 0; } else { RHASH_AR_TABLE_REF(hash, bin)->val = value; return 1; } } static int ar_lookup(VALUE hash, st_data_t key, st_data_t *value) { if (RHASH_AR_TABLE_SIZE(hash) == 0) { return 0; } else { st_hash_t hash_value = ar_do_hash(key); if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) { // `#hash` changes ar_table -> st_table return st_lookup(RHASH_ST_TABLE(hash), key, value); } unsigned bin = ar_find_entry(hash, hash_value, key); if (bin == RHASH_AR_TABLE_MAX_BOUND) { return 0; } else { HASH_ASSERT(bin < RHASH_AR_TABLE_MAX_BOUND); if (value != NULL) { *value = RHASH_AR_TABLE_REF(hash, bin)->val; } return 1; } } } static int ar_delete(VALUE hash, st_data_t *key, st_data_t *value) { unsigned bin; st_hash_t hash_value = ar_do_hash(*key); if (UNLIKELY(!RHASH_AR_TABLE_P(hash))) { // `#hash` changes ar_table -> st_table return st_delete(RHASH_ST_TABLE(hash), key, value); } bin = ar_find_entry(hash, hash_value, *key); if (bin == RHASH_AR_TABLE_MAX_BOUND) { if (value != 0) *value = 0; return 0; } else { if (value != 0) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, bin); *value = pair->val; } ar_clear_entry(hash, bin); RHASH_AR_TABLE_SIZE_DEC(hash); return 1; } } static int ar_shift(VALUE hash, st_data_t *key, st_data_t *value) { if (RHASH_AR_TABLE_SIZE(hash) > 0) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); for (i = 0; i < bound; i++) { if (!ar_cleared_entry(hash, i)) { ar_table_pair *pair = RHASH_AR_TABLE_REF(hash, i); if (value != 0) *value = pair->val; *key = pair->key; ar_clear_entry(hash, i); RHASH_AR_TABLE_SIZE_DEC(hash); return 1; } } } if (value != NULL) *value = 0; return 0; } static long ar_keys(VALUE hash, st_data_t *keys, st_index_t size) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); st_data_t *keys_start = keys, *keys_end = keys + size; for (i = 0; i < bound; i++) { if (keys == keys_end) { break; } else { if (!ar_cleared_entry(hash, i)) { *keys++ = RHASH_AR_TABLE_REF(hash, i)->key; } } } return keys - keys_start; } static long ar_values(VALUE hash, st_data_t *values, st_index_t size) { unsigned i, bound = RHASH_AR_TABLE_BOUND(hash); st_data_t *values_start = values, *values_end = values + size; for (i = 0; i < bound; i++) { if (values == values_end) { break; } else { if (!ar_cleared_entry(hash, i)) { *values++ = RHASH_AR_TABLE_REF(hash, i)->val; } } } return values - values_start; } static ar_table* ar_copy(VALUE hash1, VALUE hash2) { ar_table *old_tab = RHASH_AR_TABLE(hash2); if (old_tab != NULL) { ar_table *new_tab = RHASH_AR_TABLE(hash1); if (new_tab == NULL) { new_tab = (ar_table*) rb_transient_heap_alloc(hash1, sizeof(ar_table)); if (new_tab != NULL) { RHASH_SET_TRANSIENT_FLAG(hash1); } else { RHASH_UNSET_TRANSIENT_FLAG(hash1); new_tab = (ar_table*)ruby_xmalloc(sizeof(ar_table)); } } *new_tab = *old_tab; RHASH(hash1)->ar_hint.word = RHASH(hash2)->ar_hint.word; RHASH_AR_TABLE_BOUND_SET(hash1, RHASH_AR_TABLE_BOUND(hash2)); RHASH_AR_TABLE_SIZE_SET(hash1, RHASH_AR_TABLE_SIZE(hash2)); hash_ar_table_set(hash1, new_tab); rb_gc_writebarrier_remember(hash1); return new_tab; } else { RHASH_AR_TABLE_BOUND_SET(hash1, RHASH_AR_TABLE_BOUND(hash2)); RHASH_AR_TABLE_SIZE_SET(hash1, RHASH_AR_TABLE_SIZE(hash2)); if (RHASH_TRANSIENT_P(hash1)) { RHASH_UNSET_TRANSIENT_FLAG(hash1); } else if (RHASH_AR_TABLE(hash1)) { ruby_xfree(RHASH_AR_TABLE(hash1)); } hash_ar_table_set(hash1, NULL); rb_gc_writebarrier_remember(hash1); return old_tab; } } static void ar_clear(VALUE hash) { if (RHASH_AR_TABLE(hash) != NULL) { RHASH_AR_TABLE_SIZE_SET(hash, 0); RHASH_AR_TABLE_BOUND_SET(hash, 0); } else { HASH_ASSERT(RHASH_AR_TABLE_SIZE(hash) == 0); HASH_ASSERT(RHASH_AR_TABLE_BOUND(hash) == 0); } } #if USE_TRANSIENT_HEAP void rb_hash_transient_heap_evacuate(VALUE hash, int promote) { if (RHASH_TRANSIENT_P(hash)) { ar_table *new_tab; ar_table *old_tab = RHASH_AR_TABLE(hash); if (UNLIKELY(old_tab == NULL)) { rb_gc_force_recycle(hash); return; } HASH_ASSERT(old_tab != NULL); if (! promote) { new_tab = rb_transient_heap_alloc(hash, sizeof(ar_table)); if (new_tab == NULL) promote = true; } if (promote) { new_tab = ruby_xmalloc(sizeof(ar_table)); RHASH_UNSET_TRANSIENT_FLAG(hash); } *new_tab = *old_tab; hash_ar_table_set(hash, new_tab); } hash_verify(hash); } #endif typedef int st_foreach_func(st_data_t, st_data_t, st_data_t); struct foreach_safe_arg { st_table *tbl; st_foreach_func *func; st_data_t arg; }; static int foreach_safe_i(st_data_t key, st_data_t value, st_data_t args, int error) { int status; struct foreach_safe_arg *arg = (void *)args; if (error) return ST_STOP; status = (*arg->func)(key, value, arg->arg); if (status == ST_CONTINUE) { return ST_CHECK; } return status; } void st_foreach_safe(st_table *table, st_foreach_func *func, st_data_t a) { struct foreach_safe_arg arg; arg.tbl = table; arg.func = (st_foreach_func *)func; arg.arg = a; if (st_foreach_check(table, foreach_safe_i, (st_data_t)&arg, 0)) { rb_raise(rb_eRuntimeError, "hash modified during iteration"); } } typedef int rb_foreach_func(VALUE, VALUE, VALUE); struct hash_foreach_arg { VALUE hash; rb_foreach_func *func; VALUE arg; }; static int hash_ar_foreach_iter(st_data_t key, st_data_t value, st_data_t argp, int error) { struct hash_foreach_arg *arg = (struct hash_foreach_arg *)argp; int status; if (error) return ST_STOP; status = (*arg->func)((VALUE)key, (VALUE)value, arg->arg); /* TODO: rehash check? rb_raise(rb_eRuntimeError, "rehash occurred during iteration"); */ switch (status) { case ST_DELETE: return ST_DELETE; case ST_CONTINUE: break; case ST_STOP: return ST_STOP; } return ST_CHECK; } static int hash_foreach_iter(st_data_t key, st_data_t value, st_data_t argp, int error) { struct hash_foreach_arg *arg = (struct hash_foreach_arg *)argp; int status; st_table *tbl; if (error) return ST_STOP; tbl = RHASH_ST_TABLE(arg->hash); status = (*arg->func)((VALUE)key, (VALUE)value, arg->arg); if (RHASH_ST_TABLE(arg->hash) != tbl) { rb_raise(rb_eRuntimeError, "rehash occurred during iteration"); } switch (status) { case ST_DELETE: return ST_DELETE; case ST_CONTINUE: break; case ST_STOP: return ST_STOP; } return ST_CHECK; } static int iter_lev_in_ivar(VALUE hash) { VALUE levval = rb_ivar_get(hash, id_hash_iter_lev); HASH_ASSERT(FIXNUM_P(levval)); return FIX2INT(levval); } void rb_ivar_set_internal(VALUE obj, ID id, VALUE val); static void iter_lev_in_ivar_set(VALUE hash, int lev) { rb_ivar_set_internal(hash, id_hash_iter_lev, INT2FIX(lev)); } static int iter_lev_in_flags(VALUE hash) { unsigned int u = (unsigned int)((RBASIC(hash)->flags >> RHASH_LEV_SHIFT) & RHASH_LEV_MAX); return (int)u; } static int RHASH_ITER_LEV(VALUE hash) { int lev = iter_lev_in_flags(hash); if (lev == RHASH_LEV_MAX) { return iter_lev_in_ivar(hash); } else { return lev; } } static void hash_iter_lev_inc(VALUE hash) { int lev = iter_lev_in_flags(hash); if (lev == RHASH_LEV_MAX) { lev = iter_lev_in_ivar(hash); iter_lev_in_ivar_set(hash, lev+1); } else { lev += 1; RBASIC(hash)->flags = ((RBASIC(hash)->flags & ~RHASH_LEV_MASK) | ((VALUE)lev << RHASH_LEV_SHIFT)); if (lev == RHASH_LEV_MAX) { iter_lev_in_ivar_set(hash, lev); } } } static void hash_iter_lev_dec(VALUE hash) { int lev = iter_lev_in_flags(hash); if (lev == RHASH_LEV_MAX) { lev = iter_lev_in_ivar(hash); HASH_ASSERT(lev > 0); iter_lev_in_ivar_set(hash, lev-1); } else { HASH_ASSERT(lev > 0); RBASIC(hash)->flags = ((RBASIC(hash)->flags & ~RHASH_LEV_MASK) | ((lev-1) << RHASH_LEV_SHIFT)); } } static VALUE hash_foreach_ensure_rollback(VALUE hash) { hash_iter_lev_inc(hash); return 0; } static VALUE hash_foreach_ensure(VALUE hash) { hash_iter_lev_dec(hash); return 0; } int rb_hash_stlike_foreach(VALUE hash, st_foreach_callback_func *func, st_data_t arg) { if (RHASH_AR_TABLE_P(hash)) { return ar_foreach(hash, func, arg); } else { return st_foreach(RHASH_ST_TABLE(hash), func, arg); } } int rb_hash_stlike_foreach_with_replace(VALUE hash, st_foreach_check_callback_func *func, st_update_callback_func *replace, st_data_t arg) { if (RHASH_AR_TABLE_P(hash)) { return ar_foreach_with_replace(hash, func, replace, arg); } else { return st_foreach_with_replace(RHASH_ST_TABLE(hash), func, replace, arg); } } static VALUE hash_foreach_call(VALUE arg) { VALUE hash = ((struct hash_foreach_arg *)arg)->hash; int ret = 0; if (RHASH_AR_TABLE_P(hash)) { ret = ar_foreach_check(hash, hash_ar_foreach_iter, (st_data_t)arg, (st_data_t)Qundef); } else if (RHASH_ST_TABLE_P(hash)) { ret = st_foreach_check(RHASH_ST_TABLE(hash), hash_foreach_iter, (st_data_t)arg, (st_data_t)Qundef); } if (ret) { rb_raise(rb_eRuntimeError, "ret: %d, hash modified during iteration", ret); } return Qnil; } void rb_hash_foreach(VALUE hash, rb_foreach_func *func, VALUE farg) { struct hash_foreach_arg arg; if (RHASH_TABLE_EMPTY_P(hash)) return; hash_iter_lev_inc(hash); arg.hash = hash; arg.func = (rb_foreach_func *)func; arg.arg = farg; rb_ensure(hash_foreach_call, (VALUE)&arg, hash_foreach_ensure, hash); hash_verify(hash); } static VALUE hash_alloc_flags(VALUE klass, VALUE flags, VALUE ifnone) { const VALUE wb = (RGENGC_WB_PROTECTED_HASH ? FL_WB_PROTECTED : 0); NEWOBJ_OF(hash, struct RHash, klass, T_HASH | wb | flags); RHASH_SET_IFNONE((VALUE)hash, ifnone); return (VALUE)hash; } static VALUE hash_alloc(VALUE klass) { return hash_alloc_flags(klass, 0, Qnil); } static VALUE empty_hash_alloc(VALUE klass) { RUBY_DTRACE_CREATE_HOOK(HASH, 0); return hash_alloc(klass); } VALUE rb_hash_new(void) { return hash_alloc(rb_cHash); } MJIT_FUNC_EXPORTED VALUE rb_hash_new_with_size(st_index_t size) { VALUE ret = rb_hash_new(); if (size == 0) { /* do nothing */ } else if (size <= RHASH_AR_TABLE_MAX_SIZE) { ar_alloc_table(ret); } else { RHASH_ST_TABLE_SET(ret, st_init_table_with_size(&objhash, size)); } return ret; } static VALUE hash_copy(VALUE ret, VALUE hash) { if (!RHASH_EMPTY_P(hash)) { if (RHASH_AR_TABLE_P(hash)) ar_copy(ret, hash); else if (RHASH_ST_TABLE_P(hash)) RHASH_ST_TABLE_SET(ret, st_copy(RHASH_ST_TABLE(hash))); } return ret; } static VALUE hash_dup(VALUE hash, VALUE klass, VALUE flags) { return hash_copy(hash_alloc_flags(klass, flags, RHASH_IFNONE(hash)), hash); } VALUE rb_hash_dup(VALUE hash) { const VALUE flags = RBASIC(hash)->flags; VALUE ret = hash_dup(hash, rb_obj_class(hash), flags & (FL_EXIVAR|RHASH_PROC_DEFAULT)); if (flags & FL_EXIVAR) rb_copy_generic_ivar(ret, hash); return ret; } MJIT_FUNC_EXPORTED VALUE rb_hash_resurrect(VALUE hash) { VALUE ret = hash_dup(hash, rb_cHash, 0); return ret; } static void rb_hash_modify_check(VALUE hash) { rb_check_frozen(hash); } MJIT_FUNC_EXPORTED struct st_table * rb_hash_tbl_raw(VALUE hash, const char *file, int line) { return ar_force_convert_table(hash, file, line); } struct st_table * rb_hash_tbl(VALUE hash, const char *file, int line) { OBJ_WB_UNPROTECT(hash); return rb_hash_tbl_raw(hash, file, line); } static void rb_hash_modify(VALUE hash) { rb_hash_modify_check(hash); } NORETURN(static void no_new_key(void)); static void no_new_key(void) { rb_raise(rb_eRuntimeError, "can't add a new key into hash during iteration"); } struct update_callback_arg { VALUE hash; st_data_t arg; }; #define NOINSERT_UPDATE_CALLBACK(func) \ static int \ func##_noinsert(st_data_t *key, st_data_t *val, st_data_t arg, int existing) \ { \ if (!existing) no_new_key(); \ return func(key, val, (struct update_arg *)arg, existing); \ } \ \ static int \ func##_insert(st_data_t *key, st_data_t *val, st_data_t arg, int existing) \ { \ return func(key, val, (struct update_arg *)arg, existing); \ } struct update_arg { st_data_t arg; st_update_callback_func *func; VALUE hash; }; typedef int (*tbl_update_func)(st_data_t *, st_data_t *, st_data_t, int); int rb_hash_stlike_update(VALUE hash, st_data_t key, st_update_callback_func *func, st_data_t arg) { if (RHASH_AR_TABLE_P(hash)) { int result = ar_update(hash, (st_data_t)key, func, arg); if (result == -1) { ar_try_convert_table(hash); } else { return result; } } return st_update(RHASH_ST_TABLE(hash), (st_data_t)key, func, arg); } static int tbl_update_modify(st_data_t *key, st_data_t *val, st_data_t arg, int existing) { struct update_arg *p = (struct update_arg *)arg; st_data_t old_key = *key; st_data_t old_value = *val; VALUE hash = p->hash; int ret = (p->func)(key, val, arg, existing); switch (ret) { default: break; case ST_CONTINUE: if (!existing || *key != old_key || *val != old_value) rb_hash_modify(hash); /* write barrier */ RB_OBJ_WRITTEN(hash, Qundef, *key); RB_OBJ_WRITTEN(hash, Qundef, *val); break; case ST_DELETE: if (existing) rb_hash_modify(hash); break; } return ret; } static int tbl_update(VALUE hash, VALUE key, tbl_update_func func, st_data_t optional_arg) { struct update_arg arg = { .arg = optional_arg, .func = func, .hash = hash, }; return rb_hash_stlike_update(hash, key, tbl_update_modify, (st_data_t)&arg); } #define UPDATE_CALLBACK(iter_lev, func) ((iter_lev) > 0 ? func##_noinsert : func##_insert) #define RHASH_UPDATE_ITER(h, iter_lev, key, func, a) do { \ tbl_update((h), (key), UPDATE_CALLBACK((iter_lev), func), (st_data_t)(a)); \ } while (0) #define RHASH_UPDATE(hash, key, func, arg) \ RHASH_UPDATE_ITER(hash, RHASH_ITER_LEV(hash), key, func, arg) static void set_proc_default(VALUE hash, VALUE proc) { if (rb_proc_lambda_p(proc)) { int n = rb_proc_arity(proc); if (n != 2 && (n >= 0 || n < -3)) { if (n < 0) n = -n-1; rb_raise(rb_eTypeError, "default_proc takes two arguments (2 for %d)", n); } } FL_SET_RAW(hash, RHASH_PROC_DEFAULT); RHASH_SET_IFNONE(hash, proc); } /* * call-seq: * Hash.new(default_value = nil) -> new_hash * Hash.new {|hash, key| ... } -> new_hash * * Returns a new empty \Hash object. * * The initial default value and initial default proc for the new hash * depend on which form above was used. See {Default Values}[#class-Hash-label-Default+Values]. * * If neither an argument nor a block given, * initializes both the default value and the default proc to nil: * h = Hash.new * h.default # => nil * h.default_proc # => nil * * If argument default_value given but no block given, * initializes the default value to the given default_value * and the default proc to nil: * h = Hash.new(false) * h.default # => false * h.default_proc # => nil * * If a block given but no argument, stores the block as the default proc * and sets the default value to nil: * h = Hash.new {|hash, key| "Default value for #{key}" } * h.default # => nil * h.default_proc.class # => Proc * h[:nosuch] # => "Default value for nosuch" */ static VALUE rb_hash_initialize(int argc, VALUE *argv, VALUE hash) { VALUE ifnone; rb_hash_modify(hash); if (rb_block_given_p()) { rb_check_arity(argc, 0, 0); ifnone = rb_block_proc(); SET_PROC_DEFAULT(hash, ifnone); } else { rb_check_arity(argc, 0, 1); ifnone = argc == 0 ? Qnil : argv[0]; RHASH_SET_IFNONE(hash, ifnone); } return hash; } /* * call-seq: * Hash[] -> new_empty_hash * Hash[hash] -> new_hash * Hash[ [*2_element_arrays] ] -> new_hash * Hash[*objects] -> new_hash * * Returns a new \Hash object populated with the given objects, if any. * See Hash::new. * * With no argument, returns a new empty \Hash. * * When the single given argument is a \Hash, * returns a new \Hash populated with the entries from the given \Hash. * h = {foo: 0, bar: 1, baz: 2} * Hash[h] # => {:foo=>0, :bar=>1, :baz=>2} * * When the single given argument is an \Array of 2-element Arrays, * returns a new \Hash object wherein each 2-element array forms a key-value entry: * Hash[ [ [:foo, 0], [:bar, 1] ] ] # => {:foo=>0, :bar=>1} * * When the argument count is an even number; * returns a new \Hash object wherein each successive pair of arguments * has become a key-value entry: * Hash[:foo, 0, :bar, 1] # => {:foo=>0, :bar=>1} * * Raises an exception if the argument list does not conform to any of the above. */ static VALUE rb_hash_s_create(int argc, VALUE *argv, VALUE klass) { VALUE hash, tmp; if (argc == 1) { tmp = rb_hash_s_try_convert(Qnil, argv[0]); if (!NIL_P(tmp)) { hash = hash_alloc(klass); hash_copy(hash, tmp); return hash; } tmp = rb_check_array_type(argv[0]); if (!NIL_P(tmp)) { long i; hash = hash_alloc(klass); for (i = 0; i < RARRAY_LEN(tmp); ++i) { VALUE e = RARRAY_AREF(tmp, i); VALUE v = rb_check_array_type(e); VALUE key, val = Qnil; if (NIL_P(v)) { rb_raise(rb_eArgError, "wrong element type %s at %ld (expected array)", rb_builtin_class_name(e), i); } switch (RARRAY_LEN(v)) { default: rb_raise(rb_eArgError, "invalid number of elements (%ld for 1..2)", RARRAY_LEN(v)); case 2: val = RARRAY_AREF(v, 1); case 1: key = RARRAY_AREF(v, 0); rb_hash_aset(hash, key, val); } } return hash; } } if (argc % 2 != 0) { rb_raise(rb_eArgError, "odd number of arguments for Hash"); } hash = hash_alloc(klass); rb_hash_bulk_insert(argc, argv, hash); hash_verify(hash); return hash; } MJIT_FUNC_EXPORTED VALUE rb_to_hash_type(VALUE hash) { return rb_convert_type_with_id(hash, T_HASH, "Hash", idTo_hash); } #define to_hash rb_to_hash_type VALUE rb_check_hash_type(VALUE hash) { return rb_check_convert_type_with_id(hash, T_HASH, "Hash", idTo_hash); } /* * call-seq: * Hash.try_convert(obj) -> obj, new_hash, or nil * * If +obj+ is a \Hash object, returns +obj+. * * Otherwise if +obj+ responds to :to_hash, * calls obj.to_hash and returns the result. * * Returns +nil+ if +obj+ does not respond to :to_hash * * Raises an exception unless obj.to_hash returns a \Hash object. */ static VALUE rb_hash_s_try_convert(VALUE dummy, VALUE hash) { return rb_check_hash_type(hash); } /* * call-seq: * Hash.ruby2_keywords_hash?(hash) -> true or false * * Checks if a given hash is flagged by Module#ruby2_keywords (or * Proc#ruby2_keywords). * This method is not for casual use; debugging, researching, and * some truly necessary cases like serialization of arguments. * * ruby2_keywords def foo(*args) * Hash.ruby2_keywords_hash?