/********************************************************************** time.c - $Author$ created at: Tue Dec 28 14:31:59 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #define _DEFAULT_SOURCE #define _BSD_SOURCE #include "ruby/encoding.h" #include "internal.h" #include #include #include #ifdef HAVE_UNISTD_H #include #endif #include #include #ifdef HAVE_STRINGS_H #include #endif #if defined(HAVE_SYS_TIME_H) #include #endif #include "timev.h" #include "id.h" static ID id_divmod, id_submicro, id_nano_num, id_nano_den, id_offset, id_zone; static ID id_quo, id_div; static ID id_nanosecond, id_microsecond, id_millisecond, id_nsec, id_usec; static ID id_local_to_utc, id_utc_to_local; static ID id_year, id_mon, id_mday, id_hour, id_min, id_sec, id_isdst, id_name; #define TM_IS_TIME 1 #define NDIV(x,y) (-(-((x)+1)/(y))-1) #define NMOD(x,y) ((y)-(-((x)+1)%(y))-1) #define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d)) #define MOD(n,d) ((n)<0 ? NMOD((n),(d)) : (n)%(d)) #define VTM_WDAY_INITVAL (7) #define VTM_ISDST_INITVAL (3) static int eq(VALUE x, VALUE y) { if (FIXNUM_P(x) && FIXNUM_P(y)) { return x == y; } return RTEST(rb_funcall(x, idEq, 1, y)); } static int cmp(VALUE x, VALUE y) { if (FIXNUM_P(x) && FIXNUM_P(y)) { if ((long)x < (long)y) return -1; if ((long)x > (long)y) return 1; return 0; } if (RB_TYPE_P(x, T_BIGNUM)) return FIX2INT(rb_big_cmp(x, y)); return rb_cmpint(rb_funcall(x, idCmp, 1, y), x, y); } #define ne(x,y) (!eq((x),(y))) #define lt(x,y) (cmp((x),(y)) < 0) #define gt(x,y) (cmp((x),(y)) > 0) #define le(x,y) (cmp((x),(y)) <= 0) #define ge(x,y) (cmp((x),(y)) >= 0) static VALUE addv(VALUE x, VALUE y) { if (FIXNUM_P(x) && FIXNUM_P(y)) { return LONG2NUM(FIX2LONG(x) + FIX2LONG(y)); } if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_plus(x, y); return rb_funcall(x, '+', 1, y); } static VALUE subv(VALUE x, VALUE y) { if (FIXNUM_P(x) && FIXNUM_P(y)) { return LONG2NUM(FIX2LONG(x) - FIX2LONG(y)); } if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_minus(x, y); return rb_funcall(x, '-', 1, y); } static VALUE mulv(VALUE x, VALUE y) { if (FIXNUM_P(x) && FIXNUM_P(y)) { return rb_fix_mul_fix(x, y); } if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_mul(x, y); return rb_funcall(x, '*', 1, y); } static VALUE divv(VALUE x, VALUE y) { if (FIXNUM_P(x) && FIXNUM_P(y)) { return rb_fix_div_fix(x, y); } if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_div(x, y); return rb_funcall(x, id_div, 1, y); } static VALUE modv(VALUE x, VALUE y) { if (FIXNUM_P(y)) { if (FIX2LONG(y) == 0) rb_num_zerodiv(); if (FIXNUM_P(x)) return rb_fix_mod_fix(x, y); } if (RB_TYPE_P(x, T_BIGNUM)) return rb_big_modulo(x, y); return rb_funcall(x, '%', 1, y); } #define neg(x) (subv(INT2FIX(0), (x))) static VALUE quov(VALUE x, VALUE y) { VALUE ret; if (FIXNUM_P(x) && FIXNUM_P(y)) { long a, b, c; a = FIX2LONG(x); b = FIX2LONG(y); if (b == 0) rb_num_zerodiv(); if (a == FIXNUM_MIN && b == -1) return LONG2NUM(-a); c = a / b; if (c * b == a) { return LONG2FIX(c); } } ret = rb_numeric_quo(x, y); if (RB_TYPE_P(ret, T_RATIONAL) && RRATIONAL(ret)->den == INT2FIX(1)) { ret = RRATIONAL(ret)->num; } return ret; } #define mulquov(x,y,z) (((y) == (z)) ? (x) : quov(mulv((x),(y)),(z))) static void divmodv(VALUE n, VALUE d, VALUE *q, VALUE *r) { VALUE tmp, ary; if (FIXNUM_P(d)) { if (FIX2LONG(d) == 0) rb_num_zerodiv(); if (FIXNUM_P(n)) { rb_fix_divmod_fix(n, d, q, r); return; } } tmp = rb_funcall(n, id_divmod, 1, d); ary = rb_check_array_type(tmp); if (NIL_P(ary)) { rb_raise(rb_eTypeError, "unexpected divmod result: into %"PRIsVALUE, rb_obj_class(tmp)); } *q = rb_ary_entry(ary, 0); *r = rb_ary_entry(ary, 1); } #if SIZEOF_LONG == 8 # define INT64toNUM(x) LONG2NUM(x) #elif defined(HAVE_LONG_LONG) && SIZEOF_LONG_LONG == 8 # define INT64toNUM(x) LL2NUM(x) #endif #if defined(HAVE_UINT64_T) && SIZEOF_LONG*2 <= SIZEOF_UINT64_T typedef uint64_t uwideint_t; typedef int64_t wideint_t; typedef uint64_t WIDEVALUE; typedef int64_t SIGNED_WIDEVALUE; # define WIDEVALUE_IS_WIDER 1 # define UWIDEINT_MAX UINT64_MAX # define WIDEINT_MAX INT64_MAX # define WIDEINT_MIN INT64_MIN # define FIXWINT_P(tv) ((tv) & 1) # define FIXWVtoINT64(tv) RSHIFT((SIGNED_WIDEVALUE)(tv), 1) # define INT64toFIXWV(wi) ((WIDEVALUE)((SIGNED_WIDEVALUE)(wi) << 1 | FIXNUM_FLAG)) # define FIXWV_MAX (((int64_t)1 << 62) - 1) # define FIXWV_MIN (-((int64_t)1 << 62)) # define FIXWVABLE(wi) (POSFIXWVABLE(wi) && NEGFIXWVABLE(wi)) # define WINT2FIXWV(i) WIDEVAL_WRAP(INT64toFIXWV(i)) # define FIXWV2WINT(w) FIXWVtoINT64(WIDEVAL_GET(w)) #else typedef unsigned long uwideint_t; typedef long wideint_t; typedef VALUE WIDEVALUE; typedef SIGNED_VALUE SIGNED_WIDEVALUE; # define WIDEVALUE_IS_WIDER 0 # define UWIDEINT_MAX ULONG_MAX # define WIDEINT_MAX LONG_MAX # define WIDEINT_MIN LONG_MIN # define FIXWINT_P(v) FIXNUM_P(v) # define FIXWV_MAX FIXNUM_MAX # define FIXWV_MIN FIXNUM_MIN # define FIXWVABLE(i) FIXABLE(i) # define WINT2FIXWV(i) WIDEVAL_WRAP(LONG2FIX(i)) # define FIXWV2WINT(w) FIX2LONG(WIDEVAL_GET(w)) #endif #define POSFIXWVABLE(wi) ((wi) < FIXWV_MAX+1) #define NEGFIXWVABLE(wi) ((wi) >= FIXWV_MIN) #define FIXWV_P(w) FIXWINT_P(WIDEVAL_GET(w)) #define MUL_OVERFLOW_FIXWV_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, FIXWV_MIN, FIXWV_MAX) /* #define STRUCT_WIDEVAL */ #ifdef STRUCT_WIDEVAL /* for type checking */ typedef struct { WIDEVALUE value; } wideval_t; static inline wideval_t WIDEVAL_WRAP(WIDEVALUE v) { wideval_t w = { v }; return w; } # define WIDEVAL_GET(w) ((w).value) #else typedef WIDEVALUE wideval_t; # define WIDEVAL_WRAP(v) (v) # define WIDEVAL_GET(w) (w) #endif #if WIDEVALUE_IS_WIDER static inline wideval_t wint2wv(wideint_t wi) { if (FIXWVABLE(wi)) return WINT2FIXWV(wi); else return WIDEVAL_WRAP(INT64toNUM(wi)); } # define WINT2WV(wi) wint2wv(wi) #else # define WINT2WV(wi) WIDEVAL_WRAP(LONG2NUM(wi)) #endif static inline VALUE w2v(wideval_t w) { #if WIDEVALUE_IS_WIDER if (FIXWV_P(w)) return INT64toNUM(FIXWV2WINT(w)); return (VALUE)WIDEVAL_GET(w); #else return WIDEVAL_GET(w); #endif } #if WIDEVALUE_IS_WIDER static wideval_t v2w_bignum(VALUE v) { int sign; uwideint_t u; sign = rb_integer_pack(v, &u, 1, sizeof(u), 0, INTEGER_PACK_NATIVE_BYTE_ORDER); if (sign == 0) return WINT2FIXWV(0); else if (sign == -1) { if (u <= -FIXWV_MIN) return WINT2FIXWV(-(wideint_t)u); } else if (sign == +1) { if (u <= FIXWV_MAX) return WINT2FIXWV((wideint_t)u); } return WIDEVAL_WRAP(v); } #endif static inline wideval_t v2w(VALUE v) { if (RB_TYPE_P(v, T_RATIONAL)) { if (RRATIONAL(v)->den != LONG2FIX(1)) return v; v = RRATIONAL(v)->num; } #if WIDEVALUE_IS_WIDER if (FIXNUM_P(v)) { return WIDEVAL_WRAP((WIDEVALUE)(SIGNED_WIDEVALUE)(long)v); } else if (RB_TYPE_P(v, T_BIGNUM) && rb_absint_size(v, NULL) <= sizeof(WIDEVALUE)) { return v2w_bignum(v); } #endif return WIDEVAL_WRAP(v); } static int weq(wideval_t wx, wideval_t wy) { #if WIDEVALUE_IS_WIDER if (FIXWV_P(wx) && FIXWV_P(wy)) { return WIDEVAL_GET(wx) == WIDEVAL_GET(wy); } return RTEST(rb_funcall(w2v(wx), idEq, 1, w2v(wy))); #else return eq(WIDEVAL_GET(wx), WIDEVAL_GET(wy)); #endif } static int wcmp(wideval_t wx, wideval_t wy) { VALUE x, y; #if WIDEVALUE_IS_WIDER if (FIXWV_P(wx) && FIXWV_P(wy)) { wideint_t a, b; a = FIXWV2WINT(wx); b = FIXWV2WINT(wy); if (a < b) return -1; if (a > b) return 1; return 0; } #endif x = w2v(wx); y = w2v(wy); return cmp(x, y); } #define wne(x,y) (!weq((x),(y))) #define wlt(x,y) (wcmp((x),(y)) < 0) #define wgt(x,y) (wcmp((x),(y)) > 0) #define wle(x,y) (wcmp((x),(y)) <= 0) #define wge(x,y) (wcmp((x),(y)) >= 0) static wideval_t wadd(wideval_t wx, wideval_t wy) { #if WIDEVALUE_IS_WIDER if (FIXWV_P(wx) && FIXWV_P(wy)) { wideint_t r = FIXWV2WINT(wx) + FIXWV2WINT(wy); return WINT2WV(r); } #endif return v2w(addv(w2v(wx), w2v(wy))); } static wideval_t wsub(wideval_t wx, wideval_t wy) { #if WIDEVALUE_IS_WIDER if (FIXWV_P(wx) && FIXWV_P(wy)) { wideint_t r = FIXWV2WINT(wx) - FIXWV2WINT(wy); return WINT2WV(r); } #endif return v2w(subv(w2v(wx), w2v(wy))); } static wideval_t wmul(wideval_t wx, wideval_t wy) { #if WIDEVALUE_IS_WIDER if (FIXWV_P(wx) && FIXWV_P(wy)) { if (!MUL_OVERFLOW_FIXWV_P(FIXWV2WINT(wx), FIXWV2WINT(wy))) return WINT2WV(FIXWV2WINT(wx) * FIXWV2WINT(wy)); } #endif return v2w(mulv(w2v(wx), w2v(wy))); } static wideval_t wquo(wideval_t wx, wideval_t wy) { #if WIDEVALUE_IS_WIDER if (FIXWV_P(wx) && FIXWV_P(wy)) { wideint_t a, b, c; a = FIXWV2WINT(wx); b = FIXWV2WINT(wy); if (b == 0) rb_num_zerodiv(); c = a / b; if (c * b == a) { return WINT2WV(c); } } #endif return v2w(quov(w2v(wx), w2v(wy))); } #define wmulquo(x,y,z) ((WIDEVAL_GET(y) == WIDEVAL_GET(z)) ? (x) : wquo(wmul((x),(y)),(z))) #define wmulquoll(x,y,z) (((y) == (z)) ? (x) : wquo(wmul((x),WINT2WV(y)),WINT2WV(z))) #if WIDEVALUE_IS_WIDER static int wdivmod0(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr) { if (FIXWV_P(wn) && FIXWV_P(wd)) { wideint_t n, d, q, r; d = FIXWV2WINT(wd); if (d == 0) rb_num_zerodiv(); if (d == 1) { *wq = wn; *wr = WINT2FIXWV(0); return 1; } if (d == -1) { wideint_t xneg = -FIXWV2WINT(wn); *wq = WINT2WV(xneg); *wr = WINT2FIXWV(0); return 1; } n = FIXWV2WINT(wn); if (n == 0) { *wq = WINT2FIXWV(0); *wr = WINT2FIXWV(0); return 1; } q = n / d; r = n % d; if (d > 0 ? r < 0 : r > 0) { q -= 1; r += d; } *wq = WINT2FIXWV(q); *wr = WINT2FIXWV(r); return 1; } return 0; } #endif static void wdivmod(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr) { VALUE vq, vr; #if WIDEVALUE_IS_WIDER if (wdivmod0(wn, wd, wq, wr)) return; #endif divmodv(w2v(wn), w2v(wd), &vq, &vr); *wq = v2w(vq); *wr = v2w(vr); } static void wmuldivmod(wideval_t wx, wideval_t wy, wideval_t wz, wideval_t *wq, wideval_t *wr) { if (WIDEVAL_GET(wy) == WIDEVAL_GET(wz)) { *wq = wx; *wr = WINT2FIXWV(0); return; } wdivmod(wmul(wx,wy), wz, wq, wr); } static wideval_t wdiv(wideval_t wx, wideval_t wy) { #if WIDEVALUE_IS_WIDER wideval_t q, dmy; if (wdivmod0(wx, wy, &q, &dmy)) return q; #endif return v2w(divv(w2v(wx), w2v(wy))); } static wideval_t wmod(wideval_t wx, wideval_t wy) { #if WIDEVALUE_IS_WIDER wideval_t r, dmy; if (wdivmod0(wx, wy, &dmy, &r)) return r; #endif return v2w(modv(w2v(wx), w2v(wy))); } static VALUE num_exact(VALUE v) { VALUE tmp; if (NIL_P(v)) { rb_raise(rb_eTypeError, "can't convert nil into an exact number"); } else if (RB_INTEGER_TYPE_P(v)) { return v; } else if (RB_TYPE_P(v, T_RATIONAL)) { goto rational; } else if (RB_TYPE_P(v, T_STRING)) { goto typeerror; } else { if ((tmp = rb_check_funcall(v, idTo_r, 0, NULL)) != Qundef) { /* test to_int method availability to reject non-Numeric * objects such as String, Time, etc which have to_r method. */ if (!rb_respond_to(v, idTo_int)) goto typeerror; } else if (!NIL_P(tmp = rb_check_to_int(v))) { return tmp; } else { goto typeerror; } } if (RB_INTEGER_TYPE_P(tmp)) { v = tmp; } else if (RB_TYPE_P(tmp, T_RATIONAL)) { v = tmp; rational: if (RRATIONAL(v)->den == INT2FIX(1)) v = RRATIONAL(v)->num; } else { typeerror: rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into an exact number", rb_obj_class(v)); } return v; } /* time_t */ static wideval_t rb_time_magnify(wideval_t w) { return wmul(w, WINT2FIXWV(TIME_SCALE)); } static wideval_t rb_time_unmagnify(wideval_t w) { return wquo(w, WINT2FIXWV(TIME_SCALE)); } static VALUE rb_time_unmagnify_to_float(wideval_t w) { VALUE v; #if WIDEVALUE_IS_WIDER if (FIXWV_P(w)) { wideint_t a, b, c; a = FIXWV2WINT(w); b = TIME_SCALE; c = a / b; if (c * b == a) { return DBL2NUM((double)c); } v = DBL2NUM((double)FIXWV2WINT(w)); return quov(v, DBL2NUM(TIME_SCALE)); } #endif v = w2v(w); if (RB_TYPE_P(v, T_RATIONAL)) return rb_Float(quov(v, INT2FIX(TIME_SCALE))); else return quov(v, DBL2NUM(TIME_SCALE)); } static void split_second(wideval_t timew, wideval_t *timew_p, VALUE *subsecx_p) { wideval_t q, r; wdivmod(timew, WINT2FIXWV(TIME_SCALE), &q, &r); *timew_p = q; *subsecx_p = w2v(r); } static wideval_t timet2wv(time_t t) { #if WIDEVALUE_IS_WIDER if (TIMET_MIN == 0) { uwideint_t wi = (uwideint_t)t; if (wi <= FIXWV_MAX) { return WINT2FIXWV(wi); } } else { wideint_t wi = (wideint_t)t; if (FIXWV_MIN <= wi && wi <= FIXWV_MAX) { return WINT2FIXWV(wi); } } #endif return v2w(TIMET2NUM(t)); } #define TIMET2WV(t) timet2wv(t) static time_t wv2timet(wideval_t w) { #if WIDEVALUE_IS_WIDER if (FIXWV_P(w)) { wideint_t wi = FIXWV2WINT(w); if (TIMET_MIN == 0) { if (wi < 0) rb_raise(rb_eRangeError, "negative value to convert into `time_t'"); if (TIMET_MAX < (uwideint_t)wi) rb_raise(rb_eRangeError, "too big to convert into `time_t'"); } else { if (wi < TIMET_MIN || TIMET_MAX < wi) rb_raise(rb_eRangeError, "too big to convert into `time_t'"); } return (time_t)wi; } #endif return NUM2TIMET(w2v(w)); } #define WV2TIMET(t) wv2timet(t) VALUE rb_cTime; static VALUE rb_cTimeTM; static int obj2int(VALUE obj); static uint32_t obj2ubits(VALUE obj, size_t bits); static VALUE obj2vint(VALUE obj); static uint32_t month_arg(VALUE arg); static VALUE validate_utc_offset(VALUE utc_offset); static VALUE validate_zone_name(VALUE zone_name); static void validate_vtm(struct vtm *vtm); static uint32_t obj2subsecx(VALUE obj, VALUE *subsecx); static VALUE time_gmtime(VALUE); static VALUE time_localtime(VALUE); static VALUE time_fixoff(VALUE); static time_t timegm_noleapsecond(struct tm *tm); static int tmcmp(struct tm *a, struct tm *b); static int vtmcmp(struct vtm *a, struct vtm *b); static const char *find_time_t(struct tm *tptr, int utc_p, time_t *tp); static struct vtm *localtimew(wideval_t timew, struct vtm *result); static int leap_year_p(long y); #define leap_year_v_p(y) leap_year_p(NUM2LONG(modv((y), INT2FIX(400)))) static VALUE tm_from_time(VALUE klass, VALUE time); bool ruby_tz_uptodate_p; static struct tm * rb_localtime_r(const time_t *t, struct tm *result) { #if defined __APPLE__ && defined __LP64__ if (*t != (time_t)(int)*t) return NULL; #endif if (!ruby_tz_uptodate_p) { ruby_tz_uptodate_p = 1; tzset(); } #ifdef HAVE_GMTIME_R result = localtime_r(t, result); #else { struct tm *tmp = localtime(t); if (tmp) *result = *tmp; } #endif #if defined(HAVE_MKTIME) && defined(LOCALTIME_OVERFLOW_PROBLEM) if (result) { long gmtoff1 = 0; long gmtoff2 = 0; struct tm tmp = *result; time_t t2; t2 = mktime(&tmp); # if defined(HAVE_STRUCT_TM_TM_GMTOFF) gmtoff1 = result->tm_gmtoff; gmtoff2 = tmp.tm_gmtoff; # endif if (*t + gmtoff1 != t2 + gmtoff2) result = NULL; } #endif return result; } #define LOCALTIME(tm, result) rb_localtime_r((tm), &(result)) #ifndef HAVE_STRUCT_TM_TM_GMTOFF static struct tm * rb_gmtime_r(const time_t *t, struct tm *result) { #ifdef HAVE_GMTIME_R result = gmtime_r(t, result); #else struct tm *tmp = gmtime(t); if (tmp) *result = *tmp; #endif #if defined(HAVE_TIMEGM) && defined(LOCALTIME_OVERFLOW_PROBLEM) if (result && *t != timegm(result)) { return NULL; } #endif return result; } # define GMTIME(tm, result) rb_gmtime_r((tm), &(result)) #endif static const int common_year_yday_offset[] = { -1, -1 + 31, -1 + 31 + 28, -1 + 31 + 28 + 31, -1 + 31 + 28 + 31 + 30, -1 + 31 + 28 + 31 + 30 + 31, -1 + 31 + 28 + 31 + 30 + 31 + 30, -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31, -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31, -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30, -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31, -1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 /* 1 2 3 4 5 6 7 8 9 10 11 */ }; static const int leap_year_yday_offset[] = { -1, -1 + 31, -1 + 31 + 29, -1 + 31 + 29 + 31, -1 + 31 + 29 + 31 + 30, -1 + 31 + 29 + 31 + 30 + 31, -1 + 31 + 29 + 31 + 30 + 31 + 30, -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31, -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31, -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30, -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31, -1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 /* 1 2 3 4 5 6 7 8 9 10 11 */ }; static const int common_year_days_in_month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static const int leap_year_days_in_month[] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; #define M28(m) \ (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \ (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \ (m),(m),(m),(m),(m),(m),(m),(m) #define M29(m) \ (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \ (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \ (m),(m),(m),(m),(m),(m),(m),(m),(m) #define M30(m) \ (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \ (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \ (m),(m),(m),(m),(m),(m),(m),(m),(m),(m) #define M31(m) \ (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \ (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \ (m),(m),(m),(m),(m),(m),(m),(m),(m),(m), (m) static const uint8_t common_year_mon_of_yday[] = { M31(1), M28(2), M31(3), M30(4), M31(5), M30(6), M31(7), M31(8), M30(9), M31(10), M30(11), M31(12) }; static const uint8_t leap_year_mon_of_yday[] = { M31(1), M29(2), M31(3), M30(4), M31(5), M30(6), M31(7), M31(8), M30(9), M31(10), M30(11), M31(12) }; #undef M28 #undef M29 #undef M30 #undef M31 #define D28 \ 1,2,3,4,5,6,7,8,9, \ 10,11,12,13,14,15,16,17,18,19, \ 20,21,22,23,24,25,26,27,28 #define D29 \ 1,2,3,4,5,6,7,8,9, \ 10,11,12,13,14,15,16,17,18,19, \ 20,21,22,23,24,25,26,27,28,29 #define D30 \ 1,2,3,4,5,6,7,8,9, \ 10,11,12,13,14,15,16,17,18,19, \ 20,21,22,23,24,25,26,27,28,29,30 #define D31 \ 1,2,3,4,5,6,7,8,9, \ 10,11,12,13,14,15,16,17,18,19, \ 20,21,22,23,24,25,26,27,28,29,30,31 static const uint8_t common_year_mday_of_yday[] = { /* 1 2 3 4 5 6 7 8 9 10 11 12 */ D31, D28, D31, D30, D31, D30, D31, D31, D30, D31, D30, D31 }; static const uint8_t leap_year_mday_of_yday[] = { D31, D29, D31, D30, D31, D30, D31, D31, D30, D31, D30, D31 }; #undef D28 #undef D29 #undef D30 #undef D31 static int calc_tm_yday(long tm_year, int tm_mon, int tm_mday) { int tm_year_mod400 = (int)MOD(tm_year, 400); int tm_yday = tm_mday; if (leap_year_p(tm_year_mod400 + 1900)) tm_yday += leap_year_yday_offset[tm_mon]; else tm_yday += common_year_yday_offset[tm_mon]; return tm_yday; } static wideval_t timegmw_noleapsecond(struct vtm *vtm) { VALUE year1900; VALUE q400, r400; int year_mod400; int yday; long days_in400; VALUE vdays, ret; wideval_t wret; year1900 = subv(vtm->year, INT2FIX(1900)); divmodv(year1900, INT2FIX(400), &q400, &r400); year_mod400 = NUM2INT(r400); yday = calc_tm_yday(year_mod400, vtm->mon-1, vtm->mday); /* * `Seconds Since the Epoch' in SUSv3: * tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 + * (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 - * ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400 */ ret = LONG2NUM(vtm->sec + vtm->min*60 + vtm->hour*3600); days_in400 = yday - 70*365 + DIV(year_mod400 - 69, 4) - DIV(year_mod400 - 1, 100) + (year_mod400 + 299) / 400; vdays = LONG2NUM(days_in400); vdays = addv(vdays, mulv(q400, INT2FIX(97))); vdays = addv(vdays, mulv(year1900, INT2FIX(365))); wret = wadd(rb_time_magnify(v2w(ret)), wmul(rb_time_magnify(v2w(vdays)), WINT2FIXWV(86400))); wret = wadd(wret, v2w(vtm->subsecx)); return wret; } static VALUE zone_str(const char *zone) { const char *p; int ascii_only = 1; VALUE str; size_t len; if (zone == NULL) { return rb_fstring_lit("(NO-TIMEZONE-ABBREVIATION)"); } for (p = zone; *p; p++) if (!ISASCII(*p)) { ascii_only = 0; break; } len = p - zone + strlen(p); if (ascii_only) { str = rb_usascii_str_new(zone, len); } else { str = rb_enc_str_new(zone, len, rb_locale_encoding()); } return rb_fstring(str); } static void gmtimew_noleapsecond(wideval_t timew, struct vtm *vtm) { VALUE v; int n, x, y; int wday; VALUE timev; wideval_t timew2, w, w2; VALUE subsecx; vtm->isdst = 0; split_second(timew, &timew2, &subsecx); vtm->subsecx = subsecx; wdivmod(timew2, WINT2FIXWV(86400), &w2, &w); timev = w2v(w2); v = w2v(w); wday = NUM2INT(modv(timev, INT2FIX(7))); vtm->wday = (wday + 4) % 7; n = NUM2INT(v); vtm->sec = n % 60; n = n / 60; vtm->min = n % 60; n = n / 60; vtm->hour = n; /* 97 leap days in the 400 year cycle */ divmodv(timev, INT2FIX(400*365 + 97), &timev, &v); vtm->year = mulv(timev, INT2FIX(400)); /* n is the days in the 400 year cycle. * the start of the cycle is 1970-01-01. */ n = NUM2INT(v); y = 1970; /* 30 years including 7 leap days (1972, 1976, ... 1996), * 31 days in January 2000 and * 29 days in February 2000 * from 1970-01-01 to 2000-02-29 */ if (30*365+7+31+29-1 <= n) { /* 2000-02-29 or after */ if (n < 31*365+8) { /* 2000-02-29 to 2000-12-31 */ y += 30; n -= 30*365+7; goto found; } else { /* 2001-01-01 or after */ n -= 1; } } x = n / (365*100 + 24); n = n % (365*100 + 24); y += x * 100; if (30*365+7+31+29-1 <= n) { if (n < 31*365+7) { y += 30; n -= 30*365+7; goto found; } else n += 1; } x = n / (365*4 + 1); n = n % (365*4 + 1); y += x * 4; if (365*2+31+29-1 <= n) { if (n < 365*2+366) { y += 2; n -= 365*2; goto found; } else n -= 1; } x = n / 365; n = n % 365; y += x; found: vtm->yday = n+1; vtm->year = addv(vtm->year, INT2NUM(y)); if (leap_year_p(y)) { vtm->mon = leap_year_mon_of_yday[n]; vtm->mday = leap_year_mday_of_yday[n]; } else { vtm->mon = common_year_mon_of_yday[n]; vtm->mday = common_year_mday_of_yday[n]; } vtm->utc_offset = INT2FIX(0); vtm->zone = rb_fstring_lit("UTC"); } static struct tm * gmtime_with_leapsecond(const time_t *timep, struct tm *result) { #if defined(HAVE_STRUCT_TM_TM_GMTOFF) /* 4.4BSD counts leap seconds only with localtime, not with gmtime. */ struct tm *t; int sign; int gmtoff_sec, gmtoff_min, gmtoff_hour, gmtoff_day; long gmtoff; t = LOCALTIME(timep, *result); if (t == NULL) return NULL; /* subtract gmtoff */ if (t->tm_gmtoff < 0) { sign = 1; gmtoff = -t->tm_gmtoff; } else { sign = -1; gmtoff = t->tm_gmtoff; } gmtoff_sec = (int)(gmtoff % 60); gmtoff = gmtoff / 60; gmtoff_min = (int)(gmtoff % 60); gmtoff = gmtoff / 60; gmtoff_hour = (int)gmtoff; /* <= 12 */ gmtoff_sec *= sign; gmtoff_min *= sign; gmtoff_hour *= sign; gmtoff_day = 0; if (gmtoff_sec) { /* If gmtoff_sec == 0, don't change result->tm_sec. * It may be 60 which is a leap second. */ result->tm_sec += gmtoff_sec; if (result->tm_sec < 0) { result->tm_sec += 60; gmtoff_min -= 1; } if (60 <= result->tm_sec) { result->tm_sec -= 60; gmtoff_min += 1; } } if (gmtoff_min) { result->tm_min += gmtoff_min; if (result->tm_min < 0) { result->tm_min += 60; gmtoff_hour -= 1; } if (60 <= result->tm_min) { result->tm_min -= 60; gmtoff_hour += 1; } } if (gmtoff_hour) { result->tm_hour += gmtoff_hour; if (result->tm_hour < 0) { result->tm_hour += 24; gmtoff_day = -1; } if (24 <= result->tm_hour) { result->tm_hour -= 24; gmtoff_day = 1; } } if (gmtoff_day) { if (gmtoff_day < 0) { if (result->tm_yday == 0) { result->tm_mday = 31; result->tm_mon = 11; /* December */ result->tm_year--; result->tm_yday = leap_year_p(result->tm_year + 1900) ? 365 : 364; } else if (result->tm_mday == 1) { const int *days_in_month = leap_year_p(result->tm_year + 1900) ? leap_year_days_in_month : common_year_days_in_month; result->tm_mon--; result->tm_mday = days_in_month[result->tm_mon]; result->tm_yday--; } else { result->tm_mday--; result->tm_yday--; } result->tm_wday = (result->tm_wday + 6) % 7; } else { int leap = leap_year_p(result->tm_year + 1900); if (result->tm_yday == (leap ? 365 : 364)) { result->tm_year++; result->tm_mon = 0; /* January */ result->tm_mday = 1; result->tm_yday = 0; } else if (result->tm_mday == (leap ? leap_year_days_in_month : common_year_days_in_month)[result->tm_mon]) { result->tm_mon++; result->tm_mday = 1; result->tm_yday++; } else { result->tm_mday++; result->tm_yday++; } result->tm_wday = (result->tm_wday + 1) % 7; } } result->tm_isdst = 0; result->tm_gmtoff = 0; #if defined(HAVE_TM_ZONE) result->tm_zone = (char *)"UTC"; #endif return result; #else return GMTIME(timep, *result); #endif } static long this_year = 0; static time_t known_leap_seconds_limit; static int number_of_leap_seconds_known; static void init_leap_second_info(void) { /* * leap seconds are determined by IERS. * It is announced 6 months before the leap second. * So no one knows leap seconds in the future after the next year. */ if (this_year == 0) { time_t now; struct tm *tm, result; struct vtm vtm; wideval_t timew; now = time(NULL); gmtime(&now); tm = gmtime_with_leapsecond(&now, &result); if (!tm) return; this_year = tm->tm_year; if (TIMET_MAX - now < (time_t)(366*86400)) known_leap_seconds_limit = TIMET_MAX; else known_leap_seconds_limit = now + (time_t)(366*86400); if (!gmtime_with_leapsecond(&known_leap_seconds_limit, &result)) return; vtm.year = LONG2NUM(result.tm_year + 1900); vtm.mon = result.tm_mon + 1; vtm.mday = result.tm_mday; vtm.hour = result.tm_hour; vtm.min = result.tm_min; vtm.sec = result.tm_sec; vtm.subsecx = INT2FIX(0); vtm.utc_offset = INT2FIX(0); timew = timegmw_noleapsecond(&vtm); number_of_leap_seconds_known = NUM2INT(w2v(wsub(TIMET2WV(known_leap_seconds_limit), rb_time_unmagnify(timew)))); } } /* Use this if you want to re-run init_leap_second_info() */ void ruby_reset_leap_second_info(void) { this_year = 0; } static wideval_t timegmw(struct vtm *vtm) { wideval_t timew; struct tm tm; time_t t; const char *errmsg; /* The first leap second is 1972-06-30 23:59:60 UTC. * No leap seconds before. */ if (gt(INT2FIX(1972), vtm->year)) return timegmw_noleapsecond(vtm); init_leap_second_info(); timew = timegmw_noleapsecond(vtm); if (number_of_leap_seconds_known == 0) { /* When init_leap_second_info() is executed, the timezone doesn't have * leap second information. Disable leap second for calculating gmtime. */ return timew; } else if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) { return wadd(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known))); } tm.tm_year = rb_long2int(NUM2LONG(vtm->year) - 1900); tm.tm_mon = vtm->mon - 1; tm.tm_mday = vtm->mday; tm.tm_hour = vtm->hour; tm.tm_min = vtm->min; tm.tm_sec = vtm->sec; tm.tm_isdst = 0; errmsg = find_time_t(&tm, 1, &t); if (errmsg) rb_raise(rb_eArgError, "%s", errmsg); return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx)); } static struct vtm * gmtimew(wideval_t timew, struct vtm *result) { time_t t; struct tm tm; VALUE subsecx; wideval_t timew2; if (wlt(timew, WINT2FIXWV(0))) { gmtimew_noleapsecond(timew, result); return result; } init_leap_second_info(); if (number_of_leap_seconds_known == 0) { /* When init_leap_second_info() is executed, the timezone doesn't have * leap second information. Disable leap second for calculating gmtime. */ gmtimew_noleapsecond(timew, result); return result; } else if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) { timew = wsub(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known))); gmtimew_noleapsecond(timew, result); return result; } split_second(timew, &timew2, &subsecx); t = WV2TIMET(timew2); if (!gmtime_with_leapsecond(&t, &tm)) return NULL; result->year = LONG2NUM((long)tm.tm_year + 1900); result->mon = tm.tm_mon + 1; result->mday = tm.tm_mday; result->hour = tm.tm_hour; result->min = tm.tm_min; result->sec = tm.tm_sec; result->subsecx = subsecx; result->utc_offset = INT2FIX(0); result->wday = tm.tm_wday; result->yday = tm.tm_yday+1; result->isdst = tm.tm_isdst; #if 0 result->zone = rb_fstring_lit("UTC"); #endif return result; } #define GMTIMEW(w, v) \ (gmtimew(w, v) ? (void)0 : rb_raise(rb_eArgError, "gmtime error")) static struct tm *localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, VALUE *zone); /* * The idea is borrowed from Perl: * http://web.archive.org/web/20080211114141/http://use.perl.org/articles/08/02/07/197204.shtml * * compat_common_month_table is generated by the following program. * This table finds the last month which starts at the same day of a week. * The year 2037 is not used because: * http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=522949 * * #!/usr/bin/ruby * * require 'date' * * h = {} * 2036.downto(2010) {|y| * 1.upto(12) {|m| * next if m == 2 && y % 4 == 0 * d = Date.new(y,m,1) * h[m] ||= {} * h[m][d.wday] ||= y * } * } * * 1.upto(12) {|m| * print "{" * 0.upto(6) {|w| * y = h[m][w] * print " #{y}," * } * puts "}," * } * */ static const int compat_common_month_table[12][7] = { /* Sun Mon Tue Wed Thu Fri Sat */ { 2034, 2035, 2036, 2031, 2032, 2027, 2033 }, /* January */ { 2026, 2027, 2033, 2034, 2035, 2030, 2031 }, /* February */ { 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* March */ { 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* April */ { 2033, 2034, 2035, 2030, 2036, 2026, 2032 }, /* May */ { 2036, 2026, 2032, 2033, 2034, 2035, 2030 }, /* June */ { 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* July */ { 2032, 2033, 2034, 2035, 2030, 2036, 2026 }, /* August */ { 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* September */ { 2034, 2035, 2030, 2036, 2026, 2032, 2033 }, /* October */ { 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* November */ { 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* December */ }; /* * compat_leap_month_table is generated by following program. * * #!