/********************************************************************** enum.c - $Author$ created at: Fri Oct 1 15:15:19 JST 1993 Copyright (C) 1993-2007 Yukihiro Matsumoto **********************************************************************/ #include "ruby/encoding.h" #include "internal.h" #include "ruby/util.h" #include "id.h" #include "symbol.h" #include VALUE rb_mEnumerable; static ID id_next; static ID id_div; #define id_each idEach #define id_eqq idEqq #define id_cmp idCmp #define id_lshift idLTLT #define id_call idCall #define id_size idSize VALUE rb_enum_values_pack(int argc, const VALUE *argv) { if (argc == 0) return Qnil; if (argc == 1) return argv[0]; return rb_ary_new4(argc, argv); } #define ENUM_WANT_SVALUE() do { \ i = rb_enum_values_pack(argc, argv); \ } while (0) static VALUE enum_yield(int argc, VALUE ary) { if (argc > 1) return rb_yield_force_blockarg(ary); if (argc == 1) return rb_yield(ary); return rb_yield_values2(0, 0); } static VALUE enum_yield_array(VALUE ary) { long len = RARRAY_LEN(ary); if (len > 1) return rb_yield_force_blockarg(ary); if (len == 1) return rb_yield(RARRAY_AREF(ary, 0)); return rb_yield_values2(0, 0); } static VALUE grep_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); ENUM_WANT_SVALUE(); if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) { rb_ary_push(memo->v2, i); } return Qnil; } static VALUE grep_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); ENUM_WANT_SVALUE(); if (RTEST(rb_funcallv(memo->v1, id_eqq, 1, &i)) == RTEST(memo->u3.value)) { rb_ary_push(memo->v2, enum_yield(argc, i)); } return Qnil; } /* * call-seq: * enum.grep(pattern) -> array * enum.grep(pattern) { |obj| block } -> array * * Returns an array of every element in enum for which * Pattern === element. If the optional block is * supplied, each matching element is passed to it, and the block's * result is stored in the output array. * * (1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44] * c = IO.constants * c.grep(/SEEK/) #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END] * res = c.grep(/SEEK/) { |v| IO.const_get(v) } * res #=> [0, 1, 2] * */ static VALUE enum_grep(VALUE obj, VALUE pat) { VALUE ary = rb_ary_new(); struct MEMO *memo = MEMO_NEW(pat, ary, Qtrue); rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo); return ary; } /* * call-seq: * enum.grep_v(pattern) -> array * enum.grep_v(pattern) { |obj| block } -> array * * Inverted version of Enumerable#grep. * Returns an array of every element in enum for which * not Pattern === element. * * (1..10).grep_v 2..5 #=> [1, 6, 7, 8, 9, 10] * res =(1..10).grep_v(2..5) { |v| v * 2 } * res #=> [2, 12, 14, 16, 18, 20] * */ static VALUE enum_grep_v(VALUE obj, VALUE pat) { VALUE ary = rb_ary_new(); struct MEMO *memo = MEMO_NEW(pat, ary, Qfalse); rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo); return ary; } static VALUE count_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { struct MEMO *memo = MEMO_CAST(memop); ENUM_WANT_SVALUE(); if (rb_equal(i, memo->v1)) { memo->u3.cnt++; } return Qnil; } static VALUE count_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { struct MEMO *memo = MEMO_CAST(memop); if (RTEST(rb_yield_values2(argc, argv))) { memo->u3.cnt++; } return Qnil; } static VALUE count_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { struct MEMO *memo = MEMO_CAST(memop); memo->u3.cnt++; return Qnil; } /* * call-seq: * enum.count -> int * enum.count(item) -> int * enum.count { |obj| block } -> int * * Returns the number of items in +enum+ through enumeration. * If an argument is given, the number of items in +enum+ that * are equal to +item+ are counted. If a block is given, it * counts the number of elements yielding a true value. * * ary = [1, 2, 4, 2] * ary.count #=> 4 * ary.count(2) #=> 2 * ary.count{ |x| x%2==0 } #=> 3 * */ static VALUE enum_count(int argc, VALUE *argv, VALUE obj) { VALUE item = Qnil; struct MEMO *memo; rb_block_call_func *func; if (argc == 0) { if (rb_block_given_p()) { func = count_iter_i; } else { func = count_all_i; } } else { rb_scan_args(argc, argv, "1", &item); if (rb_block_given_p()) { rb_warn("given block not used"); } func = count_i; } memo = MEMO_NEW(item, 0, 0); rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo); return LONG2NUM(memo->u3.cnt); } static VALUE find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { ENUM_WANT_SVALUE(); if (RTEST(enum_yield(argc, i))) { struct MEMO *memo = MEMO_CAST(memop); MEMO_V1_SET(memo, i); memo->u3.cnt = 1; rb_iter_break(); } return Qnil; } /* * call-seq: * enum.detect(ifnone = nil) { |obj| block } -> obj or nil * enum.find(ifnone = nil) { |obj| block } -> obj or