(args.last) * end * foo(k: 1) #=> true * foo({k: 1}) #=> false */ static VALUE rb_hash_s_ruby2_keywords_hash_p(VALUE dummy, VALUE hash) { Check_Type(hash, T_HASH); return (RHASH(hash)->basic.flags & RHASH_PASS_AS_KEYWORDS) ? Qtrue : Qfalse; } /* * call-seq: * Hash.ruby2_keywords_hash(hash) -> hash * * Duplicates a given hash and adds a ruby2_keywords flag. * This method is not for casual use; debugging, researching, and * some truly necessary cases like deserialization of arguments. * * h = {k: 1} * h = Hash.ruby2_keywords_hash(h) * def foo(k: 42) * k * end * foo(*[h]) #=> 1 with neither a warning or an error */ static VALUE rb_hash_s_ruby2_keywords_hash(VALUE dummy, VALUE hash) { Check_Type(hash, T_HASH); hash = rb_hash_dup(hash); RHASH(hash)->basic.flags |= RHASH_PASS_AS_KEYWORDS; return hash; } struct rehash_arg { VALUE hash; st_table *tbl; }; static int rb_hash_rehash_i(VALUE key, VALUE value, VALUE arg) { if (RHASH_AR_TABLE_P(arg)) { ar_insert(arg, (st_data_t)key, (st_data_t)value); } else { st_insert(RHASH_ST_TABLE(arg), (st_data_t)key, (st_data_t)value); } return ST_CONTINUE; } /* * call-seq: * hash.rehash -> self * * Rebuilds the hash table by recomputing the hash index for each key; * returns self. * * The hash table becomes invalid if the hash value of a key * has changed after the entry was created. * See {Modifying an Active Hash Key}[#class-Hash-label-Modifying+an+Active+Hash+Key]. */ VALUE rb_hash_rehash(VALUE hash) { VALUE tmp; st_table *tbl; if (RHASH_ITER_LEV(hash) > 0) { rb_raise(rb_eRuntimeError, "rehash during iteration"); } rb_hash_modify_check(hash); if (RHASH_AR_TABLE_P(hash)) { tmp = hash_alloc(0); ar_alloc_table(tmp); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); ar_free_and_clear_table(hash); ar_copy(hash, tmp); ar_free_and_clear_table(tmp); } else if (RHASH_ST_TABLE_P(hash)) { st_table *old_tab = RHASH_ST_TABLE(hash); tmp = hash_alloc(0); tbl = st_init_table_with_size(old_tab->type, old_tab->num_entries); RHASH_ST_TABLE_SET(tmp, tbl); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); st_free_table(old_tab); RHASH_ST_TABLE_SET(hash, tbl); RHASH_ST_CLEAR(tmp); } hash_verify(hash); return hash; } static VALUE call_default_proc(VALUE proc, VALUE hash, VALUE key) { VALUE args[2] = {hash, key}; return rb_proc_call_with_block(proc, 2, args, Qnil); } VALUE rb_hash_default_value(VALUE hash, VALUE key) { if (LIKELY(rb_method_basic_definition_p(CLASS_OF(hash), id_default))) { VALUE ifnone = RHASH_IFNONE(hash); if (!FL_TEST(hash, RHASH_PROC_DEFAULT)) return ifnone; if (key == Qundef) return Qnil; return call_default_proc(ifnone, hash, key); } else { return rb_funcall(hash, id_default, 1, key); } } static inline int hash_stlike_lookup(VALUE hash, st_data_t key, st_data_t *pval) { hash_verify(hash); if (RHASH_AR_TABLE_P(hash)) { return ar_lookup(hash, key, pval); } else { return st_lookup(RHASH_ST_TABLE(hash), key, pval); } } MJIT_FUNC_EXPORTED int rb_hash_stlike_lookup(VALUE hash, st_data_t key, st_data_t *pval) { return hash_stlike_lookup(hash, key, pval); } /* * call-seq: * hash[key] -> value * * Returns the value associated with the given +key+, if found: * h = {foo: 0, bar: 1, baz: 2} * h[:foo] # => 0 * * If +key+ is not found, returns a default value * (see {Default Values}[#class-Hash-label-Default+Values]): * h = {foo: 0, bar: 1, baz: 2} * h[:nosuch] # => nil */ VALUE rb_hash_aref(VALUE hash, VALUE key) { st_data_t val; if (hash_stlike_lookup(hash, key, &val)) { return (VALUE)val; } else { return rb_hash_default_value(hash, key); } } VALUE rb_hash_lookup2(VALUE hash, VALUE key, VALUE def) { st_data_t val; if (hash_stlike_lookup(hash, key, &val)) { return (VALUE)val; } else { return def; /* without Hash#default */ } } VALUE rb_hash_lookup(VALUE hash, VALUE key) { return rb_hash_lookup2(hash, key, Qnil); } /* * call-seq: * hash.fetch(key) -> object * hash.fetch(key, default_value) -> object * hash.fetch(key) {|key| ... } -> object * * Returns the value for the given +key+, if found. * h = {foo: 0, bar: 1, baz: 2} * h.fetch(:bar) # => 1 * * If +key+ is not found and no block was given, * returns +default_value+: * {}.fetch(:nosuch, :default) # => :default * {}.fetch(:nosuch) # => nil * * If +key+ is not found and a block was given, * yields +key+ to the block and returns the block's return value: * {}.fetch(:nosuch) {|key| "No key #{key}"} # => "No key nosuch" * * Raises KeyError if neither +default_value+ nor a block was given. * * Note that this method does not use the values of either #default or #default_proc. */ static VALUE rb_hash_fetch_m(int argc, VALUE *argv, VALUE hash) { VALUE key; st_data_t val; long block_given; rb_check_arity(argc, 1, 2); key = argv[0]; block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } if (hash_stlike_lookup(hash, key, &val)) { return (VALUE)val; } else { if (block_given) { return rb_yield(key); } else if (argc == 1) { VALUE desc = rb_protect(rb_inspect, key, 0); if (NIL_P(desc)) { desc = rb_any_to_s(key); } desc = rb_str_ellipsize(desc, 65); rb_key_err_raise(rb_sprintf("key not found: %"PRIsVALUE, desc), hash, key); } else { return argv[1]; } } } VALUE rb_hash_fetch(VALUE hash, VALUE key) { return rb_hash_fetch_m(1, &key, hash); } /* * call-seq: * hash.default -> object * hash.default(key) -> object * * Returns the default value for the given +key+. * The returned value will be determined either by the default proc or by the default value. * See {Default Values}[#class-Hash-label-Default+Values]. * * With no argument, returns the current default value: * h = {} * h.default # => nil * * If +key+ is given, returns the default value for +key+, * regardless of whether that key exists: * h = Hash.new { |hash, key| hash[key] = "No key #{key}"} * h[:foo] = "Hello" * h.default(:foo) # => "No key foo" */ static VALUE rb_hash_default(int argc, VALUE *argv, VALUE hash) { VALUE ifnone; rb_check_arity(argc, 0, 1); ifnone = RHASH_IFNONE(hash); if (FL_TEST(hash, RHASH_PROC_DEFAULT)) { if (argc == 0) return Qnil; return call_default_proc(ifnone, hash, argv[0]); } return ifnone; } /* * call-seq: * hash.default = value -> object * * Sets the default value to +value+; returns +value+: * h = {} * h.default # => nil * h.default = false # => false * h.default # => false * * See {Default Values}[#class-Hash-label-Default+Values]. */ static VALUE rb_hash_set_default(VALUE hash, VALUE ifnone) { rb_hash_modify_check(hash); SET_DEFAULT(hash, ifnone); return ifnone; } /* * call-seq: * hash.default_proc -> proc or nil * * Returns the default proc for +self+ * (see {Default Values}[#class-Hash-label-Default+Values]): * h = {} * h.default_proc # => nil * h.default_proc = proc {|hash, key| "Default value for #{key}" } * h.default_proc.class # => Proc */ static VALUE rb_hash_default_proc(VALUE hash) { if (FL_TEST(hash, RHASH_PROC_DEFAULT)) { return RHASH_IFNONE(hash); } return Qnil; } /* * call-seq: * hash.default_proc = proc -> proc * * Sets the default proc for +self+ to +proc+: * (see {Default Values}[#class-Hash-label-Default+Values]): * h = {} * h.default_proc # => nil * h.default_proc = proc { |hash, key| "Default value for #{key}" } * h.default_proc.class # => Proc * h.default_proc = nil * h.default_proc # => nil */ VALUE rb_hash_set_default_proc(VALUE hash, VALUE proc) { VALUE b; rb_hash_modify_check(hash); if (NIL_P(proc)) { SET_DEFAULT(hash, proc); return proc; } b = rb_check_convert_type_with_id(proc, T_DATA, "Proc", idTo_proc); if (NIL_P(b) || !rb_obj_is_proc(b)) { rb_raise(rb_eTypeError, "wrong default_proc type %s (expected Proc)", rb_obj_classname(proc)); } proc = b; SET_PROC_DEFAULT(hash, proc); return proc; } static int key_i(VALUE key, VALUE value, VALUE arg) { VALUE *args = (VALUE *)arg; if (rb_equal(value, args[0])) { args[1] = key; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.key(value) -> key or nil * * Returns the key for the first-found entry with the given +value+ * (see {Entry Order}[#class-Hash-label-Entry+Order]): * h = {foo: 0, bar: 2, baz: 2} * h.key(0) # => :foo * h.key(2) # => :bar * * Returns +nil+ if so such value is found. */ static VALUE rb_hash_key(VALUE hash, VALUE value) { VALUE args[2]; args[0] = value; args[1] = Qnil; rb_hash_foreach(hash, key_i, (VALUE)args); return args[1]; } int rb_hash_stlike_delete(VALUE hash, st_data_t *pkey, st_data_t *pval) { if (RHASH_AR_TABLE_P(hash)) { return ar_delete(hash, pkey, pval); } else { return st_delete(RHASH_ST_TABLE(hash), pkey, pval); } } /* * delete a specified entry a given key. * if there is the corresponding entry, return a value of the entry. * if there is no corresponding entry, return Qundef. */ VALUE rb_hash_delete_entry(VALUE hash, VALUE key) { st_data_t ktmp = (st_data_t)key, val; if (rb_hash_stlike_delete(hash, &ktmp, &val)) { return (VALUE)val; } else { return Qundef; } } /* * delete a specified entry by a given key. * if there is the corresponding entry, return a value of the entry. * if there is no corresponding entry, return Qnil. */ VALUE rb_hash_delete(VALUE hash, VALUE key) { VALUE deleted_value = rb_hash_delete_entry(hash, key); if (deleted_value != Qundef) { /* likely pass */ return deleted_value; } else { return Qnil; } } /* * call-seq: * hash.delete(key) -> value or nil * hash.delete(key) {|key| ... } -> object * * Deletes the entry for the given +key+ and returns its associated value. * * If no block is given and +key+ is found, deletes the entry and returns the associated value: * h = {foo: 0, bar: 1, baz: 2} * h.delete(:bar) # => 1 * h # => {:foo=>0, :baz=>2} * * If no block given and +key+ is not found, returns +nil+. * * If a block is given and +key+ is found, ignores the block, * deletes the entry, and returns the associated value: * h = {foo: 0, bar: 1, baz: 2} * h.delete(:baz) { |key| raise 'Will never happen'} # => 2 * h # => {:foo=>0, :bar=>1} * * If a block is given and +key+ is not found, * calls the block and returns the block's return value: * h = {foo: 0, bar: 1, baz: 2} * h.delete(:nosuch) { |key| "Key #{key} not found" } # => "Key nosuch not found" * h # => {:foo=>0, :bar=>1, :baz=>2} */ static VALUE rb_hash_delete_m(VALUE hash, VALUE key) { VALUE val; rb_hash_modify_check(hash); val = rb_hash_delete_entry(hash, key); if (val != Qundef) { return val; } else { if (rb_block_given_p()) { return rb_yield(key); } else { return Qnil; } } } struct shift_var { VALUE key; VALUE val; }; static int shift_i_safe(VALUE key, VALUE value, VALUE arg) { struct shift_var *var = (struct shift_var *)arg; var->key = key; var->val = value; return ST_STOP; } /* * call-seq: * hash.shift -> [key, value] or default_value * * Removes the first hash entry * (see {Entry Order}[#class-Hash-label-Entry+Order]); * returns a 2-element \Array containing the removed key and value: * h = {foo: 0, bar: 1, baz: 2} * h.shift # => [:foo, 0] * h # => {:bar=>1, :baz=>2} * * Returns the default value if the hash is empty * (see {Default Values}[#class-Hash-label-Default+Values]). */ static VALUE rb_hash_shift(VALUE hash) { struct shift_var var; rb_hash_modify_check(hash); if (RHASH_AR_TABLE_P(hash)) { var.key = Qundef; if (RHASH_ITER_LEV(hash) == 0) { if (ar_shift(hash, &var.key, &var.val)) { return rb_assoc_new(var.key, var.val); } } else { rb_hash_foreach(hash, shift_i_safe, (VALUE)&var); if (var.key != Qundef) { rb_hash_delete_entry(hash, var.key); return rb_assoc_new(var.key, var.val); } } } if (RHASH_ST_TABLE_P(hash)) { var.key = Qundef; if (RHASH_ITER_LEV(hash) == 0) { if (st_shift(RHASH_ST_TABLE(hash), &var.key, &var.val)) { return rb_assoc_new(var.key, var.val); } } else { rb_hash_foreach(hash, shift_i_safe, (VALUE)&var); if (var.key != Qundef) { rb_hash_delete_entry(hash, var.key); return rb_assoc_new(var.key, var.val); } } } return rb_hash_default_value(hash, Qnil); } static int delete_if_i(VALUE key, VALUE value, VALUE hash) { if (RTEST(rb_yield_values(2, key, value))) { rb_hash_modify(hash); return ST_DELETE; } return ST_CONTINUE; } static VALUE hash_enum_size(VALUE hash, VALUE args, VALUE eobj) { return rb_hash_size(hash); } /* * call-seq: * hash.delete_if {|key, value| ... } -> self * hash.delete_if -> new_enumerator * * If a block given, calls the block with each key-value pair; * deletes each entry for which the block returns a truthy value; * returns +self+: * h = {foo: 0, bar: 1, baz: 2} * h.delete_if {|key, value| value > 0 } # => {:foo=>0} * * If no block given, returns a new \Enumerator: * h = {foo: 0, bar: 1, baz: 2} * e = h.delete_if # => #0, :bar=>1, :baz=>2}:delete_if> * e.each { |key, value| value > 0 } # => {:foo=>0} */ VALUE rb_hash_delete_if(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { rb_hash_foreach(hash, delete_if_i, hash); } return hash; } /* * call-seq: * hash.reject! {|key, value| ... } -> self or nil * hash.reject! -> new_enumerator * * Returns +self+, whose remaining entries are those * for which the block returns +false+ or +nil+: * h = {foo: 0, bar: 1, baz: 2} * h.reject! {|key, value| value < 2 } # => {:baz=>2} * * Returns +nil+ if no entries are removed. * * Returns a new \Enumerator if no block given: * h = {foo: 0, bar: 1, baz: 2} * e = h.reject! # => #0, :bar=>1, :baz=>2}:reject!> * e.each {|key, value| key.start_with?('b') } # => {:foo=>0} */ VALUE rb_hash_reject_bang(VALUE hash) { st_index_t n; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify(hash); n = RHASH_SIZE(hash); if (!n) return Qnil; rb_hash_foreach(hash, delete_if_i, hash); if (n == RHASH_SIZE(hash)) return Qnil; return hash; } /* * call-seq: * hash.reject {|key, value| ... } -> new_hash * hash.reject -> new_enumerator * * Returns a new \Hash object whose entries are all those * from +self+ for which the block returns +false+ or +nil+: * h = {foo: 0, bar: 1, baz: 2} * h1 = h.reject {|key, value| key.start_with?('b') } * h1 # => {:foo=>0} * * Returns a new \Enumerator if no block given: * h = {foo: 0, bar: 1, baz: 2} * e = h.reject # => #0, :bar=>1, :baz=>2}:reject> * h1 = e.each {|key, value| key.start_with?('b') } * h1 # => {:foo=>0} */ VALUE rb_hash_reject(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); if (RTEST(ruby_verbose)) { VALUE klass; if (HAS_EXTRA_STATES(hash, klass)) { rb_warn("extra states are no longer copied: %+"PRIsVALUE, hash); } } result = hash_copy(hash_alloc(rb_cHash), hash); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(result, delete_if_i, result); } return result; } /* * call-seq: * hash.slice(*keys) -> new_hash * * Returns a new \Hash object containing the entries for the given +keys+: * h = {foo: 0, bar: 1, baz: 2} * h.slice(:baz, :foo) # => {:baz=>2, :foo=>0} * * Any given +keys+ that are not found are ignored. */ static VALUE rb_hash_slice(int argc, VALUE *argv, VALUE hash) { int i; VALUE key, value, result; if (argc == 0 || RHASH_EMPTY_P(hash)) { return rb_hash_new(); } result = rb_hash_new_with_size(argc); for (i = 0; i < argc; i++) { key = argv[i]; value = rb_hash_lookup2(hash, key, Qundef); if (value != Qundef) rb_hash_aset(result, key, value); } return result; } /* * call-seq: * hsh.except(*keys) -> a_hash * * Returns a new \Hash excluding entries for the given +keys+: * h = { a: 100, b: 200, c: 300 } * h.except(:a) #=> {:b=>200, :c=>300} * * Any given +keys+ that are not found are ignored. */ static VALUE rb_hash_except(int argc, VALUE *argv, VALUE hash) { int i; VALUE key, result; result = hash_alloc(rb_cHash); hash_copy(result, hash); for (i = 0; i < argc; i++) { key = argv[i]; rb_hash_delete(result, key); } return result; } /* * call-seq: * hash.values_at(*keys) -> new_array * * Returns a new \Array containing values for the given +keys+: * h = {foo: 0, bar: 1, baz: 2} * h.values_at(:baz, :foo) # => [2, 0] * * The {default values}[#class-Hash-label-Default+Values] are returned * for any keys that are not found: * h.values_at(:hello, :foo) # => [nil, 0] */ VALUE rb_hash_values_at(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i new_array * hash.fetch_values(*keys) {|key| ... } -> new_array * * Returns a new \Array containing the values associated with the given keys *keys: * h = {foo: 0, bar: 1, baz: 2} * h.fetch_values(:baz, :foo) # => [2, 0] * * Returns a new empty \Array if no arguments given. * * When a block is given, calls the block with each missing key, * treating the block's return value as the value for that key: * h = {foo: 0, bar: 1, baz: 2} * values = h.fetch_values(:bar, :foo, :bad, :bam) {|key| key.to_s} * values # => [1, 0, "bad", "bam"] * * When no block is given, raises an exception if any given key is not found. */ static VALUE rb_hash_fetch_values(int argc, VALUE *argv, VALUE hash) { VALUE result = rb_ary_new2(argc); long i; for (i=0; i new_hash * hash.select -> new_enumerator * * Hash#filter is an alias for Hash#select. * * Returns a new \Hash object whose entries are those for which the block returns a truthy value: * h = {foo: 0, bar: 1, baz: 2} * h.select {|key, value| value < 2 } # => {:foo=>0, :bar=>1} * * Returns a new \Enumerator if no block given: * h = {foo: 0, bar: 1, baz: 2} * e = h.select # => #0, :bar=>1, :baz=>2}:select> * e.each {|key, value| value < 2 } # => {:foo=>0, :bar=>1} */ static VALUE rb_hash_select(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = hash_copy(hash_alloc(rb_cHash), hash); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(result, keep_if_i, result); } return result; } /* * call-seq: * hash.select! {|key, value| ... } -> self or nil * hash.select! -> new_enumerator * * Hash#filter! is an alias for Hash#select!. * * Returns +self+, whose entries are those for which the block returns a truthy value: * h = {foo: 0, bar: 1, baz: 2} * h.select! {|key, value| value < 2 } => {:foo=>0, :bar=>1} * * Returns +nil+ if no entries were removed. * * Returns a new \Enumerator if no block given: * h = {foo: 0, bar: 1, baz: 2} * e = h.select! # => #0, :bar=>1, :baz=>2}:select!