/usr/bin/ruby * * require 'date' * * h = {} * 2037.downto(2010) {|y| * 1.upto(12) {|m| * next unless m == 2 && y % 4 == 0 * d = Date.new(y,m,1) * h[m] ||= {} * h[m][d.wday] ||= y * } * } * * 2.upto(2) {|m| * 0.upto(6) {|w| * y = h[m][w] * print " #{y}," * } * puts * } */ static const int compat_leap_month_table[7] = { /* Sun Mon Tue Wed Thu Fri Sat */ 2032, 2016, 2028, 2012, 2024, 2036, 2020, /* February */ }; static int calc_wday(int year_mod400, int month, int day) { int a, y, m; int wday; a = (14 - month) / 12; y = year_mod400 + 4800 - a; m = month + 12 * a - 3; wday = day + (153*m+2)/5 + 365*y + y/4 - y/100 + y/400 + 2; wday = wday % 7; return wday; } static VALUE guess_local_offset(struct vtm *vtm_utc, int *isdst_ret, VALUE *zone_ret) { struct tm tm; long gmtoff; VALUE zone; time_t t; struct vtm vtm2; VALUE timev; int year_mod400, wday; /* Daylight Saving Time was introduced in 1916. * So we don't need to care about DST before that. */ if (lt(vtm_utc->year, INT2FIX(1916))) { VALUE off = INT2FIX(0); int isdst = 0; zone = rb_fstring_lit("UTC"); # if defined(NEGATIVE_TIME_T) # if SIZEOF_TIME_T <= 4 /* 1901-12-13 20:45:52 UTC : The oldest time in 32-bit signed time_t. */ # define THE_TIME_OLD_ENOUGH ((time_t)0x80000000) # else /* Since the Royal Greenwich Observatory was commissioned in 1675, no timezone defined using GMT at 1600. */ # define THE_TIME_OLD_ENOUGH ((time_t)(1600-1970)*366*24*60*60) # endif if (localtime_with_gmtoff_zone((t = THE_TIME_OLD_ENOUGH, &t), &tm, &gmtoff, &zone)) { off = LONG2FIX(gmtoff); isdst = tm.tm_isdst; } else # endif /* 1970-01-01 00:00:00 UTC : The Unix epoch - the oldest time in portable time_t. */ if (localtime_with_gmtoff_zone((t = 0, &t), &tm, &gmtoff, &zone)) { off = LONG2FIX(gmtoff); isdst = tm.tm_isdst; } if (isdst_ret) *isdst_ret = isdst; if (zone_ret) *zone_ret = zone; return off; } /* It is difficult to guess the future. */ vtm2 = *vtm_utc; /* guess using a year before 2038. */ year_mod400 = NUM2INT(modv(vtm_utc->year, INT2FIX(400))); wday = calc_wday(year_mod400, vtm_utc->mon, 1); if (vtm_utc->mon == 2 && leap_year_p(year_mod400)) vtm2.year = INT2FIX(compat_leap_month_table[wday]); else vtm2.year = INT2FIX(compat_common_month_table[vtm_utc->mon-1][wday]); timev = w2v(rb_time_unmagnify(timegmw(&vtm2))); t = NUM2TIMET(timev); zone = rb_fstring_lit("UTC"); if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) { if (isdst_ret) *isdst_ret = tm.tm_isdst; if (zone_ret) *zone_ret = zone; return LONG2FIX(gmtoff); } { /* Use the current time offset as a last resort. */ static time_t now = 0; static long now_gmtoff = 0; static int now_isdst = 0; static VALUE now_zone; if (now == 0) { VALUE zone; now = time(NULL); localtime_with_gmtoff_zone(&now, &tm, &now_gmtoff, &zone); now_isdst = tm.tm_isdst; zone = rb_fstring(zone); rb_gc_register_mark_object(zone); now_zone = zone; } if (isdst_ret) *isdst_ret = now_isdst; if (zone_ret) *zone_ret = now_zone; return LONG2FIX(now_gmtoff); } } static VALUE small_vtm_sub(struct vtm *vtm1, struct vtm *vtm2) { int off; off = vtm1->sec - vtm2->sec; off += (vtm1->min - vtm2->min) * 60; off += (vtm1->hour - vtm2->hour) * 3600; if (ne(vtm1->year, vtm2->year)) off += lt(vtm1->year, vtm2->year) ? -24*3600 : 24*3600; else if (vtm1->mon != vtm2->mon) off += vtm1->mon < vtm2->mon ? -24*3600 : 24*3600; else if (vtm1->mday != vtm2->mday) off += vtm1->mday < vtm2->mday ? -24*3600 : 24*3600; return INT2FIX(off); } static wideval_t timelocalw(struct vtm *vtm) { time_t t; struct tm tm; VALUE v; wideval_t timew1, timew2; struct vtm vtm1, vtm2; int n; if (FIXNUM_P(vtm->year)) { long l = FIX2LONG(vtm->year) - 1900; if (l < INT_MIN || INT_MAX < l) goto no_localtime; tm.tm_year = (int)l; } else { v = subv(vtm->year, INT2FIX(1900)); if (lt(v, INT2NUM(INT_MIN)) || lt(INT2NUM(INT_MAX), v)) goto no_localtime; tm.tm_year = NUM2INT(v); } tm.tm_mon = vtm->mon-1; tm.tm_mday = vtm->mday; tm.tm_hour = vtm->hour; tm.tm_min = vtm->min; tm.tm_sec = vtm->sec; tm.tm_isdst = vtm->isdst == VTM_ISDST_INITVAL ? -1 : vtm->isdst; if (find_time_t(&tm, 0, &t)) goto no_localtime; return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx)); no_localtime: timew1 = timegmw(vtm); if (!localtimew(timew1, &vtm1)) rb_raise(rb_eArgError, "localtimew error"); n = vtmcmp(vtm, &vtm1); if (n == 0) { timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(12*3600))); if (!localtimew(timew1, &vtm1)) rb_raise(rb_eArgError, "localtimew error"); n = 1; } if (n < 0) { timew2 = timew1; vtm2 = vtm1; timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(24*3600))); if (!localtimew(timew1, &vtm1)) rb_raise(rb_eArgError, "localtimew error"); } else { timew2 = wadd(timew1, rb_time_magnify(WINT2FIXWV(24*3600))); if (!localtimew(timew2, &vtm2)) rb_raise(rb_eArgError, "localtimew error"); } timew1 = wadd(timew1, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm1)))); timew2 = wadd(timew2, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm2)))); if (weq(timew1, timew2)) return timew1; if (!localtimew(timew1, &vtm1)) rb_raise(rb_eArgError, "localtimew error"); if (vtm->hour != vtm1.hour || vtm->min != vtm1.min || vtm->sec != vtm1.sec) return timew2; if (!localtimew(timew2, &vtm2)) rb_raise(rb_eArgError, "localtimew error"); if (vtm->hour != vtm2.hour || vtm->min != vtm2.min || vtm->sec != vtm2.sec) return timew1; if (vtm->isdst) return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew2 : timew1; else return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew1 : timew2; } static struct tm * localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, VALUE *zone) { struct tm tm; if (LOCALTIME(t, tm)) { #if defined(HAVE_STRUCT_TM_TM_GMTOFF) *gmtoff = tm.tm_gmtoff; #else struct tm *u, *l; long off; struct tm tmbuf; l = &tm; u = GMTIME(t, tmbuf); if (!u) return NULL; if (l->tm_year != u->tm_year) off = l->tm_year < u->tm_year ? -1 : 1; else if (l->tm_mon != u->tm_mon) off = l->tm_mon < u->tm_mon ? -1 : 1; else if (l->tm_mday != u->tm_mday) off = l->tm_mday < u->tm_mday ? -1 : 1; else off = 0; off = off * 24 + l->tm_hour - u->tm_hour; off = off * 60 + l->tm_min - u->tm_min; off = off * 60 + l->tm_sec - u->tm_sec; *gmtoff = off; #endif if (zone) { #if defined(HAVE_TM_ZONE) *zone = zone_str(tm.tm_zone); #elif defined(HAVE_TZNAME) && defined(HAVE_DAYLIGHT) # if RUBY_MSVCRT_VERSION >= 140 # define tzname _tzname # define daylight _daylight # endif /* this needs tzset or localtime, instead of localtime_r */ *zone = zone_str(tzname[daylight && tm.tm_isdst]); #else { char buf[64]; strftime(buf, sizeof(buf), "%Z", &tm); *zone = zone_str(buf); } #endif } *result = tm; return result; } return NULL; } static int timew_out_of_timet_range(wideval_t timew) { VALUE timexv; #if WIDEVALUE_IS_WIDER && SIZEOF_TIME_T < SIZEOF_INT64_T if (FIXWV_P(timew)) { wideint_t t = FIXWV2WINT(timew); if (t < TIME_SCALE * (wideint_t)TIMET_MIN || TIME_SCALE * (1 + (wideint_t)TIMET_MAX) <= t) return 1; return 0; } #endif #if SIZEOF_TIME_T == SIZEOF_INT64_T if (FIXWV_P(timew)) { wideint_t t = FIXWV2WINT(timew); if (~(time_t)0 <= 0) { return 0; } else { if (t < 0) return 1; return 0; } } #endif timexv = w2v(timew); if (lt(timexv, mulv(INT2FIX(TIME_SCALE), TIMET2NUM(TIMET_MIN))) || le(mulv(INT2FIX(TIME_SCALE), addv(TIMET2NUM(TIMET_MAX), INT2FIX(1))), timexv)) return 1; return 0; } static struct vtm * localtimew(wideval_t timew, struct vtm *result) { VALUE subsecx, offset; VALUE zone; int isdst; if (!timew_out_of_timet_range(timew)) { time_t t; struct tm tm; long gmtoff; wideval_t timew2; split_second(timew, &timew2, &subsecx); t = WV2TIMET(timew2); if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) { result->year = LONG2NUM((long)tm.tm_year + 1900); result->mon = tm.tm_mon + 1; result->mday = tm.tm_mday; result->hour = tm.tm_hour; result->min = tm.tm_min; result->sec = tm.tm_sec; result->subsecx = subsecx; result->wday = tm.tm_wday; result->yday = tm.tm_yday+1; result->isdst = tm.tm_isdst; result->utc_offset = LONG2NUM(gmtoff); result->zone = zone; return result; } } if (!gmtimew(timew, result)) return NULL; offset = guess_local_offset(result, &isdst, &zone); if (!gmtimew(wadd(timew, rb_time_magnify(v2w(offset))), result)) return NULL; result->utc_offset = offset; result->isdst = isdst; result->zone = zone; return result; } #define TIME_TZMODE_LOCALTIME 0 #define TIME_TZMODE_UTC 1 #define TIME_TZMODE_FIXOFF 2 #define TIME_TZMODE_UNINITIALIZED 3 PACKED_STRUCT_UNALIGNED(struct time_object { wideval_t timew; /* time_t value * TIME_SCALE. possibly Rational. */ struct vtm vtm; unsigned int tzmode:3; /* 0:localtime 1:utc 2:fixoff 3:uninitialized */ unsigned int tm_got:1; }); #define GetTimeval(obj, tobj) ((tobj) = get_timeval(obj)) #define GetNewTimeval(obj, tobj) ((tobj) = get_new_timeval(obj)) #define IsTimeval(obj) rb_typeddata_is_kind_of((obj), &time_data_type) #define TIME_INIT_P(tobj) ((tobj)->tzmode != TIME_TZMODE_UNINITIALIZED) #define TZMODE_UTC_P(tobj) ((tobj)->tzmode == TIME_TZMODE_UTC) #define TZMODE_SET_UTC(tobj) ((tobj)->tzmode = TIME_TZMODE_UTC) #define TZMODE_LOCALTIME_P(tobj) ((tobj)->tzmode == TIME_TZMODE_LOCALTIME) #define TZMODE_SET_LOCALTIME(tobj) ((tobj)->tzmode = TIME_TZMODE_LOCALTIME) #define TZMODE_FIXOFF_P(tobj) ((tobj)->tzmode == TIME_TZMODE_FIXOFF) #define TZMODE_SET_FIXOFF(tobj, off) \ ((tobj)->tzmode = TIME_TZMODE_FIXOFF, \ (tobj)->vtm.utc_offset = (off)) #define TZMODE_COPY(tobj1, tobj2) \ ((tobj1)->tzmode = (tobj2)->tzmode, \ (tobj1)->vtm.utc_offset = (tobj2)->vtm.utc_offset, \ (tobj1)->vtm.zone = (tobj2)->vtm.zone) static VALUE time_get_tm(VALUE, struct time_object *); #define MAKE_TM(time, tobj) \ do { \ if ((tobj)->tm_got == 0) { \ time_get_tm((time), (tobj)); \ } \ } while (0) static void time_mark(void *ptr) { struct time_object *tobj = ptr; if (!FIXWV_P(tobj->timew)) rb_gc_mark(w2v(tobj->timew)); rb_gc_mark(tobj->vtm.year); rb_gc_mark(tobj->vtm.subsecx); rb_gc_mark(tobj->vtm.utc_offset); rb_gc_mark(tobj->vtm.zone); } static size_t time_memsize(const void *tobj) { return sizeof(struct time_object); } static const rb_data_type_t time_data_type = { "time", {time_mark, RUBY_TYPED_DEFAULT_FREE, time_memsize,}, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; static VALUE time_s_alloc(VALUE klass) { VALUE obj; struct time_object *tobj; obj = TypedData_Make_Struct(klass, struct time_object, &time_data_type, tobj); tobj->tzmode = TIME_TZMODE_UNINITIALIZED; tobj->tm_got=0; tobj->timew = WINT2FIXWV(0); tobj->vtm.zone = Qnil; return obj; } static struct time_object * get_timeval(VALUE obj) { struct time_object *tobj; TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj); if (!TIME_INIT_P(tobj)) { rb_raise(rb_eTypeError, "uninitialized %"PRIsVALUE, rb_obj_class(obj)); } return tobj; } static struct time_object * get_new_timeval(VALUE obj) { struct time_object *tobj; TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj); if (TIME_INIT_P(tobj)) { rb_raise(rb_eTypeError, "already initialized %"PRIsVALUE, rb_obj_class(obj)); } return tobj; } static void time_modify(VALUE time) { rb_check_frozen(time); rb_check_trusted(time); } static wideval_t timespec2timew(struct timespec *ts) { wideval_t timew; timew = rb_time_magnify(TIMET2WV(ts->tv_sec)); if (ts->tv_nsec) timew = wadd(timew, wmulquoll(WINT2WV(ts->tv_nsec), TIME_SCALE, 1000000000)); return timew; } static struct timespec timew2timespec(wideval_t timew) { VALUE subsecx; struct timespec ts; wideval_t timew2; if (timew_out_of_timet_range(timew)) rb_raise(rb_eArgError, "time out of system range"); split_second(timew, &timew2, &subsecx); ts.tv_sec = WV2TIMET(timew2); ts.tv_nsec = NUM2LONG(mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE))); return ts; } static struct timespec * timew2timespec_exact(wideval_t timew, struct timespec *ts) { VALUE subsecx; wideval_t timew2; VALUE nsecv; if (timew_out_of_timet_range(timew)) return NULL; split_second(timew, &timew2, &subsecx); ts->tv_sec = WV2TIMET(timew2); nsecv = mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE)); if (!FIXNUM_P(nsecv)) return NULL; ts->tv_nsec = NUM2LONG(nsecv); return ts; } void rb_timespec_now(struct timespec *ts) { #ifdef HAVE_CLOCK_GETTIME if (clock_gettime(CLOCK_REALTIME, ts) == -1) { rb_sys_fail("clock_gettime"); } #else { struct timeval tv; if (gettimeofday(&tv, 0) < 0) { rb_sys_fail("gettimeofday"); } ts->tv_sec = tv.tv_sec; ts->tv_nsec = tv.tv_usec * 1000; } #endif } static VALUE time_init_0(VALUE time) { struct time_object *tobj; struct timespec ts; time_modify(time); GetNewTimeval(time, tobj); tobj->tzmode = TIME_TZMODE_LOCALTIME; tobj->tm_got=0; tobj->timew = WINT2FIXWV(0); rb_timespec_now(&ts); tobj->timew = timespec2timew(&ts); return time; } static VALUE time_set_utc_offset(VALUE time, VALUE off) { struct time_object *tobj; off = num_exact(off); time_modify(time); GetTimeval(time, tobj); tobj->tm_got = 0; TZMODE_SET_FIXOFF(tobj, off); return time; } static void vtm_add_offset(struct vtm *vtm, VALUE off) { int sign; VALUE subsec, v; int sec, min, hour; int day; vtm->utc_offset = subv(vtm->utc_offset, off); if (lt(off, INT2FIX(0))) { sign = -1; off = neg(off); } else { sign = 1; } divmodv(off, INT2FIX(1), &off, &subsec); divmodv(off, INT2FIX(60), &off, &v); sec = NUM2INT(v); divmodv(off, INT2FIX(60), &off, &v); min = NUM2INT(v); divmodv(off, INT2FIX(24), &off, &v); hour = NUM2INT(v); if (sign < 0) { subsec = neg(subsec); sec = -sec; min = -min; hour = -hour; } day = 0; if (!rb_equal(subsec, INT2FIX(0))) { vtm->subsecx = addv(vtm->subsecx, w2v(rb_time_magnify(v2w(subsec)))); if (lt(vtm->subsecx, INT2FIX(0))) { vtm->subsecx = addv(vtm->subsecx, INT2FIX(TIME_SCALE)); sec -= 1; } if (le(INT2FIX(TIME_SCALE), vtm->subsecx)) { vtm->subsecx = subv(vtm->subsecx, INT2FIX(TIME_SCALE)); sec += 1; } goto not_zero_sec; } if (sec) { not_zero_sec: /* If sec + subsec == 0, don't change vtm->sec. * It may be 60 which is a leap second. */ sec += vtm->sec; if (sec < 0) { sec += 60; min -= 1; } if (60 <= sec) { sec -= 60; min += 1; } vtm->sec = sec; } if (min) { min += vtm->min; if (min < 0) { min += 60; hour -= 1; } if (60 <= min) { min -= 60; hour += 1; } vtm->min = min; } if (hour) { hour += vtm->hour; if (hour < 0) { hour += 24; day = -1; } if (24 <= hour) { hour -= 24; day = 1; } vtm->hour = hour; } if (day) { if (day < 0) { if (vtm->mon == 1 && vtm->mday == 1) { vtm->mday = 31; vtm->mon = 12; /* December */ vtm->year = subv(vtm->year, INT2FIX(1)); vtm->yday = leap_year_v_p(vtm->year) ? 366 : 365; } else if (vtm->mday == 1) { const int *days_in_month = leap_year_v_p(vtm->year) ? leap_year_days_in_month : common_year_days_in_month; vtm->mon--; vtm->mday = days_in_month[vtm->mon-1]; vtm->yday--; } else { vtm->mday--; vtm->yday--; } vtm->wday = (vtm->wday + 6) % 7; } else { int leap = leap_year_v_p(vtm->year); if (vtm->mon == 12 && vtm->mday == 31) { vtm->year = addv(vtm->year, INT2FIX(1)); vtm->mon = 1; /* January */ vtm->mday = 1; vtm->yday = 1; } else if (vtm->mday == (leap ? leap_year_days_in_month : common_year_days_in_month)[vtm->mon-1]) { vtm->mon++; vtm->mday = 1; vtm->yday++; } else { vtm->mday++; vtm->yday++; } vtm->wday = (vtm->wday + 1) % 7; } } } static int maybe_tzobj_p(VALUE obj) { if (NIL_P(obj)) return FALSE; if (RB_INTEGER_TYPE_P(obj)) return FALSE; if (RB_TYPE_P(obj, T_STRING)) return FALSE; return TRUE; } static VALUE utc_offset_arg(VALUE arg) { VALUE tmp; if (!NIL_P(tmp = rb_check_string_type(arg))) { int n = 0; char *s = RSTRING_PTR(tmp); if (!rb_enc_str_asciicompat_p(tmp)) { invalid_utc_offset: rb_raise(rb_eArgError, "\"+HH:MM\" or \"-HH:MM\" expected for utc_offset"); } switch (RSTRING_LEN(tmp)) { case 9: if (s[6] != ':') goto invalid_utc_offset; if (!ISDIGIT(s[7]) || !ISDIGIT(s[8])) goto invalid_utc_offset; n += (s[7] * 10 + s[8] - '0' * 11); case 6: if (s[0] != '+' && s[0] != '-') goto invalid_utc_offset; if (!ISDIGIT(s[1]) || !ISDIGIT(s[2])) goto invalid_utc_offset; if (s[3] != ':') goto invalid_utc_offset; if (!ISDIGIT(s[4]) || !ISDIGIT(s[5])) goto invalid_utc_offset; if (s[4] > '5') goto invalid_utc_offset; break; default: goto invalid_utc_offset; } n += (s[1] * 10 + s[2] - '0' * 11) * 3600; n += (s[4] * 10 + s[5] - '0' * 11) * 60; if (s[0] == '-') n = -n; return INT2FIX(n); } else { return num_exact(arg); } } static void zone_set_offset(VALUE zone, struct time_object *tobj, wideval_t tlocal, wideval_t tutc) { /* tlocal and tutc must be unmagnified and in seconds */ wideval_t w = wsub(tlocal, tutc); VALUE off = w2v(w); validate_utc_offset(off); tobj->vtm.utc_offset = off; tobj->vtm.zone = zone; tobj->tzmode = TIME_TZMODE_LOCALTIME; } static wideval_t extract_time(VALUE time) { wideval_t t; const ID id_to_i = idTo_i; #define EXTRACT_TIME() do { \ t = v2w(rb_Integer(AREF(to_i))); \ } while (0) if (rb_typeddata_is_kind_of(time, &time_data_type)) { struct time_object *tobj = DATA_PTR(time); time_gmtime(time); /* ensure tm got */ t = rb_time_unmagnify(tobj->timew); } else if (RB_TYPE_P(time, T_STRUCT)) { #define AREF(x) rb_struct_aref(time, ID2SYM(id_##x)) EXTRACT_TIME(); #undef AREF } else { #define AREF(x) rb_funcallv(time, id_##x, 0, 0) EXTRACT_TIME(); #undef AREF } #undef EXTRACT_TIME return t; } static wideval_t extract_vtm(VALUE time, struct vtm *vtm, VALUE subsecx) { wideval_t t; const ID id_to_i = idTo_i; #define EXTRACT_VTM() do { \ VALUE subsecx; \ vtm->year = obj2vint(AREF(year)); \ vtm->mon = month_arg(AREF(mon)); \ vtm->mday = obj2ubits(AREF(mday), 5); \ vtm->hour = obj2ubits(AREF(hour), 5); \ vtm->min = obj2ubits(AREF(min), 6); \ vtm->sec = obj2subsecx(AREF(sec), &subsecx); \ vtm->isdst = RTEST(AREF(isdst)); \ vtm->utc_offset = Qnil; \ t = v2w(rb_Integer(AREF(to_i))); \ } while (0) if (rb_typeddata_is_kind_of(time, &time_data_type)) { struct time_object *tobj = DATA_PTR(time); time_get_tm(time, tobj); *vtm = tobj->vtm; t = rb_time_unmagnify(tobj->timew); if (TZMODE_FIXOFF_P(tobj) && vtm->utc_offset != INT2FIX(0)) t = wadd(t, vtm->utc_offset); } else if (RB_TYPE_P(time, T_STRUCT)) { #define AREF(x) rb_struct_aref(time, ID2SYM(id_##x)) EXTRACT_VTM(); #undef AREF } else if (rb_integer_type_p(time)) { t = v2w(time); GMTIMEW(rb_time_magnify(t), vtm); } else { #define AREF(x) rb_funcallv(time, id_##x, 0, 0) EXTRACT_VTM(); #undef AREF } #undef EXTRACT_VTM vtm->subsecx = subsecx; validate_vtm(vtm); return t; } static int zone_timelocal(VALUE zone, VALUE time) { VALUE utc, tm; struct time_object *tobj = DATA_PTR(time); wideval_t t, s; t = rb_time_unmagnify(tobj->timew); tm = tm_from_time(rb_cTimeTM, time); utc = rb_check_funcall(zone, id_local_to_utc, 1, &tm); if (utc == Qundef) return 0; s = extract_time(utc); zone_set_offset(zone, tobj, t, s); s = rb_time_magnify(s); if (tobj->vtm.subsecx != INT2FIX(0)) { s = wadd(s, v2w(tobj->vtm.subsecx)); } tobj->timew = s; return 1; } static int zone_localtime(VALUE zone, VALUE time) { VALUE local, tm, subsecx; struct time_object *tobj = DATA_PTR(time); wideval_t t, s; split_second(tobj->timew, &t, &subsecx); tm = tm_from_time(rb_cTimeTM, time); local = rb_check_funcall(zone, id_utc_to_local, 1, &tm); if (local == Qundef) return 0; s = extract_vtm(local, &tobj->vtm, subsecx); tobj->tm_got = 1; zone_set_offset(zone, tobj, s, t); return 1; } static VALUE time_init_1(int argc, VALUE *argv, VALUE time) { struct vtm vtm; VALUE zone = Qnil; VALUE v[7]; struct time_object *tobj; vtm.wday = VTM_WDAY_INITVAL; vtm.yday = 0; vtm.zone = rb_fstring_lit(""); /* year mon mday hour min sec off */ rb_scan_args(argc, argv, "16", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6]); vtm.year = obj2vint(v[0]); vtm.mon = NIL_P(v[1]) ? 1 : month_arg(v[1]); vtm.mday = NIL_P(v[2]) ? 1 : obj2ubits(v[2], 5); vtm.hour = NIL_P(v[3]) ? 0 : obj2ubits(v[3], 5); vtm.min = NIL_P(v[4]) ? 0 : obj2ubits(v[4], 6); if (NIL_P(v[5])) { vtm.sec = 0; vtm.subsecx = INT2FIX(0); } else { VALUE subsecx; vtm.sec = obj2subsecx(v[5], &subsecx); vtm.subsecx = subsecx; } vtm.isdst = VTM_ISDST_INITVAL; vtm.utc_offset = Qnil; if (!NIL_P(v[6])) { VALUE arg = v[6]; if (arg == ID2SYM(rb_intern("dst"))) vtm.isdst = 1; else if (arg == ID2SYM(rb_intern("std"))) vtm.isdst = 0; else if (maybe_tzobj_p(arg)) zone = arg; else vtm.utc_offset = utc_offset_arg(arg); } validate_vtm(&vtm); time_modify(time); GetNewTimeval(time, tobj); if (!NIL_P(zone)) { tobj->timew = timegmw(&vtm); tobj->vtm = vtm; tobj->tm_got = 1; TZMODE_SET_LOCALTIME(tobj); if (zone_timelocal(zone, time)) { return time; } else { vtm.utc_offset = utc_offset_arg(zone); } } tobj->tzmode = TIME_TZMODE_LOCALTIME; tobj->tm_got=0; tobj->timew = WINT2FIXWV(0); if (!NIL_P(vtm.utc_offset)) { VALUE off = vtm.utc_offset; vtm_add_offset(&vtm, neg(off)); vtm.utc_offset = Qnil; tobj->timew = timegmw(&vtm); return time_set_utc_offset(time, off); } else { tobj->timew = timelocalw(&vtm); return time_localtime(time); } } /* * call-seq: * Time.new -> time * Time.new(year, month=nil, day=nil, hour=nil, min=nil, sec=nil, utc_offset=nil) -> time * * Returns a Time object. * * It is initialized to the current system time if no argument is given. * * *Note:* The new object will use the resolution available on your * system clock, and may include fractional seconds. * * If one or more arguments specified, the time is initialized to the specified * time. * * +sec+ may have fraction if it is a rational. * * +utc_offset+ is the offset from UTC. * It can be a string such as "+09:00" or a number of seconds such as 32400. * * a = Time.new #=> 2007-11-19 07:50:02 -0600 * b = Time.new #=> 2007-11-19 07:50:02 -0600 * a == b #=> false * "%.6f" % a.to_f #=> "1195480202.282373" * "%.6f" % b.to_f #=> "1195480202.283415" * * Time.new(2008,6,21, 13,30,0, "+09:00") #=> 2008-06-21 13:30:00 +0900 * * # A trip for RubyConf 2007 * t1 = Time.new(2007,11,1,15,25,0, "+09:00") # JST (Narita) * t2 = Time.new(2007,11,1,12, 5,0, "-05:00") # CDT (Minneapolis) * t3 = Time.new(2007,11,1,13,25,0, "-05:00") # CDT (Minneapolis) * t4 = Time.new(2007,11,1,16,53,0, "-04:00") # EDT (Charlotte) * t5 = Time.new(2007,11,5, 9,24,0, "-05:00") # EST (Charlotte) * t6 = Time.new(2007,11,5,11,21,0, "-05:00") # EST (Detroit) * t7 = Time.new(2007,11,5,13,45,0, "-05:00") # EST (Detroit) * t8 = Time.new(2007,11,6,17,10,0, "+09:00") # JST (Narita) * p((t2-t1)/3600.0) #=> 10.666666666666666 * p((t4-t3)/3600.0) #=> 2.466666666666667 * p((t6-t5)/3600.0) #=> 1.95 * p((t8-t7)/3600.0) #=> 13.416666666666666 * */ static VALUE time_init(int argc, VALUE *argv, VALUE time) { if (argc == 0) return time_init_0(time); else return time_init_1(argc, argv, time); } static void time_overflow_p(time_t *secp, long *nsecp) { time_t sec = *secp; long nsec = *nsecp; long sec2; if (nsec >= 1000000000) { /* nsec positive overflow */ sec2 = nsec / 1000000000; if (TIMET_MAX - sec2 < sec) { rb_raise(rb_eRangeError, "out of Time range"); } nsec -= sec2 * 1000000000; sec += sec2; } else if (nsec < 0) { /* nsec negative overflow */ sec2 = NDIV(nsec,1000000000); /* negative div */ if (sec < TIMET_MIN - sec2) { rb_raise(rb_eRangeError, "out of Time range"); } nsec -= sec2 * 1000000000; sec += sec2; } #ifndef NEGATIVE_TIME_T if (sec < 0) rb_raise(rb_eArgError, "time must be positive"); #endif *secp = sec; *nsecp = nsec; } static wideval_t nsec2timew(time_t sec, long nsec) { struct timespec ts; time_overflow_p(&sec, &nsec); ts.tv_sec = sec; ts.tv_nsec = nsec; return timespec2timew(&ts); } static VALUE time_new_timew(VALUE klass, wideval_t timew) { VALUE time = time_s_alloc(klass); struct time_object *tobj; tobj = DATA_PTR(time); /* skip type check */ tobj->tzmode = TIME_TZMODE_LOCALTIME; tobj->timew = timew; return time; } VALUE rb_time_new(time_t sec, long usec) { wideval_t timew; if (usec >= 1000000) { long sec2 = usec / 1000000; if (sec > TIMET_MAX - sec2) { rb_raise(rb_eRangeError, "out of Time range"); } usec -= sec2 * 1000000; sec += sec2; } else if (usec < 0) { long sec2 = NDIV(usec,1000000); /* negative div */ if (sec < TIMET_MIN - sec2) { rb_raise(rb_eRangeError, "out of Time range"); } usec -= sec2 * 1000000; sec += sec2; } timew = nsec2timew(sec, usec * 1000); return time_new_timew(rb_cTime, timew); } /* returns localtime time object */ VALUE rb_time_nano_new(time_t sec, long nsec) { return time_new_timew(rb_cTime, nsec2timew(sec, nsec)); } /** * Returns a time object with UTC/localtime/fixed offset * * offset is -86400 < fixoff < 86400 or INT_MAX (localtime) or INT_MAX-1 (utc) */ VALUE rb_time_timespec_new(const struct timespec *ts, int offset) { struct time_object *tobj; VALUE time = time_new_timew(rb_cTime, nsec2timew(ts->tv_sec, ts->tv_nsec)); if (-86400 < offset && offset < 86400) { /* fixoff */ GetTimeval(time, tobj); TZMODE_SET_FIXOFF(tobj, INT2FIX(offset)); } else if (offset == INT_MAX) { /* localtime */ } else if (offset == INT_MAX-1) { /* UTC */ GetTimeval(time, tobj); TZMODE_SET_UTC(tobj); } else { rb_raise(rb_eArgError, "utc_offset out of range"); } return time; } VALUE rb_time_num_new(VALUE timev, VALUE off) { VALUE time = time_new_timew(rb_cTime, rb_time_magnify(v2w(timev))); if (!NIL_P(off)) { if (maybe_tzobj_p(off)) { time_gmtime(time); if (zone_timelocal(off, time)) return time; } off = utc_offset_arg(off); validate_utc_offset(off); time_set_utc_offset(time, off); return time; } return time; } static struct timespec time_timespec(VALUE num, int interval) { struct timespec t; const char *const tstr = interval ? "time interval" : "time"; VALUE i, f, ary; #ifndef NEGATIVE_TIME_T interval = 1; #endif if (FIXNUM_P(num)) { t.tv_sec = NUM2TIMET(num); if (interval && t.tv_sec < 0) rb_raise(rb_eArgError, "%s must be positive", tstr); t.tv_nsec = 0; } else if (RB_FLOAT_TYPE_P(num)) { if (interval && RFLOAT_VALUE(num) < 0.0) rb_raise(rb_eArgError, "%s must be positive", tstr); else { double f, d; d = modf(RFLOAT_VALUE(num), &f); if (d >= 0) { t.tv_nsec = (int)(d*1e9+0.5); if (t.tv_nsec >= 1000000000) { t.tv_nsec -= 1000000000; f += 1; } } else if ((t.tv_nsec = (int)(-d*1e9+0.5)) > 0) { t.tv_nsec = 1000000000 - t.tv_nsec; f -= 1; } t.tv_sec = (time_t)f; if (f != t.tv_sec) { rb_raise(rb_eRangeError, "%f out of Time range", RFLOAT_VALUE(num)); } } } else if (RB_TYPE_P(num, T_BIGNUM)) { t.tv_sec = NUM2TIMET(num); if (interval && t.tv_sec < 0) rb_raise(rb_eArgError, "%s must be positive", tstr); t.tv_nsec = 0; } else { i = INT2FIX(1); ary = rb_check_funcall(num, id_divmod, 1, &i); if (ary != Qundef && !NIL_P(ary = rb_check_array_type(ary))) { i = rb_ary_entry(ary, 0); f = rb_ary_entry(ary, 1); t.tv_sec = NUM2TIMET(i); if (interval && t.tv_sec < 0) rb_raise(rb_eArgError, "%s must be positive", tstr); f = rb_funcall(f, '*', 1, INT2FIX(1000000000)); t.tv_nsec = NUM2LONG(f); } else { rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into %s", rb_obj_class(num), tstr); } } return t; } static struct timeval time_timeval(VALUE num, int interval) { struct timespec ts; struct timeval tv; ts = time_timespec(num, interval); tv.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec; tv.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000); return tv; } struct timeval rb_time_interval(VALUE num) { return time_timeval(num, TRUE); } struct timeval rb_time_timeval(VALUE time) { struct time_object *tobj; struct timeval t; struct timespec ts; if (IsTimeval(time)) { GetTimeval(time, tobj); ts = timew2timespec(tobj->timew); t.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec; t.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000); return t; } return time_timeval(time, FALSE); } struct timespec rb_time_timespec(VALUE time) { struct time_object *tobj; struct timespec t; if (IsTimeval(time)) { GetTimeval(time, tobj); t = timew2timespec(tobj->timew); return t; } return time_timespec(time, FALSE); } /* * call-seq: * Time.now -> time * * Creates a new Time object for the current time. * This is same as Time.new without arguments. * * Time.now #=> 2009-06-24 12:39:54 +0900 */ static VALUE time_s_now(VALUE klass) { return rb_class_new_instance(0, NULL, klass); } static int get_scale(VALUE unit) { if (unit == ID2SYM(id_nanosecond) || unit == ID2SYM(id_nsec)) { return 1000000000; } else if (unit == ID2SYM(id_microsecond) || unit == ID2SYM(id_usec)) { return 1000000; } else if (unit == ID2SYM(id_millisecond)) { return 1000; } else { rb_raise(rb_eArgError, "unexpected unit: %"PRIsVALUE, unit); } } /* * call-seq: * Time.at(time) -> time * Time.at(seconds_with_frac) -> time * Time.at(seconds, microseconds_with_frac) -> time * Time.at(seconds, milliseconds, :millisecond) -> time * Time.at(seconds, microseconds, :usec) -> time * Time.at(seconds, microseconds, :microsecond) -> time * Time.at(seconds, nanoseconds, :nsec) -> time * Time.at(seconds, nanoseconds, :nanosecond) -> time * * Creates a new Time object with the value given by +time+, * the given number of +seconds_with_frac+, or * +seconds+ and +microseconds_with_frac+ since the Epoch. * +seconds_with_frac+ and +microseconds_with_frac+ * can be an Integer, Float, Rational, or other Numeric. * non-portable feature allows the offset to be negative on some systems. * * If a numeric argument is given, the result is in local time. * * Time.at(0) #=> 1969-12-31 18:00:00 -0600 * Time.at(Time.at(0)) #=> 1969-12-31 18:00:00 -0600 * Time.at(946702800) #=> 1999-12-31 23:00:00 -0600 * Time.at(-284061600) #=> 1960-12-31 00:00:00 -0600 * Time.at(946684800.2).usec #=> 200000 * Time.at(946684800, 123456.789).nsec #=> 123456789 * Time.at(946684800, 123456789, :nsec).nsec #=> 123456789 */ static VALUE time_s_at(int argc, VALUE *argv, VALUE klass) { VALUE time, t, unit = Qundef; wideval_t timew; if (rb_scan_args(argc, argv, "12", &time, &t, &unit) >= 2) { int scale = argc == 3 ? get_scale(unit) : 1000000; time = num_exact(time); t = num_exact(t); timew = wadd(rb_time_magnify(v2w(time)), wmulquoll(v2w(t), TIME_SCALE, scale)); t = time_new_timew(klass, timew); } else if (IsTimeval(time)) { struct time_object *tobj, *tobj2; GetTimeval(time, tobj); t = time_new_timew(klass, tobj->timew); GetTimeval(t, tobj2); TZMODE_COPY(tobj2, tobj); } else { timew = rb_time_magnify(v2w(num_exact(time))); t = time_new_timew(klass, timew); } return t; } static const char months[][4] = { "jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep", "oct", "nov", "dec", }; static int obj2int(VALUE obj) { if (RB_TYPE_P(obj, T_STRING)) { obj = rb_str_to_inum(obj, 10, FALSE); } return NUM2INT(obj); } static uint32_t obj2ubits(VALUE obj, size_t bits) { static const uint32_t u32max = (uint32_t)-1; const uint32_t usable_mask = ~(u32max << bits); uint32_t rv; int tmp = obj2int(obj); if (tmp < 0) rb_raise(rb_eArgError, "argument out of range"); rv = tmp; if ((rv & usable_mask) != rv) rb_raise(rb_eArgError, "argument out of range"); return rv; } static VALUE obj2vint(VALUE obj) { if (RB_TYPE_P(obj, T_STRING)) { obj = rb_str_to_inum(obj, 10, FALSE); } else { obj = rb_to_int(obj); } return obj; } static uint32_t obj2subsecx(VALUE obj, VALUE *subsecx) { VALUE subsec; if (RB_TYPE_P(obj, T_STRING)) { obj = rb_str_to_inum(obj, 10, FALSE); *subsecx = INT2FIX(0); } else { divmodv(num_exact(obj), INT2FIX(1), &obj, &subsec); *subsecx = w2v(rb_time_magnify(v2w(subsec))); } return obj2ubits(obj, 6); /* vtm->sec */ } static VALUE usec2subsecx(VALUE obj) { if (RB_TYPE_P(obj, T_STRING)) { obj = rb_str_to_inum(obj, 10, FALSE); } return mulquov(num_exact(obj), INT2FIX(TIME_SCALE), INT2FIX(1000000)); } static uint32_t month_arg(VALUE arg) { int i, mon; VALUE s = rb_check_string_type(arg); if (!NIL_P(s) && RSTRING_LEN(s) > 0) { mon = 0; for (i=0; i<12; i++) { if (RSTRING_LEN(s) == 3 && STRNCASECMP(months[i], RSTRING_PTR(s), 3) == 0) { mon = i+1; break; } } if (mon == 0) { char c = RSTRING_PTR(s)[0]; if ('0' <= c && c <= '9') { mon = obj2ubits(s, 4); } } } else { mon = obj2ubits(arg, 4); } return mon; } static VALUE validate_utc_offset(VALUE utc_offset) { if (le(utc_offset, INT2FIX(-86400)) || ge(utc_offset, INT2FIX(86400))) rb_raise(rb_eArgError, "utc_offset out of range"); return utc_offset; } static VALUE validate_zone_name(VALUE zone_name) { StringValueCStr(zone_name); return zone_name; } static void validate_vtm(struct vtm *vtm) { #define validate_vtm_range(mem, b, e) \ ((vtm->mem < b || vtm->mem > e) ? \ rb_raise(rb_eArgError, #mem" out of range") : (void)0) validate_vtm_range(mon, 1, 12); validate_vtm_range(mday, 1, 31); validate_vtm_range(hour, 0, 24); validate_vtm_range(min, 0, (vtm->hour == 24 ? 0 : 59)); validate_vtm_range(sec, 0, (vtm->hour == 24 ? 