/********************************************************************** math.c - $Author$ created at: Tue Jan 25 14:12:56 JST 1994 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #ifdef _MSC_VER # define _USE_MATH_DEFINES 1 #endif #include "internal.h" #include #include #include #if defined(HAVE_SIGNBIT) && defined(__GNUC__) && defined(__sun) && \ !defined(signbit) extern int signbit(double); #endif #define RB_BIGNUM_TYPE_P(x) RB_TYPE_P((x), T_BIGNUM) VALUE rb_mMath; VALUE rb_eMathDomainError; #define Get_Double(x) rb_num_to_dbl(x) #define domain_error(msg) \ rb_raise(rb_eMathDomainError, "Numerical argument is out of domain - " #msg) /* * call-seq: * Math.atan2(y, x) -> Float * * Computes the arc tangent given +y+ and +x+. * Returns a Float in the range -PI..PI. Return value is a angle * in radians between the positive x-axis of cartesian plane * and the point given by the coordinates (+x+, +y+) on it. * * Domain: (-INFINITY, INFINITY) * * Codomain: [-PI, PI] * * Math.atan2(-0.0, -1.0) #=> -3.141592653589793 * Math.atan2(-1.0, -1.0) #=> -2.356194490192345 * Math.atan2(-1.0, 0.0) #=> -1.5707963267948966 * Math.atan2(-1.0, 1.0) #=> -0.7853981633974483 * Math.atan2(-0.0, 1.0) #=> -0.0 * Math.atan2(0.0, 1.0) #=> 0.0 * Math.atan2(1.0, 1.0) #=> 0.7853981633974483 * Math.atan2(1.0, 0.0) #=> 1.5707963267948966 * Math.atan2(1.0, -1.0) #=> 2.356194490192345 * Math.atan2(0.0, -1.0) #=> 3.141592653589793 * Math.atan2(INFINITY, INFINITY) #=> 0.7853981633974483 * Math.atan2(INFINITY, -INFINITY) #=> 2.356194490192345 * Math.atan2(-INFINITY, INFINITY) #=> -0.7853981633974483 * Math.atan2(-INFINITY, -INFINITY) #=> -2.356194490192345 * */ static VALUE math_atan2(VALUE unused_obj, VALUE y, VALUE x) { double dx, dy; dx = Get_Double(x); dy = Get_Double(y); if (dx == 0.0 && dy == 0.0) { if (!signbit(dx)) return DBL2NUM(dy); if (!signbit(dy)) return DBL2NUM(M_PI); return DBL2NUM(-M_PI); } #ifndef ATAN2_INF_C99 if (isinf(dx) && isinf(dy)) { /* optimization for FLONUM */ if (dx < 0.0) { const double dz = (3.0 * M_PI / 4.0); return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz); } else { const double dz = (M_PI / 4.0); return (dy < 0.0) ? DBL2NUM(-dz) : DBL2NUM(dz); } } #endif return DBL2NUM(atan2(dy, dx)); } /* * call-seq: * Math.cos(x) -> Float * * Computes the cosine of +x+ (expressed in radians). * Returns a Float in the range -1.0..1.0. * * Domain: (-INFINITY, INFINITY) * * Codomain: [-1, 1] * * Math.cos(Math::PI) #=> -1.0 * */ static VALUE math_cos(VALUE unused_obj, VALUE x) { return DBL2NUM(cos(Get_Double(x))); } /* * call-seq: * Math.sin(x) -> Float * * Computes the sine of +x+ (expressed in radians). * Returns a Float in the range -1.0..1.0. * * Domain: (-INFINITY, INFINITY) * * Codomain: [-1, 1] * * Math.sin(Math::PI/2) #=> 1.0 * */ static VALUE math_sin(VALUE unused_obj, VALUE x) { return DBL2NUM(sin(Get_Double(x))); } /* * call-seq: * Math.tan(x) -> Float * * Computes the tangent of +x+ (expressed in radians). * * Domain: (-INFINITY, INFINITY) * * Codomain: (-INFINITY, INFINITY) * * Math.tan(0) #=> 0.0 * */ static VALUE math_tan(VALUE unused_obj, VALUE x) { return DBL2NUM(tan(Get_Double(x))); } /* * call-seq: * Math.acos(x) -> Float * * Computes the arc cosine of +x+. Returns 0..PI. * * Domain: [-1, 1] * * Codomain: [0, PI] * * Math.acos(0) == Math::PI/2 #=> true * */ static VALUE