#include "rubysocket.h" VALUE rb_cSockOpt; #define pack_var(v) rb_str_new((const char *)&(v), sizeof(v)) #define CAT(x,y) x##y #define XCAT(x,y) CAT(x,y) #if defined(__linux__) || \ defined(__GNU__) /* GNU/Hurd */ || \ defined(__FreeBSD__) || \ defined(__DragonFly__) || \ defined(__APPLE__) || \ defined(_WIN32) || \ defined(__CYGWIN__) # define TYPE_IP_MULTICAST_LOOP int # define TYPE_IP_MULTICAST_TTL int #else /* The original IP multicast implementation by Steve Deering * NetBSD * OpenBSD * SunOS */ # define TYPE_IP_MULTICAST_LOOP byte # define TYPE_IP_MULTICAST_TTL byte # define USE_INSPECT_BYTE 1 #endif static VALUE sockopt_pack_byte(VALUE value) { char i = NUM2CHR(rb_to_int(value)); return pack_var(i); } static VALUE sockopt_pack_int(VALUE value) { int i = NUM2INT(rb_to_int(value)); return pack_var(i); } static VALUE constant_to_sym(int constant, ID (*intern_const)(int)) { ID name = intern_const(constant); if (name) { return ID2SYM(name); } return INT2NUM(constant); } static VALUE optname_to_sym(int level, int optname) { switch (level) { case SOL_SOCKET: return constant_to_sym(optname, rsock_intern_so_optname); case IPPROTO_IP: return constant_to_sym(optname, rsock_intern_ip_optname); #ifdef IPPROTO_IPV6 case IPPROTO_IPV6: return constant_to_sym(optname, rsock_intern_ipv6_optname); #endif case IPPROTO_TCP: return constant_to_sym(optname, rsock_intern_tcp_optname); case IPPROTO_UDP: return constant_to_sym(optname, rsock_intern_udp_optname); default: return INT2NUM(optname); } } /* * call-seq: * Socket::Option.new(family, level, optname, data) => sockopt * * Returns a new Socket::Option object. * * sockopt = Socket::Option.new(:INET, :SOCKET, :KEEPALIVE, [1].pack("i")) * p sockopt #=> # * */ static VALUE sockopt_initialize(VALUE self, VALUE vfamily, VALUE vlevel, VALUE voptname, VALUE data) { int family = rsock_family_arg(vfamily); int level = rsock_level_arg(family, vlevel); int optname = rsock_optname_arg(family, level, voptname); StringValue(data); rb_ivar_set(self, rb_intern("family"), INT2NUM(family)); rb_ivar_set(self, rb_intern("level"), INT2NUM(level)); rb_ivar_set(self, rb_intern("optname"), INT2NUM(optname)); rb_ivar_set(self, rb_intern("data"), data); return self; } VALUE rsock_sockopt_new(int family, int level, int optname, VALUE data) { NEWOBJ_OF(obj, struct RObject, rb_cSockOpt, T_OBJECT); StringValue(data); sockopt_initialize((VALUE)obj, INT2NUM(family), INT2NUM(level), INT2NUM(optname), data); return (VALUE)obj; } /* * call-seq: * sockopt.family => integer * * returns the socket family as an integer. * * p Socket::Option.new(:INET6, :IPV6, :RECVPKTINFO, [1].pack("i!")).family * #=> 10 */ static VALUE sockopt_family_m(VALUE self) { return rb_attr_get(self, rb_intern("family")); } static int sockopt_level(VALUE self) { return NUM2INT(rb_attr_get(self, rb_intern("level"))); } /* * call-seq: * sockopt.level => integer * * returns the socket level as an integer. * * p Socket::Option.new(:INET6, :IPV6, :RECVPKTINFO, [1].pack("i!")).level * #=> 41 */ static VALUE sockopt_level_m(VALUE self) { return INT2NUM(sockopt_level(self)); } static int sockopt_optname(VALUE self) { return NUM2INT(rb_attr_get(self, rb_intern("optname"))); } /* * call-seq: * sockopt.optname => integer * * returns the socket option name as an integer. * * p Socket::Option.new(:INET6, :IPV6, :RECVPKTINFO, [1].pack("i!")).optname * #=> 2 */ static VALUE sockopt_optname_m(VALUE self) { return INT2NUM(sockopt_optname(self)); } /* * call-seq: * sockopt.data => string * sockopt.to_s => string * * returns the socket option data as a string. * * p Socket::Option.new(:INET6, :IPV6, :RECVPKTINFO, [1].pack("i!")).data * #=> "\x01\x00\x00\x00" */ static VALUE sockopt_data(VALUE self) { VALUE v = rb_attr_get(self, rb_intern("data")); StringValue(v); return v; } /* * call-seq: * Socket::Option.byte(family, level, optname, integer) => sockopt * * Creates a new Socket::Option object which contains a byte as data. * * p Socket::Option.byte(:INET, :SOCKET, :KEEPALIVE, 1) * #=> # */ static VALUE sockopt_s_byte(VALUE klass, VALUE vfamily, VALUE vlevel, VALUE voptname, VALUE vint) { int family = rsock_family_arg(vfamily); int level = rsock_level_arg(family, vlevel); int optname = rsock_optname_arg(family, level, voptname); return rsock_sockopt_new(family, level, optname, sockopt_pack_byte(vint)); } /* * call-seq: * sockopt.byte => integer * * Returns the data in _sockopt_ as an byte. * * sockopt = Socket::Option.byte(:INET, :SOCKET, :KEEPALIVE, 1) * p sockopt.byte => 1 */ static VALUE sockopt_byte(VALUE self) { unsigned char i; VALUE data = sockopt_data(self); StringValue(data); if (RSTRING_LEN(data) != sizeof(i)) rb_raise(rb_eTypeError, "size differ. expected as sizeof(int)=%d but %ld", (int)sizeof(i), (long)RSTRING_LEN(data)); return CHR2FIX(*RSTRING_PTR(data)); } /* * call-seq: * Socket::Option.int(family, level, optname, integer) => sockopt * * Creates a new Socket::Option object which contains an int as data. * * The size and endian is dependent on the platform. * * p Socket::Option.int(:INET, :SOCKET, :KEEPALIVE, 1) * #=> # */ static VALUE sockopt_s_int(VALUE klass, VALUE vfamily, VALUE vlevel, VALUE voptname, VALUE vint) { int family = rsock_family_arg(vfamily); int level = rsock_level_arg(family, vlevel); int optname = rsock_optname_arg(family, level, voptname); return rsock_sockopt_new(family, level, optname, sockopt_pack_int(vint)); } /* * call-seq: * sockopt.int => integer * * Returns the data in _sockopt_ as an int. * * The size and endian is dependent on the platform. * * sockopt = Socket::Option.int(:INET, :SOCKET, :KEEPALIVE, 1) * p sockopt.int => 1 */ static VALUE sockopt_int(VALUE self) { int i; VALUE data = sockopt_data(self); StringValue(data); if (RSTRING_LEN(data) != sizeof(int)) rb_raise(rb_eTypeError, "size differ. expected as sizeof(int)=%d but %ld", (int)sizeof(int), (long)RSTRING_LEN(data)); memcpy((char*)&i, RSTRING_PTR(data), sizeof(int)); return INT2NUM(i); } /* * call-seq: * Socket::Option.bool(family, level, optname, bool) => sockopt * * Creates a new Socket::Option object which contains boolean as data. * Actually 0 or 1 as int is used. * * p Socket::Option.bool(:INET, :SOCKET, :KEEPALIVE, true) * #=> # * * p Socket::Option.bool(:INET, :SOCKET, :KEEPALIVE, false) * #=> # * */ static VALUE sockopt_s_bool(VALUE klass, VALUE vfamily, VALUE vlevel, VALUE voptname, VALUE vbool) { int family = rsock_family_arg(vfamily); int level = rsock_level_arg(family, vlevel); int optname = rsock_optname_arg(family, level, voptname); int i = RTEST(vbool) ? 1 : 0; return rsock_sockopt_new(family, level, optname, pack_var(i)); } /* * call-seq: * sockopt.bool => true or false * * Returns the data in _sockopt_ as an boolean value. * * sockopt = Socket::Option.int(:INET, :SOCKET, :KEEPALIVE, 1) * p sockopt.bool => true */ static VALUE sockopt_bool(VALUE self) { int i; VALUE data = sockopt_data(self); StringValue(data); if (RSTRING_LEN(data) != sizeof(int)) rb_raise(rb_eTypeError, "size differ. expected as sizeof(int)=%d but %ld", (int)sizeof(int), (long)RSTRING_LEN(data)); memcpy((char*)&i, RSTRING_PTR(data), sizeof(int)); return i == 0 ? Qfalse : Qtrue; } /* * call-seq: * Socket::Option.linger(onoff, secs) => sockopt * * Creates a new Socket::Option object for SOL_SOCKET/SO_LINGER. * * _onoff_ should be an integer or a boolean. * * _secs_ should be the number of seconds. * * p Socket::Option.linger(true, 10) * #=> # * */ static VALUE sockopt_s_linger(VALUE klass, VALUE vonoff, VALUE vsecs) { VALUE tmp; struct linger l; memset(&l, 0, sizeof(l)); if (!NIL_P(tmp = rb_check_to_integer(vonoff, "to_int"))) l.l_onoff = NUM2INT(tmp); else l.l_onoff = RTEST(vonoff) ? 1 : 0; l.l_linger = NUM2INT(vsecs); return rsock_sockopt_new(AF_UNSPEC, SOL_SOCKET, SO_LINGER, pack_var(l)); } /* * call-seq: * sockopt.linger => [bool, seconds] * * Returns the linger data in _sockopt_ as a pair of boolean and integer. * * sockopt = Socket::Option.linger(true, 10) * p sockopt.linger => [true, 10] */ static VALUE sockopt_linger(VALUE self) { int level = sockopt_level(self); int optname = sockopt_optname(self); VALUE data = sockopt_data(self); struct linger l; VALUE vonoff, vsecs; if (level != SOL_SOCKET || optname != SO_LINGER) rb_raise(rb_eTypeError, "linger socket option expected"); if (RSTRING_LEN(data) != sizeof(l)) rb_raise(rb_eTypeError, "size differ. expected as sizeof(struct linger)=%d but %ld", (int)sizeof(struct linger), (long)RSTRING_LEN(data)); memcpy((char*)&l, RSTRING_PTR(data), sizeof(struct linger)); switch (l.l_onoff) { case 0: vonoff = Qfalse; break; case 1: vonoff = Qtrue; break; default: vonoff = INT2NUM(l.l_onoff); break; } vsecs = INT2NUM(l.l_linger); return rb_assoc_new(vonoff, vsecs); } /* * call-seq: * Socket::Option.ipv4_multicast_loop(integer) => sockopt * * Creates a new Socket::Option object for IP_MULTICAST_LOOP. * * The size is dependent on the platform. * * sockopt = Socket::Option.int(:INET, :IPPROTO_IP, :IP_MULTICAST_LOOP, 1) * p sockopt.int => 1 * * p Socket::Option.ipv4_multicast_loop(10) * #=> # * */ static VALUE sockopt_s_ipv4_multicast_loop(VALUE klass, VALUE value) { #if defined(IPPROTO_IP) && defined(IP_MULTICAST_LOOP) VALUE o = XCAT(sockopt_pack_,TYPE_IP_MULTICAST_LOOP)(value); return rsock_sockopt_new(AF_INET, IPPROTO_IP, IP_MULTICAST_LOOP, o); #else # error IPPROTO_IP or IP_MULTICAST_LOOP is not implemented #endif } /* * call-seq: * sockopt.ipv4_multicast_loop => integer * * Returns the ipv4_multicast_loop data in _sockopt_ as a integer. * * sockopt = Socket::Option.ipv4_multicast_loop(10) * p sockopt.ipv4_multicast_loop => 10 */ static VALUE sockopt_ipv4_multicast_loop(VALUE self) { int family = NUM2INT(sockopt_family_m(self)); int level = sockopt_level(self); int optname = sockopt_optname(self); #if defined(IPPROTO_IP) && defined(IP_MULTICAST_LOOP) if (family == AF_INET && level == IPPROTO_IP && optname == IP_MULTICAST_LOOP) { return XCAT(sockopt_,TYPE_IP_MULTICAST_LOOP)(self); } #endif rb_raise(rb_eTypeError, "ipv4_multicast_loop socket option expected"); UNREACHABLE; } #define inspect_ipv4_multicast_loop(a,b,c,d) \ XCAT(inspect_,TYPE_IP_MULTICAST_LOOP)(a,b,c,d) /* * call-seq: * Socket::Option.ipv4_multicast_ttl(integer) => sockopt * * Creates a new Socket::Option object for IP_MULTICAST_TTL. * * The size is dependent on the platform. * * p Socket::Option.ipv4_multicast_ttl(10) * #=> # * */ static VALUE sockopt_s_ipv4_multicast_ttl(VALUE klass, VALUE value) { #if defined(IPPROTO_IP) && defined(IP_MULTICAST_TTL) VALUE o = XCAT(sockopt_pack_,TYPE_IP_MULTICAST_TTL)(value); return rsock_sockopt_new(AF_INET, IPPROTO_IP, IP_MULTICAST_TTL, o); #else # error IPPROTO_IP or IP_MULTICAST_TTL is not implemented #endif } /* * call-seq: * sockopt.ipv4_multicast_ttl => integer * * Returns the ipv4_multicast_ttl data in _sockopt_ as a integer. * * sockopt = Socket::Option.ipv4_multicast_ttl(10) * p sockopt.ipv4_multicast_ttl => 10 */ static VALUE sockopt_ipv4_multicast_ttl(VALUE self) { int family = NUM2INT(sockopt_family_m(self)); int level = sockopt_level(self); int optname = sockopt_optname(self); #if defined(IPPROTO_IP) && defined(IP_MULTICAST_TTL) if (family == AF_INET && level == IPPROTO_IP && optname == IP_MULTICAST_TTL) { return XCAT(sockopt_,TYPE_IP_MULTICAST_TTL)(self); } #endif rb_raise(rb_eTypeError, "ipv4_multicast_ttl socket option expected"); UNREACHABLE; } #define inspect_ipv4_multicast_ttl(a,b,c,d) \ XCAT(inspect_,TYPE_IP_MULTICAST_TTL)(a,b,c,d) static int inspect_int(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(int)) { int i; memcpy((char*)&i, RSTRING_PTR(data), sizeof(int)); rb_str_catf(ret, " %d", i); return 1; } else { return 0; } } #ifdef USE_INSPECT_BYTE static int inspect_byte(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(unsigned char)) { rb_str_catf(ret, " %d", (unsigned char)*RSTRING_PTR(data)); return 1; } else { return 0; } } #endif static int inspect_errno(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(int)) { int i; char *err; memcpy((char*)&i, RSTRING_PTR(data), sizeof(int)); err = strerror(i); rb_str_catf(ret, " %s (%d)", err, i); return 1; } else { return 0; } } #if defined(IPV6_MULTICAST_LOOP) static int inspect_uint(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(int)) { unsigned int i; memcpy((char*)&i, RSTRING_PTR(data), sizeof(unsigned int)); rb_str_catf(ret, " %u", i); return 1; } else { return 0; } } #endif #if defined(SOL_SOCKET) && defined(SO_LINGER) /* POSIX */ static int inspect_linger(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(struct linger)) { struct linger s; memcpy((char*)&s, RSTRING_PTR(data), sizeof(s)); switch (s.l_onoff) { case 0: rb_str_cat2(ret, " off"); break; case 1: rb_str_cat2(ret, " on"); break; default: rb_str_catf(ret, " on(%d)", s.l_onoff); break; } rb_str_catf(ret, " %dsec", s.l_linger); return 1; } else { return 0; } } #endif #if defined(SOL_SOCKET) && defined(SO_TYPE) /* POSIX */ static int inspect_socktype(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(int)) { int i; ID id; memcpy((char*)&i, RSTRING_PTR(data), sizeof(int)); id = rsock_intern_socktype(i); if (id) rb_str_catf(ret, " %s", rb_id2name(id)); else rb_str_catf(ret, " %d", i); return 1; } else { return 0; } } #endif static int inspect_timeval_as_interval(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(struct timeval)) { struct timeval s; memcpy((char*)&s, RSTRING_PTR(data), sizeof(s)); rb_str_catf(ret, " %ld.%06ldsec", (long)s.tv_sec, (long)s.tv_usec); return 1; } else { return 0; } } /* * socket option for IPv4 multicast is bit confusing. * * IP Multicast is implemented by Steve Deering at first: * IP Multicast Extensions for 4.3BSD UNIX and related systems * (MULTICAST 1.2 Release) * http://www.kohala.com/start/mcast.api.txt * * There are 2 socket options which takes a u_char (unsigned char). * * IP_MULTICAST_TTL * IP_MULTICAST_LOOP * * However Linux and FreeBSD setsockname accepts int argument * as well as u_char. * Their getsockname returns int. * * There are 3 socket options which takes a struct. * * IP_MULTICAST_IF: struct in_addr * IP_ADD_MEMBERSHIP: struct ip_mreq * IP_DROP_MEMBERSHIP: struct ip_mreq * * But they uses an IP address to specify an interface. * This means the API cannot specify an unnumbered interface. * * Linux 2.4 introduces struct ip_mreqn to fix this problem. * struct ip_mreqn has imr_ifindex field to specify interface index. * * IP_MULTICAST_IF: struct ip_mreqn * IP_ADD_MEMBERSHIP: struct ip_mreqn * IP_DROP_MEMBERSHIP: struct ip_mreqn * * FreeBSD 7 obtained struct ip_mreqn for IP_MULTICAST_IF. * http://www.FreeBSD.org/cgi/cvsweb.cgi/src/sys/netinet/in.h.diff?r1=1.99;r2=1.100 * * Another hackish workaround is "RFC 1724 hack". * RFC 1724 section 3.3 suggests unnumbered interfaces * specified by pseudo address 0.0.0.0/8. * NetBSD 4 and FreeBSD 5 documented it. * http://cvsweb.netbsd.org/cgi-bin/cvsweb.cgi/src/share/man/man4/ip.4.diff?r1=1.16&r2=1.17 * http://www.FreeBSD.org/cgi/cvsweb.cgi/src/share/man/man4/ip.4.diff?r1=1.37;r2=1.38 * FreeBSD 7.0 removed it. * http://www.FreeBSD.org/cgi/cvsweb.cgi/src/share/man/man4/ip.4.diff?r1=1.49;r2=1.50 * * RFC 1724 hack is not supported by Socket::Option#inspect because * it is not distinguishable by the size. */ #if !defined HAVE_INET_NTOP && ! defined _WIN32 static const char * inet_ntop(int af, const void *addr, char *numaddr, size_t numaddr_len) { #ifdef HAVE_INET_NTOA struct in_addr in; memcpy(&in.s_addr, addr, sizeof(in.s_addr)); snprintf(numaddr, numaddr_len, "%s", inet_ntoa(in)); #else unsigned long x = ntohl(*(unsigned long*)addr); snprintf(numaddr, numaddr_len, "%d.