0 : 60)); if (lt(vtm->subsecx, INT2FIX(0)) || ge(vtm->subsecx, INT2FIX(TIME_SCALE))) rb_raise(rb_eArgError, "subsecx out of range"); if (!NIL_P(vtm->utc_offset)) validate_utc_offset(vtm->utc_offset); #undef validate_vtm_range } static void time_arg(int argc, const VALUE *argv, struct vtm *vtm) { VALUE v[8]; VALUE subsecx = INT2FIX(0); vtm->year = INT2FIX(0); vtm->mon = 0; vtm->mday = 0; vtm->hour = 0; vtm->min = 0; vtm->sec = 0; vtm->subsecx = INT2FIX(0); vtm->utc_offset = Qnil; vtm->wday = 0; vtm->yday = 0; vtm->isdst = 0; vtm->zone = rb_fstring_lit(""); if (argc == 10) { v[0] = argv[5]; v[1] = argv[4]; v[2] = argv[3]; v[3] = argv[2]; v[4] = argv[1]; v[5] = argv[0]; v[6] = Qnil; vtm->isdst = RTEST(argv[8]) ? 1 : 0; } else { rb_scan_args(argc, argv, "17", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6],&v[7]); /* v[6] may be usec or zone (parsedate) */ /* v[7] is wday (parsedate; ignored) */ vtm->wday = VTM_WDAY_INITVAL; vtm->isdst = VTM_ISDST_INITVAL; } vtm->year = obj2vint(v[0]); if (NIL_P(v[1])) { vtm->mon = 1; } else { vtm->mon = month_arg(v[1]); } if (NIL_P(v[2])) { vtm->mday = 1; } else { vtm->mday = obj2ubits(v[2], 5); } vtm->hour = NIL_P(v[3])?0:obj2ubits(v[3], 5); vtm->min = NIL_P(v[4])?0:obj2ubits(v[4], 6); if (!NIL_P(v[6]) && argc == 7) { vtm->sec = NIL_P(v[5])?0:obj2ubits(v[5],6); subsecx = usec2subsecx(v[6]); } else { /* when argc == 8, v[6] is timezone, but ignored */ if (NIL_P(v[5])) { vtm->sec = 0; } else { vtm->sec = obj2subsecx(v[5], &subsecx); } } vtm->subsecx = subsecx; validate_vtm(vtm); RB_GC_GUARD(subsecx); } static int leap_year_p(long y) { return ((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0); } static time_t timegm_noleapsecond(struct tm *tm) { long tm_year = tm->tm_year; int tm_yday = calc_tm_yday(tm->tm_year, tm->tm_mon, tm->tm_mday); /* * `Seconds Since the Epoch' in SUSv3: * tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 + * (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 - * ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400 */ return tm->tm_sec + tm->tm_min*60 + tm->tm_hour*3600 + (time_t)(tm_yday + (tm_year-70)*365 + DIV(tm_year-69,4) - DIV(tm_year-1,100) + DIV(tm_year+299,400))*86400; } #if 0 #define DEBUG_FIND_TIME_NUMGUESS #define DEBUG_GUESSRANGE #endif #ifdef DEBUG_GUESSRANGE #define DEBUG_REPORT_GUESSRANGE fprintf(stderr, "find time guess range: %ld - %ld : %"PRI_TIMET_PREFIX"u\n", guess_lo, guess_hi, (unsigned_time_t)(guess_hi-guess_lo)) #else #define DEBUG_REPORT_GUESSRANGE #endif #ifdef DEBUG_FIND_TIME_NUMGUESS #define DEBUG_FIND_TIME_NUMGUESS_INC find_time_numguess++, static unsigned long long find_time_numguess; static VALUE find_time_numguess_getter(void) { return ULL2NUM(find_time_numguess); } #else #define DEBUG_FIND_TIME_NUMGUESS_INC #endif static const char * find_time_t(struct tm *tptr, int utc_p, time_t *tp) { time_t guess, guess0, guess_lo, guess_hi; struct tm *tm, tm0, tm_lo, tm_hi; int d; int find_dst; struct tm result; int status; int tptr_tm_yday; #define GUESS(p) (DEBUG_FIND_TIME_NUMGUESS_INC (utc_p ? gmtime_with_leapsecond((p), &result) : LOCALTIME((p), result))) guess_lo = TIMET_MIN; guess_hi = TIMET_MAX; find_dst = 0 < tptr->tm_isdst; #if defined(HAVE_MKTIME) tm0 = *tptr; if (!utc_p && (guess = mktime(&tm0)) != -1) { tm = GUESS(&guess); if (tm && tmcmp(tptr, tm) == 0) { goto found; } } #endif tm0 = *tptr; if (tm0.tm_mon < 0) { tm0.tm_mon = 0; tm0.tm_mday = 1; tm0.tm_hour = 0; tm0.tm_min = 0; tm0.tm_sec = 0; } else if (11 < tm0.tm_mon) { tm0.tm_mon = 11; tm0.tm_mday = 31; tm0.tm_hour = 23; tm0.tm_min = 59; tm0.tm_sec = 60; } else if (tm0.tm_mday < 1) { tm0.tm_mday = 1; tm0.tm_hour = 0; tm0.tm_min = 0; tm0.tm_sec = 0; } else if ((d = (leap_year_p(1900 + tm0.tm_year) ? leap_year_days_in_month : common_year_days_in_month)[tm0.tm_mon]) < tm0.tm_mday) { tm0.tm_mday = d; tm0.tm_hour = 23; tm0.tm_min = 59; tm0.tm_sec = 60; } else if (tm0.tm_hour < 0) { tm0.tm_hour = 0; tm0.tm_min = 0; tm0.tm_sec = 0; } else if (23 < tm0.tm_hour) { tm0.tm_hour = 23; tm0.tm_min = 59; tm0.tm_sec = 60; } else if (tm0.tm_min < 0) { tm0.tm_min = 0; tm0.tm_sec = 0; } else if (59 < tm0.tm_min) { tm0.tm_min = 59; tm0.tm_sec = 60; } else if (tm0.tm_sec < 0) { tm0.tm_sec = 0; } else if (60 < tm0.tm_sec) { tm0.tm_sec = 60; } DEBUG_REPORT_GUESSRANGE; guess0 = guess = timegm_noleapsecond(&tm0); tm = GUESS(&guess); if (tm) { d = tmcmp(tptr, tm); if (d == 0) { goto found; } if (d < 0) { guess_hi = guess; guess -= 24 * 60 * 60; } else { guess_lo = guess; guess += 24 * 60 * 60; } DEBUG_REPORT_GUESSRANGE; if (guess_lo < guess && guess < guess_hi && (tm = GUESS(&guess)) != NULL) { d = tmcmp(tptr, tm); if (d == 0) { goto found; } if (d < 0) guess_hi = guess; else guess_lo = guess; DEBUG_REPORT_GUESSRANGE; } } tm = GUESS(&guess_lo); if (!tm) goto error; d = tmcmp(tptr, tm); if (d < 0) goto out_of_range; if (d == 0) { guess = guess_lo; goto found; } tm_lo = *tm; tm = GUESS(&guess_hi); if (!tm) goto error; d = tmcmp(tptr, tm); if (d > 0) goto out_of_range; if (d == 0) { guess = guess_hi; goto found; } tm_hi = *tm; DEBUG_REPORT_GUESSRANGE; status = 1; while (guess_lo + 1 < guess_hi) { if (status == 0) { binsearch: guess = guess_lo / 2 + guess_hi / 2; if (guess <= guess_lo) guess = guess_lo + 1; else if (guess >= guess_hi) guess = guess_hi - 1; status = 1; } else { if (status == 1) { time_t guess0_hi = timegm_noleapsecond(&tm_hi); guess = guess_hi - (guess0_hi - guess0); if (guess == guess_hi) /* hh:mm:60 tends to cause this condition. */ guess--; status = 2; } else if (status == 2) { time_t guess0_lo = timegm_noleapsecond(&tm_lo); guess = guess_lo + (guess0 - guess0_lo); if (guess == guess_lo) guess++; status = 0; } if (guess <= guess_lo || guess_hi <= guess) { /* Precious guess is invalid. try binary search. */ #ifdef DEBUG_GUESSRANGE if (guess <= guess_lo) fprintf(stderr, "too small guess: %ld <= %ld\n", guess, guess_lo); if (guess_hi <= guess) fprintf(stderr, "too big guess: %ld <= %ld\n", guess_hi, guess); #endif goto binsearch; } } tm = GUESS(&guess); if (!tm) goto error; d = tmcmp(tptr, tm); if (d < 0) { guess_hi = guess; tm_hi = *tm; DEBUG_REPORT_GUESSRANGE; } else if (d > 0) { guess_lo = guess; tm_lo = *tm; DEBUG_REPORT_GUESSRANGE; } else { found: if (!utc_p) { /* If localtime is nonmonotonic, another result may exist. */ time_t guess2; if (find_dst) { guess2 = guess - 2 * 60 * 60; tm = LOCALTIME(&guess2, result); if (tm) { if (tptr->tm_hour != (tm->tm_hour + 2) % 24 || tptr->tm_min != tm->tm_min || tptr->tm_sec != tm->tm_sec) { guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 + (tm->tm_min - tptr->tm_min) * 60 + (tm->tm_sec - tptr->tm_sec); if (tptr->tm_mday != tm->tm_mday) guess2 += 24 * 60 * 60; if (guess != guess2) { tm = LOCALTIME(&guess2, result); if (tm && tmcmp(tptr, tm) == 0) { if (guess < guess2) *tp = guess; else *tp = guess2; return NULL; } } } } } else { guess2 = guess + 2 * 60 * 60; tm = LOCALTIME(&guess2, result); if (tm) { if ((tptr->tm_hour + 2) % 24 != tm->tm_hour || tptr->tm_min != tm->tm_min || tptr->tm_sec != tm->tm_sec) { guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 + (tm->tm_min - tptr->tm_min) * 60 + (tm->tm_sec - tptr->tm_sec); if (tptr->tm_mday != tm->tm_mday) guess2 -= 24 * 60 * 60; if (guess != guess2) { tm = LOCALTIME(&guess2, result); if (tm && tmcmp(tptr, tm) == 0) { if (guess < guess2) *tp = guess2; else *tp = guess; return NULL; } } } } } } *tp = guess; return NULL; } } /* Given argument has no corresponding time_t. Let's extrapolate. */ /* * `Seconds Since the Epoch' in SUSv3: * tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 + * (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 - * ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400 */ tptr_tm_yday = calc_tm_yday(tptr->tm_year, tptr->tm_mon, tptr->tm_mday); *tp = guess_lo + ((tptr->tm_year - tm_lo.tm_year) * 365 + ((tptr->tm_year-69)/4) - ((tptr->tm_year-1)/100) + ((tptr->tm_year+299)/400) - ((tm_lo.tm_year-69)/4) + ((tm_lo.tm_year-1)/100) - ((tm_lo.tm_year+299)/400) + tptr_tm_yday - tm_lo.tm_yday) * 86400 + (tptr->tm_hour - tm_lo.tm_hour) * 3600 + (tptr->tm_min - tm_lo.tm_min) * 60 + (tptr->tm_sec - (tm_lo.tm_sec == 60 ? 59 : tm_lo.tm_sec)); return NULL; out_of_range: return "time out of range"; error: return "gmtime/localtime error"; } static int vtmcmp(struct vtm *a, struct vtm *b) { if (ne(a->year, b->year)) return lt(a->year, b->year) ? -1 : 1; else if (a->mon != b->mon) return a->mon < b->mon ? -1 : 1; else if (a->mday != b->mday) return a->mday < b->mday ? -1 : 1; else if (a->hour != b->hour) return a->hour < b->hour ? -1 : 1; else if (a->min != b->min) return a->min < b->min ? -1 : 1; else if (a->sec != b->sec) return a->sec < b->sec ? -1 : 1; else if (ne(a->subsecx, b->subsecx)) return lt(a->subsecx, b->subsecx) ? -1 : 1; else return 0; } static int tmcmp(struct tm *a, struct tm *b) { if (a->tm_year != b->tm_year) return a->tm_year < b->tm_year ? -1 : 1; else if (a->tm_mon != b->tm_mon) return a->tm_mon < b->tm_mon ? -1 : 1; else if (a->tm_mday != b->tm_mday) return a->tm_mday < b->tm_mday ? -1 : 1; else if (a->tm_hour != b->tm_hour) return a->tm_hour < b->tm_hour ? -1 : 1; else if (a->tm_min != b->tm_min) return a->tm_min < b->tm_min ? -1 : 1; else if (a->tm_sec != b->tm_sec) return a->tm_sec < b->tm_sec ? -1 : 1; else return 0; } /* * call-seq: * Time.utc(year) -> time * Time.utc(year, month) -> time * Time.utc(year, month, day) -> time * Time.utc(year, month, day, hour) -> time * Time.utc(year, month, day, hour, min) -> time * Time.utc(year, month, day, hour, min, sec_with_frac) -> time * Time.utc(year, month, day, hour, min, sec, usec_with_frac) -> time * Time.utc(sec, min, hour, day, month, year, dummy, dummy, dummy, dummy) -> time * Time.gm(year) -> time * Time.gm(year, month) -> time * Time.gm(year, month, day) -> time * Time.gm(year, month, day, hour) -> time * Time.gm(year, month, day, hour, min) -> time * Time.gm(year, month, day, hour, min, sec_with_frac) -> time * Time.gm(year, month, day, hour, min, sec, usec_with_frac) -> time * Time.gm(sec, min, hour, day, month, year, dummy, dummy, dummy, dummy) -> time * * Creates a Time object based on given values, interpreted as UTC (GMT). The * year must be specified. Other values default to the minimum value * for that field (and may be +nil+ or omitted). Months may * be specified by numbers from 1 to 12, or by the three-letter English * month names. Hours are specified on a 24-hour clock (0..23). Raises * an ArgumentError if any values are out of range. Will * also accept ten arguments in the order output by Time#to_a. * * +sec_with_frac+ and +usec_with_frac+ can have a fractional part. * * Time.utc(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC * Time.gm(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC */ static VALUE time_s_mkutc(int argc, VALUE *argv, VALUE klass) { struct vtm vtm; time_arg(argc, argv, &vtm); return time_gmtime(time_new_timew(klass, timegmw(&vtm))); } /* * call-seq: * Time.local(year) -> time * Time.local(year, month) -> time * Time.local(year, month, day) -> time * Time.local(year, month, day, hour) -> time * Time.local(year, month, day, hour, min) -> time * Time.local(year, month, day, hour, min, sec_with_frac) -> time * Time.local(year, month, day, hour, min, sec, usec_with_frac) -> time * Time.local(sec, min, hour, day, month, year, dummy, dummy, isdst, dummy) -> time * Time.mktime(year) -> time * Time.mktime(year, month) -> time * Time.mktime(year, month, day) -> time * Time.mktime(year, month, day, hour) -> time * Time.mktime(year, month, day, hour, min) -> time * Time.mktime(year, month, day, hour, min, sec_with_frac) -> time * Time.mktime(year, month, day, hour, min, sec, usec_with_frac) -> time * Time.mktime(sec, min, hour, day, month, year, dummy, dummy, isdst, dummy) -> time * * Same as Time::gm, but interprets the values in the * local time zone. * * Time.local(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 -0600 */ static VALUE time_s_mktime(int argc, VALUE *argv, VALUE klass) { struct vtm vtm; time_arg(argc, argv, &vtm); return time_localtime(time_new_timew(klass, timelocalw(&vtm))); } /* * call-seq: * time.to_i -> int * time.tv_sec -> int * * Returns the value of _time_ as an integer number of seconds * since the Epoch. * * t = Time.now * "%10.5f" % t.to_f #=> "1270968656.89607" * t.to_i #=> 1270968656 */ static VALUE time_to_i(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); return w2v(wdiv(tobj->timew, WINT2FIXWV(TIME_SCALE))); } /* * call-seq: * time.to_f -> float * * Returns the value of _time_ as a floating point number of * seconds since the Epoch. * * t = Time.now * "%10.5f" % t.to_f #=> "1270968744.77658" * t.to_i #=> 1270968744 * * Note that IEEE 754 double is not accurate enough to represent * the number of nanoseconds since the Epoch. */ static VALUE time_to_f(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); return rb_Float(rb_time_unmagnify_to_float(tobj->timew)); } /* * call-seq: * time.to_r -> a_rational * * Returns the value of _time_ as a rational number of seconds * since the Epoch. * * t = Time.now * p t.to_r #=> (1270968792716287611/1000000000) * * This methods is intended to be used to get an accurate value * representing the nanoseconds since the Epoch. You can use this method * to convert _time_ to another Epoch. */ static VALUE time_to_r(VALUE time) { struct time_object *tobj; VALUE v; GetTimeval(time, tobj); v = w2v(rb_time_unmagnify(tobj->timew)); if (!RB_TYPE_P(v, T_RATIONAL)) { v = rb_Rational1(v); } return v; } /* * call-seq: * time.usec -> int * time.tv_usec -> int * * Returns the number of microseconds for _time_. * * t = Time.now #=> 2007-11-19 08:03:26 -0600 * "%10.6f" % t.to_f #=> "1195481006.775195" * t.usec #=> 775195 */ static VALUE time_usec(VALUE time) { struct time_object *tobj; wideval_t w, q, r; GetTimeval(time, tobj); w = wmod(tobj->timew, WINT2WV(TIME_SCALE)); wmuldivmod(w, WINT2FIXWV(1000000), WINT2FIXWV(TIME_SCALE), &q, &r); return rb_to_int(w2v(q)); } /* * call-seq: * time.nsec -> int * time.tv_nsec -> int * * Returns the number of nanoseconds for _time_. * * t = Time.now #=> 2007-11-17 15:18:03 +0900 * "%10.9f" % t.to_f #=> "1195280283.536151409" * t.nsec #=> 536151406 * * The lowest digits of #to_f and #nsec are different because * IEEE 754 double is not accurate enough to represent * the exact number of nanoseconds since the Epoch. * * The more accurate value is returned by #nsec. */ static VALUE time_nsec(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); return rb_to_int(w2v(wmulquoll(wmod(tobj->timew, WINT2WV(TIME_SCALE)), 1000000000, TIME_SCALE))); } /* * call-seq: * time.subsec -> number * * Returns the fraction for _time_. * * The return value can be a rational number. * * t = Time.now #=> 2009-03-26 22:33:12 +0900 * "%10.9f" % t.to_f #=> "1238074392.940563917" * t.subsec #=> (94056401/100000000) * * The lowest digits of #to_f and #subsec are different because * IEEE 754 double is not accurate enough to represent * the rational number. * * The more accurate value is returned by #subsec. */ static VALUE time_subsec(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); return quov(w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE))), INT2FIX(TIME_SCALE)); } /* * call-seq: * time <=> other_time -> -1, 0, +1 or nil * * Comparison---Compares +time+ with +other_time+. * * -1, 0, +1 or nil depending on whether +time+ is less than, equal to, or * greater than +other_time+. * * +nil+ is returned if the two values are incomparable. * * t = Time.now #=> 2007-11-19 08:12:12 -0600 * t2 = t + 2592000 #=> 2007-12-19 08:12:12 -0600 * t <=> t2 #=> -1 * t2 <=> t #=> 1 * * t = Time.now #=> 2007-11-19 08:13:38 -0600 * t2 = t + 0.1 #=> 2007-11-19 08:13:38 -0600 * t.nsec #=> 98222999 * t2.nsec #=> 198222999 * t <=> t2 #=> -1 * t2 <=> t #=> 1 * t <=> t #=> 0 */ static VALUE time_cmp(VALUE time1, VALUE time2) { struct time_object *tobj1, *tobj2; int n; GetTimeval(time1, tobj1); if (IsTimeval(time2)) { GetTimeval(time2, tobj2); n = wcmp(tobj1->timew, tobj2->timew); } else { return rb_invcmp(time1, time2); } if (n == 0) return INT2FIX(0); if (n > 0) return INT2FIX(1); return INT2FIX(-1); } /* * call-seq: * time.eql?