> * e.each { |key, value| value < 2 } # => {:foo=>0, :bar=>1} */ static VALUE rb_hash_select_bang(VALUE hash) { st_index_t n; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); n = RHASH_SIZE(hash); if (!n) return Qnil; rb_hash_foreach(hash, keep_if_i, hash); if (n == RHASH_SIZE(hash)) return Qnil; return hash; } /* * call-seq: * hash.keep_if {|key, value| ... } -> self * hash.keep_if -> new_enumerator * * Calls the block for each key-value pair; * retains the entry if the block returns a truthy value; * otherwise deletes the entry; returns +self+. * h = {foo: 0, bar: 1, baz: 2} * h.keep_if { |key, value| key.start_with?('b') } # => {:bar=>1, :baz=>2} * * Returns a new \Enumerator if no block given: * h = {foo: 0, bar: 1, baz: 2} * e = h.keep_if # => #0, :bar=>1, :baz=>2}:keep_if> * e.each { |key, value| key.start_with?('b') } # => {:bar=>1, :baz=>2} */ static VALUE rb_hash_keep_if(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { rb_hash_foreach(hash, keep_if_i, hash); } return hash; } static int clear_i(VALUE key, VALUE value, VALUE dummy) { return ST_DELETE; } /* * call-seq: * hash.clear -> self * * Removes all hash entries; returns +self+. */ VALUE rb_hash_clear(VALUE hash) { rb_hash_modify_check(hash); if (RHASH_ITER_LEV(hash) > 0) { rb_hash_foreach(hash, clear_i, 0); } else if (RHASH_AR_TABLE_P(hash)) { ar_clear(hash); } else { st_clear(RHASH_ST_TABLE(hash)); } return hash; } static int hash_aset(st_data_t *key, st_data_t *val, struct update_arg *arg, int existing) { *val = arg->arg; return ST_CONTINUE; } VALUE rb_hash_key_str(VALUE key) { if (!RB_FL_ANY_RAW(key, FL_EXIVAR) && RBASIC_CLASS(key) == rb_cString) { return rb_fstring(key); } else { return rb_str_new_frozen(key); } } static int hash_aset_str(st_data_t *key, st_data_t *val, struct update_arg *arg, int existing) { if (!existing && !RB_OBJ_FROZEN(*key)) { *key = rb_hash_key_str(*key); } return hash_aset(key, val, arg, existing); } NOINSERT_UPDATE_CALLBACK(hash_aset) NOINSERT_UPDATE_CALLBACK(hash_aset_str) /* * call-seq: * hash[key] = value -> value * hash.store(key, value) * * Hash#store is an alias for Hash#[]=. * Associates the given +value+ with the given +key+; returns +value+. * * If the given +key+ exists, replaces its value with the given +value+; * the ordering is not affected * (see {Entry Order}[#class-Hash-label-Entry+Order]): * h = {foo: 0, bar: 1} * h[:foo] = 2 # => 2 * h.store(:bar, 3) # => 3 * h # => {:foo=>2, :bar=>3} * * If +key+ does not exist, adds the +key+ and +value+; * the new entry is last in the order * (see {Entry Order}[#class-Hash-label-Entry+Order]): * h = {foo: 0, bar: 1} * h[:baz] = 2 # => 2 * h.store(:bat, 3) # => 3 * h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3} */ VALUE rb_hash_aset(VALUE hash, VALUE key, VALUE val) { int iter_lev = RHASH_ITER_LEV(hash); rb_hash_modify(hash); if (RHASH_TABLE_NULL_P(hash)) { if (iter_lev > 0) no_new_key(); ar_alloc_table(hash); } if (RHASH_TYPE(hash) == &identhash || rb_obj_class(key) != rb_cString) { RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset, val); } else { RHASH_UPDATE_ITER(hash, iter_lev, key, hash_aset_str, val); } return val; } /* * call-seq: * hash.replace(other_hash) -> self * * Replaces the entire contents of +self+ with the contents of +other_hash+; * returns +self+: * h = {foo: 0, bar: 1, baz: 2} * h.replace({bat: 3, bam: 4}) # => {:bat=>3, :bam=>4} */ static VALUE rb_hash_replace(VALUE hash, VALUE hash2) { rb_hash_modify_check(hash); if (hash == hash2) return hash; if (RHASH_ITER_LEV(hash) > 0) { rb_raise(rb_eRuntimeError, "can't replace hash during iteration"); } hash2 = to_hash(hash2); COPY_DEFAULT(hash, hash2); if (RHASH_AR_TABLE_P(hash)) { if (RHASH_AR_TABLE_P(hash2)) { ar_clear(hash); } else { ar_free_and_clear_table(hash); RHASH_ST_TABLE_SET(hash, st_init_table_with_size(RHASH_TYPE(hash2), RHASH_SIZE(hash2))); } } else { if (RHASH_AR_TABLE_P(hash2)) { st_free_table(RHASH_ST_TABLE(hash)); RHASH_ST_CLEAR(hash); } else { st_clear(RHASH_ST_TABLE(hash)); RHASH_TBL_RAW(hash)->type = RHASH_ST_TABLE(hash2)->type; } } hash_copy(hash, hash2); rb_gc_writebarrier_remember(hash); return hash; } /* * call-seq: * hash.length -> integer * hash.size -> integer * * Returns the count of entries in +self+: * {foo: 0, bar: 1, baz: 2}.length # => 3 * * Hash#length is an alias for Hash#size. */ VALUE rb_hash_size(VALUE hash) { return INT2FIX(RHASH_SIZE(hash)); } size_t rb_hash_size_num(VALUE hash) { return (long)RHASH_SIZE(hash); } /* * call-seq: * hash.empty? -> true or false * * Returns +true+ if there are no hash entries, +false+ otherwise: * {}.empty? # => true * {foo: 0, bar: 1, baz: 2}.empty? # => false */ static VALUE rb_hash_empty_p(VALUE hash) { return RHASH_EMPTY_P(hash) ? Qtrue : Qfalse; } static int each_value_i(VALUE key, VALUE value, VALUE _) { rb_yield(value); return ST_CONTINUE; } /* * call-seq: * hash.each_value {|value| ... } -> self * hash.each_value -> new_enumerator * * Calls the given block with each value; returns +self+: * h = {foo: 0, bar: 1, baz: 2} * h.each_value {|value| puts value } # => {:foo=>0, :bar=>1, :baz=>2} * Output: * 0 * 1 * 2 * * Returns a new \Enumerator if no block given: * h = {foo: 0, bar: 1, baz: 2} * e = h.each_value # => #0, :bar=>1, :baz=>2}:each_value> * h1 = e.each {|value| puts value } * h1 # => {:foo=>0, :bar=>1, :baz=>2} * Output: * 0 * 1 * 2 */ static VALUE rb_hash_each_value(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_foreach(hash, each_value_i, 0); return hash; } static int each_key_i(VALUE key, VALUE value, VALUE _) { rb_yield(key); return ST_CONTINUE; } /* * call-seq: * hash.each_key {|key| ... } -> self * hash.each_key -> new_enumerator * * Calls the given block with each key; returns +self+: * h = {foo: 0, bar: 1, baz: 2} * h.each_key {|key| puts key } # => {:foo=>0, :bar=>1, :baz=>2} * Output: * foo * bar * baz * * Returns a new \Enumerator if no block given: * h = {foo: 0, bar: 1, baz: 2} * e = h.each_key # => #0, :bar=>1, :baz=>2}:each_key> * h1 = e.each {|key| puts key } * h1 # => {:foo=>0, :bar=>1, :baz=>2} * Output: * foo * bar * baz */ static VALUE rb_hash_each_key(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_foreach(hash, each_key_i, 0); return hash; } static int each_pair_i(VALUE key, VALUE value, VALUE _) { rb_yield(rb_assoc_new(key, value)); return ST_CONTINUE; } static int each_pair_i_fast(VALUE key, VALUE value, VALUE _) { VALUE argv[2]; argv[0] = key; argv[1] = value; rb_yield_values2(2, argv); return ST_CONTINUE; } /* * call-seq: * hash.each {|key, value| ... } -> self * hash.each_pair {|key, value| ... } -> self * hash.each -> new_enumerator * hash.each_pair -> new_enumerator * * Hash#each is an alias for Hash#each_pair. * Calls the given block with each key-value pair; returns +self+: * h = {foo: 0, bar: 1, baz: 2} * h.each_pair {|key, value| puts "#{key}: #{value}"} # => {:foo=>0, :bar=>1, :baz=>2} * Output: * foo: 0 * bar: 1 * baz: 2 * * Returns a new \Enumerator if no block given: * h = {foo: 0, bar: 1, baz: 2} * e = h.each_pair # => #0, :bar=>1, :baz=>2}:each_pair> * h1 = e.each {|key, value| puts "#{key}: #{value}"} * h1 # => {:foo=>0, :bar=>1, :baz=>2} * Output: * foo: 0 * bar: 1 * baz: 2 */ static VALUE rb_hash_each_pair(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); if (rb_block_pair_yield_optimizable()) rb_hash_foreach(hash, each_pair_i_fast, 0); else rb_hash_foreach(hash, each_pair_i, 0); return hash; } struct transform_keys_args{ VALUE trans; VALUE result; int block_given; }; static int transform_keys_hash_i(VALUE key, VALUE value, VALUE transarg) { struct transform_keys_args *p = (void *)transarg; VALUE trans = p->trans, result = p->result; VALUE new_key = rb_hash_lookup2(trans, key, Qundef); if (new_key == Qundef) { if (p->block_given) new_key = rb_yield(key); else new_key = key; } rb_hash_aset(result, new_key, value); return ST_CONTINUE; } static int transform_keys_i(VALUE key, VALUE value, VALUE result) { VALUE new_key = rb_yield(key); rb_hash_aset(result, new_key, value); return ST_CONTINUE; } /* * call-seq: * hash.transform_keys {|key| ... } -> new_hash * hash.transform_keys(hash2) -> new_hash * hash.transform_keys(hash2) {|other_key| ...} -> new_hash * hash.transform_keys -> new_enumerator * * Returns a new \Hash object; each entry has: * * A key provided by the block. * * The value from +self+. * * An optional hash argument can be provided to map keys to new keys. * Any key not given will be mapped using the provided block, * or remain the same if no block is given. * * Transform keys: * h = {foo: 0, bar: 1, baz: 2} * h1 = h.transform_keys {|key| key.to_s } * h1 # => {"foo"=>0, "bar"=>1, "baz"=>2} * * h.transform_keys(foo: :bar, bar: :foo) * #=> {bar: 0, foo: 1, baz: 2} * * h.transform_keys(foo: :hello, &:to_s) * #=> {:hello=>0, "bar"=>1, "baz"=>2} * * Overwrites values for duplicate keys: * h = {foo: 0, bar: 1, baz: 2} * h1 = h.transform_keys {|key| :bat } * h1 # => {:bat=>2} * * Returns a new \Enumerator if no block given: * h = {foo: 0, bar: 1, baz: 2} * e = h.transform_keys # => #0, :bar=>1, :baz=>2}:transform_keys> * h1 = e.each { |key| key.to_s } * h1 # => {"foo"=>0, "bar"=>1, "baz"=>2} */ static VALUE rb_hash_transform_keys(int argc, VALUE *argv, VALUE hash) { VALUE result; struct transform_keys_args transarg = {0}; argc = rb_check_arity(argc, 0, 1); if (argc > 0) { transarg.trans = to_hash(argv[0]); transarg.block_given = rb_block_given_p(); } else { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); } result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { if (transarg.trans) { transarg.result = result; rb_hash_foreach(hash, transform_keys_hash_i, (VALUE)&transarg); } else { rb_hash_foreach(hash, transform_keys_i, result); } } return result; } static VALUE rb_hash_flatten(int argc, VALUE *argv, VALUE hash); /* * call-seq: * hash.transform_keys! {|key| ... } -> self * hash.transform_keys!(hash2) -> self * hash.transform_keys!(hash2) {|other_key| ...} -> self * hash.transform_keys! -> new_enumerator * * Same as Hash#transform_keys but modifies the receiver in place * instead of returning a new hash. */ static VALUE rb_hash_transform_keys_bang(int argc, VALUE *argv, VALUE hash) { VALUE trans = 0; int block_given = 0; argc = rb_check_arity(argc, 0, 1); if (argc > 0) { trans = to_hash(argv[0]); block_given = rb_block_given_p(); } else { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); } rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { long i; VALUE pairs = rb_hash_flatten(0, NULL, hash); rb_hash_clear(hash); for (i = 0; i < RARRAY_LEN(pairs); i += 2) { VALUE key = RARRAY_AREF(pairs, i), new_key, val; if (!trans) { new_key = rb_yield(key); } else if ((new_key = rb_hash_lookup2(trans, key, Qundef)) != Qundef) { /* use the transformed key */ } else if (block_given) { new_key = rb_yield(key); } else { new_key = key; } val = RARRAY_AREF(pairs, i+1); rb_hash_aset(hash, new_key, val); } } return hash; } static int transform_values_foreach_func(st_data_t key, st_data_t value, st_data_t argp, int error) { return ST_REPLACE; } static int transform_values_foreach_replace(st_data_t *key, st_data_t *value, st_data_t argp, int existing) { VALUE new_value = rb_yield((VALUE)*value); VALUE hash = (VALUE)argp; rb_hash_modify(hash); RB_OBJ_WRITE(hash, value, new_value); return ST_CONTINUE; } /* * call-seq: * hash.transform_values {|value| ... } -> new_hash * hash.transform_values -> new_enumerator * * Returns a new \Hash object; each entry has: * * A key from +self+. * * A value provided by the block. * * Transform values: * h = {foo: 0, bar: 1, baz: 2} * h1 = h.transform_values {|value| value * 100} * h1 # => {:foo=>0, :bar=>100, :baz=>200} * * Returns a new \Enumerator if no block given: * h = {foo: 0, bar: 1, baz: 2} * e = h.transform_values # => #0, :bar=>1, :baz=>2}:transform_values> * h1 = e.each { |value| value * 100} * h1 # => {:foo=>0, :bar=>100, :baz=>200} */ static VALUE rb_hash_transform_values(VALUE hash) { VALUE result; RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); result = hash_copy(hash_alloc(rb_cHash), hash); SET_DEFAULT(result, Qnil); if (!RHASH_EMPTY_P(hash)) { rb_hash_stlike_foreach_with_replace(result, transform_values_foreach_func, transform_values_foreach_replace, result); } return result; } /* * call-seq: * hash.transform_values! {|value| ... } -> self * hash.transform_values! -> new_enumerator * * Returns +self+, whose keys are unchanged, and whose values are determined by the given block. * h = {foo: 0, bar: 1, baz: 2} * h.transform_values! {|value| value * 100} # => {:foo=>0, :bar=>100, :baz=>200} * * Returns a new \Enumerator if no block given: * h = {foo: 0, bar: 1, baz: 2} * e = h.transform_values! # => #0, :bar=>100, :baz=>200}:transform_values!> * h1 = e.each {|value| value * 100} * h1 # => {:foo=>0, :bar=>100, :baz=>200} */ static VALUE rb_hash_transform_values_bang(VALUE hash) { RETURN_SIZED_ENUMERATOR(hash, 0, 0, hash_enum_size); rb_hash_modify_check(hash); if (!RHASH_TABLE_EMPTY_P(hash)) { rb_hash_stlike_foreach_with_replace(hash, transform_values_foreach_func, transform_values_foreach_replace, hash); } return hash; } static int to_a_i(VALUE key, VALUE value, VALUE ary) { rb_ary_push(ary, rb_assoc_new(key, value)); return ST_CONTINUE; } /* * call-seq: * hash.to_a -> new_array * * Returns a new \Array of 2-element \Array objects; * each nested \Array contains a key-value pair from +self+: * h = {foo: 0, bar: 1, baz: 2} * h.to_a # => [[:foo, 0], [:bar, 1], [:baz, 2]] */ static VALUE rb_hash_to_a(VALUE hash) { VALUE ary; ary = rb_ary_new_capa(RHASH_SIZE(hash)); rb_hash_foreach(hash, to_a_i, ary); return ary; } static int inspect_i(VALUE key, VALUE value, VALUE str) { VALUE str2; str2 = rb_inspect(key); if (RSTRING_LEN(str) > 1) { rb_str_buf_cat_ascii(str, ", "); } else { rb_enc_copy(str, str2); } rb_str_buf_append(str, str2); rb_str_buf_cat_ascii(str, "=>"); str2 = rb_inspect(value); rb_str_buf_append(str, str2); return ST_CONTINUE; } static VALUE inspect_hash(VALUE hash, VALUE dummy, int recur) { VALUE str; if (recur) return rb_usascii_str_new2("{...}"); str = rb_str_buf_new2("{"); rb_hash_foreach(hash, inspect_i, str); rb_str_buf_cat2(str, "}"); return str; } /* * call-seq: * hash.inspect -> new_string * * Returns a new \String containing the hash entries: * h = {foo: 0, bar: 1, baz: 2} * h.inspect # => "{:foo=>0, :bar=>1, :baz=>2}" * * Hash#to_s is an alias for Hash#inspect. */ static VALUE rb_hash_inspect(VALUE hash) { if (RHASH_EMPTY_P(hash)) return rb_usascii_str_new2("{}"); return rb_exec_recursive(inspect_hash, hash, 0); } /* * call-seq: * hash.to_hash -> self * * Returns +self+. */ static VALUE rb_hash_to_hash(VALUE hash) { return hash; } VALUE rb_hash_set_pair(VALUE hash, VALUE arg) { VALUE pair; pair = rb_check_array_type(arg); if (NIL_P(pair)) { rb_raise(rb_eTypeError, "wrong element type %s (expected array)", rb_builtin_class_name(arg)); } if (RARRAY_LEN(pair) != 2) { rb_raise(rb_eArgError, "element has wrong array length (expected 2, was %ld)", RARRAY_LEN(pair)); } rb_hash_aset(hash, RARRAY_AREF(pair, 0), RARRAY_AREF(pair, 1)); return hash; } static int to_h_i(VALUE key, VALUE value, VALUE hash) { rb_hash_set_pair(hash, rb_yield_values(2, key, value)); return ST_CONTINUE; } static VALUE rb_hash_to_h_block(VALUE hash) { VALUE h = rb_hash_new_with_size(RHASH_SIZE(hash)); rb_hash_foreach(hash, to_h_i, h); return h; } /* * call-seq: * hash.to_h -> self or new_hash * hash.to_h {|key, value| ... } -> new_hash * * For an instance of \Hash, returns +self+. * * For a subclass of \Hash, returns a new \Hash * containing the content of +self+. * * When a block is given, returns a new \Hash object * whose content is based on the block; * the block should return a 2-element \Array object * specifying the key-value pair to be included in the returned \Array: * h = {foo: 0, bar: 1, baz: 2} * h1 = h.to_h {|key, value| [value, key] } * h1 # => {0=>:foo, 1=>:bar, 2=>:baz} */ static VALUE rb_hash_to_h(VALUE hash) { if (rb_block_given_p()) { return rb_hash_to_h_block(hash); } if (rb_obj_class(hash) != rb_cHash) { const VALUE flags = RBASIC(hash)->flags; hash = hash_dup(hash, rb_cHash, flags & RHASH_PROC_DEFAULT); } return hash; } static int keys_i(VALUE key, VALUE value, VALUE ary) { rb_ary_push(ary, key); return ST_CONTINUE; } /* * call-seq: * hash.keys -> new_array * * Returns a new \Array containing all keys in +self+: * h = {foo: 0, bar: 1, baz: 2} * h.keys # => [:foo, :bar, :baz] */ MJIT_FUNC_EXPORTED VALUE rb_hash_keys(VALUE hash) { st_index_t size = RHASH_SIZE(hash); VALUE keys = rb_ary_new_capa(size); if (size == 0) return keys; if (ST_DATA_COMPATIBLE_P(VALUE)) { RARRAY_PTR_USE_TRANSIENT(keys, ptr, { if (RHASH_AR_TABLE_P(hash)) { size = ar_keys(hash, ptr, size); } else { st_table *table = RHASH_ST_TABLE(hash); size = st_keys(table, ptr, size); } }); rb_gc_writebarrier_remember(keys); rb_ary_set_len(keys, size); } else { rb_hash_foreach(hash, keys_i, keys); } return keys; } static int values_i(VALUE key, VALUE value, VALUE ary) { rb_ary_push(ary, value); return ST_CONTINUE; } /* * call-seq: * hash.values -> new_array * * Returns a new \Array containing all values in +self+: * h = {foo: 0, bar: 1, baz: 2} * h.values # => [0, 1, 2] */ VALUE rb_hash_values(VALUE hash) { VALUE values; st_index_t size = RHASH_SIZE(hash); values = rb_ary_new_capa(size); if (size == 0) return values; if (ST_DATA_COMPATIBLE_P(VALUE)) { if (RHASH_AR_TABLE_P(hash)) { rb_gc_writebarrier_remember(values); RARRAY_PTR_USE_TRANSIENT(values, ptr, { size = ar_values(hash, ptr, size); }); } else if (RHASH_ST_TABLE_P(hash)) { st_table *table = RHASH_ST_TABLE(hash); rb_gc_writebarrier_remember(values); RARRAY_PTR_USE_TRANSIENT(values, ptr, { size = st_values(table, ptr, size); }); } rb_ary_set_len(values, size); } else { rb_hash_foreach(hash, values_i, values); } return values; } /* * call-seq: * hash.include?