nil * enum.detect(ifnone = nil) -> an_enumerator * enum.find(ifnone = nil) -> an_enumerator * * Passes each entry in enum to block. Returns the * first for which block is not false. If no * object matches, calls ifnone and returns its result when it * is specified, or returns nil otherwise. * * If no block is given, an enumerator is returned instead. * * (1..100).detect #=> # * (1..100).find #=> # * * (1..10).detect { |i| i % 5 == 0 and i % 7 == 0 } #=> nil * (1..10).find { |i| i % 5 == 0 and i % 7 == 0 } #=> nil * (1..100).detect { |i| i % 5 == 0 and i % 7 == 0 } #=> 35 * (1..100).find { |i| i % 5 == 0 and i % 7 == 0 } #=> 35 * */ static VALUE enum_find(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; VALUE if_none; rb_scan_args(argc, argv, "01", &if_none); RETURN_ENUMERATOR(obj, argc, argv); memo = MEMO_NEW(Qundef, 0, 0); rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo); if (memo->u3.cnt) { return memo->v1; } if (!NIL_P(if_none)) { return rb_funcallv(if_none, id_call, 0, 0); } return Qnil; } static VALUE find_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { struct MEMO *memo = MEMO_CAST(memop); ENUM_WANT_SVALUE(); if (rb_equal(i, memo->v2)) { MEMO_V1_SET(memo, UINT2NUM(memo->u3.cnt)); rb_iter_break(); } memo->u3.cnt++; return Qnil; } static VALUE find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop)) { struct MEMO *memo = MEMO_CAST(memop); if (RTEST(rb_yield_values2(argc, argv))) { MEMO_V1_SET(memo, UINT2NUM(memo->u3.cnt)); rb_iter_break(); } memo->u3.cnt++; return Qnil; } /* * call-seq: * enum.find_index(value) -> int or nil * enum.find_index { |obj| block } -> int or nil * enum.find_index -> an_enumerator * * Compares each entry in enum with value or passes * to block. Returns the index for the first for which the * evaluated value is non-false. If no object matches, returns * nil * * If neither block nor argument is given, an enumerator is returned instead. * * (1..10).find_index { |i| i % 5 == 0 and i % 7 == 0 } #=> nil * (1..100).find_index { |i| i % 5 == 0 and i % 7 == 0 } #=> 34 * (1..100).find_index(50) #=> 49 * */ static VALUE enum_find_index(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; /* [return value, current index, ] */ VALUE condition_value = Qnil; rb_block_call_func *func; if (argc == 0) { RETURN_ENUMERATOR(obj, 0, 0); func = find_index_iter_i; } else { rb_scan_args(argc, argv, "1", &condition_value); if (rb_block_given_p()) { rb_warn("given block not used"); } func = find_index_i; } memo = MEMO_NEW(Qnil, condition_value, 0); rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo); return memo->v1; } static VALUE find_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { ENUM_WANT_SVALUE(); if (RTEST(enum_yield(argc, i))) { rb_ary_push(ary, i); } return Qnil; } static VALUE enum_size(VALUE self, VALUE args, VALUE eobj) { return rb_check_funcall_default(self, id_size, 0, 0, Qnil); } static long limit_by_enum_size(VALUE obj, long n) { unsigned long limit; VALUE size = rb_check_funcall(obj, id_size, 0, 0); if (!FIXNUM_P(size)) return n; limit = FIX2ULONG(size); return ((unsigned long)n > limit) ? (long)limit : n; } static int enum_size_over_p(VALUE obj, long n) { VALUE size = rb_check_funcall(obj, id_size, 0, 0); if (!FIXNUM_P(size)) return 0; return ((unsigned long)n > FIX2ULONG(size)); } /* * call-seq: * enum.find_all { |obj| block } -> array * enum.select { |obj| block } -> array * enum.filter { |obj| block } -> array * enum.find_all -> an_enumerator * enum.select -> an_enumerator * enum.filter -> an_enumerator * * Returns an array containing all elements of +enum+ * for which the given +block+ returns a true value. * * If no block is given, an Enumerator is returned instead. * * * (1..10).find_all { |i| i % 3 == 0 } #=> [3, 6, 9] * * [1,2,3,4,5].select { |num| num.even? } #=> [2, 4] * * [:foo, :bar].filter { |x| x == :foo } #=> [:foo] * * See also Enumerable#reject. */ static VALUE enum_find_all(VALUE obj) { VALUE ary; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, find_all_i, ary); return ary; } static VALUE reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { ENUM_WANT_SVALUE(); if (!RTEST(enum_yield(argc, i))) { rb_ary_push(ary, i); } return Qnil; } /* * call-seq: * enum.reject { |obj| block } -> array * enum.reject -> an_enumerator * * Returns an array for all elements of +enum+ for which the given * +block+ returns false. * * If no block is given, an Enumerator is returned instead. * * (1..10).reject { |i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10] * * [1, 2, 3, 4, 5].reject { |num| num.even? } #=> [1, 3, 5] * * See also Enumerable#find_all. */ static VALUE enum_reject(VALUE