(other_time) * * Returns +true+ if _time_ and +other_time+ are * both Time objects with the same seconds and fractional seconds. */ static VALUE time_eql(VALUE time1, VALUE time2) { struct time_object *tobj1, *tobj2; GetTimeval(time1, tobj1); if (IsTimeval(time2)) { GetTimeval(time2, tobj2); return rb_equal(w2v(tobj1->timew), w2v(tobj2->timew)); } return Qfalse; } /* * call-seq: * time.utc? -> true or false * time.gmt? -> true or false * * Returns +true+ if _time_ represents a time in UTC (GMT). * * t = Time.now #=> 2007-11-19 08:15:23 -0600 * t.utc? #=> false * t = Time.gm(2000,"jan",1,20,15,1) #=> 2000-01-01 20:15:01 UTC * t.utc? #=> true * * t = Time.now #=> 2007-11-19 08:16:03 -0600 * t.gmt? #=> false * t = Time.gm(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC * t.gmt? #=> true */ static VALUE time_utc_p(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); if (TZMODE_UTC_P(tobj)) return Qtrue; return Qfalse; } /* * call-seq: * time.hash -> integer * * Returns a hash code for this Time object. * * See also Object#hash. */ static VALUE time_hash(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); return rb_hash(w2v(tobj->timew)); } /* :nodoc: */ static VALUE time_init_copy(VALUE copy, VALUE time) { struct time_object *tobj, *tcopy; if (!OBJ_INIT_COPY(copy, time)) return copy; GetTimeval(time, tobj); GetNewTimeval(copy, tcopy); MEMCPY(tcopy, tobj, struct time_object, 1); return copy; } static VALUE time_dup(VALUE time) { VALUE dup = time_s_alloc(rb_obj_class(time)); time_init_copy(dup, time); return dup; } static VALUE time_localtime(VALUE time) { struct time_object *tobj; struct vtm vtm; GetTimeval(time, tobj); if (TZMODE_LOCALTIME_P(tobj)) { if (tobj->tm_got) return time; } else { time_modify(time); } if (!NIL_P(tobj->vtm.zone) && zone_localtime(tobj->vtm.zone, time)) { return time; } if (!localtimew(tobj->timew, &vtm)) rb_raise(rb_eArgError, "localtime error"); tobj->vtm = vtm; tobj->tm_got = 1; TZMODE_SET_LOCALTIME(tobj); return time; } /* * call-seq: * time.localtime -> time * time.localtime(utc_offset) -> time * * Converts _time_ to local time (using the local time zone in * effect at the creation time of _time_) modifying the receiver. * * If +utc_offset+ is given, it is used instead of the local time. * * t = Time.utc(2000, "jan", 1, 20, 15, 1) #=> 2000-01-01 20:15:01 UTC * t.utc? #=> true * * t.localtime #=> 2000-01-01 14:15:01 -0600 * t.utc? #=> false * * t.localtime("+09:00") #=> 2000-01-02 05:15:01 +0900 * t.utc? #=> false * * If +utc_offset+ is not given and _time_ is local time, just return * the receiver. */ static VALUE time_localtime_m(int argc, VALUE *argv, VALUE time) { VALUE off; rb_scan_args(argc, argv, "01", &off); if (!NIL_P(off)) { if (zone_localtime(off, time)) return time; off = utc_offset_arg(off); validate_utc_offset(off); time_set_utc_offset(time, off); return time_fixoff(time); } return time_localtime(time); } /* * call-seq: * time.gmtime -> time * time.utc -> time * * Converts _time_ to UTC (GMT), modifying the receiver. * * t = Time.now #=> 2007-11-19 08:18:31 -0600 * t.gmt? #=> false * t.gmtime #=> 2007-11-19 14:18:31 UTC * t.gmt? #=> true * * t = Time.now #=> 2007-11-19 08:18:51 -0600 * t.utc? #=> false * t.utc #=> 2007-11-19 14:18:51 UTC * t.utc? #=> true */ static VALUE time_gmtime(VALUE time) { struct time_object *tobj; struct vtm vtm; GetTimeval(time, tobj); if (TZMODE_UTC_P(tobj)) { if (tobj->tm_got) return time; } else { time_modify(time); } vtm.zone = rb_fstring_lit("UTC"); GMTIMEW(tobj->timew, &vtm); tobj->vtm = vtm; tobj->tm_got = 1; TZMODE_SET_UTC(tobj); return time; } static VALUE time_fixoff(VALUE time) { struct time_object *tobj; struct vtm vtm; VALUE off, zone; GetTimeval(time, tobj); if (TZMODE_FIXOFF_P(tobj)) { if (tobj->tm_got) return time; } else { time_modify(time); } if (TZMODE_FIXOFF_P(tobj)) off = tobj->vtm.utc_offset; else off = INT2FIX(0); GMTIMEW(tobj->timew, &vtm); zone = tobj->vtm.zone; tobj->vtm = vtm; tobj->vtm.zone = zone; vtm_add_offset(&tobj->vtm, off); tobj->tm_got = 1; TZMODE_SET_FIXOFF(tobj, off); return time; } /* * call-seq: * time.getlocal -> new_time * time.getlocal(utc_offset) -> new_time * * Returns a new Time object representing _time_ in * local time (using the local time zone in effect for this process). * * If +utc_offset+ is given, it is used instead of the local time. * +utc_offset+ can be given as a human-readable string (eg. "+09:00") * or as a number of seconds (eg. 32400). * * t = Time.utc(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC * t.utc? #=> true * * l = t.getlocal #=> 2000-01-01 14:15:01 -0600 * l.utc? #=> false * t == l #=> true * * j = t.getlocal("+09:00") #=> 2000-01-02 05:15:01 +0900 * j.utc? #=> false * t == j #=> true * * k = t.getlocal(9*60*60) #=> 2000-01-02 05:15:01 +0900 * k.utc? #=> false * t == k #=> true */ static VALUE time_getlocaltime(int argc, VALUE *argv, VALUE time) { VALUE off; rb_scan_args(argc, argv, "01", &off); if (!NIL_P(off)) { if (maybe_tzobj_p(off)) { VALUE t = time_dup(time); if (zone_localtime(off, t)) return t; } off = utc_offset_arg(off); validate_utc_offset(off); time = time_dup(time); time_set_utc_offset(time, off); return time_fixoff(time); } return time_localtime(time_dup(time)); } /* * call-seq: * time.getgm -> new_time * time.getutc -> new_time * * Returns a new Time object representing _time_ in UTC. * * t = Time.local(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 -0600 * t.gmt? #=> false * y = t.getgm #=> 2000-01-02 02:15:01 UTC * y.gmt? #=> true * t == y #=> true */ static VALUE time_getgmtime(VALUE time) { return time_gmtime(time_dup(time)); } static VALUE time_get_tm(VALUE time, struct time_object *tobj) { if (TZMODE_UTC_P(tobj)) return time_gmtime(time); if (TZMODE_FIXOFF_P(tobj)) return time_fixoff(time); return time_localtime(time); } static VALUE strftime_cstr(const char *fmt, size_t len, VALUE time, rb_encoding *enc); #define strftimev(fmt, time, enc) strftime_cstr((fmt), rb_strlen_lit(fmt), (time), (enc)) /* * call-seq: * time.asctime -> string * time.ctime -> string * * Returns a canonical string representation of _time_. * * Time.now.asctime #=> "Wed Apr 9 08:56:03 2003" * Time.now.ctime #=> "Wed Apr 9 08:56:03 2003" */ static VALUE time_asctime(VALUE time) { return strftimev("%a %b %e %T %Y", time, rb_usascii_encoding()); } /* * call-seq: * time.inspect -> string * time.to_s -> string * * Returns a string representing _time_. Equivalent to calling * #strftime with the appropriate format string. * * t = Time.now * t.to_s => "2012-11-10 18:16:12 +0100" * t.strftime "%Y-%m-%d %H:%M:%S %z" => "2012-11-10 18:16:12 +0100" * * t.utc.to_s => "2012-11-10 17:16:12 UTC" * t.strftime "%Y-%m-%d %H:%M:%S UTC" => "2012-11-10 17:16:12 UTC" */ static VALUE time_to_s(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); if (TZMODE_UTC_P(tobj)) return strftimev("%Y-%m-%d %H:%M:%S UTC", time, rb_usascii_encoding()); else return strftimev("%Y-%m-%d %H:%M:%S %z", time, rb_usascii_encoding()); } static VALUE time_add(const struct time_object *tobj, VALUE torig, VALUE offset, int sign) { VALUE result; struct time_object *result_tobj; offset = num_exact(offset); if (sign < 0) result = time_new_timew(rb_cTime, wsub(tobj->timew, rb_time_magnify(v2w(offset)))); else result = time_new_timew(rb_cTime, wadd(tobj->timew, rb_time_magnify(v2w(offset)))); GetTimeval(result, result_tobj); TZMODE_COPY(result_tobj, tobj); return result; } /* * call-seq: * time + numeric -> time * * Addition --- Adds some number of seconds (possibly fractional) to * _time_ and returns that value as a new Time object. * * t = Time.now #=> 2007-11-19 08:22:21 -0600 * t + (60 * 60 * 24) #=> 2007-11-20 08:22:21 -0600 */ static VALUE time_plus(VALUE time1, VALUE time2) { struct time_object *tobj; GetTimeval(time1, tobj); if (IsTimeval(time2)) { rb_raise(rb_eTypeError, "time + time?"); } return time_add(tobj, time1, time2, 1); } /* * call-seq: * time - other_time -> float * time - numeric -> time * * Difference --- Returns a difference in seconds as a Float * between _time_ and +other_time+, or subtracts the given number * of seconds in +numeric+ from _time_. * * t = Time.now #=> 2007-11-19 08:23:10 -0600 * t2 = t + 2592000 #=> 2007-12-19 08:23:10 -0600 * t2 - t #=> 2592000.0 * t2 - 2592000 #=> 2007-11-19 08:23:10 -0600 */ static VALUE time_minus(VALUE time1, VALUE time2) { struct time_object *tobj; GetTimeval(time1, tobj); if (IsTimeval(time2)) { struct time_object *tobj2; GetTimeval(time2, tobj2); return rb_Float(rb_time_unmagnify_to_float(wsub(tobj->timew, tobj2->timew))); } return time_add(tobj, time1, time2, -1); } /* * call-seq: * time.succ -> new_time * * Returns a new Time object, one second later than _time_. * Time#succ is obsolete since 1.9.2 for time is not a discrete value. * * t = Time.now #=> 2007-11-19 08:23:57 -0600 * t.succ #=> 2007-11-19 08:23:58 -0600 * * Use instead time + 1 * * t + 1 #=> 2007-11-19 08:23:58 -0600 */ VALUE rb_time_succ(VALUE time) { struct time_object *tobj; struct time_object *tobj2; rb_warn("Time#succ is obsolete; use time + 1"); GetTimeval(time, tobj); time = time_new_timew(rb_cTime, wadd(tobj->timew, WINT2FIXWV(TIME_SCALE))); GetTimeval(time, tobj2); TZMODE_COPY(tobj2, tobj); if (TZMODE_LOCALTIME_P(tobj2) && maybe_tzobj_p(tobj2->vtm.zone)) { zone_localtime(tobj2->vtm.zone, time); } return time; } #define time_succ rb_time_succ /* * call-seq: * time.round([ndigits]) -> new_time * * Rounds sub seconds to a given precision in decimal digits (0 digits by default). * It returns a new Time object. * +ndigits+ should be zero or positive integer. * * require 'time' * * t = Time.utc(2010,3,30, 5,43,"25.123456789".to_r) * p t.iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z" * p t.round.iso8601(10) #=> "2010-03-30T05:43:25.0000000000Z" * p t.round(0).iso8601(10) #=> "2010-03-30T05:43:25.0000000000Z" * p t.round(1).iso8601(10) #=> "2010-03-30T05:43:25.1000000000Z" * p t.round(2).iso8601(10) #=> "2010-03-30T05:43:25.1200000000Z" * p t.round(3).iso8601(10) #=> "2010-03-30T05:43:25.1230000000Z" * p t.round(4).iso8601(10) #=> "2010-03-30T05:43:25.1235000000Z" * p t.round(5).iso8601(10) #=> "2010-03-30T05:43:25.1234600000Z" * p t.round(6).iso8601(10) #=> "2010-03-30T05:43:25.1234570000Z" * p t.round(7).iso8601(10) #=> "2010-03-30T05:43:25.1234568000Z" * p t.round(8).iso8601(10) #=> "2010-03-30T05:43:25.1234567900Z" * p t.round(9).iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z" * p t.round(10).iso8601(10) #=> "2010-03-30T05:43:25.1234567890Z" * * t = Time.utc(1999,12,31, 23,59,59) * p((t + 0.4).round.iso8601(3)) #=> "1999-12-31T23:59:59.000Z" * p((t + 0.49).round.iso8601(3)) #=> "1999-12-31T23:59:59.000Z" * p((t + 0.5).round.iso8601(3)) #=> "2000-01-01T00:00:00.000Z" * p((t + 1.4).round.iso8601(3)) #=> "2000-01-01T00:00:00.000Z" * p((t + 1.49).round.iso8601(3)) #=> "2000-01-01T00:00:00.000Z" * p((t + 1.5).round.iso8601(3)) #=> "2000-01-01T00:00:01.000Z" * * t = Time.utc(1999,12,31, 23,59,59) * p (t + 0.123456789).round(4).iso8601(6) #=> "1999-12-31T23:59:59.123500Z" */ static VALUE time_round(int argc, VALUE *argv, VALUE time) { VALUE ndigits, v, a, b, den; long nd; struct time_object *tobj; rb_scan_args(argc, argv, "01", &ndigits); if (NIL_P(ndigits)) ndigits = INT2FIX(0); else ndigits = rb_to_int(ndigits); nd = NUM2LONG(ndigits); if (nd < 0) rb_raise(rb_eArgError, "negative ndigits given"); GetTimeval(time, tobj); v = w2v(rb_time_unmagnify(tobj->timew)); a = INT2FIX(1); b = INT2FIX(10); while (0 < nd) { if (nd & 1) a = mulv(a, b); b = mulv(b, b); nd = nd >> 1; } den = quov(INT2FIX(1), a); v = modv(v, den); if (lt(v, quov(den, INT2FIX(2)))) return time_add(tobj, time, v, -1); else return time_add(tobj, time, subv(den, v), 1); } /* * call-seq: * time.sec -> integer * * Returns the second of the minute (0..60) for _time_. * * *Note:* Seconds range from zero to 60 to allow the system to inject * leap seconds. See http://en.wikipedia.org/wiki/Leap_second for further * details. * * t = Time.now #=> 2007-11-19 08:25:02 -0600 * t.sec #=> 2 */ static VALUE time_sec(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); MAKE_TM(time, tobj); return INT2FIX(tobj->vtm.sec); } /* * call-seq: * time.min -> integer * * Returns the minute of the hour (0..59) for _time_. * * t = Time.now #=> 2007-11-19 08:25:51 -0600 * t.min #=> 25 */ static VALUE time_min(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); MAKE_TM(time, tobj); return INT2FIX(tobj->vtm.min); } /* * call-seq: * time.hour -> integer * * Returns the hour of the day (0..23) for _time_. * * t = Time.now #=> 2007-11-19 08:26:20 -0600 * t.hour #=> 8 */ static VALUE time_hour(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); MAKE_TM(time, tobj); return INT2FIX(tobj->vtm.hour); } /* * call-seq: * time.day -> integer * time.mday -> integer * * Returns the day of the month (1..n) for _time_. * * t = Time.now #=> 2007-11-19 08:27:03 -0600 * t.day #=> 19 * t.mday #=> 19 */ static VALUE time_mday(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); MAKE_TM(time, tobj); return INT2FIX(tobj->vtm.mday); } /* * call-seq: * time.mon -> integer * time.month -> integer * * Returns the month of the year (1..12) for _time_. * * t = Time.now #=> 2007-11-19 08:27:30 -0600 * t.mon #=> 11 * t.month #=> 11 */ static VALUE time_mon(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); MAKE_TM(time, tobj); return INT2FIX(tobj->vtm.mon); } /* * call-seq: * time.year -> integer * * Returns the year for _time_ (including the century). * * t = Time.now #=> 2007-11-19 08:27:51 -0600 * t.year #=> 2007 */ static VALUE time_year(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); MAKE_TM(time, tobj); return tobj->vtm.year; } /* * call-seq: * time.wday -> integer * * Returns an integer representing the day of the week, 0..6, with * Sunday == 0. * * t = Time.now #=> 2007-11-20 02:35:35 -0600 * t.wday #=> 2 * t.sunday? #=> false * t.monday? #=> false * t.tuesday? #=> true * t.wednesday? #=> false * t.thursday? #=> false * t.friday? #=> false * t.saturday? #=> false */ static VALUE time_wday(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); MAKE_TM(time, tobj); return INT2FIX((int)tobj->vtm.wday); } #define wday_p(n) {\ struct time_object *tobj;\ GetTimeval(time, tobj);\ MAKE_TM(time, tobj);\ return (tobj->vtm.wday == (n)) ? Qtrue : Qfalse;\ } /* * call-seq: * time.sunday? -> true or false * * Returns +true+ if _time_ represents Sunday. * * t = Time.local(1990, 4, 1) #=> 1990-04-01 00:00:00 -0600 * t.sunday? #=> true */ static VALUE time_sunday(VALUE time) { wday_p(0); } /* * call-seq: * time.monday? -> true or false * * Returns +true+ if _time_ represents Monday. * * t = Time.local(2003, 8, 4) #=> 2003-08-04 00:00:00 -0500 * p t.monday? #=> true */ static VALUE time_monday(VALUE time) { wday_p(1); } /* * call-seq: * time.tuesday? -> true or false * * Returns +true+ if _time_ represents Tuesday. * * t = Time.local(1991, 2, 19) #=> 1991-02-19 00:00:00 -0600 * p t.tuesday? #=> true */ static VALUE time_tuesday(VALUE time) { wday_p(2); } /* * call-seq: * time.wednesday? -> true or false * * Returns +true+ if _time_ represents Wednesday. * * t = Time.local(1993, 2, 24) #=> 1993-02-24 00:00:00 -0600 * p t.wednesday? #=> true */ static VALUE time_wednesday(VALUE time) { wday_p(3); } /* * call-seq: * time.thursday? -> true or false * * Returns +true+ if _time_ represents Thursday. * * t = Time.local(1995, 12, 21) #=> 1995-12-21 00:00:00 -0600 * p t.thursday? #=> true */ static VALUE time_thursday(VALUE time) { wday_p(4); } /* * call-seq: * time.friday? -> true or false * * Returns +true+ if _time_ represents Friday. * * t = Time.local(1987, 12, 18) #=> 1987-12-18 00:00:00 -0600 * t.friday? #=> true */ static VALUE time_friday(VALUE time) { wday_p(5); } /* * call-seq: * time.saturday? -> true or false * * Returns +true+ if _time_ represents Saturday. * * t = Time.local(2006, 6, 10) #=> 2006-06-10 00:00:00 -0500 * t.saturday? #=> true */ static VALUE time_saturday(VALUE time) { wday_p(6); } /* * call-seq: * time.yday -> integer * * Returns an integer representing the day of the year, 1..366. * * t = Time.now #=> 2007-11-19 08:32:31 -0600 * t.yday #=> 323 */ static VALUE time_yday(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); MAKE_TM(time, tobj); return INT2FIX(tobj->vtm.yday); } /* * call-seq: * time.isdst -> true or false * time.dst? -> true or false * * Returns +true+ if _time_ occurs during Daylight * Saving Time in its time zone. * * # CST6CDT: * Time.local(2000, 1, 1).zone #=> "CST" * Time.local(2000, 1, 1).isdst #=> false * Time.local(2000, 1, 1).dst? #=> false * Time.local(2000, 7, 1).zone #=> "CDT" * Time.local(2000, 7, 1).isdst #=> true * Time.local(2000, 7, 1).dst? #=> true * * # Asia/Tokyo: * Time.local(2000, 1, 1).zone #=> "JST" * Time.local(2000, 1, 1).isdst #=> false * Time.local(2000, 1, 1).dst? #=> false * Time.local(2000, 7, 1).zone #=> "JST" * Time.local(2000, 7, 1).isdst #=> false * Time.local(2000, 7, 1).dst? #=> false */ static VALUE time_isdst(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); MAKE_TM(time, tobj); return tobj->vtm.isdst ? Qtrue : Qfalse; } /* * call-seq: * time.zone -> string or timezone * * Returns the name of the time zone used for _time_. As of Ruby * 1.8, returns ``UTC'' rather than ``GMT'' for UTC times. * * t = Time.gm(2000, "jan", 1, 20, 15, 1) * t.zone #=> "UTC" * t = Time.local(2000, "jan", 1, 20, 15, 1) * t.zone #=> "CST" */ static VALUE time_zone(VALUE time) { struct time_object *tobj; VALUE zone; GetTimeval(time, tobj); MAKE_TM(time, tobj); if (TZMODE_UTC_P(tobj)) { return rb_usascii_str_new_cstr("UTC"); } zone = tobj->vtm.zone; if (NIL_P(zone)) return Qnil; if (RB_TYPE_P(zone, T_STRING)) zone = rb_str_dup(zone); return zone; } /* * call-seq: * time.gmt_offset -> integer * time.gmtoff -> integer * time.utc_offset -> integer * * Returns the offset in seconds between the timezone of _time_ * and UTC. * * t = Time.gm(2000,1,1,20,15,1) #=> 2000-01-01 20:15:01 UTC * t.gmt_offset #=> 0 * l = t.getlocal #=> 2000-01-01 14:15:01 -0600 * l.gmt_offset #=> -21600 */ VALUE rb_time_utc_offset(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); if (TZMODE_UTC_P(tobj)) { return INT2FIX(0); } else { MAKE_TM(time, tobj); return tobj->vtm.utc_offset; } } /* * call-seq: * time.to_a -> array * * Returns a ten-element _array_ of values for _time_: * * [sec, min, hour, day, month, year, wday, yday, isdst, zone] * * See the individual methods for an explanation of the * valid ranges of each value. The ten elements can be passed directly * to Time::utc or Time::local to create a * new Time object. * * t = Time.now #=> 2007-11-19 08:36:01 -0600 * now = t.to_a #=> [1, 36, 8, 19, 11, 2007, 1, 323, false, "CST"] */ static VALUE time_to_a(VALUE time) { struct time_object *tobj; GetTimeval(time, tobj); MAKE_TM(time, tobj); return rb_ary_new3(10, INT2FIX(tobj->vtm.sec), INT2FIX(tobj->vtm.min), INT2FIX(tobj->vtm.hour), INT2FIX(tobj->vtm.mday), INT2FIX(tobj->vtm.mon), tobj->vtm.year, INT2FIX(tobj->vtm.wday), INT2FIX(tobj->vtm.yday), tobj->vtm.isdst?Qtrue:Qfalse, time_zone(time)); } static VALUE rb_strftime_alloc(const char *format, size_t format_len, rb_encoding *enc, VALUE time, struct vtm *vtm, wideval_t timew, int gmt) { VALUE timev = Qnil; struct timespec ts; if (!timew2timespec_exact(timew, &ts)) timev = w2v(rb_time_unmagnify(timew)); if (NIL_P(timev)) { return rb_strftime_timespec(format, format_len, enc, time, vtm, &ts, gmt); } else { return rb_strftime(format, format_len, enc, time, vtm, timev, gmt); } } static VALUE strftime_cstr(const char *fmt, size_t len, VALUE time, rb_encoding *enc) { struct time_object *tobj; VALUE str; GetTimeval(time, tobj); MAKE_TM(time, tobj); str = rb_strftime_alloc(fmt, len, enc, time, &tobj->vtm, tobj->timew, TZMODE_UTC_P(tobj)); if (!str) rb_raise(rb_eArgError, "invalid format: %s", fmt); return str; } /* * call-seq: * time.strftime( string ) -> string * * Formats _time_ according to the directives in the given format string. * * The directives begin with a percent (%) character. * Any text not listed as a directive will be passed through to the * output string. * * The directive consists of a percent (%) character, * zero or more flags, optional minimum field width, * optional modifier and a conversion specifier * as follows: * * % * * Flags: * - don't pad a numerical output * _ use spaces for padding * 0 use zeros for padding * ^ upcase the result string * # change case * : use colons for %z * * The minimum field width specifies the minimum width. * * The modifiers are "E" and "O". * They are ignored. * * Format directives: * * Date (Year, Month, Day): * %Y - Year with century if provided, will pad result at least 4 digits. * -0001, 0000, 1995, 2009, 14292, etc. * %C - year / 100 (rounded down such as 20 in 2009) * %y - year % 100 (00..99) * * %m - Month of the year, zero-padded (01..12) * %_m blank-padded ( 1..12) * %-m no-padded (1..12) * %B - The full month name (``January'') * %^B uppercased (``JANUARY'') * %b - The abbreviated month name (``Jan'') * %^b uppercased (``JAN'') * %h - Equivalent to %b * * %d - Day of the month, zero-padded (01..31) * %-d no-padded (1..31) * %e - Day of the month, blank-padded ( 1..31) * * %j - Day of the year (001..366) * * Time (Hour, Minute, Second, Subsecond): * %H - Hour of the day, 24-hour clock, zero-padded (00..23) * %k - Hour of the day, 24-hour clock, blank-padded ( 0..23) * %I - Hour of the day, 12-hour clock, zero-padded (01..12) * %l - Hour of the day, 12-hour clock, blank-padded ( 1..12) * %P - Meridian indicator, lowercase (``am'' or ``pm'') * %p - Meridian indicator, uppercase (``AM'' or ``PM'') * * %M - Minute of the hour (00..59) * * %S - Second of the minute (00..60) * * %L - Millisecond of the second (000..999) * The digits under millisecond are truncated to not produce 1000. * %N - Fractional seconds digits, default is 9 digits (nanosecond) * %3N millisecond (3 digits) * %6N microsecond (6 digits) * %9N nanosecond (9 digits) * %12N picosecond (12 digits) * %15N femtosecond (15 digits) * %18N attosecond (18 digits) * %21N zeptosecond (21 digits) * %24N yoctosecond (24 digits) * The digits under the specified length are truncated to avoid * carry up. * * Time zone: * %z - Time zone as hour and minute offset from UTC (e.g. +0900) * %:z - hour and minute offset from UTC with a colon (e.g. +09:00) * %::z - hour, minute and second offset from UTC (e.g. +09:00:00) * %Z - Abbreviated time zone name or similar information. (OS dependent) * * Weekday: * %A - The full weekday name (``Sunday'') * %^A uppercased (``SUNDAY'') * %a - The abbreviated name (``Sun'') * %^a uppercased (``SUN'') * %u - Day of the week (Monday is 1, 1..7) * %w - Day of the week (Sunday is 0, 0..6) * * ISO 8601 week-based year and week number: * The first week of YYYY starts with a Monday and includes YYYY-01-04. * The days in the year before the first week are in the last week of * the previous year. * %G - The week-based year * %g - The last 2 digits of the week-based year (00..99) * %V - Week number of the week-based year (01..53) * * Week number: * The first week of YYYY that starts with a Sunday or Monday (according to %U * or %W). The days in the year before the first week are in week 0. * %U - Week number of the year. The week starts with Sunday. (00..53) * %W - Week number of the year. The week starts with Monday. (00..53) * * Seconds since the Epoch: * %s - Number of seconds since 1970-01-01 00:00:00 UTC. * * Literal string: * %n - Newline character (\n) * %t - Tab character (\t) * %% - Literal ``%'' character * * Combination: * %c - date and time (%a %b %e %T %Y) * %D - Date (%m/%d/%y) * %F - The ISO 8601 date format (%Y-%m-%d) * %v - VMS date (%e-%^b-%4Y) * %x - Same as %D * %X - Same as %T * %r - 12-hour time (%I:%M:%S %p) * %R - 24-hour time (%H:%M) * %T - 24-hour time (%H:%M:%S) * * This method is similar to strftime() function defined in ISO C and POSIX. * * While all directives are locale independent since Ruby 1.9, %Z is platform * dependent. * So, the result may differ even if the same format string is used in other * systems such as C. * * %z is recommended over %Z. * %Z doesn't identify the timezone. * For example, "CST" is used at America/Chicago (-06:00), * America/Havana (-05:00), Asia/Harbin (+08:00), Australia/Darwin (+09:30) * and Australia/Adelaide (+10:30). * Also, %Z is highly dependent on the operating system. * For example, it may generate a non ASCII string on Japanese Windows. * i.e. the result can be different to "JST". * So the numeric time zone offset, %z, is recommended. * * Examples: * * t = Time.new(2007,11,19,8,37,48,"-06:00") #=> 2007-11-19 08:37:48 -0600 * t.strftime("Printed on %m/%d/%Y") #=> "Printed on 11/19/2007" * t.strftime("at %I:%M%p") #=> "at 08:37AM" * * Various ISO 8601 formats: * %Y%m%d => 20071119 Calendar date (basic) * %F => 2007-11-19 Calendar date (extended) * %Y-%m => 2007-11 Calendar date, reduced accuracy, specific month * %Y => 2007 Calendar date, reduced accuracy, specific year * %C => 20 Calendar date, reduced accuracy, specific century * %Y%j => 2007323 Ordinal date (basic) * %Y-%j => 2007-323 Ordinal date (extended) * %GW%V%u => 2007W471 Week date (basic) * %G-W%V-%u => 2007-W47-1 Week date (extended) * %GW%V => 2007W47 Week date, reduced accuracy, specific week (basic) * %G-W%V => 2007-W47 Week date, reduced accuracy, specific week (extended) * %H%M%S => 083748 Local time (basic) * %T => 08:37:48 Local time (extended) * %H%M => 0837 Local time, reduced accuracy, specific minute (basic) * %H:%M => 08:37 Local time, reduced accuracy, specific minute (extended) * %H => 08 Local time, reduced accuracy, specific hour * %H%M%S,%L => 083748,000 Local time with decimal fraction, comma as decimal sign (basic) * %T,%L => 08:37:48,000 Local time with decimal fraction, comma as decimal sign (extended) * %H%M%S.%L => 083748.000 Local time with decimal fraction, full stop as decimal sign (basic) * %T.%L => 08:37:48.000 Local time with decimal fraction, full stop as decimal sign (extended) * %H%M%S%z => 083748-0600 Local time and the difference from UTC (basic) * %T%:z => 08:37:48-06:00 Local time and the difference from UTC (extended) * %Y%m%dT%H%M%S%z => 20071119T083748-0600 Date and time of day for calendar date (basic) * %FT%T%:z => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended) * %Y%jT%H%M%S%z => 2007323T083748-0600 Date and time of day for ordinal date (basic) * %Y-%jT%T%:z => 2007-323T08:37:48-06:00 Date and time of day for ordinal date (extended) * %GW%V%uT%H%M%S%z => 2007W471T083748-0600 Date and time of day for week date (basic) * %G-W%V-%uT%T%:z => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended) * %Y%m%dT%H%M => 20071119T0837 Calendar date and local time (basic) * %FT%R => 2007-11-19T08:37 Calendar date and local time (extended) * %Y%jT%H%MZ => 2007323T0837Z Ordinal date and UTC of day (basic) * %Y-%jT%RZ => 2007-323T08:37Z Ordinal date and UTC of day (extended) * %GW%V%uT%H%M%z => 2007W471T0837-0600 Week date and local time and difference from UTC (basic) * %G-W%V-%uT%R%:z => 2007-W47-1T08:37-06:00 Week date and local time and difference from UTC (extended) * */ static VALUE time_strftime(VALUE time, VALUE format) { struct time_object *tobj; const char *fmt; long len; rb_encoding *enc; VALUE tmp; GetTimeval(time, tobj); MAKE_TM(time, tobj); StringValue(format); if (!rb_enc_str_asciicompat_p(format)) { rb_raise(rb_eArgError, "format should have ASCII compatible encoding"); } tmp = rb_str_tmp_frozen_acquire(format); fmt = RSTRING_PTR(tmp); len = RSTRING_LEN(tmp); enc = rb_enc_get(format); if (len == 0) { rb_warning("strftime called with empty format string"); return rb_enc_str_new(0, 0, enc); } else { VALUE str = rb_strftime_alloc(fmt, len, enc, time, &tobj->vtm, tobj->timew, TZMODE_UTC_P(tobj)); rb_str_tmp_frozen_release(format, tmp); if (!str) rb_raise(rb_eArgError, "invalid format: %"PRIsVALUE, format); return str; } } /* :nodoc: */ static VALUE time_mdump(VALUE time) { struct time_object *tobj; unsigned long p, s; char buf[8]; int i; VALUE str; struct vtm vtm; long year; long usec, nsec; VALUE subsecx, nano, subnano, v, zone; GetTimeval(time, tobj); gmtimew(tobj->timew, &vtm); if (FIXNUM_P(vtm.year)) { year = FIX2LONG(vtm.year); if (year < 1900 || 1900+0xffff < year) rb_raise(rb_eArgError, "year too %s to marshal: %ld UTC", (year < 1900 ? "small" : "big"), year); } else { rb_raise(rb_eArgError, "year too %s to marshal: %"PRIsVALUE" UTC", (le(vtm.year, INT2FIX(1900)) ? "small" : "big"), vtm.year); } subsecx = vtm.subsecx; nano = mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE)); divmodv(nano, INT2FIX(1), &v, &subnano); nsec = FIX2LONG(v); usec = nsec / 1000; nsec = nsec % 1000; nano = addv(LONG2FIX(nsec), subnano); p = 0x1UL << 31 | /* 1 */ TZMODE_UTC_P(tobj) << 30 | /* 1 */ (year-1900) << 14 | /* 16 */ (vtm.mon-1) << 10 | /* 4 */ vtm.mday << 5 | /* 5 */ vtm.hour; /* 5 */ s = (unsigned long)vtm.min << 26 | /* 6 */ vtm.sec << 20 | /* 6 */ usec; /* 20 */ for (i=0; i<4; i++) { buf[i] = (unsigned char)p; p = RSHIFT(p, 8); } for (i=4; i<8; i++) { buf[i] = (unsigned char)s; s = RSHIFT(s, 8); } str = rb_str_new(buf, 8); rb_copy_generic_ivar(str, time); if (!rb_equal(nano, INT2FIX(0))) { if (RB_TYPE_P(nano, T_RATIONAL)) { rb_ivar_set(str, id_nano_num, RRATIONAL(nano)->num); rb_ivar_set(str, id_nano_den, RRATIONAL(nano)->den); } else { rb_ivar_set(str, id_nano_num, nano); rb_ivar_set(str, id_nano_den, INT2FIX(1)); } } if (nsec) { /* submicro is only for Ruby 1.9.1 compatibility */ /* * submicro is formatted in fixed-point packed BCD (without sign). * It represent digits under microsecond. * For nanosecond resolution, 