%d.%d.%d", (int) (x>>24) & 0xff, (int) (x>>16) & 0xff, (int) (x>> 8) & 0xff, (int) (x>> 0) & 0xff); #endif return numaddr; } #elif defined __MINGW32__ # define inet_ntop(f,a,n,l) rb_w32_inet_ntop(f,a,n,l) #elif defined _MSC_VER && RUBY_MSVCRT_VERSION < 90 const char *WSAAPI inet_ntop(int, const void *, char *, size_t); #endif /* Although the buffer size needed depends on the prefixes, "%u" may generate "4294967295". */ static int rb_if_indextoname(const char *succ_prefix, const char *fail_prefix, unsigned int ifindex, char *buf, size_t len) { #if defined(HAVE_IF_INDEXTONAME) char ifbuf[IFNAMSIZ]; if (if_indextoname(ifindex, ifbuf) == NULL) return snprintf(buf, len, "%s%u", fail_prefix, ifindex); else return snprintf(buf, len, "%s%s", succ_prefix, ifbuf); #else # ifndef IFNAMSIZ # define IFNAMSIZ (sizeof(unsigned int)*3+1) # endif return snprintf(buf, len, "%s%u", fail_prefix, ifindex); #endif } #if defined(IPPROTO_IP) && defined(HAVE_TYPE_STRUCT_IP_MREQ) /* 4.4BSD, GNU/Linux */ static int inspect_ipv4_mreq(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(struct ip_mreq)) { struct ip_mreq s; char addrbuf[INET_ADDRSTRLEN]; memcpy((char*)&s, RSTRING_PTR(data), sizeof(s)); if (inet_ntop(AF_INET, &s.imr_multiaddr, addrbuf, (socklen_t)sizeof(addrbuf)) == NULL) rb_str_cat2(ret, " invalid-address"); else rb_str_catf(ret, " %s", addrbuf); if (inet_ntop(AF_INET, &s.imr_interface, addrbuf, (socklen_t)sizeof(addrbuf)) == NULL) rb_str_catf(ret, " invalid-address"); else rb_str_catf(ret, " %s", addrbuf); return 1; } else { return 0; } } #endif #if defined(IPPROTO_IP) && defined(HAVE_TYPE_STRUCT_IP_MREQN) /* GNU/Linux, FreeBSD 7 */ static int inspect_ipv4_mreqn(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(struct ip_mreqn)) { struct ip_mreqn s; char addrbuf[INET_ADDRSTRLEN], ifbuf[32+IFNAMSIZ]; memcpy((char*)&s, RSTRING_PTR(data), sizeof(s)); if (inet_ntop(AF_INET, &s.imr_multiaddr, addrbuf, (socklen_t)sizeof(addrbuf)) == NULL) rb_str_cat2(ret, " invalid-address"); else rb_str_catf(ret, " %s", addrbuf); if (inet_ntop(AF_INET, &s.imr_address, addrbuf, (socklen_t)sizeof(addrbuf)) == NULL) rb_str_catf(ret, " invalid-address"); else rb_str_catf(ret, " %s", addrbuf); rb_if_indextoname(" ", " ifindex:", s.imr_ifindex, ifbuf, sizeof(ifbuf)); rb_str_cat2(ret, ifbuf); return 1; } else { return 0; } } #endif #if defined(IPPROTO_IP) && defined(HAVE_TYPE_STRUCT_IP_MREQ) /* 4.4BSD, GNU/Linux */ static int inspect_ipv4_add_drop_membership(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(struct ip_mreq)) return inspect_ipv4_mreq(level, optname, data, ret); # if defined(HAVE_TYPE_STRUCT_IP_MREQN) else if (RSTRING_LEN(data) == sizeof(struct ip_mreqn)) return inspect_ipv4_mreqn(level, optname, data, ret); # endif else return 0; } #endif #if defined(IPPROTO_IP) && defined(IP_MULTICAST_IF) && defined(HAVE_TYPE_STRUCT_IP_MREQN) /* 4.4BSD, GNU/Linux */ static int inspect_ipv4_multicast_if(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(struct in_addr)) { struct in_addr s; char addrbuf[INET_ADDRSTRLEN]; memcpy((char*)&s, RSTRING_PTR(data), sizeof(s)); if (inet_ntop(AF_INET, &s, addrbuf, (socklen_t)sizeof(addrbuf)) == NULL) rb_str_cat2(ret, " invalid-address"); else rb_str_catf(ret, " %s", addrbuf); return 1; } else if (RSTRING_LEN(data) == sizeof(struct ip_mreqn)) { return inspect_ipv4_mreqn(level, optname, data, ret); } else { return 0; } } #endif #if defined(IPV6_MULTICAST_IF) /* POSIX, RFC 3493 */ static int inspect_ipv6_multicast_if(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(int)) { char ifbuf[32+IFNAMSIZ]; unsigned int ifindex; memcpy((char*)&ifindex, RSTRING_PTR(data), sizeof(unsigned int)); rb_if_indextoname(" ", " ", ifindex, ifbuf, sizeof(ifbuf)); rb_str_cat2(ret, ifbuf); return 1; } else { return 0; } } #endif #if defined(IPPROTO_IPV6) && defined(HAVE_TYPE_STRUCT_IPV6_MREQ) /* POSIX, RFC 3493 */ static int inspect_ipv6_mreq(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(struct ipv6_mreq)) { struct ipv6_mreq s; char addrbuf[INET6_ADDRSTRLEN], ifbuf[32+IFNAMSIZ]; memcpy((char*)&s, RSTRING_PTR(data), sizeof(s)); if (inet_ntop(AF_INET6, &s.ipv6mr_multiaddr, addrbuf, (socklen_t)sizeof(addrbuf)) == NULL) rb_str_cat2(ret, " invalid-address"); else rb_str_catf(ret, " %s", addrbuf); rb_if_indextoname(" ", " interface:", s.ipv6mr_interface, ifbuf, sizeof(ifbuf)); rb_str_cat2(ret, ifbuf); return 1; } else { return 0; } } #endif #if defined(IPPROTO_TCP) && defined(TCP_INFO) && defined(HAVE_TYPE_STRUCT_TCP_INFO) #ifdef __FreeBSD__ # ifndef HAVE_CONST_TCP_ESTABLISHED # define TCP_ESTABLISHED TCPS_ESTABLISHED # endif # ifndef HAVE_CONST_TCP_SYN_SENT # define TCP_SYN_SENT TCPS_SYN_SENT # endif # ifndef HAVE_CONST_TCP_SYN_RECV # define TCP_SYN_RECV TCPS_SYN_RECEIVED # endif # ifndef