math_acos(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x); /* check for domain error */ if (d < -1.0 || 1.0 < d) domain_error("acos"); return DBL2NUM(acos(d)); } /* * call-seq: * Math.asin(x) -> Float * * Computes the arc sine of +x+. Returns -PI/2..PI/2. * * Domain: [-1, -1] * * Codomain: [-PI/2, PI/2] * * Math.asin(1) == Math::PI/2 #=> true */ static VALUE math_asin(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x); /* check for domain error */ if (d < -1.0 || 1.0 < d) domain_error("asin"); return DBL2NUM(asin(d)); } /* * call-seq: * Math.atan(x) -> Float * * Computes the arc tangent of +x+. Returns -PI/2..PI/2. * * Domain: (-INFINITY, INFINITY) * * Codomain: (-PI/2, PI/2) * * Math.atan(0) #=> 0.0 */ static VALUE math_atan(VALUE unused_obj, VALUE x) { return DBL2NUM(atan(Get_Double(x))); } #ifndef HAVE_COSH double cosh(double x) { return (exp(x) + exp(-x)) / 2; } #endif /* * call-seq: * Math.cosh(x) -> Float * * Computes the hyperbolic cosine of +x+ (expressed in radians). * * Domain: (-INFINITY, INFINITY) * * Codomain: [1, INFINITY) * * Math.cosh(0) #=> 1.0 * */ static VALUE math_cosh(VALUE unused_obj, VALUE x) { return DBL2NUM(cosh(Get_Double(x))); } #ifndef HAVE_SINH double sinh(double x) { return (exp(x) - exp(-x)) / 2; } #endif /* * call-seq: * Math.sinh(x) -> Float * * Computes the hyperbolic sine of +x+ (expressed in radians). * * Domain: (-INFINITY, INFINITY) * * Codomain: (-INFINITY, INFINITY) * * Math.sinh(0) #=> 0.0 * */ static VALUE math_sinh(VALUE unused_obj, VALUE x) { return DBL2NUM(sinh(Get_Double(x))); } #ifndef HAVE_TANH double tanh(double x) { # if defined(HAVE_SINH) && defined(HAVE_COSH) const double c = cosh(x); if (!isinf(c)) return sinh(x) / c; # else const double e = exp(x+x); if (!isinf(e)) return (e - 1) / (e + 1); # endif return x > 0 ? 1.0 : -1.0; } #endif /* * call-seq: * Math.tanh(x) -> Float * * Computes the hyperbolic tangent of +x+ (expressed in radians). * * Domain: (-INFINITY, INFINITY) * * Codomain: (-1, 1) * * Math.tanh(0) #=> 0.0 * */ static VALUE math_tanh(VALUE unused_obj, VALUE x) { return DBL2NUM(tanh(Get_Double(x))); } /* * call-seq: * Math.acosh(x) -> Float * * Computes the inverse hyperbolic cosine of +x+. * * Domain: [1, INFINITY) * * Codomain: [0, INFINITY) * * Math.acosh(1) #=> 0.0 * */ static VALUE math_acosh(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x); /* check for domain error */ if (d < 1.0) domain_error("acosh"); return DBL2NUM(acosh(d)); } /* * call-seq: * Math.asinh(x) -> Float * * Computes the inverse hyperbolic sine of +x+. * * Domain: (-INFINITY, INFINITY) * * Codomain: (-INFINITY, INFINITY) * * Math.asinh(1) #=> 0.881373587019543 * */ static VALUE math_asinh(VALUE unused_obj, VALUE x) { return DBL2NUM(asinh(Get_Double(x))); } /* * call-seq: * Math.atanh(x) -> Float * * Computes the inverse hyperbolic tangent of +x+. * * Domain: (-1, 1) * * Codomain: (-INFINITY, INFINITY) * * Math.atanh(1) #=> Infinity * */ static VALUE math_atanh(VALUE unused_obj, VALUE x) { double d; d = Get_Double(x); /* check for domain error */ if (d < -1.0 || +1.0 < d) domain_error("atanh"); /* check for pole error */ if (d == -1.0) return DBL2NUM(-INFINITY); if (d == +1.0) return DBL2NUM(+INFINITY); return DBL2NUM(atanh(d)); } /* * call-seq: * Math.exp(x) -> Float * * Returns e**x. * * Domain: (-INFINITY, INFINITY) * * Codomain: (0, INFINITY) * * Math.exp(0) #=> 1.0 * Math.exp(1) #=> 2.718281828459045 * Math.exp(1.5) #=> 4.4816890703380645 * */ static VALUE math_exp(VALUE unused_obj, VALUE x) { return DBL2NUM(exp(Get_Double(x))); } #if defined __CYGWIN__ # include # if CYGWIN_VERSION_DLL_MAJOR < 1005 # define nan(x) nan() # endif # define log(x) ((x) < 0.0 ? nan("") : log(x)) # define log10(x) ((x) < 0.0 ? nan("") : log10(x)) #endif #ifndef M_LN2 # define M_LN2 0.693147180559945309417232121458176568 #endif #ifndef M_LN10 # define M_LN10 2.30258509299404568401799145468436421 #endif static double math_log1(VALUE x); /* * call-seq: * Math.log(x) -> Float * Math.log(x, base) -> Float * * Returns the logarithm of +x+. * If additional second argument is given, it will be the base * of logarithm. Otherwise it is +e+ (for the natural logarithm). * * Domain: (0, INFINITY) * * Codomain: (-INFINITY, INFINITY) * * Math.log(0) #=> -Infinity * Math.log(1) #=> 0.0 * Math.log(Math::E) #=> 1.0 * Math.log(Math::E**3) #=> 3.0 * Math.log(12, 3) #=> 2.2618595071429146 * */ static VALUE math_log(int argc, const VALUE *argv, VALUE unused_obj) { VALUE x, base; double d; rb_scan_args(argc, argv, "11", &x, &base); d = math_log1(x); if (argc == 2) { d /= math_log1(base); } return DBL2NUM(d); } static double get_double_rshift(VALUE x, size_t *pnumbits) { size_t numbits; if (RB_BIGNUM_TYPE_P(x) && BIGNUM_POSITIVE_P(x) && DBL_MAX_EXP <= (numbits = rb_absint_numwords(x, 1, NULL))) { numbits -= DBL_MANT_DIG; x = rb_big_rshift(x, SIZET2NUM(numbits)); } else { numbits = 0; } *pnumbits = numbits; return Get_Double(x); } static double math_log1(VALUE x) { size_t numbits; double d = get_double_rshift(x, &numbits); /* check for domain error */ if (d < 0.0) domain_error("log"); /* check for pole error */ if (d == 0.0) return -INFINITY; return log(d) + numbits * M_LN2; /* log(d * 2 ** numbits) */ } #ifndef log2 #ifndef HAVE_LOG2 double log2(double x) { return log10(x)/log10(2.0); } #else extern double log2(double); #endif #endif /* * call-seq: * Math.log2(x) -> Float * * Returns the base 2 logarithm of +x+. * * Domain: (0, INFINITY) * * Codomain: (-INFINITY, INFINITY) * * Math.log2(1) #=> 0.0 * Math.log2(2) #=> 1.0 * Math.log2(32768) #=> 15.0 * Math.log2(65536) #=> 16.0 * */ static VALUE math_log2(VALUE unused_obj, VALUE x) { size_t numbits; double d = get_double_rshift(x, &numbits); /* check for domain error */ if (d < 0.0) domain_error("log2"); /* check for pole error */ if (d == 0.0) return DBL2NUM(-INFINITY); return DBL2NUM(log2(d) + numbits); /* log2(d * 2 ** numbits) */ } /* * call-seq: * Math.log10(x) -> Float * * Returns the base 10 logarithm of +x+. * * Domain: (0, INFINITY) * * Codomain: (-INFINITY, INFINITY) * * Math.log10(1) #=> 0.0 * Math.log10(10) #=> 1.0 * Math.log10(10**100) #=> 100.0 * */ static VALUE math_log10(VALUE unused_obj, VALUE x) { size_t numbits; double d = get_double_rshift(x, &numbits); /* check for domain error */ if (d < 0.0) domain_error("log10"); /* check for pole error */ if (d == 0.0) return DBL2NUM(-INFINITY); return DBL2NUM(log10(d) + numbits * log10(2)); /* log10(d * 2 ** numbits) */ } /* * call-seq: * Math.sqrt(x) -> Float * * Returns the non-negative square root of +x+. * * Domain: [0, INFINITY) * * Codomain:[0, INFINITY) * * 0.upto(10) {|x| * p [x, Math.sqrt(x), Math.sqrt(x)**2] * } * #=> [0, 0.0, 0.0] * # [1, 1.0, 1.0] * # [2, 1.4142135623731, 2.0] * # [3, 1.73205080756888, 