(key) -> true or false * hash.has_key?(key) -> true or false * hash.key?(key) -> true or false * hash.member?(key) -> true or false * Methods #has_key?, #key?, and #member? are aliases for \#include?. * * Returns +true+ if +key+ is a key in +self+, otherwise +false+. */ MJIT_FUNC_EXPORTED VALUE rb_hash_has_key(VALUE hash, VALUE key) { if (hash_stlike_lookup(hash, key, NULL)) { return Qtrue; } else { return Qfalse; } } static int rb_hash_search_value(VALUE key, VALUE value, VALUE arg) { VALUE *data = (VALUE *)arg; if (rb_equal(value, data[1])) { data[0] = Qtrue; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.has_value?(value) -> true or false * * Returns +true+ if +value+ is a value in +self+, otherwise +false+. */ static VALUE rb_hash_has_value(VALUE hash, VALUE val) { VALUE data[2]; data[0] = Qfalse; data[1] = val; rb_hash_foreach(hash, rb_hash_search_value, (VALUE)data); return data[0]; } struct equal_data { VALUE result; VALUE hash; int eql; }; static int eql_i(VALUE key, VALUE val1, VALUE arg) { struct equal_data *data = (struct equal_data *)arg; st_data_t val2; if (!hash_stlike_lookup(data->hash, key, &val2)) { data->result = Qfalse; return ST_STOP; } else { if (!(data->eql ? rb_eql(val1, (VALUE)val2) : (int)rb_equal(val1, (VALUE)val2))) { data->result = Qfalse; return ST_STOP; } return ST_CONTINUE; } } static VALUE recursive_eql(VALUE hash, VALUE dt, int recur) { struct equal_data *data; if (recur) return Qtrue; /* Subtle! */ data = (struct equal_data*)dt; data->result = Qtrue; rb_hash_foreach(hash, eql_i, dt); return data->result; } static VALUE hash_equal(VALUE hash1, VALUE hash2, int eql) { struct equal_data data; if (hash1 == hash2) return Qtrue; if (!RB_TYPE_P(hash2, T_HASH)) { if (!rb_respond_to(hash2, idTo_hash)) { return Qfalse; } if (eql) { if (rb_eql(hash2, hash1)) { return Qtrue; } else { return Qfalse; } } else { return rb_equal(hash2, hash1); } } if (RHASH_SIZE(hash1) != RHASH_SIZE(hash2)) return Qfalse; if (!RHASH_TABLE_EMPTY_P(hash1) && !RHASH_TABLE_EMPTY_P(hash2)) { if (RHASH_TYPE(hash1) != RHASH_TYPE(hash2)) { return Qfalse; } else { data.hash = hash2; data.eql = eql; return rb_exec_recursive_paired(recursive_eql, hash1, hash2, (VALUE)&data); } } #if 0 if (!(rb_equal(RHASH_IFNONE(hash1), RHASH_IFNONE(hash2)) && FL_TEST(hash1, RHASH_PROC_DEFAULT) == FL_TEST(hash2, RHASH_PROC_DEFAULT))) return Qfalse; #endif return Qtrue; } /* * call-seq: * hash == object -> true or false * * Returns +true+ if all of the following are true: * * +object+ is a \Hash object. * * +hash+ and +object+ have the same keys (regardless of order). * * For each key +key+, hash[key] == object[key]. * * Otherwise, returns +false+. * * Equal: * h1 = {foo: 0, bar: 1, baz: 2} * h2 = {foo: 0, bar: 1, baz: 2} * h1 == h2 # => true * h3 = {baz: 2, bar: 1, foo: 0} * h1 == h3 # => true */ static VALUE rb_hash_equal(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, FALSE); } /* * call-seq: * hash.eql? object -> true or false * * Returns +true+ if all of the following are true: * * +object+ is a \Hash object. * * +hash+ and +object+ have the same keys (regardless of order). * * For each key +key+, h[key] eql? object[key]. * * Otherwise, returns +false+. * * Equal: * h1 = {foo: 0, bar: 1, baz: 2} * h2 = {foo: 0, bar: 1, baz: 2} * h1.eql? h2 # => true * h3 = {baz: 2, bar: 1, foo: 0} * h1.eql? h3 # => true */ static VALUE rb_hash_eql(VALUE hash1, VALUE hash2) { return hash_equal(hash1, hash2, TRUE); } static int hash_i(VALUE key, VALUE val, VALUE arg) { st_index_t *hval = (st_index_t *)arg; st_index_t hdata[2]; hdata[0] = rb_hash(key); hdata[1] = rb_hash(val); *hval ^= st_hash(hdata, sizeof(hdata), 0); return ST_CONTINUE; } /* * call-seq: * hash.hash -> an_integer * * Returns the \Integer hash-code for the hash. * * Two \Hash objects have the same hash-code if their content is the same * (regardless or order): * h1 = {foo: 0, bar: 1, baz: 2} * h2 = {baz: 2, bar: 1, foo: 0} * h2.hash == h1.hash # => true * h2.eql? h1 # => true */ static VALUE rb_hash_hash(VALUE hash) { st_index_t size = RHASH_SIZE(hash); st_index_t hval = rb_hash_start(size); hval = rb_hash_uint(hval, (st_index_t)rb_hash_hash); if (size) { rb_hash_foreach(hash, hash_i, (VALUE)&hval); } hval = rb_hash_end(hval); return ST2FIX(hval); } static int rb_hash_invert_i(VALUE key, VALUE value, VALUE hash) { rb_hash_aset(hash, value, key); return ST_CONTINUE; } /* * call-seq: * hash.invert -> new_hash * * Returns a new \Hash object with the each key-value pair inverted: * h = {foo: 0, bar: 1, baz: 2} * h1 = h.invert * h1 # => {0=>:foo, 1=>:bar, 2=>:baz} * * Overwrites any repeated new keys: * (see {Entry Order}[#class-Hash-label-Entry+Order]): * h = {foo: 0, bar: 0, baz: 0} * h.invert # => {0=>:baz} */ static VALUE rb_hash_invert(VALUE hash) { VALUE h = rb_hash_new_with_size(RHASH_SIZE(hash)); rb_hash_foreach(hash, rb_hash_invert_i, h); return h; } static int rb_hash_update_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing) { *value = arg->arg; return ST_CONTINUE; } NOINSERT_UPDATE_CALLBACK(rb_hash_update_callback) static int rb_hash_update_i(VALUE key, VALUE value, VALUE hash) { RHASH_UPDATE(hash, key, rb_hash_update_callback, value); return ST_CONTINUE; } static int rb_hash_update_block_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing) { st_data_t newvalue = arg->arg; if (existing) { newvalue = (st_data_t)rb_yield_values(3, (VALUE)*key, (VALUE)*value, (VALUE)newvalue); } *value = newvalue; return ST_CONTINUE; } NOINSERT_UPDATE_CALLBACK(rb_hash_update_block_callback) static int rb_hash_update_block_i(VALUE key, VALUE value, VALUE hash) { RHASH_UPDATE(hash, key, rb_hash_update_block_callback, value); return ST_CONTINUE; } /* * call-seq: * hash.merge! -> self * hash.merge!(*other_hashes) -> self * hash.merge!(*other_hashes) { |key, old_value, new_value| ... } -> self * * Merges each of +other_hashes+ into +self+; returns +self+. * * Each argument in +other_hashes+ must be a \Hash. * * \Method #update is an alias for \#merge!. * * With arguments and no block: * * Returns +self+, after the given hashes are merged into it. * * The given hashes are merged left to right. * * Each new entry is added at the end. * * Each duplicate-key entry's value overwrites the previous value. * * Example: * h = {foo: 0, bar: 1, baz: 2} * h1 = {bat: 3, bar: 4} * h2 = {bam: 5, bat:6} * h.merge!(h1, h2) # => {:foo=>0, :bar=>4, :baz=>2, :bat=>6, :bam=>5} * * With arguments and a block: * * Returns +self+, after the given hashes are merged. * * The given hashes are merged left to right. * * Each new-key entry is added at the end. * * For each duplicate key: * * Calls the block with the key and the old and new values. * * The block's return value becomes the new value for the entry. * * Example: * h = {foo: 0, bar: 1, baz: 2} * h1 = {bat: 3, bar: 4} * h2 = {bam: 5, bat:6} * h3 = h.merge!(h1, h2) { |key, old_value, new_value| old_value + new_value } * h3 # => {:foo=>0, :bar=>5, :baz=>2, :bat=>9, :bam=>5} * * With no arguments: * * Returns +self+, unmodified. * * The block, if given, is ignored. * * Example: * h = {foo: 0, bar: 1, baz: 2} * h.merge # => {:foo=>0, :bar=>1, :baz=>2} * h1 = h.merge! { |key, old_value, new_value| raise 'Cannot happen' } * h1 # => {:foo=>0, :bar=>1, :baz=>2} */ static VALUE rb_hash_update(int argc, VALUE *argv, VALUE self) { int i; bool block_given = rb_block_given_p(); rb_hash_modify(self); for (i = 0; i < argc; i++){ VALUE hash = to_hash(argv[i]); if (block_given) { rb_hash_foreach(hash, rb_hash_update_block_i, self); } else { rb_hash_foreach(hash, rb_hash_update_i, self); } } return self; } struct update_func_arg { VALUE hash; VALUE value; rb_hash_update_func *func; }; static int rb_hash_update_func_callback(st_data_t *key, st_data_t *value, struct update_arg *arg, int existing) { struct update_func_arg *uf_arg = (struct update_func_arg *)arg->arg; VALUE newvalue = uf_arg->value; if (existing) { newvalue = (*uf_arg->func)((VALUE)*key, (VALUE)*value, newvalue); } *value = newvalue; return ST_CONTINUE; } NOINSERT_UPDATE_CALLBACK(rb_hash_update_func_callback) static int rb_hash_update_func_i(VALUE key, VALUE value, VALUE arg0) { struct update_func_arg *arg = (struct update_func_arg *)arg0; VALUE hash = arg->hash; arg->value = value; RHASH_UPDATE(hash, key, rb_hash_update_func_callback, (VALUE)arg); return ST_CONTINUE; } VALUE rb_hash_update_by(VALUE hash1, VALUE hash2, rb_hash_update_func *func) { rb_hash_modify(hash1); hash2 = to_hash(hash2); if (func) { struct update_func_arg arg; arg.hash = hash1; arg.func = func; rb_hash_foreach(hash2, rb_hash_update_func_i, (VALUE)&arg); } else { rb_hash_foreach(hash2, rb_hash_update_i, hash1); } return hash1; } /* * call-seq: * hash.merge -> copy_of_self * hash.merge(*other_hashes) -> new_hash * hash.merge(*other_hashes) { |key, old_value, new_value| ... } -> new_hash * * Returns the new \Hash formed by merging each of +other_hashes+ * into a copy of +self+. * * Each argument in +other_hashes+ must be a \Hash. * * --- * * With arguments and no block: * * Returns the new \Hash object formed by merging each successive * \Hash in +other_hashes+ into +self+. * * Each new-key entry is added at the end. * * Each duplicate-key entry's value overwrites the previous value. * * Example: * h = {foo: 0, bar: 1, baz: 2} * h1 = {bat: 3, bar: 4} * h2 = {bam: 5, bat:6} * h.merge(h1, h2) # => {:foo=>0, :bar=>4, :baz=>2, :bat=>6, :bam=>5} * * With arguments and a block: * * Returns a new \Hash object that is the merge of +self+ and each given hash. * * The given hashes are merged left to right. * * Each new-key entry is added at the end. * * For each duplicate key: * * Calls the block with the key and the old and new values. * * The block's return value becomes the new value for the entry. * * Example: * h = {foo: 0, bar: 1, baz: 2} * h1 = {bat: 3, bar: 4} * h2 = {bam: 5, bat:6} * h3 = h.merge(h1, h2) { |key, old_value, new_value| old_value + new_value } * h3 # => {:foo=>0, :bar=>5, :baz=>2, :bat=>9, :bam=>5} * * With no arguments: * * Returns a copy of +self+. * * The block, if given, is ignored. * * Example: * h = {foo: 0, bar: 1, baz: 2} * h.merge # => {:foo=>0, :bar=>1, :baz=>2} * h1 = h.merge { |key, old_value, new_value| raise 'Cannot happen' } * h1 # => {:foo=>0, :bar=>1, :baz=>2} */ static VALUE rb_hash_merge(int argc, VALUE *argv, VALUE self) { return rb_hash_update(argc, argv, rb_hash_dup(self)); } static int assoc_cmp(VALUE a, VALUE b) { return !RTEST(rb_equal(a, b)); } static VALUE lookup2_call(VALUE arg) { VALUE *args = (VALUE *)arg; return rb_hash_lookup2(args[0], args[1], Qundef); } struct reset_hash_type_arg { VALUE hash; const struct st_hash_type *orighash; }; static VALUE reset_hash_type(VALUE arg) { struct reset_hash_type_arg *p = (struct reset_hash_type_arg *)arg; HASH_ASSERT(RHASH_ST_TABLE_P(p->hash)); RHASH_ST_TABLE(p->hash)->type = p->orighash; return Qundef; } static int assoc_i(VALUE key, VALUE val, VALUE arg) { VALUE *args = (VALUE *)arg; if (RTEST(rb_equal(args[0], key))) { args[1] = rb_assoc_new(key, val); return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.assoc(key) -> new_array or nil * * If the given +key+ is found, returns a 2-element \Array containing that key and its value: * h = {foo: 0, bar: 1, baz: 2} * h.assoc(:bar) # => [:bar, 1] * * Returns +nil+ if key +key+ is not found. */ VALUE rb_hash_assoc(VALUE hash, VALUE key) { st_table *table; const struct st_hash_type *orighash; VALUE args[2]; if (RHASH_EMPTY_P(hash)) return Qnil; ar_force_convert_table(hash, __FILE__, __LINE__); HASH_ASSERT(RHASH_ST_TABLE_P(hash)); table = RHASH_ST_TABLE(hash); orighash = table->type; if (orighash != &identhash) { VALUE value; struct reset_hash_type_arg ensure_arg; struct st_hash_type assochash; assochash.compare = assoc_cmp; assochash.hash = orighash->hash; table->type = &assochash; args[0] = hash; args[1] = key; ensure_arg.hash = hash; ensure_arg.orighash = orighash; value = rb_ensure(lookup2_call, (VALUE)&args, reset_hash_type, (VALUE)&ensure_arg); if (value != Qundef) return rb_assoc_new(key, value); } args[0] = key; args[1] = Qnil; rb_hash_foreach(hash, assoc_i, (VALUE)args); return args[1]; } static int rassoc_i(VALUE key, VALUE val, VALUE arg) { VALUE *args = (VALUE *)arg; if (RTEST(rb_equal(args[0], val))) { args[1] = rb_assoc_new(key, val); return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.rassoc(value) -> new_array or nil * * Returns a new 2-element \Array consisting of the key and value * of the first-found entry whose value is == to value * (see {Entry Order}[#class-Hash-label-Entry+Order]): * h = {foo: 0, bar: 1, baz: 1} * h.rassoc(1) # => [:bar, 1] * * Returns +nil+ if no such value found. */ VALUE rb_hash_rassoc(VALUE hash, VALUE obj) { VALUE args[2]; args[0] = obj; args[1] = Qnil; rb_hash_foreach(hash, rassoc_i, (VALUE)args); return args[1]; } static int flatten_i(VALUE key, VALUE val, VALUE ary) { VALUE pair[2]; pair[0] = key; pair[1] = val; rb_ary_cat(ary, pair, 2); return ST_CONTINUE; } /* * call-seq: * hash.flatten -> new_array * hash.flatten(level) -> new_array * * Returns a new \Array object that is a 1-dimensional flattening of +self+. * * --- * * By default, nested Arrays are not flattened: * h = {foo: 0, bar: [:bat, 3], baz: 2} * h.flatten # => [:foo, 0, :bar, [:bat, 3], :baz, 2] * * Takes the depth of recursive flattening from \Integer argument +level+: * h = {foo: 0, bar: [:bat, [:baz, [:bat, ]]]} * h.flatten(1) # => [:foo, 0, :bar, [:bat, [:baz, [:bat]]]] * h.flatten(2) # => [:foo, 0, :bar, :bat, [:baz, [:bat]]] * h.flatten(3) # => [:foo, 0, :bar, :bat, :baz, [:bat]] * h.flatten(4) # => [:foo, 0, :bar, :bat, :baz, :bat] * * When +level+ is negative, flattens all nested Arrays: * h = {foo: 0, bar: [:bat, [:baz, [:bat, ]]]} * h.flatten(-1) # => [:foo, 0, :bar, :bat, :baz, :bat] * h.flatten(-2) # => [:foo, 0, :bar, :bat, :baz, :bat] * * When +level+ is zero, returns the equivalent of #to_a : * h = {foo: 0, bar: [:bat, 3], baz: 2} * h.flatten(0) # => [[:foo, 0], [:bar, [:bat, 3]], [:baz, 2]] * h.flatten(0) == h.to_a # => true */ static VALUE rb_hash_flatten(int argc, VALUE *argv, VALUE hash) { VALUE ary; rb_check_arity(argc, 0, 1); if (argc) { int level = NUM2INT(argv[0]); if (level == 0) return rb_hash_to_a(hash); ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, ary); level--; if (level > 0) { VALUE ary_flatten_level = INT2FIX(level); rb_funcallv(ary, id_flatten_bang, 1, &ary_flatten_level); } else if (level < 0) { /* flatten recursively */ rb_funcallv(ary, id_flatten_bang, 0, 0); } } else { ary = rb_ary_new_capa(RHASH_SIZE(hash) * 2); rb_hash_foreach(hash, flatten_i, ary); } return ary; } static int delete_if_nil(VALUE key, VALUE value, VALUE hash) { if (NIL_P(value)) { return ST_DELETE; } return ST_CONTINUE; } static int set_if_not_nil(VALUE key, VALUE value, VALUE hash) { if (!NIL_P(value)) { rb_hash_aset(hash, key, value); } return ST_CONTINUE; } /* * call-seq: * hash.compact -> new_hash * * Returns a copy of +self+ with all +nil+-valued entries removed: * h = {foo: 0, bar: nil, baz: 2, bat: nil} * h1 = h.compact * h1 # => {:foo=>0, :baz=>2} */ static VALUE rb_hash_compact(VALUE hash) { VALUE result = rb_hash_new(); if (!RHASH_EMPTY_P(hash)) { rb_hash_foreach(hash, set_if_not_nil, result); } return result; } /* * call-seq: * hash.compact! -> self or nil * * Returns +self+ with all its +nil+-valued entries removed (in place): * h = {foo: 0, bar: nil, baz: 2, bat: nil} * h.compact! # => {:foo=>0, :baz=>2} * * Returns +nil+ if no entries were removed. */ static VALUE rb_hash_compact_bang(VALUE hash) { st_index_t n; rb_hash_modify_check(hash); n = RHASH_SIZE(hash); if (n) { rb_hash_foreach(hash, delete_if_nil, hash); if (n != RHASH_SIZE(hash)) return hash; } return Qnil; } static st_table *rb_init_identtable_with_size(st_index_t size); /* * call-seq: * hash.compare_by_identity -> self * * Sets +self+ to consider only identity in comparing keys; * two keys are considered the same only if they are the same object; * returns +self+. * * By default, these two object are considered to be the same key, * so +s1+ will overwrite +s0+: * s0 = 'x' * s1 = 'x' * h = {} * h.compare_by_identity? # => false * h[s0] = 0 * h[s1] = 1 * h # => {"x"=>1} * * After calling \#compare_by_identity, the keys are considered to be different, * and therefore do not overwrite each other: * h = {} * h.compare_by_identity # => {} * h.compare_by_identity? # => true * h[s0] = 0 * h[s1] = 1 * h # => {"x"=>0, "x"=>1} */ static VALUE rb_hash_compare_by_id(VALUE hash) { VALUE tmp; st_table *identtable; if (rb_hash_compare_by_id_p(hash)) return hash; rb_hash_modify_check(hash); ar_force_convert_table(hash, __FILE__, __LINE__); HASH_ASSERT(RHASH_ST_TABLE_P(hash)); tmp = hash_alloc(0); identtable = rb_init_identtable_with_size(RHASH_SIZE(hash)); RHASH_ST_TABLE_SET(tmp, identtable); rb_hash_foreach(hash, rb_hash_rehash_i, (VALUE)tmp); st_free_table(RHASH_ST_TABLE(hash)); RHASH_ST_TABLE_SET(hash, identtable); RHASH_ST_CLEAR(tmp); rb_gc_force_recycle(tmp); return hash; } /* * call-seq: * hash.compare_by_identity? -> true or false * * Returns +true+ if #compare_by_identity has been called, +false+ otherwise. */ MJIT_FUNC_EXPORTED VALUE rb_hash_compare_by_id_p(VALUE hash) { if (RHASH_ST_TABLE_P(hash) && RHASH_ST_TABLE(hash)->type == &identhash) { return Qtrue; } else { return Qfalse; } } VALUE rb_ident_hash_new(void) { VALUE hash = rb_hash_new(); RHASH_ST_TABLE_SET(hash, st_init_table(&identhash)); return hash; } st_table * rb_init_identtable(void) { return st_init_table(&identhash); } static st_table * rb_init_identtable_with_size(st_index_t size) { return st_init_table_with_size(&identhash, size); } static int any_p_i(VALUE key, VALUE value, VALUE arg) { VALUE ret = rb_yield(rb_assoc_new(key, value)); if (RTEST(ret)) { *(VALUE *)arg = Qtrue; return ST_STOP; } return ST_CONTINUE; } static int any_p_i_fast(VALUE key, VALUE value, VALUE arg) { VALUE ret = rb_yield_values(2, key, value); if (RTEST(ret)) { *(VALUE *)arg = Qtrue; return ST_STOP; } return ST_CONTINUE; } static int any_p_i_pattern(VALUE key, VALUE value, VALUE arg) { VALUE ret = rb_funcall(((VALUE *)arg)[1], idEqq, 1, rb_assoc_new(key, value)); if (RTEST(ret)) { *(VALUE *)arg = Qtrue; return ST_STOP; } return ST_CONTINUE; } /* * call-seq: * hash.any? -> true or false * hash.any?