HAVE_CONST_TCP_FIN_WAIT1 # define TCP_FIN_WAIT1 TCPS_FIN_WAIT_1 # endif # ifndef HAVE_CONST_TCP_FIN_WAIT2 # define TCP_FIN_WAIT2 TCPS_FIN_WAIT_2 # endif # ifndef HAVE_CONST_TCP_TIME_WAIT # define TCP_TIME_WAIT TCPS_TIME_WAIT # endif # ifndef HAVE_CONST_TCP_CLOSE # define TCP_CLOSE TCPS_CLOSED # endif # ifndef HAVE_CONST_TCP_CLOSE_WAIT # define TCP_CLOSE_WAIT TCPS_CLOSE_WAIT # endif # ifndef HAVE_CONST_TCP_LAST_ACK # define TCP_LAST_ACK TCPS_LAST_ACK # endif # ifndef HAVE_CONST_TCP_LISTEN # define TCP_LISTEN TCPS_LISTEN # endif # ifndef HAVE_CONST_TCP_CLOSING # define TCP_CLOSING TCPS_CLOSING # endif #endif #if defined(HAVE_CONST_TCP_ESTABLISHED) && !defined(TCP_ESTABLISHED) # define TCP_ESTABLISHED TCP_ESTABLISHED #endif #if defined(HAVE_CONST_TCP_SYN_SENT) && !defined(TCP_SYN_SENT) # define TCP_SYN_SENT TCP_SYN_SENT #endif #if defined(HAVE_CONST_TCP_SYN_RECV) && !defined(TCP_SYN_RECV) # define TCP_SYN_RECV TCP_SYN_RECV #endif #if defined(HAVE_CONST_TCP_FIN_WAIT1) && !defined(TCP_FIN_WAIT1) # define TCP_FIN_WAIT1 TCP_FIN_WAIT1 #endif #if defined(HAVE_CONST_TCP_FIN_WAIT2) && !defined(TCP_FIN_WAIT2) # define TCP_FIN_WAIT2 TCP_FIN_WAIT2 #endif #if defined(HAVE_CONST_TCP_TIME_WAIT) && !defined(TCP_TIME_WAIT) # define TCP_TIME_WAIT TCP_TIME_WAIT #endif #if defined(HAVE_CONST_TCP_CLOSE) && !defined(TCP_CLOSE) # define TCP_CLOSE TCP_CLOSE #endif #if defined(HAVE_CONST_TCP_CLOSE_WAIT) && !defined(TCP_CLOSE_WAIT) # define TCP_CLOSE_WAIT TCP_CLOSE_WAIT #endif #if defined(HAVE_CONST_TCP_LAST_ACK) && !defined(TCP_LAST_ACK) # define TCP_LAST_ACK TCP_LAST_ACK #endif #if defined(HAVE_CONST_TCP_LISTEN) && !defined(TCP_LISTEN) # define TCP_LISTEN TCP_LISTEN #endif #if defined(HAVE_CONST_TCP_CLOSING) && !defined(TCP_CLOSING) # define TCP_CLOSING TCP_CLOSING #endif static void inspect_tcpi_options(VALUE ret, u_int8_t options) { int sep = '='; rb_str_cat2(ret, " options"); #define INSPECT_TCPI_OPTION(optval, name) \ if (options & (optval)) { \ options &= ~(u_int8_t)(optval); \ rb_str_catf(ret, "%c%s", sep, name); \ sep = ','; \ } #ifdef TCPI_OPT_TIMESTAMPS /* GNU/Linux, FreeBSD */ INSPECT_TCPI_OPTION(TCPI_OPT_TIMESTAMPS, "TIMESTAMPS"); #endif #ifdef TCPI_OPT_SACK /* GNU/Linux, FreeBSD */ INSPECT_TCPI_OPTION(TCPI_OPT_SACK, "SACK"); #endif #ifdef TCPI_OPT_WSCALE /* GNU/Linux, FreeBSD */ INSPECT_TCPI_OPTION(TCPI_OPT_WSCALE, "WSCALE"); #endif #ifdef TCPI_OPT_ECN /* GNU/Linux, FreeBSD */ INSPECT_TCPI_OPTION(TCPI_OPT_ECN, "ECN"); #endif #ifdef TCPI_OPT_ECN_SEEN /* GNU/Linux */ INSPECT_TCPI_OPTION(TCPI_OPT_ECN_SEEN, "ECN_SEEN"); #endif #ifdef TCPI_OPT_SYN_DATA /* GNU/Linux */ INSPECT_TCPI_OPTION(TCPI_OPT_SYN_DATA, "SYN_DATA"); #endif #ifdef TCPI_OPT_TOE /* FreeBSD */ INSPECT_TCPI_OPTION(TCPI_OPT_TOE, "TOE"); #endif #undef INSPECT_TCPI_OPTION if (options || sep == '=') { rb_str_catf(ret, "%c%u", sep, options); } } static void inspect_tcpi_usec(VALUE ret, const char *prefix, u_int32_t t) { rb_str_catf(ret, "%s%u.%06us", prefix, t / 1000000, t % 1000000); } #ifdef __linux__ static void inspect_tcpi_msec(VALUE ret, const char *prefix, u_int32_t t) { rb_str_catf(ret, "%s%u.%03us", prefix, t / 1000, t % 1000); } #endif #ifdef __FreeBSD__ # define inspect_tcpi_rto(ret, t) inspect_tcpi_usec(ret, " rto=", t) # define inspect_tcpi_last_data_recv(ret, t) inspect_tcpi_usec(ret, " last_data_recv=", t) # define inspect_tcpi_rtt(ret, t) inspect_tcpi_usec(ret, " rtt=", t) # define inspect_tcpi_rttvar(ret, t) inspect_tcpi_usec(ret, " rttvar=", t) #else # define inspect_tcpi_rto(ret, t) inspect_tcpi_usec(ret, " rto=", t) # define inspect_tcpi_ato(ret, t) inspect_tcpi_usec(ret, " ato=", t) # define inspect_tcpi_last_data_sent(ret, t) inspect_tcpi_msec(ret, " last_data_sent=", t) # define inspect_tcpi_last_data_recv(ret, t) inspect_tcpi_msec(ret, " last_data_recv=", t) # define inspect_tcpi_last_ack_sent(ret, t) inspect_tcpi_msec(ret, " last_ack_sent=", t) # define inspect_tcpi_last_ack_recv(ret, t) inspect_tcpi_msec(ret, " last_ack_recv=", t) # define inspect_tcpi_rtt(ret, t) inspect_tcpi_usec(ret, " rtt=", t) # define inspect_tcpi_rttvar(ret, t) inspect_tcpi_usec(ret, " rttvar=", t) # define inspect_tcpi_rcv_rtt(ret, t) inspect_tcpi_usec(ret, " rcv_rtt=", t) #endif static int inspect_tcp_info(int level, int optname, VALUE data, VALUE ret) { size_t actual_size = RSTRING_LEN(data); if (sizeof(struct tcp_info) <= actual_size) { struct tcp_info s; memcpy((char*)&s, RSTRING_PTR(data), sizeof(s)); #ifdef HAVE_STRUCT_TCP_INFO_TCPI_STATE switch (s.tcpi_state) { # ifdef TCP_ESTABLISHED case TCP_ESTABLISHED: rb_str_cat_cstr(ret, " state=ESTABLISHED"); break; # endif # ifdef TCP_SYN_SENT case TCP_SYN_SENT: rb_str_cat_cstr(ret, " state=SYN_SENT"); break; # endif # ifdef TCP_SYN_RECV case TCP_SYN_RECV: rb_str_cat_cstr(ret, " state=SYN_RECV"); break; # endif # ifdef TCP_FIN_WAIT1 case TCP_FIN_WAIT1: rb_str_cat_cstr(ret, " state=FIN_WAIT1"); break; # endif # ifdef TCP_FIN_WAIT2 case TCP_FIN_WAIT2: rb_str_cat_cstr(ret, " state=FIN_WAIT2"); break; # endif # ifdef TCP_TIME_WAIT case TCP_TIME_WAIT: rb_str_cat_cstr(ret, " state=TIME_WAIT"); break; # endif # ifdef TCP_CLOSE