3.0] * # [4, 2.0, 4.0] * # [5, 2.23606797749979, 5.0] * # [6, 2.44948974278318, 6.0] * # [7, 2.64575131106459, 7.0] * # [8, 2.82842712474619, 8.0] * # [9, 3.0, 9.0] * # [10, 3.16227766016838, 10.0] * * Note that the limited precision of floating point arithmetic * might lead to surprising results: * * Math.sqrt(10**46).to_i #=> 99999999999999991611392 (!) * * See also BigDecimal#sqrt and Integer.sqrt. */ static VALUE math_sqrt(VALUE unused_obj, VALUE x) { return rb_math_sqrt(x); } #define f_boolcast(x) ((x) ? Qtrue : Qfalse) inline static VALUE f_negative_p(VALUE x) { if (FIXNUM_P(x)) return f_boolcast(FIX2LONG(x) < 0); return rb_funcall(x, '<', 1, INT2FIX(0)); } inline static VALUE f_signbit(VALUE x) { if (RB_TYPE_P(x, T_FLOAT)) { double f = RFLOAT_VALUE(x); return f_boolcast(!isnan(f) && signbit(f)); } return f_negative_p(x); } VALUE rb_math_sqrt(VALUE x) { double d; if (RB_TYPE_P(x, T_COMPLEX)) { VALUE neg = f_signbit(RCOMPLEX(x)->imag); double re = Get_Double(RCOMPLEX(x)->real), im; d = Get_Double(rb_complex_abs(x)); im = sqrt((d - re) / 2.0); re = sqrt((d + re) / 2.0); if (neg) im = -im; return rb_complex_new(DBL2NUM(re), DBL2NUM(im)); } d = Get_Double(x); /* check for domain error */ if (d < 0.0) domain_error("sqrt"); if (d == 0.0) return DBL2NUM(0.0); return DBL2NUM(sqrt(d)); } /* * call-seq: * Math.cbrt(x) -> Float * * Returns the cube root of +x+. * * Domain: (-INFINITY, INFINITY) * * Codomain: (-INFINITY, INFINITY) * * -9.upto(9) {|x| * p [x, Math.cbrt(x), Math.cbrt(x)**3] * } * #=> [-9, -2.0800838230519, -9.0] * # [-8, -2.0, -8.0] * # [-7, -1.91293118277239, -7.0] * # [-6, -1.81712059283214, -6.0] * # [-5, -1.7099759466767, -5.0] * # [-4, -1.5874010519682, -4.0] * # [-3, -1.44224957030741, -3.0] * # [-2, -1.25992104989487, -2.0] * # [-1, -1.0, -1.0] * # [0, 0.0, 0.0] * # [1, 1.0, 1.0] * # [2, 1.25992104989487, 2.0] * # [3, 1.44224957030741, 3.0] * # [4, 1.5874010519682, 4.0] * # [5, 1.7099759466767, 5.0] * # [6, 1.81712059283214, 6.0] * # [7, 1.91293118277239, 7.0] * # [8, 2.0, 8.0] * # [9, 2.0800838230519, 9.0] * */ static VALUE math_cbrt(VALUE unused_obj, VALUE x) { return DBL2NUM(cbrt(Get_Double(x))); } /* * call-seq: * Math.frexp(x) -> [fraction, exponent] * * Returns a two-element array containing the normalized fraction (a Float) * and exponent (an Integer) of +x+. * * fraction, exponent = Math.frexp(1234) #=> [0.6025390625, 11] * fraction * 2**exponent #=> 1234.0 */ static VALUE math_frexp(VALUE unused_obj, VALUE x) { double d; int exp; d = frexp(Get_Double(x), &exp); return rb_assoc_new(DBL2NUM(d), INT2NUM(exp)); } /* * call-seq: * Math.ldexp(fraction, exponent) -> float * * Returns the value of +fraction+*(2**+exponent+). * * fraction, exponent = Math.frexp(1234) * Math.ldexp(fraction, exponent) #=> 1234.0 */ static VALUE math_ldexp(VALUE unused_obj, VALUE x, VALUE n) { return DBL2NUM(ldexp(Get_Double(x), NUM2INT(n))); } /* * call-seq: * Math.hypot(x, y) -> Float * * Returns sqrt(x**2 + y**2), the hypotenuse of a right-angled triangle with * sides +x+ and +y+. * * Math.hypot(3, 4) #=> 5.0 */ static VALUE math_hypot(VALUE unused_obj, VALUE x, VALUE y) { return DBL2NUM(hypot(Get_Double(x), Get_Double(y))); } /* * call-seq: * Math.erf(x) -> Float * * Calculates the error function of +x+. * * Domain: (-INFINITY, INFINITY) * * Codomain: (-1, 1) * * Math.erf(0) #=> 0.0 * */ static VALUE math_erf(VALUE