(object) -> true or false * hash.any? {|key, value| ... } -> true or false * * Returns +true+ if any element satisfies a given criterion; * +false+ otherwise. * * With no argument and no block, * returns +true+ if +self+ is non-empty; +false+ if empty. * * With argument +object+ and no block, * returns +true+ if for any key +key+ * h.assoc(key) == object: * h = {foo: 0, bar: 1, baz: 2} * h.any?([:bar, 1]) # => true * h.any?([:bar, 0]) # => false * h.any?([:baz, 1]) # => false * * With no argument and a block, * calls the block with each key-value pair; * returns +true+ if the block returns any truthy value, * +false+ otherwise: * h = {foo: 0, bar: 1, baz: 2} * h.any? {|key, value| value < 3 } # => true * h.any? {|key, value| value > 3 } # => false */ static VALUE rb_hash_any_p(int argc, VALUE *argv, VALUE hash) { VALUE args[2]; args[0] = Qfalse; rb_check_arity(argc, 0, 1); if (RHASH_EMPTY_P(hash)) return Qfalse; if (argc) { if (rb_block_given_p()) { rb_warn("given block not used"); } args[1] = argv[0]; rb_hash_foreach(hash, any_p_i_pattern, (VALUE)args); } else { if (!rb_block_given_p()) { /* yields pairs, never false */ return Qtrue; } if (rb_block_pair_yield_optimizable()) rb_hash_foreach(hash, any_p_i_fast, (VALUE)args); else rb_hash_foreach(hash, any_p_i, (VALUE)args); } return args[0]; } /* * call-seq: * hash.dig(key, *identifiers) -> object * * Finds and returns the object in nested objects * that is specified by +key+ and +identifiers+. * The nested objects may be instances of various classes. * See {Dig Methods}[rdoc-ref:doc/dig_methods.rdoc]. * * Nested Hashes: * h = {foo: {bar: {baz: 2}}} * h.dig(:foo) # => {:bar=>{:baz=>2}} * h.dig(:foo, :bar) # => {:bar=>{:baz=>2}} * h.dig(:foo, :bar, :baz) # => 2 * h.dig(:foo, :bar, :BAZ) # => nil * * Nested Hashes and Arrays: * h = {foo: {bar: [:a, :b, :c]}} * h.dig(:foo, :bar, 2) # => :c * * This method will use the {default values}[#class-Hash-label-Default+Values] * for keys that are not present: * h = {foo: {bar: [:a, :b, :c]}} * h.dig(:hello) # => nil * h.default_proc = -> (hash, _key) { hash } * h.dig(:hello, :world) # => h * h.dig(:hello, :world, :foo, :bar, 2) # => :c */ static VALUE rb_hash_dig(int argc, VALUE *argv, VALUE self) { rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); self = rb_hash_aref(self, *argv); if (!--argc) return self; ++argv; return rb_obj_dig(argc, argv, self, Qnil); } static int hash_le_i(VALUE key, VALUE value, VALUE arg) { VALUE *args = (VALUE *)arg; VALUE v = rb_hash_lookup2(args[0], key, Qundef); if (v != Qundef && rb_equal(value, v)) return ST_CONTINUE; args[1] = Qfalse; return ST_STOP; } static VALUE hash_le(VALUE hash1, VALUE hash2) { VALUE args[2]; args[0] = hash2; args[1] = Qtrue; rb_hash_foreach(hash1, hash_le_i, (VALUE)args); return args[1]; } /* * call-seq: * hash <= other_hash -> true or false * * Returns +true+ if +hash+ is a subset of +other_hash+, +false+ otherwise: * h1 = {foo: 0, bar: 1} * h2 = {foo: 0, bar: 1, baz: 2} * h1 <= h2 # => true * h2 <= h1 # => false * h1 <= h1 # => true */ static VALUE rb_hash_le(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) > RHASH_SIZE(other)) return Qfalse; return hash_le(hash, other); } /* * call-seq: * hash < other_hash -> true or false * * Returns +true+ if +hash+ is a proper subset of +other_hash+, +false+ otherwise: * h1 = {foo: 0, bar: 1} * h2 = {foo: 0, bar: 1, baz: 2} * h1 < h2 # => true * h2 < h1 # => false * h1 < h1 # => false */ static VALUE rb_hash_lt(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) >= RHASH_SIZE(other)) return Qfalse; return hash_le(hash, other); } /* * call-seq: * hash >= other_hash -> true or false * * Returns +true+ if +hash+ is a superset of +other_hash+, +false+ otherwise: * h1 = {foo: 0, bar: 1, baz: 2} * h2 = {foo: 0, bar: 1} * h1 >= h2 # => true * h2 >= h1 # => false * h1 >= h1 # => true */ static VALUE rb_hash_ge(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) < RHASH_SIZE(other)) return Qfalse; return hash_le(other, hash); } /* * call-seq: * hash > other_hash -> true or false * * Returns +true+ if +hash+ is a proper superset of +other_hash+, +false+ otherwise: * h1 = {foo: 0, bar: 1, baz: 2} * h2 = {foo: 0, bar: 1} * h1 > h2 # => true * h2 > h1 # => false * h1 > h1 # => false */ static VALUE rb_hash_gt(VALUE hash, VALUE other) { other = to_hash(other); if (RHASH_SIZE(hash) <= RHASH_SIZE(other)) return Qfalse; return hash_le(other, hash); } static VALUE hash_proc_call(RB_BLOCK_CALL_FUNC_ARGLIST(key, hash)) { rb_check_arity(argc, 1, 1); return rb_hash_aref(hash, *argv); } /* * call-seq: * hash.to_proc -> proc * * Returns a \Proc object that maps a key to its value: * h = {foo: 0, bar: 1, baz: 2} * proc = h.to_proc * proc.class # => Proc * proc.call(:foo) # => 0 * proc.call(:bar) # => 1 * proc.call(:nosuch) # => nil */ static VALUE rb_hash_to_proc(VALUE hash) { return rb_func_lambda_new(hash_proc_call, hash, 1, 1); } static VALUE rb_hash_deconstruct_keys(VALUE hash, VALUE keys) { return hash; } static int add_new_i(st_data_t *key, st_data_t *val, st_data_t arg, int existing) { VALUE *args = (VALUE *)arg; if (existing) return ST_STOP; RB_OBJ_WRITTEN(args[0], Qundef, (VALUE)*key); RB_OBJ_WRITE(args[0], (VALUE *)val, args[1]); return ST_CONTINUE; } /* * add +key+ to +val+ pair if +hash+ does not contain +key+. * returns non-zero if +key+ was contained. */ int rb_hash_add_new_element(VALUE hash, VALUE key, VALUE val) { st_table *tbl; int ret = 0; VALUE args[2]; args[0] = hash; args[1] = val; if (RHASH_AR_TABLE_P(hash)) { hash_ar_table(hash); ret = ar_update(hash, (st_data_t)key, add_new_i, (st_data_t)args); if (ret != -1) { return ret; } ar_try_convert_table(hash); } tbl = RHASH_TBL_RAW(hash); return st_update(tbl, (st_data_t)key, add_new_i, (st_data_t)args); } static st_data_t key_stringify(VALUE key) { return (rb_obj_class(key) == rb_cString && !RB_OBJ_FROZEN(key)) ? rb_hash_key_str(key) : key; } static void ar_bulk_insert(VALUE hash, long argc, const VALUE *argv) { long i; for (i = 0; i < argc; ) { st_data_t k = key_stringify(argv[i++]); st_data_t v = argv[i++]; ar_insert(hash, k, v); RB_OBJ_WRITTEN(hash, Qundef, k); RB_OBJ_WRITTEN(hash, Qundef, v); } } void rb_hash_bulk_insert(long argc, const VALUE *argv, VALUE hash) { HASH_ASSERT(argc % 2 == 0); if (argc > 0) { st_index_t size = argc / 2; if (RHASH_TABLE_NULL_P(hash)) { if (size <= RHASH_AR_TABLE_MAX_SIZE) { hash_ar_table(hash); } else { RHASH_TBL_RAW(hash); } } if (RHASH_AR_TABLE_P(hash) && (RHASH_AR_TABLE_SIZE(hash) + size <= RHASH_AR_TABLE_MAX_SIZE)) { ar_bulk_insert(hash, argc, argv); } else { rb_hash_bulk_insert_into_st_table(argc, argv, hash); } } } static char **origenviron; #ifdef _WIN32 #define GET_ENVIRON(e) ((e) = rb_w32_get_environ()) #define FREE_ENVIRON(e) rb_w32_free_environ(e) static char **my_environ; #undef environ #define environ my_environ #undef getenv #define getenv(n) rb_w32_ugetenv(n) #elif defined(__APPLE__) #undef environ #define environ (*_NSGetEnviron()) #define GET_ENVIRON(e) (e) #define FREE_ENVIRON(e) #else extern char **environ; #define GET_ENVIRON(e) (e) #define FREE_ENVIRON(e) #endif #ifdef ENV_IGNORECASE #define ENVMATCH(s1, s2) (STRCASECMP((s1), (s2)) == 0) #define ENVNMATCH(s1, s2, n) (STRNCASECMP((s1), (s2), (n)) == 0) #else #define ENVMATCH(n1, n2) (strcmp((n1), (n2)) == 0) #define ENVNMATCH(s1, s2, n) (memcmp((s1), (s2), (n)) == 0) #endif static inline rb_encoding * env_encoding() { #ifdef _WIN32 return rb_utf8_encoding(); #else return rb_locale_encoding(); #endif } static VALUE env_enc_str_new(const char *ptr, long len, rb_encoding *enc) { VALUE str = rb_external_str_new_with_enc(ptr, len, enc); rb_obj_freeze(str); return str; } static VALUE env_enc_str_new_cstr(const char *ptr, rb_encoding *enc) { return env_enc_str_new(ptr, strlen(ptr), enc); } static VALUE env_str_new(const char *ptr, long len) { return env_enc_str_new(ptr, len, env_encoding()); } static VALUE env_str_new2(const char *ptr) { if (!ptr) return Qnil; return env_str_new(ptr, strlen(ptr)); } static const char TZ_ENV[] = "TZ"; static VALUE env_name_new(const char *name, const char *ptr) { return env_enc_str_new_cstr(ptr, env_encoding()); } static void * get_env_cstr( VALUE str, const char *name) { char *var; rb_encoding *enc = rb_enc_get(str); if (!rb_enc_asciicompat(enc)) { rb_raise(rb_eArgError, "bad environment variable %s: ASCII incompatible encoding: %s", name, rb_enc_name(enc)); } var = RSTRING_PTR(str); if (memchr(var, '\0', RSTRING_LEN(str))) { rb_raise(rb_eArgError, "bad environment variable %s: contains null byte", name); } return rb_str_fill_terminator(str, 1); /* ASCII compatible */ } #define get_env_ptr(var, val) \ (var = get_env_cstr(val, #var)) static inline const char * env_name(volatile VALUE *s) { const char *name; SafeStringValue(*s); get_env_ptr(name, *s); return name; } #define env_name(s) env_name(&(s)) static VALUE env_aset(VALUE nm, VALUE val); static void reset_by_modified_env(const char *nam) { /* * ENV['TZ'] = nil has a special meaning. * TZ is no longer considered up-to-date and ruby call tzset() as needed. * It could be useful if sysadmin change /etc/localtime. * This hack might works only on Linux glibc. */ if (ENVMATCH(nam, TZ_ENV)) { ruby_reset_timezone(); } } static VALUE env_delete(VALUE name) { const char *nam = env_name(name); const char *val = getenv(nam); reset_by_modified_env(nam); if (val) { VALUE value = env_str_new2(val); ruby_setenv(nam, 0); return value; } return Qnil; } /* * call-seq: * ENV.delete(name) -> value * ENV.delete(name) { |name| block } -> value * ENV.delete(missing_name) -> nil * ENV.delete(missing_name) { |name| block } -> block_value * * Deletes the environment variable with +name+ if it exists and returns its value: * ENV['foo'] = '0' * ENV.delete('foo') # => '0' * * If a block is not given and the named environment variable does not exist, returns +nil+. * * If a block given and the environment variable does not exist, * yields +name+ to the block and returns the value of the block: * ENV.delete('foo') { |name| name * 2 } # => "foofoo" * * If a block given and the environment variable exists, * deletes the environment variable and returns its value (ignoring the block): * ENV['foo'] = '0' * ENV.delete('foo') { |name| raise 'ignored' } # => "0" * * Raises an exception if +name+ is invalid. * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE env_delete_m(VALUE obj, VALUE name) { VALUE val; val = env_delete(name); if (NIL_P(val) && rb_block_given_p()) val = rb_yield(name); return val; } /* * call-seq: * ENV[name] -> value * * Returns the value for the environment variable +name+ if it exists: * ENV['foo'] = '0' * ENV['foo'] # => "0" * Returns +nil+ if the named variable does not exist. * * Raises an exception if +name+ is invalid. * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE rb_f_getenv(VALUE obj, VALUE name) { const char *nam, *env; nam = env_name(name); env = getenv(nam); if (env) { return env_name_new(nam, env); } return Qnil; } /* * call-seq: * ENV.fetch(name) -> value * ENV.fetch(name, default) -> value * ENV.fetch(name) { |name| block } -> value * * If +name+ is the name of an environment variable, returns its value: * ENV['foo'] = '0' * ENV.fetch('foo') # => '0' * Otherwise if a block is given (but not a default value), * yields +name+ to the block and returns the block's return value: * ENV.fetch('foo') { |name| :need_not_return_a_string } # => :need_not_return_a_string * Otherwise if a default value is given (but not a block), returns the default value: * ENV.delete('foo') * ENV.fetch('foo', :default_need_not_be_a_string) # => :default_need_not_be_a_string * If the environment variable does not exist and both default and block are given, * issues a warning ("warning: block supersedes default value argument"), * yields +name+ to the block, and returns the block's return value: * ENV.fetch('foo', :default) { |name| :block_return } # => :block_return * Raises KeyError if +name+ is valid, but not found, * and neither default value nor block is given: * ENV.fetch('foo') # Raises KeyError (key not found: "foo") * Raises an exception if +name+ is invalid. * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE env_fetch(int argc, VALUE *argv, VALUE _) { VALUE key; long block_given; const char *nam, *env; rb_check_arity(argc, 1, 2); key = argv[0]; block_given = rb_block_given_p(); if (block_given && argc == 2) { rb_warn("block supersedes default value argument"); } nam = env_name(key); env = getenv(nam); if (!env) { if (block_given) return rb_yield(key); if (argc == 1) { rb_key_err_raise(rb_sprintf("key not found: \"%"PRIsVALUE"\"", key), envtbl, key); } return argv[1]; } return env_name_new(nam, env); } int rb_env_path_tainted(void) { rb_warn_deprecated_to_remove("rb_env_path_tainted", "3.2"); return 0; } #if defined(_WIN32) || (defined(HAVE_SETENV) && defined(HAVE_UNSETENV)) #elif defined __sun static int in_origenv(const char *str) { char **env; for (env = origenviron; *env; ++env) { if (*env == str) return 1; } return 0; } #else static int envix(const char *nam) { register int i, len = strlen(nam); char **env; env = GET_ENVIRON(environ); for (i = 0; env[i]; i++) { if (ENVNMATCH(env[i],nam,len) && env[i][len] == '=') break; /* memcmp must come first to avoid */ } /* potential SEGV's */ FREE_ENVIRON(environ); return i; } #endif #if defined(_WIN32) static size_t getenvsize(const WCHAR* p) { const WCHAR* porg = p; while (*p++) p += lstrlenW(p) + 1; return p - porg + 1; } static size_t getenvblocksize(void) { #ifdef _MAX_ENV return _MAX_ENV; #else return 32767; #endif } static int check_envsize(size_t n) { if (_WIN32_WINNT < 0x0600 && rb_w32_osver() < 6) { /* https://msdn.microsoft.com/en-us/library/windows/desktop/ms682653(v=vs.85).aspx */ /* Windows Server 2003 and Windows XP: The maximum size of the * environment block for the process is 32,767 characters. */ WCHAR* p = GetEnvironmentStringsW(); if (!p) return -1; /* never happen */ n += getenvsize(p); FreeEnvironmentStringsW(p); if (n >= getenvblocksize()) { return -1; } } return 0; } #endif #if defined(_WIN32) || \ (defined(__sun) && !(defined(HAVE_SETENV) && defined(HAVE_UNSETENV))) NORETURN(static void invalid_envname(const char *name)); static void invalid_envname(const char *name) { rb_syserr_fail_str(EINVAL, rb_sprintf("ruby_setenv(%s)", name)); } static const char * check_envname(const char *name) { if (strchr(name, '=')) { invalid_envname(name); } return name; } #endif void ruby_setenv(const char *name, const char *value) { #if defined(_WIN32) # if defined(MINGW_HAS_SECURE_API) || RUBY_MSVCRT_VERSION >= 80 # define HAVE__WPUTENV_S 1 # endif VALUE buf; WCHAR *wname; WCHAR *wvalue = 0; int failed = 0; int len; check_envname(name); len = MultiByteToWideChar(CP_UTF8, 0, name, -1, NULL, 0); if (value) { int len2; len2 = MultiByteToWideChar(CP_UTF8, 0, value, -1, NULL, 0); if (check_envsize((size_t)len + len2)) { /* len and len2 include '\0' */ goto fail; /* 2 for '=' & '\0' */ } wname = ALLOCV_N(WCHAR, buf, len + len2); wvalue = wname + len; MultiByteToWideChar(CP_UTF8, 0, name, -1, wname, len); MultiByteToWideChar(CP_UTF8, 0, value, -1, wvalue, len2); #ifndef HAVE__WPUTENV_S wname[len-1] = L'='; #endif } else { wname = ALLOCV_N(WCHAR, buf, len + 1); MultiByteToWideChar(CP_UTF8, 0, name, -1, wname, len); wvalue = wname + len; *wvalue = L'\0'; #ifndef HAVE__WPUTENV_S wname[len-1] = L'='; #endif } #ifndef HAVE__WPUTENV_S failed = _wputenv(wname); #else failed = _wputenv_s(wname, wvalue); #endif ALLOCV_END(buf); /* even if putenv() failed, clean up and try to delete the * variable from the system area. */ if (!value || !*value) { /* putenv() doesn't handle empty value */ if (!SetEnvironmentVariable(name, value) && GetLastError() != ERROR_ENVVAR_NOT_FOUND) goto fail; } if (failed) { fail: invalid_envname(name); } #elif defined(HAVE_SETENV) && defined(HAVE_UNSETENV) if (value) { if (setenv(name, value, 1)) rb_sys_fail_str(rb_sprintf("setenv(%s)", name)); } else { #ifdef VOID_UNSETENV unsetenv(name); #else if (unsetenv(name)) rb_sys_fail_str(rb_sprintf("unsetenv(%s)", name)); #endif } #elif defined __sun /* Solaris 9 (or earlier) does not have setenv(3C) and unsetenv(3C). */ /* The below code was tested on Solaris 10 by: % ./configure ac_cv_func_setenv=no ac_cv_func_unsetenv=no */ size_t len, mem_size; char **env_ptr, *str, *mem_ptr; check_envname(name); len = strlen(name); if (value) { mem_size = len + strlen(value) + 2; mem_ptr = malloc(mem_size); if (mem_ptr == NULL) rb_sys_fail_str(rb_sprintf("malloc("PRIuSIZE")", mem_size)); snprintf(mem_ptr, mem_size, "%s=%s", name, value); } for (env_ptr = GET_ENVIRON(environ); (str = *env_ptr) != 0; ++env_ptr) { if (!strncmp(str, name, len) && str[len] == '=') { if (!in_origenv(str)) free(str); while ((env_ptr[0] = env_ptr[1]) != 0) env_ptr++; break; } } if (value) { if (putenv(mem_ptr)) { free(mem_ptr); rb_sys_fail_str(rb_sprintf("putenv(%s)", name)); } } #else /* WIN32 */ size_t len; int i; i=envix(name); /* where does it go? */ if (environ == origenviron) { /* need we copy environment? */ int j; int max; char **tmpenv; for (max = i; environ[max]; max++) ; tmpenv = ALLOC_N(char*, max+2); for (j=0; j value * ENV.store(name, value) -> value * * ENV.store is an alias for ENV.