3 digits (2 bytes) are used. * However it can be longer. * Extra digits are ignored for loading. */ char buf[2]; int len = (int)sizeof(buf); buf[1] = (char)((nsec % 10) << 4); nsec /= 10; buf[0] = (char)(nsec % 10); nsec /= 10; buf[0] |= (char)((nsec % 10) << 4); if (buf[1] == 0) len = 1; rb_ivar_set(str, id_submicro, rb_str_new(buf, len)); } if (!TZMODE_UTC_P(tobj)) { VALUE off = rb_time_utc_offset(time), div, mod; divmodv(off, INT2FIX(1), &div, &mod); if (rb_equal(mod, INT2FIX(0))) off = rb_Integer(div); rb_ivar_set(str, id_offset, off); } zone = tobj->vtm.zone; if (maybe_tzobj_p(zone)) { zone = rb_funcallv(zone, id_name, 0, 0); } rb_ivar_set(str, id_zone, zone); return str; } /* :nodoc: */ static VALUE time_dump(int argc, VALUE *argv, VALUE time) { VALUE str; rb_scan_args(argc, argv, "01", 0); str = time_mdump(time); return str; } /* :nodoc: */ static VALUE time_mload(VALUE time, VALUE str) { struct time_object *tobj; unsigned long p, s; time_t sec; long usec; unsigned char *buf; struct vtm vtm; int i, gmt; long nsec; VALUE submicro, nano_num, nano_den, offset, zone; wideval_t timew; time_modify(time); #define get_attr(attr, iffound) \ attr = rb_attr_delete(str, id_##attr); \ if (!NIL_P(attr)) { \ iffound; \ } get_attr(nano_num, {}); get_attr(nano_den, {}); get_attr(submicro, {}); get_attr(offset, (offset = rb_rescue(validate_utc_offset, offset, NULL, Qnil))); get_attr(zone, (zone = rb_rescue(validate_zone_name, zone, NULL, Qnil))); #undef get_attr rb_copy_generic_ivar(time, str); StringValue(str); buf = (unsigned char *)RSTRING_PTR(str); if (RSTRING_LEN(str) != 8) { rb_raise(rb_eTypeError, "marshaled time format differ"); } p = s = 0; for (i=0; i<4; i++) { p |= (unsigned long)buf[i]<<(8*i); } for (i=4; i<8; i++) { s |= (unsigned long)buf[i]<<(8*(i-4)); } if ((p & (1UL<<31)) == 0) { gmt = 0; offset = Qnil; sec = p; usec = s; nsec = usec * 1000; timew = wadd(rb_time_magnify(TIMET2WV(sec)), wmulquoll(WINT2FIXWV(usec), TIME_SCALE, 1000000)); } else { p &= ~(1UL<<31); gmt = (int)((p >> 30) & 0x1); vtm.year = INT2FIX(((int)(p >> 14) & 0xffff) + 1900); vtm.mon = ((int)(p >> 10) & 0xf) + 1; vtm.mday = (int)(p >> 5) & 0x1f; vtm.hour = (int) p & 0x1f; vtm.min = (int)(s >> 26) & 0x3f; vtm.sec = (int)(s >> 20) & 0x3f; vtm.utc_offset = INT2FIX(0); vtm.yday = vtm.wday = 0; vtm.isdst = 0; vtm.zone = rb_fstring_lit(""); usec = (long)(s & 0xfffff); nsec = usec * 1000; vtm.subsecx = mulquov(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000)); if (nano_num != Qnil) { VALUE nano = quov(num_exact(nano_num), num_exact(nano_den)); vtm.subsecx = addv(vtm.subsecx, mulquov(nano, INT2FIX(TIME_SCALE), LONG2FIX(1000000000))); } else if (submicro != Qnil) { /* for Ruby 1.9.1 compatibility */ unsigned char *ptr; long len; int digit; ptr = (unsigned char*)StringValuePtr(submicro); len = RSTRING_LEN(submicro); nsec = 0; if (0 < len) { if (10 <= (digit = ptr[0] >> 4)) goto end_submicro; nsec += digit * 100; if (10 <= (digit = ptr[0] & 0xf)) goto end_submicro; nsec += digit * 10; } if (1 < len) { if (10 <= (digit = ptr[1] >> 4)) goto end_submicro; nsec += digit; } vtm.subsecx = addv(vtm.subsecx, mulquov(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000))); end_submicro: ; } timew = timegmw(&vtm); } GetNewTimeval(time, tobj); tobj->tzmode = TIME_TZMODE_LOCALTIME; tobj->tm_got = 0; tobj->timew = timew; if (gmt) { TZMODE_SET_UTC(tobj); } else if (!NIL_P(offset)) { time_set_utc_offset(time, offset); time_fixoff(time); } if (!NIL_P(zone)) { zone = rb_fstring(zone); tobj->vtm.zone = zone; } return time; } /* :nodoc: */ static VALUE time_load(VALUE klass, VALUE str) { VALUE time = time_s_alloc(klass); time_mload(time, str); return time; } /* Document-class: Time::TM * * A container class for timezone conversion. */ /* * call-seq: * * Time::TM.from_time(t) -> tm * * Creates new Time::TM object from a Time object. */ static VALUE tm_from_time(VALUE klass, VALUE time) { struct time_object *tobj; struct vtm vtm, *v; #if TM_IS_TIME VALUE tm; struct time_object *ttm; GetTimeval(time, tobj); tm = time_s_alloc(klass); ttm = DATA_PTR(tm); v = &vtm; GMTIMEW(ttm->timew = tobj->timew, v); v->subsecx = INT2FIX(0); v->zone = Qnil; ttm->vtm = *v; ttm->tm_got = 1; TZMODE_SET_UTC(ttm); return tm; #else VALUE args[8]; int i = 0; GetTimeval(time, tobj); if (tobj->tm_got && TZMODE_UTC_P(tobj)) v = &tobj->vtm; else GMTIMEW(tobj->timew, v = &vtm); args[i++] = v->year; args[i++] = INT2FIX(v->mon); args[i++] = INT2FIX(v->mday); args[i++] = INT2FIX(v->hour); args[i++] = INT2FIX(v->min); args[i++] = INT2FIX(v->sec); switch (v->isdst) { case 0: args[i++] = Qfalse; break; case 1: args[i++] = Qtrue; break; default: args[i++] = Qnil; break; } args[i++] = w2v(rb_time_unmagnify(tobj->timew)); return rb_class_new_instance(i, args, klass); #endif } /* * call-seq: * * Time::TM.new(year, month, day, hour, min, sec) -> tm * * Creates new Time::TM object. */ static VALUE tm_initialize(int argc, VALUE *argv, VALUE tm) { #if TM_IS_TIME struct time_object *tobj = DATA_PTR(tm); struct vtm vtm; rb_check_arity(argc, 1, 6); time_arg(argc, argv, &vtm); tobj->tzmode = TIME_TZMODE_UTC; tobj->timew = timegmw(&vtm); tobj->vtm = vtm; return tm; #else int i = 0; struct vtm vtm; wideval_t t; time_arg(argc, argv, &vtm); t = timegmw(&vtm); RSTRUCT_SET(tm, i++, INT2FIX(vtm.sec)); RSTRUCT_SET(tm, i++, INT2FIX(vtm.min)); RSTRUCT_SET(tm, i++, INT2FIX(vtm.hour)); RSTRUCT_SET(tm, i++, INT2FIX(vtm.mday)); RSTRUCT_SET(tm, i++, INT2FIX(vtm.mon)); RSTRUCT_SET(tm, i++, vtm.year); RSTRUCT_SET(tm, i++, INT2FIX(0)); switch (vtm.isdst) { case 0: RSTRUCT_SET(tm, i++, Qfalse); break; case 1: RSTRUCT_SET(tm, i++, Qtrue); break; default: RSTRUCT_SET(tm, i++, Qnil); break; } RSTRUCT_SET(tm, i++, w2v(rb_time_unmagnify(t))); return tm; #endif } /* call-seq: * * tm.to_time -> time * * Returns a new Time object. */ static VALUE tm_to_time(VALUE tm) { #if TM_IS_TIME struct time_object *torig = get_timeval(tm); VALUE dup = time_s_alloc(rb_cTime); struct time_object *tobj = DATA_PTR(dup); *tobj = *torig; return dup; #else VALUE t[6]; const VALUE *p = RSTRUCT_CONST_PTR(tm); int i; for (i = 0; i < numberof(t); ++i) { t[i] = p[numberof(t) - 1 - i]; } return time_s_mkutc(numberof(t), t, rb_cTime); #endif } VALUE rb_time_zone_abbreviation(VALUE zone, VALUE time) { VALUE tm, abbr, strftime_args[2]; abbr = rb_check_string_type(zone); if (!NIL_P(abbr)) return abbr; tm = tm_from_time(rb_cTimeTM, time); abbr = rb_check_funcall(zone, rb_intern("abbr"), 1, &tm); if (abbr != Qundef) { goto found; } #ifdef SUPPORT_TZINFO_ZONE_ABBREVIATION abbr = rb_check_funcall(zone, rb_intern("period_for_utc"), 1, &tm); if (abbr != Qundef) { abbr = rb_funcallv(abbr, rb_intern("abbreviation"), 0, 0); goto found; } #endif strftime_args[0] = rb_fstring_lit("%Z"); strftime_args[1] = tm; abbr = rb_check_funcall(zone, rb_intern("strftime"), 2, strftime_args); if (abbr != Qundef) { goto found; } abbr = rb_check_funcall_default(zone, rb_intern("name"), 0, 0, Qnil); found: return rb_obj_as_string(abbr); } /* * Time is an abstraction of dates and times. Time is stored internally as * the number of seconds with fraction since the _Epoch_, January 1, 1970 * 00:00 UTC. Also see the library module Date. The Time class treats GMT * (Greenwich Mean Time) and UTC (Coordinated Universal Time) as equivalent. * GMT is the older way of referring to these baseline times but persists in * the names of calls on POSIX systems. * * All times may have fraction. Be aware of this fact when comparing times * with each other -- times that are apparently equal when displayed may be * different when compared. * * Since Ruby 1.9.2, Time implementation uses a signed 63 bit integer, * Bignum or Rational. * The integer is a number of nanoseconds since the _Epoch_ which can * represent 1823-11-12 to 2116-02-20. * When Bignum or Rational is used (before 1823, after 2116, under * nanosecond), Time works slower as when integer is used. * * = Examples * * All of these examples were done using the EST timezone which is GMT-5. * * == Creating a new Time instance * * You can create a new instance of Time with Time::new. This will use the * current system time. Time::now is an alias for this. You can also * pass parts of the time to Time::new such as year, month, minute, etc. When * you want to construct a time this way you must pass at least a year. If you * pass the year with nothing else time will default to January 1 of that year * at 00:00:00 with the current system timezone. Here are some examples: * * Time.new(2002) #=> 2002-01-01 00:00:00 -0500 * Time.new(2002, 10) #=> 2002-10-01 00:00:00 -0500 * Time.new(2002, 10, 31) #=> 2002-10-31 00:00:00 -0500 * Time.new(2002, 10, 31, 2, 2, 2, "+02:00") #=> 2002-10-31 02:02:02 +0200 * * You can also use #gm, #local and * #utc to infer GMT, local and UTC timezones instead of using * the current system setting. * * You can also create a new time using Time::at which takes the number of * seconds (or fraction of seconds) since the {Unix * Epoch}[http://en.wikipedia.org/wiki/Unix_time]. * * Time.at(628232400) #=> 1989-11-28 00:00:00 -0500 * * == Working with an instance of Time * * Once you have an instance of Time there is a multitude of things you can * do with it. Below are some examples. For all of the following examples, we * will work on the assumption that you have done the following: * * t = Time.new(1993, 02, 24, 12, 0, 0, "+09:00") * * Was that a monday? * * t.monday? #=> false * * What year was that again? * * t.year #=> 1993 * * Was it daylight savings at the time? * * t.dst? #=> false * * What's the day a year later? * * t + (60*60*24*365) #=> 1994-02-24 12:00:00 +0900 * * How many seconds was that since the Unix Epoch? * * t.to_i #=> 730522800 * * You can also do standard functions like compare two times. * * t1 = Time.new(2010) * t2 = Time.new(2011) * * t1 == t2 #=> false * t1 == t1 #=> true * t1 < t2 #=> true * t1 > t2 #=> false * * Time.new(2010,10,31).between?(t1, t2) #=> true */ void Init_Time(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) id_quo = rb_intern("quo"); id_div = rb_intern("div"); id_divmod = rb_intern("divmod"); id_submicro = rb_intern("submicro"); id_nano_num = rb_intern("nano_num"); id_nano_den = rb_intern("nano_den"); id_offset = rb_intern("offset"); id_zone = rb_intern("zone"); id_nanosecond = rb_intern("nanosecond"); id_microsecond = rb_intern("microsecond"); id_millisecond = rb_intern("millisecond"); id_nsec = rb_intern("nsec"); id_usec = rb_intern("usec"); id_local_to_utc = rb_intern("local_to_utc"); id_utc_to_local = rb_intern("utc_to_local"); id_year = rb_intern("year"); id_mon = rb_intern("mon"); id_mday = rb_intern("mday"); id_hour = rb_intern("hour"); id_min = rb_intern("min"); id_sec = rb_intern("sec"); id_isdst = rb_intern("isdst"); id_name = rb_intern("name"); rb_cTime = rb_define_class("Time", rb_cObject); rb_include_module(rb_cTime, rb_mComparable); #if TM_IS_TIME rb_cTimeTM = rb_define_class_under(rb_cTime, "TM", rb_cTime); #else rb_cTimeTM = rb_struct_define_under(rb_cTime, "TM", "sec", "min", "hour", "mday", "mon", "year", "subsec", "isdst", "to_i", NULL); rb_alias(rb_cTimeTM, rb_intern("dst?"), id_isdst); #endif rb_define_method(rb_cTimeTM, "initialize", tm_initialize, -1); rb_define_method(rb_cTimeTM, "utc", tm_to_time, 0); rb_alias(rb_cTimeTM, rb_intern("to_time"), rb_intern("utc")); rb_define_singleton_method(rb_cTimeTM, "from_time", tm_from_time, 1); rb_define_alloc_func(rb_cTime, time_s_alloc); rb_define_singleton_method(rb_cTime, "now", time_s_now, 0); rb_define_singleton_method(rb_cTime, "at", time_s_at, -1); rb_define_singleton_method(rb_cTime, "utc", time_s_mkutc, -1); rb_define_singleton_method(rb_cTime, "gm", time_s_mkutc, -1); rb_define_singleton_method(rb_cTime, "local", time_s_mktime, -1); rb_define_singleton_method(rb_cTime, "mktime", time_s_mktime, -1); rb_define_method(rb_cTime, "to_i", time_to_i, 0); rb_define_method(rb_cTime, "to_f", time_to_f, 0); rb_define_method(rb_cTime, "to_r", time_to_r, 0); rb_define_method(rb_cTime, "<=>", time_cmp, 1); rb_define_method(rb_cTime, "eql?", time_eql, 1); rb_define_method(rb_cTime, "hash", time_hash, 0); rb_define_method(rb_cTime, "initialize", time_init, -1); rb_define_method(rb_cTime, "initialize_copy", time_init_copy, 1); rb_define_method(rb_cTime, "localtime", time_localtime_m, -1); rb_define_method(rb_cTime, "gmtime", time_gmtime, 0); rb_define_method(rb_cTime, "utc", time_gmtime, 0); rb_define_method(rb_cTime, "getlocal", time_getlocaltime, -1); rb_define_method(rb_cTime, "getgm", time_getgmtime, 0); rb_define_method(rb_cTime, "getutc", time_getgmtime, 0); rb_define_method(rb_cTime, "ctime", time_asctime, 0); rb_define_method(rb_cTime, "asctime", time_asctime, 0); rb_define_method(rb_cTime, "to_s", time_to_s, 0); rb_define_method(rb_cTime, "inspect", time_to_s, 0); rb_define_method(rb_cTime, "to_a", time_to_a, 0); rb_define_method(rb_cTime, "+", time_plus, 1); rb_define_method(rb_cTime, "-", time_minus, 1); rb_define_method(rb_cTime, "succ", time_succ, 0); rb_define_method(rb_cTime, "round", time_round, -1); rb_define_method(rb_cTime, "sec", time_sec, 0); rb_define_method(rb_cTime, "min", time_min, 0); rb_define_method(rb_cTime, "hour", time_hour, 0); rb_define_method(rb_cTime, "mday", time_mday, 0); rb_define_method(rb_cTime, "day", time_mday, 0); rb_define_method(rb_cTime, "mon", time_mon, 0); rb_define_method(rb_cTime, "month", time_mon, 0); rb_define_method(rb_cTime, "year", time_year, 0); rb_define_method(rb_cTime, "wday", time_wday, 0); rb_define_method(rb_cTime, "yday", time_yday, 0); rb_define_method(rb_cTime, "isdst", time_isdst, 0); rb_define_method(rb_cTime, "dst?", time_isdst, 0); rb_define_method(rb_cTime, "zone", time_zone, 0); rb_define_method(rb_cTime, "gmtoff", rb_time_utc_offset, 0); rb_define_method(rb_cTime, "gmt_offset", rb_time_utc_offset, 0); rb_define_method(rb_cTime, "utc_offset", rb_time_utc_offset, 0); rb_define_method(rb_cTime, "utc?", time_utc_p, 0); rb_define_method(rb_cTime, "gmt?", time_utc_p, 0); rb_define_method(rb_cTime, "sunday?", time_sunday, 0); rb_define_method(rb_cTime, "monday?", time_monday, 0); rb_define_method(rb_cTime, "tuesday?", time_tuesday, 0); rb_define_method(rb_cTime, "wednesday?", time_wednesday, 0); rb_define_method(rb_cTime, "thursday?", time_thursday, 0); rb_define_method(rb_cTime, "friday?", time_friday, 0); rb_define_method(rb_cTime, "saturday?", time_saturday, 0); rb_define_method(rb_cTime, "tv_sec", time_to_i, 0); rb_define_method(rb_cTime, "tv_usec", time_usec, 0); rb_define_method(rb_cTime, "usec", time_usec, 0); rb_define_method(rb_cTime, "tv_nsec", time_nsec, 0); rb_define_method(rb_cTime, "nsec", time_nsec, 0); rb_define_method(rb_cTime, "subsec", time_subsec, 0); rb_define_method(rb_cTime, "strftime", time_strftime, 1); /* methods for marshaling */ rb_define_private_method(rb_cTime, "_dump", time_dump, -1); rb_define_private_method(rb_singleton_class(rb_cTime), "_load", time_load, 1); #if 0 /* Time will support marshal_dump and marshal_load in the future (1.9 maybe) */ rb_define_private_method(rb_cTime, "marshal_dump", time_mdump, 0); rb_define_private_method(rb_cTime, "marshal_load", time_mload, 1); #endif #ifdef DEBUG_FIND_TIME_NUMGUESS rb_define_virtual_variable("$find_time_numguess", find_time_numguess_getter, NULL); #endif }