unused_obj, VALUE x) { return DBL2NUM(erf(Get_Double(x))); } /* * call-seq: * Math.erfc(x) -> Float * * Calculates the complementary error function of x. * * Domain: (-INFINITY, INFINITY) * * Codomain: (0, 2) * * Math.erfc(0) #=> 1.0 * */ static VALUE math_erfc(VALUE unused_obj, VALUE x) { return DBL2NUM(erfc(Get_Double(x))); } #if defined LGAMMA_R_PM0_FIX static inline double ruby_lgamma_r(const double d, int *sign) { const double g = lgamma_r(d, sign); if (isinf(g)) { if (d == 0.0) { *sign = signbit(d) ? -1 : +1; return INFINITY; } } return g; } #define lgamma_r(d, sign) ruby_lgamma_r(d, sign) #endif /* * call-seq: * Math.gamma(x) -> Float * * Calculates the gamma function of x. * * Note that gamma(n) is same as fact(n-1) for integer n > 0. * However gamma(n) returns float and can be an approximation. * * def fact(n) (1..n).inject(1) {|r,i| r*i } end * 1.upto(26) {|i| p [i, Math.gamma(i), fact(i-1)] } * #=> [1, 1.0, 1] * # [2, 1.0, 1] * # [3, 2.0, 2] * # [4, 6.0, 6] * # [5, 24.0, 24] * # [6, 120.0, 120] * # [7, 720.0, 720] * # [8, 5040.0, 5040] * # [9, 40320.0, 40320] * # [10, 362880.0, 362880] * # [11, 3628800.0, 3628800] * # [12, 39916800.0, 39916800] * # [13, 479001600.0, 479001600] * # [14, 6227020800.0, 6227020800] * # [15, 87178291200.0, 87178291200] * # [16, 1307674368000.0, 1307674368000] * # [17, 20922789888000.0, 20922789888000] * # [18, 355687428096000.0, 355687428096000] * # [19, 6.402373705728e+15, 6402373705728000] * # [20, 1.21645100408832e+17, 121645100408832000] * # [21, 2.43290200817664e+18, 2432902008176640000] * # [22, 5.109094217170944e+19, 51090942171709440000] * # [23, 1.1240007277776077e+21, 1124000727777607680000] * # [24, 2.5852016738885062e+22, 25852016738884976640000] * # [25, 6.204484017332391e+23, 620448401733239439360000] * # [26, 1.5511210043330954e+25, 15511210043330985984000000] * */ static VALUE math_gamma(VALUE unused_obj, VALUE x) { static const double fact_table[] = { /* fact(0) */ 1.0, /* fact(1) */ 1.0, /* fact(2) */ 2.0, /* fact(3) */ 6.0, /* fact(4) */ 24.0, /* fact(5) */ 120.0, /* fact(6) */ 720.0, /* fact(7) */ 5040.0, /* fact(8) */ 40320.0, /* fact(9) */ 362880.0, /* fact(10) */ 3628800.0, /* fact(11) */ 39916800.0, /* fact(12) */ 479001600.0, /* fact(13) */ 6227020800.0, /* fact(14) */ 87178291200.0, /* fact(15) */ 1307674368000.0, /* fact(16) */ 20922789888000.0, /* fact(17) */ 355687428096000.0, /* fact(18) */ 6402373705728000.0, /* fact(19) */ 121645100408832000.0, /* fact(20) */ 2432902008176640000.0, /* fact(21) */ 51090942171709440000.0, /* fact(22) */ 1124000727777607680000.0, /* fact(23)=25852016738884976640000 needs 56bit mantissa which is * impossible to represent exactly in IEEE 754 double which have * 53bit mantissa. */ }; enum {NFACT_TABLE = numberof(fact_table)}; double d; d = Get_Double(x); /* check for domain error */ if (isinf(d) && signbit(d)) domain_error("gamma"); if (d == floor(d)) { if (d < 0.0) domain_error("gamma"); if (1.0 <= d && d <= (double)NFACT_TABLE) { return DBL2NUM(fact_table[(int)d - 1]); } } return DBL2NUM(tgamma(d)); } /* * call-seq: * Math.lgamma(x) -> [float, -1 or 1] * * Calculates the logarithmic gamma of +x+ and the sign of gamma of +x+. * * Math.lgamma(x) is same as * [Math.log(Math.gamma(x).abs), Math.gamma(x) < 0 ? -1 : 1] * but avoid overflow by Math.gamma(x) for large x. * * Math.lgamma(0) #=> [Infinity, 