[]=. * * Creates, updates, or deletes the named environment variable, returning the value. * Both +name+ and +value+ may be instances of String. * See {Valid Names and Values}[#class-ENV-label-Valid+Names+and+Values]. * * - If the named environment variable does not exist: * - If +value+ is +nil+, does nothing. * ENV.clear * ENV['foo'] = nil # => nil * ENV.include?('foo') # => false * ENV.store('bar', nil) # => nil * ENV.include?('bar') # => false * - If +value+ is not +nil+, creates the environment variable with +name+ and +value+: * # Create 'foo' using ENV.[]=. * ENV['foo'] = '0' # => '0' * ENV['foo'] # => '0' * # Create 'bar' using ENV.store. * ENV.store('bar', '1') # => '1' * ENV['bar'] # => '1' * - If the named environment variable exists: * - If +value+ is not +nil+, updates the environment variable with value +value+: * # Update 'foo' using ENV.[]=. * ENV['foo'] = '2' # => '2' * ENV['foo'] # => '2' * # Update 'bar' using ENV.store. * ENV.store('bar', '3') # => '3' * ENV['bar'] # => '3' * - If +value+ is +nil+, deletes the environment variable: * # Delete 'foo' using ENV.[]=. * ENV['foo'] = nil # => nil * ENV.include?('foo') # => false * # Delete 'bar' using ENV.store. * ENV.store('bar', nil) # => nil * ENV.include?('bar') # => false * * Raises an exception if +name+ or +value+ is invalid. * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE env_aset_m(VALUE obj, VALUE nm, VALUE val) { return env_aset(nm, val); } static VALUE env_aset(VALUE nm, VALUE val) { char *name, *value; if (NIL_P(val)) { env_delete(nm); return Qnil; } SafeStringValue(nm); SafeStringValue(val); /* nm can be modified in `val.to_str`, don't get `name` before * check for `val` */ get_env_ptr(name, nm); get_env_ptr(value, val); ruby_setenv(name, value); reset_by_modified_env(name); return val; } static VALUE env_keys(int raw) { char **env; VALUE ary; rb_encoding *enc = raw ? 0 : rb_locale_encoding(); ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { const char *p = *env; size_t l = s - p; VALUE e = raw ? rb_utf8_str_new(p, l) : env_enc_str_new(p, l, enc); rb_ary_push(ary, e); } env++; } FREE_ENVIRON(environ); return ary; } /* * call-seq: * ENV.keys -> array of names * * Returns all variable names in an Array: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.keys # => ['bar', 'foo'] * The order of the names is OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. * * Returns the empty Array if ENV is empty. */ static VALUE env_f_keys(VALUE _) { return env_keys(FALSE); } static VALUE rb_env_size(VALUE ehash, VALUE args, VALUE eobj) { char **env; long cnt = 0; env = GET_ENVIRON(environ); for (; *env ; ++env) { if (strchr(*env, '=')) { cnt++; } } FREE_ENVIRON(environ); return LONG2FIX(cnt); } /* * call-seq: * ENV.each_key { |name| block } -> ENV * ENV.each_key -> an_enumerator * * Yields each environment variable name: * ENV.replace('foo' => '0', 'bar' => '1') # => ENV * names = [] * ENV.each_key { |name| names.push(name) } # => ENV * names # => ["bar", "foo"] * * Returns an Enumerator if no block given: * e = ENV.each_key # => #"1", "foo"=>"0"}:each_key> * names = [] * e.each { |name| names.push(name) } # => ENV * names # => ["bar", "foo"] */ static VALUE env_each_key(VALUE ehash) { VALUE keys; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); keys = env_keys(FALSE); for (i=0; i '0', 'bar' => '1') * ENV.values # => ['1', '0'] * The order of the values is OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. * * Returns the empty Array if ENV is empty. */ static VALUE env_f_values(VALUE _) { return env_values(); } /* * call-seq: * ENV.each_value { |value| block } -> ENV * ENV.each_value -> an_enumerator * * Yields each environment variable value: * ENV.replace('foo' => '0', 'bar' => '1') # => ENV * values = [] * ENV.each_value { |value| values.push(value) } # => ENV * values # => ["1", "0"] * * Returns an Enumerator if no block given: * e = ENV.each_value # => #"1", "foo"=>"0"}:each_value> * values = [] * e.each { |value| values.push(value) } # => ENV * values # => ["1", "0"] */ static VALUE env_each_value(VALUE ehash) { VALUE values; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); values = env_values(); for (i=0; i ENV * ENV.each -> an_enumerator * ENV.each_pair { |name, value| block } -> ENV * ENV.each_pair -> an_enumerator * * Yields each environment variable name and its value as a 2-element \Array: * h = {} * ENV.each_pair { |name, value| h[name] = value } # => ENV * h # => {"bar"=>"1", "foo"=>"0"} * * Returns an Enumerator if no block given: * h = {} * e = ENV.each_pair # => #"1", "foo"=>"0"}:each_pair> * e.each { |name, value| h[name] = value } # => ENV * h # => {"bar"=>"1", "foo"=>"0"} */ static VALUE env_each_pair(VALUE ehash) { char **env; VALUE ary; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, env_str_new(*env, s-*env)); rb_ary_push(ary, env_str_new2(s+1)); } env++; } FREE_ENVIRON(environ); if (rb_block_pair_yield_optimizable()) { for (i=0; i ENV or nil * ENV.reject! -> an_enumerator * * Similar to ENV.delete_if, but returns +nil+ if no changes were made. * * Yields each environment variable name and its value as a 2-element Array, * deleting each environment variable for which the block returns a truthy value, * and returning ENV (if any deletions) or +nil+ (if not): * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.reject! { |name, value| name.start_with?('b') } # => ENV * ENV # => {"foo"=>"0"} * ENV.reject! { |name, value| name.start_with?('b') } # => nil * * Returns an Enumerator if no block given: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * e = ENV.reject! # => #"1", "baz"=>"2", "foo"=>"0"}:reject!> * e.each { |name, value| name.start_with?('b') } # => ENV * ENV # => {"foo"=>"0"} * e.each { |name, value| name.start_with?('b') } # => nil */ static VALUE env_reject_bang(VALUE ehash) { VALUE keys; long i; int del = 0; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); keys = env_keys(FALSE); RBASIC_CLEAR_CLASS(keys); for (i=0; i ENV * ENV.delete_if -> an_enumerator * * Yields each environment variable name and its value as a 2-element Array, * deleting each environment variable for which the block returns a truthy value, * and returning ENV (regardless of whether any deletions): * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.delete_if { |name, value| name.start_with?('b') } # => ENV * ENV # => {"foo"=>"0"} * ENV.delete_if { |name, value| name.start_with?('b') } # => ENV * * Returns an Enumerator if no block given: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * e = ENV.delete_if # => #"1", "baz"=>"2", "foo"=>"0"}:delete_if!> * e.each { |name, value| name.start_with?('b') } # => ENV * ENV # => {"foo"=>"0"} * e.each { |name, value| name.start_with?('b') } # => ENV */ static VALUE env_delete_if(VALUE ehash) { RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); env_reject_bang(ehash); return envtbl; } /* * call-seq: * ENV.values_at(*names) -> array of values * * Returns an Array containing the environment variable values associated with * the given names: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.values_at('foo', 'baz') # => ["0", "2"] * * Returns +nil+ in the Array for each name that is not an ENV name: * ENV.values_at('foo', 'bat', 'bar', 'bam') # => ["0", nil, "1", nil] * * Returns an empty \Array if no names given. * * Raises an exception if any name is invalid. * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE env_values_at(int argc, VALUE *argv, VALUE _) { VALUE result; long i; result = rb_ary_new(); for (i=0; i hash of name/value pairs * ENV.select -> an_enumerator * ENV.filter { |name, value| block } -> hash of name/value pairs * ENV.filter -> an_enumerator * * ENV.filter is an alias for ENV.select. * * Yields each environment variable name and its value as a 2-element Array, * returning a Hash of the names and values for which the block returns a truthy value: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.select { |name, value| name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"} * ENV.filter { |name, value| name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"} * * Returns an Enumerator if no block given: * e = ENV.select # => #"1", "baz"=>"2", "foo"=>"0"}:select> * e.each { |name, value | name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"} * e = ENV.filter # => #"1", "baz"=>"2", "foo"=>"0"}:filter> * e.each { |name, value | name.start_with?('b') } # => {"bar"=>"1", "baz"=>"2"} */ static VALUE env_select(VALUE ehash) { VALUE result; VALUE keys; long i; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); result = rb_hash_new(); keys = env_keys(FALSE); for (i = 0; i < RARRAY_LEN(keys); ++i) { VALUE key = RARRAY_AREF(keys, i); VALUE val = rb_f_getenv(Qnil, key); if (!NIL_P(val)) { if (RTEST(rb_yield_values(2, key, val))) { rb_hash_aset(result, key, val); } } } RB_GC_GUARD(keys); return result; } /* * call-seq: * ENV.select! { |name, value| block } -> ENV or nil * ENV.select! -> an_enumerator * ENV.filter! { |name, value| block } -> ENV or nil * ENV.filter! -> an_enumerator * * ENV.filter! is an alias for ENV.select!. * * Yields each environment variable name and its value as a 2-element Array, * deleting each entry for which the block returns +false+ or +nil+, * and returning ENV if any deletions made, or +nil+ otherwise: * * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.select! { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} * ENV.select! { |name, value| true } # => nil * * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.filter! { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} * ENV.filter! { |name, value| true } # => nil * * Returns an Enumerator if no block given: * * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * e = ENV.select! # => #"1", "baz"=>"2"}:select!> * e.each { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} * e.each { |name, value| true } # => nil * * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * e = ENV.filter! # => #"1", "baz"=>"2"}:filter!> * e.each { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} * e.each { |name, value| true } # => nil */ static VALUE env_select_bang(VALUE ehash) { VALUE keys; long i; int del = 0; RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); keys = env_keys(FALSE); RBASIC_CLEAR_CLASS(keys); for (i=0; i ENV * ENV.keep_if -> an_enumerator * * Yields each environment variable name and its value as a 2-element Array, * deleting each environment variable for which the block returns +false+ or +nil+, * and returning ENV: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.keep_if { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} * * Returns an Enumerator if no block given: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * e = ENV.keep_if # => #"1", "baz"=>"2", "foo"=>"0"}:keep_if> * e.each { |name, value| name.start_with?('b') } # => ENV * ENV # => {"bar"=>"1", "baz"=>"2"} */ static VALUE env_keep_if(VALUE ehash) { RETURN_SIZED_ENUMERATOR(ehash, 0, 0, rb_env_size); env_select_bang(ehash); return envtbl; } /* * call-seq: * ENV.slice(*names) -> hash of name/value pairs * * Returns a Hash of the given ENV names and their corresponding values: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2', 'bat' => '3') * ENV.slice('foo', 'baz') # => {"foo"=>"0", "baz"=>"2"} * ENV.slice('baz', 'foo') # => {"baz"=>"2", "foo"=>"0"} * Raises an exception if any of the +names+ is invalid * (see {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]): * ENV.slice('foo', 'bar', :bat) # Raises TypeError (no implicit conversion of Symbol into String) */ static VALUE env_slice(int argc, VALUE *argv, VALUE _) { int i; VALUE key, value, result; if (argc == 0) { return rb_hash_new(); } result = rb_hash_new_with_size(argc); for (i = 0; i < argc; i++) { key = argv[i]; value = rb_f_getenv(Qnil, key); if (value != Qnil) rb_hash_aset(result, key, value); } return result; } VALUE rb_env_clear(void) { VALUE keys; long i; keys = env_keys(TRUE); for (i=0; i ENV * * Removes every environment variable; returns ENV: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.size # => 2 * ENV.clear # => ENV * ENV.size # => 0 */ static VALUE env_clear(VALUE _) { return rb_env_clear(); } /* * call-seq: * ENV.to_s -> "ENV" * * Returns String 'ENV': * ENV.to_s # => "ENV" */ static VALUE env_to_s(VALUE _) { return rb_usascii_str_new2("ENV"); } /* * call-seq: * ENV.inspect -> a_string * * Returns the contents of the environment as a String: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.inspect # => "{\"bar\"=>\"1\", \"foo\"=>\"0\"}" */ static VALUE env_inspect(VALUE _) { char **env; VALUE str, i; str = rb_str_buf_new2("{"); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (env != environ) { rb_str_buf_cat2(str, ", "); } if (s) { rb_str_buf_cat2(str, "\""); rb_str_buf_cat(str, *env, s-*env); rb_str_buf_cat2(str, "\"=>"); i = rb_inspect(rb_str_new2(s+1)); rb_str_buf_append(str, i); } env++; } FREE_ENVIRON(environ); rb_str_buf_cat2(str, "}"); return str; } /* * call-seq: * ENV.to_a -> array of 2-element arrays * * Returns the contents of ENV as an Array of 2-element Arrays, * each of which is a name/value pair: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.to_a # => [["bar", "1"], ["foo", "0"]] */ static VALUE env_to_a(VALUE _) { char **env; VALUE ary; ary = rb_ary_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_ary_push(ary, rb_assoc_new(env_str_new(*env, s-*env), env_str_new2(s+1))); } env++; } FREE_ENVIRON(environ); return ary; } /* * call-seq: * ENV.rehash -> nil * * (Provided for compatibility with Hash.) * * Does not modify ENV; returns +nil+. */ static VALUE env_none(VALUE _) { return Qnil; } /* * call-seq: * ENV.length -> an_integer * ENV.size -> an_integer * * Returns the count of environment variables: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.length # => 2 * ENV.size # => 2 */ static VALUE env_size(VALUE _) { int i; char **env; env = GET_ENVIRON(environ); for (i=0; env[i]; i++) ; FREE_ENVIRON(environ); return INT2FIX(i); } /* * call-seq: * ENV.empty? -> true or false * * Returns +true+ when there are no environment variables, +false+ otherwise: * ENV.clear * ENV.empty? # => true * ENV['foo'] = '0' * ENV.empty? # => false */ static VALUE env_empty_p(VALUE _) { char **env; env = GET_ENVIRON(environ); if (env[0] == 0) { FREE_ENVIRON(environ); return Qtrue; } FREE_ENVIRON(environ); return Qfalse; } /* * call-seq: * ENV.include?(name) -> true or false * ENV.has_key?(name) -> true or false * ENV.member?(name) -> true or false * ENV.key?(name) -> true or false * * ENV.has_key?, ENV.member?, and ENV.key? are aliases for ENV.include?. * * Returns +true+ if there is an environment variable with the given +name+: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.include?('foo') # => true * Returns +false+ if +name+ is a valid String and there is no such environment variable: * ENV.include?('baz') # => false * Returns +false+ if +name+ is the empty String or is a String containing character '=': * ENV.include?('') # => false * ENV.include?('=') # => false * Raises an exception if +name+ is a String containing the NUL character "\0": * ENV.include?("\0") # Raises ArgumentError (bad environment variable name: contains null byte) * Raises an exception if +name+ has an encoding that is not ASCII-compatible: * ENV.include?("\xa1\xa1".force_encoding(Encoding::UTF_16LE)) * # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: UTF-16LE) * Raises an exception if +name+ is not a String: * ENV.include?(Object.new) # TypeError (no implicit conversion of Object into String) */ static VALUE env_has_key(VALUE env, VALUE key) { const char *s; s = env_name(key); if (getenv(s)) return Qtrue; return Qfalse; } /* * call-seq: * ENV.assoc(name) -> [name, value] or nil * * Returns a 2-element Array containing the name and value of the environment variable * for +name+ if it exists: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.assoc('foo') # => ['foo', '0'] * Returns +nil+ if +name+ is a valid String and there is no such environment variable. * * Returns +nil+ if +name+ is the empty String or is a String containing character '='. * * Raises an exception if +name+ is a String containing the NUL character "\0": * ENV.assoc("\0") # Raises ArgumentError (bad environment variable name: contains null byte) * Raises an exception if +name+ has an encoding that is not ASCII-compatible: * ENV.assoc("\xa1\xa1".force_encoding(Encoding::UTF_16LE)) * # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: UTF-16LE) * Raises an exception if +name+ is not a String: * ENV.assoc(Object.new) # TypeError (no implicit conversion of Object into String) */ static VALUE env_assoc(VALUE env, VALUE key) { const char *s, *e; s = env_name(key); e = getenv(s); if (e) return rb_assoc_new(key, env_str_new2(e)); return Qnil; } /* * call-seq: * ENV.value?(value) -> true or false * ENV.has_value?(value) -> true or false * * Returns +true+ if +value+ is the value for some environment variable name, +false+ otherwise: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.value?('0') # => true * ENV.has_value?('0') # => true * ENV.value?('2') # => false * ENV.has_value?