case TCP_CLOSE: rb_str_cat_cstr(ret, " state=CLOSED"); break; /* RFC 793 uses "CLOSED", not "CLOSE" */ # endif # ifdef TCP_CLOSE_WAIT case TCP_CLOSE_WAIT: rb_str_cat_cstr(ret, " state=CLOSE_WAIT"); break; # endif # ifdef TCP_LAST_ACK case TCP_LAST_ACK: rb_str_cat_cstr(ret, " state=LAST_ACK"); break; # endif # ifdef TCP_LISTEN case TCP_LISTEN: rb_str_cat_cstr(ret, " state=LISTEN"); break; # endif # ifdef TCP_CLOSING case TCP_CLOSING: rb_str_cat_cstr(ret, " state=CLOSING"); break; # endif default: rb_str_catf(ret, " state=%u", s.tcpi_state); break; } #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_CA_STATE switch (s.tcpi_ca_state) { case TCP_CA_Open: rb_str_cat_cstr(ret, " ca_state=Open"); break; case TCP_CA_Disorder: rb_str_cat_cstr(ret, " ca_state=Disorder"); break; case TCP_CA_CWR: rb_str_cat_cstr(ret, " ca_state=CWR"); break; case TCP_CA_Recovery: rb_str_cat_cstr(ret, " ca_state=Recovery"); break; case TCP_CA_Loss: rb_str_cat_cstr(ret, " ca_state=Loss"); break; default: rb_str_catf(ret, " ca_state=%u", s.tcpi_ca_state); break; } #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RETRANSMITS rb_str_catf(ret, " retransmits=%u", s.tcpi_retransmits); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_PROBES rb_str_catf(ret, " probes=%u", s.tcpi_probes); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_BACKOFF rb_str_catf(ret, " backoff=%u", s.tcpi_backoff); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_OPTIONS inspect_tcpi_options(ret, s.tcpi_options); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_SND_WSCALE rb_str_catf(ret, " snd_wscale=%u", s.tcpi_snd_wscale); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RCV_WSCALE rb_str_catf(ret, " rcv_wscale=%u", s.tcpi_rcv_wscale); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RTO inspect_tcpi_rto(ret, s.tcpi_rto); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_ATO inspect_tcpi_ato(ret, s.tcpi_ato); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_SND_MSS rb_str_catf(ret, " snd_mss=%u", s.tcpi_snd_mss); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RCV_MSS rb_str_catf(ret, " rcv_mss=%u", s.tcpi_rcv_mss); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_UNACKED rb_str_catf(ret, " unacked=%u", s.tcpi_unacked); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_SACKED rb_str_catf(ret, " sacked=%u", s.tcpi_sacked); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_LOST rb_str_catf(ret, " lost=%u", s.tcpi_lost); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RETRANS rb_str_catf(ret, " retrans=%u", s.tcpi_retrans); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_FACKETS rb_str_catf(ret, " fackets=%u", s.tcpi_fackets); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_LAST_DATA_SENT inspect_tcpi_last_data_sent(ret, s.tcpi_last_data_sent); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_LAST_ACK_SENT inspect_tcpi_last_ack_sent(ret, s.tcpi_last_ack_sent); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_LAST_DATA_RECV inspect_tcpi_last_data_recv(ret, s.tcpi_last_data_recv); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_LAST_ACK_RECV inspect_tcpi_last_ack_recv(ret, s.tcpi_last_ack_recv); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_PMTU rb_str_catf(ret, " pmtu=%u", s.tcpi_pmtu); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RCV_SSTHRESH rb_str_catf(ret, " rcv_ssthresh=%u", s.tcpi_rcv_ssthresh); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RTT inspect_tcpi_rtt(ret, s.tcpi_rtt); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RTTVAR inspect_tcpi_rttvar(ret, s.tcpi_rttvar); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_SND_SSTHRESH rb_str_catf(ret, " snd_ssthresh=%u", s.tcpi_snd_ssthresh); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_SND_CWND rb_str_catf(ret, " snd_cwnd=%u", s.tcpi_snd_cwnd); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_ADVMSS rb_str_catf(ret, " advmss=%u", s.tcpi_advmss); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_REORDERING rb_str_catf(ret, " reordering=%u", s.tcpi_reordering); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RCV_RTT inspect_tcpi_rcv_rtt(ret, s.tcpi_rcv_rtt); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RCV_SPACE rb_str_catf(ret, " rcv_space=%u", s.tcpi_rcv_space); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_TOTAL_RETRANS rb_str_catf(ret, " total_retrans=%u", s.tcpi_total_retrans); #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_SND_WND rb_str_catf(ret, " snd_wnd=%u", s.tcpi_snd_wnd); /* FreeBSD */ #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_SND_BWND rb_str_catf(ret, " snd_bwnd=%u", s.tcpi_snd_bwnd); /* FreeBSD */ #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_SND_NXT rb_str_catf(ret, " snd_nxt=%u", s.tcpi_snd_nxt); /* FreeBSD */ #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RCV_NXT rb_str_catf(ret, " rcv_nxt=%u", s.tcpi_rcv_nxt); /* FreeBSD */ #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_TOE_TID rb_str_catf(ret, " toe_tid=%u", s.tcpi_toe_tid); /* FreeBSD */ #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_SND_REXMITPACK