1] * */ static VALUE math_lgamma(VALUE unused_obj, VALUE x) { double d; int sign=1; VALUE v; d = Get_Double(x); /* check for domain error */ if (isinf(d)) { if (signbit(d)) domain_error("lgamma"); return rb_assoc_new(DBL2NUM(INFINITY), INT2FIX(1)); } v = DBL2NUM(lgamma_r(d, &sign)); return rb_assoc_new(v, INT2FIX(sign)); } #define exp1(n) \ VALUE \ rb_math_##n(VALUE x)\ {\ return math_##n(0, x);\ } #define exp2(n) \ VALUE \ rb_math_##n(VALUE x, VALUE y)\ {\ return math_##n(0, x, y);\ } exp2(atan2) exp1(cos) exp1(cosh) exp1(exp) exp2(hypot) VALUE rb_math_log(int argc, const VALUE *argv) { return math_log(argc, argv, 0); } exp1(sin) exp1(sinh) #if 0 exp1(sqrt) #endif /* * Document-class: Math::DomainError * * Raised when a mathematical function is evaluated outside of its * domain of definition. * * For example, since +cos+ returns values in the range -1..1, * its inverse function +acos+ is only defined on that interval: * * Math.acos(42) * * produces: * * Math::DomainError: Numerical argument is out of domain - "acos" */ /* * Document-class: Math * * The Math module contains module functions for basic * trigonometric and transcendental functions. See class * Float for a list of constants that * define Ruby's floating point accuracy. * * Domains and codomains are given only for real (not complex) numbers. */ void InitVM_Math(void) { rb_mMath = rb_define_module("Math"); rb_eMathDomainError = rb_define_class_under(rb_mMath, "DomainError", rb_eStandardError); /* Definition of the mathematical constant PI as a Float number. */ rb_define_const(rb_mMath, "PI", DBL2NUM(M_PI)); #ifdef M_E /* Definition of the mathematical constant E (e) as a Float number. */ rb_define_const(rb_mMath, "E", DBL2NUM(M_E)); #else rb_define_const(rb_mMath, "E", DBL2NUM(exp(1.0))); #endif rb_define_module_function(rb_mMath, "atan2", math_atan2, 2); rb_define_module_function(rb_mMath, "cos", math_cos, 1); rb_define_module_function(rb_mMath, "sin", math_sin, 1); rb_define_module_function(rb_mMath, "tan", math_tan, 1); rb_define_module_function(rb_mMath, "acos", math_acos, 1); rb_define_module_function(rb_mMath, "asin", math_asin, 1); rb_define_module_function(rb_mMath, "atan", math_atan, 1); rb_define_module_function(rb_mMath, "cosh", math_cosh, 1); rb_define_module_function(rb_mMath, "sinh", math_sinh, 1); rb_define_module_function(rb_mMath, "tanh", math_tanh, 1); rb_define_module_function(rb_mMath, "acosh", math_acosh, 1); rb_define_module_function(rb_mMath, "asinh", math_asinh, 1); rb_define_module_function(rb_mMath, "atanh", math_atanh, 1); rb_define_module_function(rb_mMath, "exp", math_exp, 1); rb_define_module_function(rb_mMath, "log", math_log, -1); rb_define_module_function(rb_mMath, "log2", math_log2, 1); rb_define_module_function(rb_mMath, "log10", math_log10, 1); rb_define_module_function(rb_mMath, "sqrt", math_sqrt, 1); rb_define_module_function(rb_mMath, "cbrt", math_cbrt, 1); rb_define_module_function(rb_mMath, "frexp", math_frexp, 1); rb_define_module_function(rb_mMath, "ldexp", math_ldexp, 2); rb_define_module_function(rb_mMath, "hypot", math_hypot, 2); rb_define_module_function(rb_mMath, "erf", math_erf, 1); rb_define_module_function(rb_mMath, "erfc", math_erfc, 1); rb_define_module_function(rb_mMath, "gamma", math_gamma, 1); rb_define_module_function(rb_mMath, "lgamma", math_lgamma, 1); } void Init_Math(void) { InitVM(Math); }