('2') # => false */ static VALUE env_has_value(VALUE dmy, VALUE obj) { char **env; obj = rb_check_string_type(obj); if (NIL_P(obj)) return Qnil; env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) { FREE_ENVIRON(environ); return Qtrue; } } env++; } FREE_ENVIRON(environ); return Qfalse; } /* * call-seq: * ENV.rassoc(value) -> [name, value] or nil * * Returns a 2-element Array containing the name and value of the * *first* *found* environment variable that has value +value+, if one * exists: * ENV.replace('foo' => '0', 'bar' => '0') * ENV.rassoc('0') # => ["bar", "0"] * The order in which environment variables are examined is OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. * * Returns +nil+ if there is no such environment variable. */ static VALUE env_rassoc(VALUE dmy, VALUE obj) { char **env; obj = rb_check_string_type(obj); if (NIL_P(obj)) return Qnil; env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(obj) == len && strncmp(s, RSTRING_PTR(obj), len) == 0) { VALUE result = rb_assoc_new(rb_str_new(*env, s-*env-1), obj); FREE_ENVIRON(environ); return result; } } env++; } FREE_ENVIRON(environ); return Qnil; } /* * call-seq: * ENV.key(value) -> name or nil * * Returns the name of the first environment variable with +value+, if it exists: * ENV.replace('foo' => '0', 'bar' => '0') * ENV.key('0') # => "foo" * The order in which environment variables are examined is OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. * * Returns +nil+ if there is no such value. * * Raises an exception if +value+ is invalid: * ENV.key(Object.new) # raises TypeError (no implicit conversion of Object into String) * See {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]. */ static VALUE env_key(VALUE dmy, VALUE value) { char **env; VALUE str; SafeStringValue(value); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s++) { long len = strlen(s); if (RSTRING_LEN(value) == len && strncmp(s, RSTRING_PTR(value), len) == 0) { str = env_str_new(*env, s-*env-1); FREE_ENVIRON(environ); return str; } } env++; } FREE_ENVIRON(environ); return Qnil; } static VALUE env_to_hash(void) { char **env; VALUE hash; hash = rb_hash_new(); env = GET_ENVIRON(environ); while (*env) { char *s = strchr(*env, '='); if (s) { rb_hash_aset(hash, env_str_new(*env, s-*env), env_str_new2(s+1)); } env++; } FREE_ENVIRON(environ); return hash; } /* * call-seq: * ENV.to_hash -> hash of name/value pairs * * Returns a Hash containing all name/value pairs from ENV: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.to_hash # => {"bar"=>"1", "foo"=>"0"} */ static VALUE env_f_to_hash(VALUE _) { return env_to_hash(); } /* * call-seq: * ENV.to_h -> hash of name/value pairs * ENV.to_h {|name, value| block } -> hash of name/value pairs * * With no block, returns a Hash containing all name/value pairs from ENV: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.to_h # => {"bar"=>"1", "foo"=>"0"} * With a block, returns a Hash whose items are determined by the block. * Each name/value pair in ENV is yielded to the block. * The block must return a 2-element Array (name/value pair) * that is added to the return Hash as a key and value: * ENV.to_h { |name, value| [name.to_sym, value.to_i] } # => {:bar=>1, :foo=>0} * Raises an exception if the block does not return an Array: * ENV.to_h { |name, value| name } # Raises TypeError (wrong element type String (expected array)) * Raises an exception if the block returns an Array of the wrong size: * ENV.to_h { |name, value| [name] } # Raises ArgumentError (element has wrong array length (expected 2, was 1)) */ static VALUE env_to_h(VALUE _) { VALUE hash = env_to_hash(); if (rb_block_given_p()) { hash = rb_hash_to_h_block(hash); } return hash; } /* * call-seq: * ENV.except(*keys) -> a_hash * * Returns a hash except the given keys from ENV and their values. * * ENV #=> {"LANG"=>"en_US.UTF-8", "TERM"=>"xterm-256color", "HOME"=>"/Users/rhc"} * ENV.except("TERM","HOME") #=> {"LANG"=>"en_US.UTF-8"} */ static VALUE env_except(int argc, VALUE *argv, VALUE _) { int i; VALUE key, hash = env_to_hash(); for (i = 0; i < argc; i++) { key = argv[i]; rb_hash_delete(hash, key); } return hash; } /* * call-seq: * ENV.reject { |name, value| block } -> hash of name/value pairs * ENV.reject -> an_enumerator * * Yields each environment variable name and its value as a 2-element Array. * Returns a Hash whose items are determined by the block. * When the block returns a truthy value, the name/value pair is added to the return Hash; * otherwise the pair is ignored: * ENV.replace('foo' => '0', 'bar' => '1', 'baz' => '2') * ENV.reject { |name, value| name.start_with?('b') } # => {"foo"=>"0"} * Returns an Enumerator if no block given: * e = ENV.reject * e.each { |name, value| name.start_with?('b') } # => {"foo"=>"0"} */ static VALUE env_reject(VALUE _) { return rb_hash_delete_if(env_to_hash()); } NORETURN(static VALUE env_freeze(VALUE self)); /* * call-seq: * ENV.freeze * * Raises an exception: * ENV.freeze # Raises TypeError (cannot freeze ENV) */ static VALUE env_freeze(VALUE self) { rb_raise(rb_eTypeError, "cannot freeze ENV"); UNREACHABLE_RETURN(self); } /* * call-seq: * ENV.shift -> [name, value] or nil * * Removes the first environment variable from ENV and returns * a 2-element Array containing its name and value: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.to_hash # => {'bar' => '1', 'foo' => '0'} * ENV.shift # => ['bar', '1'] * ENV.to_hash # => {'foo' => '0'} * Exactly which environment variable is "first" is OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. * * Returns +nil+ if the environment is empty. */ static VALUE env_shift(VALUE _) { char **env; VALUE result = Qnil; env = GET_ENVIRON(environ); if (*env) { char *s = strchr(*env, '='); if (s) { VALUE key = env_str_new(*env, s-*env); VALUE val = env_str_new2(getenv(RSTRING_PTR(key))); env_delete(key); result = rb_assoc_new(key, val); } } FREE_ENVIRON(environ); return result; } /* * call-seq: * ENV.invert -> hash of value/name pairs * * Returns a Hash whose keys are the ENV values, * and whose values are the corresponding ENV names: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.invert # => {"1"=>"bar", "0"=>"foo"} * For a duplicate ENV value, overwrites the hash entry: * ENV.replace('foo' => '0', 'bar' => '0') * ENV.invert # => {"0"=>"foo"} * Note that the order of the ENV processing is OS-dependent, * which means that the order of overwriting is also OS-dependent. * See {About Ordering}[#class-ENV-label-About+Ordering]. */ static VALUE env_invert(VALUE _) { return rb_hash_invert(env_to_hash()); } static void keylist_delete(VALUE keys, VALUE key) { long keylen, elen; const char *keyptr, *eptr; RSTRING_GETMEM(key, keyptr, keylen); /* Don't stop at first key, as it is possible to have multiple environment values with the same key. */ for (long i=0; i ENV * * Replaces the entire content of the environment variables * with the name/value pairs in the given +hash+; * returns ENV. * * Replaces the content of ENV with the given pairs: * ENV.replace('foo' => '0', 'bar' => '1') # => ENV * ENV.to_hash # => {"bar"=>"1", "foo"=>"0"} * * Raises an exception if a name or value is invalid * (see {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]): * ENV.replace('foo' => '0', :bar => '1') # Raises TypeError (no implicit conversion of Symbol into String) * ENV.replace('foo' => '0', 'bar' => 1) # Raises TypeError (no implicit conversion of Integer into String) * ENV.to_hash # => {"bar"=>"1", "foo"=>"0"} */ static VALUE env_replace(VALUE env, VALUE hash) { VALUE keys; long i; keys = env_keys(TRUE); if (env == hash) return env; hash = to_hash(hash); rb_hash_foreach(hash, env_replace_i, keys); for (i=0; i ENV * ENV.update(hash) { |name, env_val, hash_val| block } -> ENV * ENV.merge!(hash) -> ENV * ENV.merge!(hash) { |name, env_val, hash_val| block } -> ENV * * ENV.update is an alias for ENV.merge!. * * Adds to ENV each key/value pair in the given +hash+; returns ENV: * ENV.replace('foo' => '0', 'bar' => '1') * ENV.merge!('baz' => '2', 'bat' => '3') # => {"bar"=>"1", "bat"=>"3", "baz"=>"2", "foo"=>"0"} * Deletes the ENV entry for a hash value that is +nil+: * ENV.merge!('baz' => nil, 'bat' => nil) # => {"bar"=>"1", "foo"=>"0"} * For an already-existing name, if no block given, overwrites the ENV value: * ENV.merge!('foo' => '4') # => {"bar"=>"1", "foo"=>"4"} * For an already-existing name, if block given, * yields the name, its ENV value, and its hash value; * the block's return value becomes the new name: * ENV.merge!('foo' => '5') { |name, env_val, hash_val | env_val + hash_val } # => {"bar"=>"1", "foo"=>"45"} * Raises an exception if a name or value is invalid * (see {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]); * ENV.replace('foo' => '0', 'bar' => '1') * ENV.merge!('foo' => '6', :bar => '7', 'baz' => '9') # Raises TypeError (no implicit conversion of Symbol into String) * ENV # => {"bar"=>"1", "foo"=>"6"} * ENV.merge!('foo' => '7', 'bar' => 8, 'baz' => '9') # Raises TypeError (no implicit conversion of Integer into String) * ENV # => {"bar"=>"1", "foo"=>"7"} * Raises an exception if the block returns an invalid name: * (see {Invalid Names and Values}[#class-ENV-label-Invalid+Names+and+Values]): * ENV.merge!('bat' => '8', 'foo' => '9') { |name, env_val, hash_val | 10 } # Raises TypeError (no implicit conversion of Integer into String) * ENV # => {"bar"=>"1", "bat"=>"8", "foo"=>"7"} * * Note that for the exceptions above, * hash pairs preceding an invalid name or value are processed normally; * those following are ignored. */ static VALUE env_update(VALUE env, VALUE hash) { if (env == hash) return env; hash = to_hash(hash); rb_foreach_func *func = rb_block_given_p() ? env_update_block_i : env_update_i; rb_hash_foreach(hash, func, 0); return env; } /* * A \Hash maps each of its unique keys to a specific value. * * A \Hash has certain similarities to an \Array, but: * - An \Array index is always an \Integer. * - A \Hash key can be (almost) any object. * * === \Hash \Data Syntax * * The older syntax for \Hash data uses the "hash rocket," =>: * * h = {:foo => 0, :bar => 1, :baz => 2} * h # => {:foo=>0, :bar=>1, :baz=>2} * * Alternatively, but only for a \Hash key that's a \Symbol, * you can use a newer JSON-style syntax, * where each bareword becomes a \Symbol: * * h = {foo: 0, bar: 1, baz: 2} * h # => {:foo=>0, :bar=>1, :baz=>2} * * You can also use a \String in place of a bareword: * * h = {'foo': 0, 'bar': 1, 'baz': 2} * h # => {:foo=>0, :bar=>1, :baz=>2} * * And you can mix the styles: * * h = {foo: 0, :bar => 1, 'baz': 2} * h # => {:foo=>0, :bar=>1, :baz=>2} * * But it's an error to try the JSON-style syntax * for a key that's not a bareword or a String: * * # Raises SyntaxError (syntax error, unexpected ':', expecting =>): * h = {0: 'zero'} * * === Common Uses * * You can use a \Hash to give names to objects: * * person = {name: 'Matz', language: 'Ruby'} * person # => {:name=>"Matz", :language=>"Ruby"} * * You can use a \Hash to give names to method arguments: * * def some_method(hash) * p hash * end * some_method({foo: 0, bar: 1, baz: 2}) # => {:foo=>0, :bar=>1, :baz=>2} * * Note: when the last argument in a method call is a \Hash, * the curly braces may be omitted: * * some_method(foo: 0, bar: 1, baz: 2) # => {:foo=>0, :bar=>1, :baz=>2} * * You can use a \Hash to initialize an object: * * class Dev * attr_accessor :name, :language * def initialize(hash) * self.name = hash[:name] * self.language = hash[:language] * end * end * matz = Dev.new(name: 'Matz', language: 'Ruby') * matz # => # * * === Creating a \Hash * * Here are three ways to create a \Hash: * * - \Method Hash.new * - \Method Hash[] * - Literal form: {}. * * --- * * You can create a \Hash by calling method Hash.new. * * Create an empty Hash: * * h = Hash.new * h # => {} * h.class # => Hash * * --- * * You can create a \Hash by calling method Hash.[]. * * Create an empty Hash: * * h = Hash[] * h # => {} * * Create a \Hash with initial entries: * * h = Hash[foo: 0, bar: 1, baz: 2] * h # => {:foo=>0, :bar=>1, :baz=>2} * * --- * * You can create a \Hash by using its literal form (curly braces). * * Create an empty \Hash: * * h = {} * h # => {} * * Create a \Hash with initial entries: * * h = {foo: 0, bar: 1, baz: 2} * h # => {:foo=>0, :bar=>1, :baz=>2} * * * === \Hash Value Basics * * The simplest way to retrieve a \Hash value (instance method #[]): * * h = {foo: 0, bar: 1, baz: 2} * h[:foo] # => 0 * * The simplest way to create or update a \Hash value (instance method #[]=): * * h = {foo: 0, bar: 1, baz: 2} * h[:bat] = 3 # => 3 * h # => {:foo=>0, :bar=>1, :baz=>2, :bat=>3} * h[:foo] = 4 # => 4 * h # => {:foo=>4, :bar=>1, :baz=>2, :bat=>3} * * The simplest way to delete a \Hash entry (instance method #delete): * * h = {foo: 0, bar: 1, baz: 2} * h.delete(:bar) # => 1 * h # => {:foo=>0, :baz=>2} * * === Entry Order * * A \Hash object presents its entries in the order of their creation. This is seen in: * * - Iterative methods such as each, each_key, each_pair, each_value. * - Other order-sensitive methods such as shift, keys, values. * - The \String returned by method inspect. * * A new \Hash has its initial ordering per the given entries: * * h = Hash[foo: 0, bar: 1] * h # => {:foo=>0, :bar=>1} * * New entries are added at the end: * * h[:baz] = 2 * h # => {:foo=>0, :bar=>1, :baz=>2} * * Updating a value does not affect the order: * * h[:baz] = 3 * h # => {:foo=>0, :bar=>1, :baz=>3} * * But re-creating a deleted entry can affect the order: * * h.delete(:foo) * h[:foo] = 5 * h # => {:bar=>1, :baz=>3, :foo=>5} * * === \Hash Keys * * ==== \Hash Key Equivalence * * Two objects are treated as the same \hash key when their hash value * is identical and the two objects are eql? to each other. * * ==== Modifying an Active \Hash Key * * Modifying a \Hash key while it is in use damages the hash's index. * * This \Hash has keys that are Arrays: * * a0 = [ :foo, :bar ] * a1 = [ :baz, :bat ] * h = {a0 => 0, a1 => 1} * h.include?(a0) # => true * h[a0] # => 0 * a0.hash # => 110002110 * * Modifying array element a0[0] changes its hash value: * * a0[0] = :bam * a0.hash # => 1069447059 * * And damages the \Hash index: * * h.include?(a0) # => false * h[a0] # => nil * * You can repair the hash index using method +rehash+: * * h.rehash # => {[:bam, :bar]=>0, [:baz, :bat]=>1} * h.include?(a0) # => true * h[a0] # => 0 * * A \String key is always safe. * That's because an unfrozen \String * passed as a key will be replaced by a duplicated and frozen \String: * * s = 'foo' * s.frozen? # => false * h = {s => 0} * first_key = h.keys.first * first_key.frozen? # => true * * ==== User-Defined \Hash Keys * * To be useable as a \Hash key, objects must implement the methods hash and eql?. * Note: this requirement does not apply if the \Hash uses #compare_by_id since comparison will then rely on * the keys' object id instead of hash and eql?. * * \Object defines basic implementation for hash and eq? that makes each object * a distinct key. Typically, user-defined classes will want to override these methods to provide meaningful * behavior, or for example inherit \Struct that has useful definitions for these. * * A typical implementation of hash is based on the * object's data while eql? is usually aliased to the overridden * == method: * * class Book * attr_reader :author, :title * * def initialize(author, title) * @author = author * @title = title * end * * def ==(other) * self.class === other && * other.author == @author && * other.title == @title * end * * alias eql? == * * def hash * @author.hash ^ @title.hash # XOR * end * end * * book1 = Book.new 'matz', 'Ruby in a Nutshell' * book2 = Book.new 'matz', 'Ruby in a Nutshell' * * reviews = {} * * reviews[book1] = 'Great reference!' * reviews[book2] = 'Nice and compact!' * * reviews.length #=> 1 * * === Default Values * * The methods #[], #values_at and #dig need to return the value associated to a certain key. * When that key is not found, that value will be determined by its default proc (if any) * or else its default (initially `nil`). * * You can retrieve the default value with method #default: * * h = Hash.new * h.default # => nil * * You can set the default value by passing an argument to method Hash.new or * with method #default= * * h = Hash.new(-1) * h.default # => -1 * h.default = 0 * h.default # => 0 * * This default value is returned for #[], #values_at and #dig when a key is * not found: * * counts = {foo: 42} * counts.default # => nil (default) * counts[:foo] = 42 * counts[:bar] # => nil * counts.default = 0 * counts[:bar] # => 0 * counts.values_at(:foo, :bar, :baz) # => [42, 0, 0] * counts.dig(:bar) # => 0 * * Note that the default value is used without being duplicated. It is not advised to set * the default value to a mutable object: * * synonyms = Hash.new([]) * synonyms[:hello] # => [] * synonyms[:hello] << :hi # => [:hi], but this mutates the default! * synonyms.default # => [:hi] * synonyms[:world] << :universe * synonyms[:world] # => [:hi, :universe], oops * synonyms.keys # => [], oops * * To use a mutable object as default, it is recommended to use a default proc * * ==== Default \Proc * * When the default proc for a \Hash is set (i.e., not +nil+), * the default value returned by method #[] is determined by the default proc alone. * * You can retrieve the default proc with method #default_proc: * * h = Hash.new * h.default_proc # => nil * * You can set the default proc by calling Hash.new with a block or * calling the method #default_proc= * * h = Hash.new { |hash, key| "Default value for #{key}" } * h.default_proc.class # => Proc * h.default_proc = proc { |hash, key| "Default value for #{key.inspect}" } * h.default_proc.class # => Proc * * When the default proc is set (i.e., not +nil+) * and method #[] is called with with a non-existent key, * #[] calls the default proc with both the \Hash object itself and the missing key, * then returns the proc's return value: * * h = Hash.new { |hash, key| "Default value for #{key}" } * h[:nosuch] # => "Default value for nosuch" * * Note that in the example above no entry for key +:nosuch+ is created: * * h.include?