rb_str_catf(ret, " snd_rexmitpack=%u", s.tcpi_snd_rexmitpack); /* FreeBSD */ #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_RCV_OOOPACK rb_str_catf(ret, " rcv_ooopack=%u", s.tcpi_rcv_ooopack); /* FreeBSD */ #endif #ifdef HAVE_STRUCT_TCP_INFO_TCPI_SND_ZEROWIN rb_str_catf(ret, " snd_zerowin=%u", s.tcpi_snd_zerowin); /* FreeBSD */ #endif if (sizeof(struct tcp_info) < actual_size) rb_str_catf(ret, " (%u bytes too long)", (unsigned)(actual_size - sizeof(struct tcp_info))); return 1; } else { return 0; } } #endif #if defined(SOL_SOCKET) && defined(SO_PEERCRED) /* GNU/Linux, OpenBSD */ #if defined(__OpenBSD__) #define RUBY_SOCK_PEERCRED struct sockpeercred #else #define RUBY_SOCK_PEERCRED struct ucred #endif static int inspect_peercred(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(RUBY_SOCK_PEERCRED)) { RUBY_SOCK_PEERCRED cred; memcpy(&cred, RSTRING_PTR(data), sizeof(RUBY_SOCK_PEERCRED)); rb_str_catf(ret, " pid=%u euid=%u egid=%u", (unsigned)cred.pid, (unsigned)cred.uid, (unsigned)cred.gid); rb_str_cat2(ret, " (ucred)"); return 1; } else { return 0; } } #endif #if defined(LOCAL_PEERCRED) /* FreeBSD, MacOS X */ static int inspect_local_peercred(int level, int optname, VALUE data, VALUE ret) { if (RSTRING_LEN(data) == sizeof(struct xucred)) { struct xucred cred; memcpy(&cred, RSTRING_PTR(data), sizeof(struct xucred)); if (cred.cr_version != XUCRED_VERSION) return 0; rb_str_catf(ret, " version=%u", cred.cr_version); rb_str_catf(ret, " euid=%u", cred.cr_uid); if (cred.cr_ngroups) { int i; const char *sep = " groups="; for (i = 0; i < cred.cr_ngroups; i++) { rb_str_catf(ret, "%s%u", sep, cred.cr_groups[i]); sep = ","; } } rb_str_cat2(ret, " (xucred)"); return 1; } else { return 0; } } #endif /* * call-seq: * sockopt.inspect => string * * Returns a string which shows sockopt in human-readable form. * * p Socket::Option.new(:INET, :SOCKET, :KEEPALIVE, [1].pack("i")).inspect * #=> "#" * */ static VALUE sockopt_inspect(VALUE self) { int family = NUM2INT(sockopt_family_m(self)); int level = NUM2INT(sockopt_level_m(self)); int optname = NUM2INT(sockopt_optname_m(self)); VALUE data = sockopt_data(self); VALUE v, ret; ID family_id, level_id, optname_id; int inspected; StringValue(data); ret = rb_sprintf("#<%s:", rb_obj_classname(self)); family_id = rsock_intern_family_noprefix(family); if (family_id) rb_str_catf(ret, " %s", rb_id2name(family_id)); else rb_str_catf(ret, " family:%d", family); if (level == SOL_SOCKET) { rb_str_cat2(ret, " SOCKET"); optname_id = rsock_intern_so_optname(optname); if (optname_id) rb_str_catf(ret, " %s", rb_id2name(optname_id)); else rb_str_catf(ret, " optname:%d", optname); } #ifdef HAVE_SYS_UN_H else if (family == AF_UNIX) { rb_str_catf(ret, " level:%d", level); optname_id = rsock_intern_local_optname(optname); if (optname_id) rb_str_catf(ret, " %s", rb_id2name(optname_id)); else rb_str_catf(ret, " optname:%d", optname); } #endif else if (IS_IP_FAMILY(family)) { level_id = rsock_intern_iplevel(level); if (level_id) rb_str_catf(ret, " %s", rb_id2name(level_id)); else rb_str_catf(ret, " level:%d", level); v = optname_to_sym(level, optname); if (SYMBOL_P(v)) rb_str_catf(ret, " %s", rb_id2name(SYM2ID(v))); else rb_str_catf(ret, " optname:%d", optname); } else { rb_str_catf(ret, " level:%d", level); rb_str_catf(ret, " optname:%d", optname); } inspected = 0; if (level == SOL_SOCKET) family = AF_UNSPEC; switch (family) { case AF_UNSPEC: switch (level) { case SOL_SOCKET: switch (optname) { # if defined(SO_DEBUG) /* POSIX */ case SO_DEBUG: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(SO_ERROR) /* POSIX */ case SO_ERROR: inspected = inspect_errno(level, optname, data, ret); break; # endif # if defined(SO_TYPE) /* POSIX */ case SO_TYPE: inspected = inspect_socktype(level, optname, data, ret); break; # endif # if defined(SO_ACCEPTCONN) /* POSIX */ case SO_ACCEPTCONN: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(SO_BROADCAST) /* POSIX */ case SO_BROADCAST: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(SO_REUSEADDR) /* POSIX */ case SO_REUSEADDR: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(SO_KEEPALIVE) /* POSIX */ case SO_KEEPALIVE: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(SO_OOBINLINE) /* POSIX */ case SO_OOBINLINE: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(SO_SNDBUF) /* POSIX */ case SO_SNDBUF: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(SO_RCVBUF) /* POSIX */ case SO_RCVBUF: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(SO_DONTROUTE) /* POSIX */ case SO_DONTROUTE: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(SO_RCVLOWAT) /* POSIX */ case SO_RCVLOWAT: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(SO_SNDLOWAT) /* POSIX */ case SO_SNDLOWAT: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(SO_LINGER) /* POSIX */ case SO_LINGER: inspected = inspect_linger(level, optname, data, ret); break; # endif # if defined(SO_RCVTIMEO) /* POSIX */ case SO_RCVTIMEO: inspected = inspect_timeval_as_interval(level, optname, data, ret); break; # endif # if defined(SO_SNDTIMEO) /* POSIX */ case SO_SNDTIMEO: inspected = inspect_timeval_as_interval(level, optname, data, ret); break; # endif # if defined(SO_PEERCRED) /* GNU/Linux, OpenBSD */ case SO_PEERCRED: inspected = inspect_peercred(level, optname, data, ret); break; # endif } break; } break; case AF_INET: #ifdef INET6 case AF_INET6: #endif switch (level) { # if defined(IPPROTO_IP) case IPPROTO_IP: switch (optname) { # if defined(IP_MULTICAST_IF) && defined(HAVE_TYPE_STRUCT_IP_MREQN) /* 4.4BSD, GNU/Linux */ case IP_MULTICAST_IF: inspected = inspect_ipv4_multicast_if(level, optname, data, ret); break; # endif # if defined(IP_ADD_MEMBERSHIP) /* 4.4BSD, GNU/Linux */ case IP_ADD_MEMBERSHIP: inspected = inspect_ipv4_add_drop_membership(level, optname, data, ret); break; # endif # if defined(IP_DROP_MEMBERSHIP) /* 4.4BSD, GNU/Linux */ case IP_DROP_MEMBERSHIP: inspected = inspect_ipv4_add_drop_membership(level, optname, data, ret); break; # endif # if defined(IP_MULTICAST_LOOP) /* 4.4BSD, GNU/Linux */ case IP_MULTICAST_LOOP: inspected = inspect_ipv4_multicast_loop(level, optname, data, ret); break; # endif # if defined(IP_MULTICAST_TTL) /* 4.4BSD, GNU/Linux */ case IP_MULTICAST_TTL: inspected = inspect_ipv4_multicast_ttl(level, optname, data, ret); break; # endif } break; # endif # if defined(IPPROTO_IPV6) case IPPROTO_IPV6: switch (optname) { # if defined(IPV6_MULTICAST_HOPS) /* POSIX */ case IPV6_MULTICAST_HOPS: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(IPV6_MULTICAST_IF) /* POSIX */ case IPV6_MULTICAST_IF: inspected = inspect_ipv6_multicast_if(level, optname, data, ret); break; # endif # if defined(IPV6_MULTICAST_LOOP) /* POSIX */ case IPV6_MULTICAST_LOOP: inspected = inspect_uint(level, optname, data, ret); break; # endif # if defined(IPV6_JOIN_GROUP) /* POSIX */ case IPV6_JOIN_GROUP: inspected = inspect_ipv6_mreq(level, optname, data, ret); break; # endif # if defined(IPV6_LEAVE_GROUP) /* POSIX */ case IPV6_LEAVE_GROUP: inspected = inspect_ipv6_mreq(level, optname, data, ret); break; # endif # if defined(IPV6_UNICAST_HOPS) /* POSIX */ case IPV6_UNICAST_HOPS: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(IPV6_V6ONLY) /* POSIX */ case IPV6_V6ONLY: inspected = inspect_int(level, optname, data, ret); break; # endif } break; # endif # if defined(IPPROTO_TCP) case IPPROTO_TCP: switch (optname) { # if defined(TCP_NODELAY) /* POSIX */ case TCP_NODELAY: inspected = inspect_int(level, optname, data, ret); break; # endif # if defined(TCP_INFO) && defined(HAVE_TYPE_STRUCT_TCP_INFO) /* Linux, FreeBSD */ case TCP_INFO: inspected = inspect_tcp_info(level, optname, data, ret); break; # endif } break; # endif } break; #ifdef HAVE_SYS_UN_H case AF_UNIX: switch (level) { case 0: switch (optname) { # if defined(LOCAL_PEERCRED) case LOCAL_PEERCRED: inspected = inspect_local_peercred(level, optname, data, ret); break; # endif } break; } break; #endif } if (!inspected) { rb_str_cat2(ret, " "); rb_str_append(ret, rb_str_dump(data)); } rb_str_cat2(ret, ">"); return ret; } /* * call-seq: * sockopt.unpack(template) => array * * Calls String#unpack on sockopt.data. * * sockopt = Socket::Option.new(:INET, :SOCKET, :KEEPALIVE, [1].pack("i")) * p sockopt.unpack("i") #=> [1] * p sockopt.data.unpack("i") #=> [1] */ static VALUE sockopt_unpack(VALUE self, VALUE template) { return rb_funcall(sockopt_data(self), rb_intern("unpack"), 1, template); } void rsock_init_sockopt(void) { /* * Document-class: Socket::Option * * Socket::Option represents a socket option used by * BasicSocket#getsockopt and BasicSocket#setsockopt. A socket option * contains the socket #family, protocol #level, option name #optname and * option value #data. */ rb_cSockOpt = rb_define_class_under(rb_cSocket, "Option", rb_cObject); rb_define_method(rb_cSockOpt, "initialize", sockopt_initialize, 4); rb_define_method(rb_cSockOpt, "family", sockopt_family_m, 0); rb_define_method(rb_cSockOpt, "level", sockopt_level_m, 0); rb_define_method(rb_cSockOpt, "optname", sockopt_optname_m, 0); rb_define_method(rb_cSockOpt, "data", sockopt_data, 0); rb_define_method(rb_cSockOpt, "inspect", sockopt_inspect, 0); rb_define_singleton_method(rb_cSockOpt, "int", sockopt_s_int, 4); rb_define_method(rb_cSockOpt, "int", sockopt_int, 0); rb_define_singleton_method(rb_cSockOpt, "byte", sockopt_s_byte, 4); rb_define_method(rb_cSockOpt, "byte", sockopt_byte, 0); rb_define_singleton_method(rb_cSockOpt, "bool", sockopt_s_bool, 4); rb_define_method(rb_cSockOpt, "bool", sockopt_bool, 0); rb_define_singleton_method(rb_cSockOpt, "linger", sockopt_s_linger, 2); rb_define_method(rb_cSockOpt, "linger", sockopt_linger, 0); rb_define_singleton_method(rb_cSockOpt, "ipv4_multicast_ttl", sockopt_s_ipv4_multicast_ttl, 1); rb_define_method(rb_cSockOpt, "ipv4_multicast_ttl", sockopt_ipv4_multicast_ttl, 0); rb_define_singleton_method(rb_cSockOpt, "ipv4_multicast_loop", sockopt_s_ipv4_multicast_loop, 1); rb_define_method(rb_cSockOpt, "ipv4_multicast_loop", sockopt_ipv4_multicast_loop, 0); rb_define_method(rb_cSockOpt, "unpack", sockopt_unpack, 1); rb_define_method(rb_cSockOpt, "to_s", sockopt_data, 0); /* compatibility for ruby before 1.9.2 */ }