(:nosuch) # => false * * However, the proc itself can add a new entry: * * synonyms = Hash.new { |hash, key| hash[key] = [] } * synonyms.include?(:hello) # => false * synonyms[:hello] << :hi # => [:hi] * synonyms[:world] << :universe # => [:universe] * synonyms.keys # => [:hello, :world] * * Note that setting the default proc will clear the default value and vice versa. * * === What's Here * * First, what's elsewhere. \Hash includes the module Enumerable, * which provides dozens of additional methods. * * Here, class \Hash provides methods that are useful for: * * - {Creating a Hash}[#class-Hash-label-Methods+for+Creating+a+Hash] * - {Setting Hash State}[#class-Hash-label-Methods+for+Setting+Hash+State] * - {Querying}[#class-Hash-label-Methods+for+Querying] * - {Comparing}[#class-Hash-label-Methods+for+Comparing] * - {Fetching}[#class-Hash-label-Methods+for+Fetching] * - {Assigning}[#class-Hash-label-Methods+for+Assigning] * - {Deleting}[#class-Hash-label-Methods+for+Deleting] * - {Iterating}[#class-Hash-label-Methods+for+Iterating] * - {Converting}[#class-Hash-label-Methods+for+Converting] * - {Transforming Keys and Values}[#class-Hash-label-Methods+for+Transforming+Keys+and+Values] * - {And more....}[#class-Hash-label-Other+Methods] * * \Class \Hash also includes methods from module Enumerable. * * ==== Methods for Creating a \Hash * * ::[]:: Returns a new hash populated with given objects. * ::new:: Returns a new empty hash. * ::try_convert:: Returns a new hash created from a given object. * * ==== Methods for Setting \Hash State * * #compare_by_identity:: Sets +self+ to consider only identity in comparing keys. * #default=:: Sets the default to a given value. * #default_proc=:: Sets the default proc to a given proc. * #rehash:: Rebuilds the hash table by recomputing the hash index for each key. * * ==== Methods for Querying * * #any?:: Returns whether any element satisfies a given criterion. * #compare_by_identity?:: Returns whether the hash considers only identity when comparing keys. * #default:: Returns the default value, or the default value for a given key. * #default_proc:: Returns the default proc. * #empty?:: Returns whether there are no entries. * #eql?:: Returns whether a given object is equal to +self+. * #hash:: Returns the integer hash code. * #has_value?:: Returns whether a given object is a value in +self+. * #include?, #has_key?, #member?, #key?:: Returns whether a given object is a key in +self+. * #length, #size:: Returns the count of entries. * #value?:: Returns whether a given object is a value in +self+. * * ==== Methods for Comparing * * {#<}[#method-i-3C]:: Returns whether +self+ is a proper subset of a given object. * {#<=}[#method-i-3C-3D]:: Returns whether +self+ is a subset of a given object. * {#==}[#method-i-3D-3D]:: Returns whether a given object is equal to +self+. * {#>}[#method-i-3E]:: Returns whether +self+ is a proper superset of a given object * {#>=}[#method-i-3E-3D]:: Returns whether +self+ is a proper superset of a given object. * * ==== Methods for Fetching * * #[]:: Returns the value associated with a given key. * #assoc:: Returns a 2-element array containing a given key and its value. * #dig:: Returns the object in nested objects that is specified * by a given key and additional arguments. * #fetch:: Returns the value for a given key. * #fetch_values:: Returns array containing the values associated with given keys. * #key:: Returns the key for the first-found entry with a given value. * #keys:: Returns an array containing all keys in +self+. * #rassoc:: Returns a 2-element array consisting of the key and value of the first-found entry having a given value. * #values:: Returns an array containing all values in +self+/ * #values_at:: Returns an array containing values for given keys. * * ==== Methods for Assigning * * #[]=, #store:: Associates a given key with a given value. * #merge:: Returns the hash formed by merging each given hash into a copy of +self+. * #merge!, #update:: Merges each given hash into +self+. * #replace:: Replaces the entire contents of +self+ with the contents of a givan hash. * * ==== Methods for Deleting * * These methods remove entries from +self+: * * #clear:: Removes all entries from +self+. * #compact!:: Removes all +nil+-valued entries from +self+. * #delete:: Removes the entry for a given key. * #delete_if:: Removes entries selected by a given block. * #filter!, #select!:: Keep only those entries selected by a given block. * #keep_if:: Keep only those entries selected by a given block. * #reject!:: Removes entries selected by a given block. * #shift:: Removes and returns the first entry. * * These methods return a copy of +self+ with some entries removed: * * #compact:: Returns a copy of +self+ with all +nil+-valued entries removed. * #except:: Returns a copy of +self+ with entries removed for specified keys. * #filter, #select:: Returns a copy of +self+ with only those entries selected by a given block. * #reject:: Returns a copy of +self+ with entries removed as specified by a given block. * #slice:: Returns a hash containing the entries for given keys. * * ==== Methods for Iterating * #each, #each_pair:: Calls a given block with each key-value pair. * #each_key:: Calls a given block with each key. * #each_value:: Calls a given block with each value. * * ==== Methods for Converting * * #inspect, #to_s:: Returns a new String containing the hash entries. * #to_a:: Returns a new array of 2-element arrays; * each nested array contains a key-value pair from +self+. * #to_h:: Returns +self+ if a \Hash; * if a subclass of \Hash, returns a \Hash containing the entries from +self+. * #to_hash:: Returns +self+. * #to_proc:: Returns a proc that maps a given key to its value. * * ==== Methods for Transforming Keys and Values * * #transform_keys:: Returns a copy of +self+ with modified keys. * #transform_keys!:: Modifies keys in +self+ * #transform_values:: Returns a copy of +self+ with modified values. * #transform_values!:: Modifies values in +self+. * * ==== Other Methods * #flatten:: Returns an array that is a 1-dimensional flattening of +self+. * #invert:: Returns a hash with the each key-value pair inverted. * */ void Init_Hash(void) { id_hash = rb_intern_const("hash"); id_default = rb_intern_const("default"); id_flatten_bang = rb_intern_const("flatten!"); id_hash_iter_lev = rb_make_internal_id(); rb_cHash = rb_define_class("Hash", rb_cObject); rb_include_module(rb_cHash, rb_mEnumerable); rb_define_alloc_func(rb_cHash, empty_hash_alloc); rb_define_singleton_method(rb_cHash, "[]", rb_hash_s_create, -1); rb_define_singleton_method(rb_cHash, "try_convert", rb_hash_s_try_convert, 1); rb_define_method(rb_cHash, "initialize", rb_hash_initialize, -1); rb_define_method(rb_cHash, "initialize_copy", rb_hash_replace, 1); rb_define_method(rb_cHash, "rehash", rb_hash_rehash, 0); rb_define_method(rb_cHash, "to_hash", rb_hash_to_hash, 0); rb_define_method(rb_cHash, "to_h", rb_hash_to_h, 0); rb_define_method(rb_cHash, "to_a", rb_hash_to_a, 0); rb_define_method(rb_cHash, "inspect", rb_hash_inspect, 0); rb_define_alias(rb_cHash, "to_s", "inspect"); rb_define_method(rb_cHash, "to_proc", rb_hash_to_proc, 0); rb_define_method(rb_cHash, "==", rb_hash_equal, 1); rb_define_method(rb_cHash, "[]", rb_hash_aref, 1); rb_define_method(rb_cHash, "hash", rb_hash_hash, 0); rb_define_method(rb_cHash, "eql?", rb_hash_eql, 1); rb_define_method(rb_cHash, "fetch", rb_hash_fetch_m, -1); rb_define_method(rb_cHash, "[]=", rb_hash_aset, 2); rb_define_method(rb_cHash, "store", rb_hash_aset, 2); rb_define_method(rb_cHash, "default", rb_hash_default, -1); rb_define_method(rb_cHash, "default=", rb_hash_set_default, 1); rb_define_method(rb_cHash, "default_proc", rb_hash_default_proc, 0); rb_define_method(rb_cHash, "default_proc=", rb_hash_set_default_proc, 1); rb_define_method(rb_cHash, "key", rb_hash_key, 1); rb_define_method(rb_cHash, "size", rb_hash_size, 0); rb_define_method(rb_cHash, "length", rb_hash_size, 0); rb_define_method(rb_cHash, "empty?", rb_hash_empty_p, 0); rb_define_method(rb_cHash, "each_value", rb_hash_each_value, 0); rb_define_method(rb_cHash, "each_key", rb_hash_each_key, 0); rb_define_method(rb_cHash, "each_pair", rb_hash_each_pair, 0); rb_define_method(rb_cHash, "each", rb_hash_each_pair, 0); rb_define_method(rb_cHash, "transform_keys", rb_hash_transform_keys, -1); rb_define_method(rb_cHash, "transform_keys!", rb_hash_transform_keys_bang, -1); rb_define_method(rb_cHash, "transform_values", rb_hash_transform_values, 0); rb_define_method(rb_cHash, "transform_values!", rb_hash_transform_values_bang, 0); rb_define_method(rb_cHash, "keys", rb_hash_keys, 0); rb_define_method(rb_cHash, "values", rb_hash_values, 0); rb_define_method(rb_cHash, "values_at", rb_hash_values_at, -1); rb_define_method(rb_cHash, "fetch_values", rb_hash_fetch_values, -1); rb_define_method(rb_cHash, "shift", rb_hash_shift, 0); rb_define_method(rb_cHash, "delete", rb_hash_delete_m, 1); rb_define_method(rb_cHash, "delete_if", rb_hash_delete_if, 0); rb_define_method(rb_cHash, "keep_if", rb_hash_keep_if, 0); rb_define_method(rb_cHash, "select", rb_hash_select, 0); rb_define_method(rb_cHash, "select!", rb_hash_select_bang, 0); rb_define_method(rb_cHash, "filter", rb_hash_select, 0); rb_define_method(rb_cHash, "filter!", rb_hash_select_bang, 0); rb_define_method(rb_cHash, "reject", rb_hash_reject, 0); rb_define_method(rb_cHash, "reject!", rb_hash_reject_bang, 0); rb_define_method(rb_cHash, "slice", rb_hash_slice, -1); rb_define_method(rb_cHash, "except", rb_hash_except, -1); rb_define_method(rb_cHash, "clear", rb_hash_clear, 0); rb_define_method(rb_cHash, "invert", rb_hash_invert, 0); rb_define_method(rb_cHash, "update", rb_hash_update, -1); rb_define_method(rb_cHash, "replace", rb_hash_replace, 1); rb_define_method(rb_cHash, "merge!", rb_hash_update, -1); rb_define_method(rb_cHash, "merge", rb_hash_merge, -1); rb_define_method(rb_cHash, "assoc", rb_hash_assoc, 1); rb_define_method(rb_cHash, "rassoc", rb_hash_rassoc, 1); rb_define_method(rb_cHash, "flatten", rb_hash_flatten, -1); rb_define_method(rb_cHash, "compact", rb_hash_compact, 0); rb_define_method(rb_cHash, "compact!", rb_hash_compact_bang, 0); rb_define_method(rb_cHash, "include?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "member?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "has_key?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "has_value?", rb_hash_has_value, 1); rb_define_method(rb_cHash, "key?", rb_hash_has_key, 1); rb_define_method(rb_cHash, "value?", rb_hash_has_value, 1); rb_define_method(rb_cHash, "compare_by_identity", rb_hash_compare_by_id, 0); rb_define_method(rb_cHash, "compare_by_identity?", rb_hash_compare_by_id_p, 0); rb_define_method(rb_cHash, "any?", rb_hash_any_p, -1); rb_define_method(rb_cHash, "dig", rb_hash_dig, -1); rb_define_method(rb_cHash, "<=", rb_hash_le, 1); rb_define_method(rb_cHash, "<", rb_hash_lt, 1); rb_define_method(rb_cHash, ">=", rb_hash_ge, 1); rb_define_method(rb_cHash, ">", rb_hash_gt, 1); rb_define_method(rb_cHash, "deconstruct_keys", rb_hash_deconstruct_keys, 1); rb_define_singleton_method(rb_cHash, "ruby2_keywords_hash?", rb_hash_s_ruby2_keywords_hash_p, 1); rb_define_singleton_method(rb_cHash, "ruby2_keywords_hash", rb_hash_s_ruby2_keywords_hash, 1); /* Document-class: ENV * * ENV is a hash-like accessor for environment variables. * * === Interaction with the Operating System * * The ENV object interacts with the operating system's environment variables: * * - When you get the value for a name in ENV, the value is retrieved from among the current environment variables. * - When you create or set a name-value pair in ENV, the name and value are immediately set in the environment variables. * - When you delete a name-value pair in ENV, it is immediately deleted from the environment variables. * * === Names and Values * * Generally, a name or value is a String. * * ==== Valid Names and Values * * Each name or value must be one of the following: * * - A String. * - An object that responds to \#to_str by returning a String, in which case that String will be used as the name or value. * * ==== Invalid Names and Values * * A new name: * * - May not be the empty string: * ENV[''] = '0' * # Raises Errno::EINVAL (Invalid argument - ruby_setenv()) * * - May not contain character "=": * ENV['='] = '0' * # Raises Errno::EINVAL (Invalid argument - ruby_setenv(=)) * * A new name or value: * * - May not be a non-String that does not respond to \#to_str: * * ENV['foo'] = Object.new * # Raises TypeError (no implicit conversion of Object into String) * ENV[Object.new] = '0' * # Raises TypeError (no implicit conversion of Object into String) * * - May not contain the NUL character "\0": * * ENV['foo'] = "\0" * # Raises ArgumentError (bad environment variable value: contains null byte) * ENV["\0"] == '0' * # Raises ArgumentError (bad environment variable name: contains null byte) * * - May not have an ASCII-incompatible encoding such as UTF-16LE or ISO-2022-JP: * * ENV['foo'] = '0'.force_encoding(Encoding::ISO_2022_JP) * # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: ISO-2022-JP) * ENV["foo".force_encoding(Encoding::ISO_2022_JP)] = '0' * # Raises ArgumentError (bad environment variable name: ASCII incompatible encoding: ISO-2022-JP) * * === About Ordering * * ENV enumerates its name/value pairs in the order found * in the operating system's environment variables. * Therefore the ordering of ENV content is OS-dependent, and may be indeterminate. * * This will be seen in: * - A Hash returned by an ENV method. * - An Enumerator returned by an ENV method. * - An Array returned by ENV.keys, ENV.values, or ENV.to_a. * - The String returned by ENV.inspect. * - The Array returned by ENV.shift. * - The name returned by ENV.key. * * === About the Examples * Some methods in ENV return ENV itself. Typically, there are many environment variables. * It's not useful to display a large ENV in the examples here, * so most example snippets begin by resetting the contents of ENV: * - ENV.replace replaces ENV with a new collection of entries. * - ENV.clear empties ENV. */ /* * Hack to get RDoc to regard ENV as a class: * envtbl = rb_define_class("ENV", rb_cObject); */ origenviron = environ; envtbl = rb_obj_alloc(rb_cObject); rb_extend_object(envtbl, rb_mEnumerable); rb_define_singleton_method(envtbl, "[]", rb_f_getenv, 1); rb_define_singleton_method(envtbl, "fetch", env_fetch, -1); rb_define_singleton_method(envtbl, "[]=", env_aset_m, 2); rb_define_singleton_method(envtbl, "store", env_aset_m, 2); rb_define_singleton_method(envtbl, "each", env_each_pair, 0); rb_define_singleton_method(envtbl, "each_pair", env_each_pair, 0); rb_define_singleton_method(envtbl, "each_key", env_each_key, 0); rb_define_singleton_method(envtbl, "each_value", env_each_value, 0); rb_define_singleton_method(envtbl, "delete", env_delete_m, 1); rb_define_singleton_method(envtbl, "delete_if", env_delete_if, 0); rb_define_singleton_method(envtbl, "keep_if", env_keep_if, 0); rb_define_singleton_method(envtbl, "slice", env_slice, -1); rb_define_singleton_method(envtbl, "except", env_except, -1); rb_define_singleton_method(envtbl, "clear", env_clear, 0); rb_define_singleton_method(envtbl, "reject", env_reject, 0); rb_define_singleton_method(envtbl, "reject!", env_reject_bang, 0); rb_define_singleton_method(envtbl, "select", env_select, 0); rb_define_singleton_method(envtbl, "select!", env_select_bang, 0); rb_define_singleton_method(envtbl, "filter", env_select, 0); rb_define_singleton_method(envtbl, "filter!", env_select_bang, 0); rb_define_singleton_method(envtbl, "shift", env_shift, 0); rb_define_singleton_method(envtbl, "freeze", env_freeze, 0); rb_define_singleton_method(envtbl, "invert", env_invert, 0); rb_define_singleton_method(envtbl, "replace", env_replace, 1); rb_define_singleton_method(envtbl, "update", env_update, 1); rb_define_singleton_method(envtbl, "merge!", env_update, 1); rb_define_singleton_method(envtbl, "inspect", env_inspect, 0); rb_define_singleton_method(envtbl, "rehash", env_none, 0); rb_define_singleton_method(envtbl, "to_a", env_to_a, 0); rb_define_singleton_method(envtbl, "to_s", env_to_s, 0); rb_define_singleton_method(envtbl, "key", env_key, 1); rb_define_singleton_method(envtbl, "size", env_size, 0); rb_define_singleton_method(envtbl, "length", env_size, 0); rb_define_singleton_method(envtbl, "empty?", env_empty_p, 0); rb_define_singleton_method(envtbl, "keys", env_f_keys, 0); rb_define_singleton_method(envtbl, "values", env_f_values, 0); rb_define_singleton_method(envtbl, "values_at", env_values_at, -1); rb_define_singleton_method(envtbl, "include?", env_has_key, 1); rb_define_singleton_method(envtbl, "member?", env_has_key, 1); rb_define_singleton_method(envtbl, "has_key?", env_has_key, 1); rb_define_singleton_method(envtbl, "has_value?", env_has_value, 1); rb_define_singleton_method(envtbl, "key?", env_has_key, 1); rb_define_singleton_method(envtbl, "value?", env_has_value, 1); rb_define_singleton_method(envtbl, "to_hash", env_f_to_hash, 0); rb_define_singleton_method(envtbl, "to_h", env_to_h, 0); rb_define_singleton_method(envtbl, "assoc", env_assoc, 1); rb_define_singleton_method(envtbl, "rassoc", env_rassoc, 1); /* * ENV is a Hash-like accessor for environment variables. * * See ENV (the class) for more details. */ rb_define_global_const("ENV", envtbl); /* for callcc */ ruby_register_rollback_func_for_ensure(hash_foreach_ensure, hash_foreach_ensure_rollback); HASH_ASSERT(sizeof(ar_hint_t) * RHASH_AR_TABLE_MAX_SIZE == sizeof(VALUE)); }