obj) { VALUE ary; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, reject_i, ary); return ary; } static VALUE collect_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { rb_ary_push(ary, rb_yield_values2(argc, argv)); return Qnil; } static VALUE collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { rb_thread_check_ints(); rb_ary_push(ary, rb_enum_values_pack(argc, argv)); return Qnil; } /* * call-seq: * enum.collect { |obj| block } -> array * enum.map { |obj| block } -> array * enum.collect -> an_enumerator * enum.map -> an_enumerator * * Returns a new array with the results of running block once * for every element in enum. * * If no block is given, an enumerator is returned instead. * * (1..4).map { |i| i*i } #=> [1, 4, 9, 16] * (1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"] * */ static VALUE enum_collect(VALUE obj) { VALUE ary; int min_argc, max_argc; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); ary = rb_ary_new(); min_argc = rb_block_min_max_arity(&max_argc); rb_lambda_call(obj, id_each, 0, 0, collect_i, min_argc, max_argc, ary); return ary; } static VALUE flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { VALUE tmp; i = rb_yield_values2(argc, argv); tmp = rb_check_array_type(i); if (NIL_P(tmp)) { rb_ary_push(ary, i); } else { rb_ary_concat(ary, tmp); } return Qnil; } /* * call-seq: * enum.flat_map { |obj| block } -> array * enum.collect_concat { |obj| block } -> array * enum.flat_map -> an_enumerator * enum.collect_concat -> an_enumerator * * Returns a new array with the concatenated results of running * block once for every element in enum. * * If no block is given, an enumerator is returned instead. * * [1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4] * [[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100] * */ static VALUE enum_flat_map(VALUE obj) { VALUE ary; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, flat_map_i, ary); return ary; } /* * call-seq: * enum.to_a(*args) -> array * enum.entries(*args) -> array * * Returns an array containing the items in enum. * * (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7] * { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]] * * require 'prime' * Prime.entries 10 #=> [2, 3, 5, 7] */ static VALUE enum_to_a(int argc, VALUE *argv, VALUE obj) { VALUE ary = rb_ary_new(); rb_block_call(obj, id_each, argc, argv, collect_all, ary); OBJ_INFECT(ary, obj); return ary; } static VALUE enum_to_h_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) { VALUE key_value_pair; ENUM_WANT_SVALUE(); rb_thread_check_ints(); key_value_pair = rb_check_array_type(i); if (NIL_P(key_value_pair)) { rb_raise(rb_eTypeError, "wrong element type %s (expected array)", rb_builtin_class_name(i)); } if (RARRAY_LEN(key_value_pair) != 2) { rb_raise(rb_eArgError, "element has wrong array length (expected 2, was %ld)", RARRAY_LEN(key_value_pair)); } rb_hash_aset(hash, RARRAY_AREF(key_value_pair, 0), RARRAY_AREF(key_value_pair, 1)); return Qnil; } /* * call-seq: * enum.to_h(*args) -> hash * * Returns the result of interpreting enum as a list of * [key, value] pairs. * * %i[hello world].each_with_index.to_h * # => {:hello => 0, :world => 1} */ static VALUE enum_to_h(int argc, VALUE *argv, VALUE obj) { VALUE hash = rb_hash_new(); rb_block_call(obj, id_each, argc, argv, enum_to_h_i, hash); OBJ_INFECT(hash, obj); return hash; } static VALUE inject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p)) { struct MEMO *memo = MEMO_CAST(p); ENUM_WANT_SVALUE(); if (memo->v1 == Qundef) { MEMO_V1_SET(memo, i); } else { MEMO_V1_SET(memo, rb_yield_values(2, memo->v1, i)); } return Qnil; } static VALUE inject_op_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p)) { struct MEMO *memo = MEMO_CAST(p); VALUE name; ENUM_WANT_SVALUE(); if (memo->v1 == Qundef) { MEMO_V1_SET(memo, i); } else if (SYMBOL_P(name = memo->u3.value)) { const ID mid = SYM2ID(name); MEMO_V1_SET(memo, rb_funcallv(memo->v1, mid, 1, &i)); } else { VALUE args[2]; args[0] = name; args[1] = i; MEMO_V1_SET(memo, rb_f_send(numberof(args), args, memo->v1)); } return Qnil; } static VALUE ary_inject_op(VALUE ary, VALUE init, VALUE op) { ID id; VALUE v, e; long i, n; if (RARRAY_LEN(ary) == 0) return init == Qundef ? Qnil : init; if (init == Qundef) { v = RARRAY_AREF(ary, 0); i = 1; if (RARRAY_LEN(ary) == 1) return v; } else { v = init; i = 0; } id = SYM2ID(op); if (id == idPLUS) { if (RB_INTEGER_TYPE_P(v) && rb_method_basic_definition_p(rb_cInteger, idPLUS) && rb_obj_respond_to(v, idPLUS, FALSE)) { n = 0; for (; i < RARRAY_LEN(ary); i++) { e = RARRAY_AREF(ary, i); if (FIXNUM_P(e)) { n += FIX2LONG(e); /* should not overflow long type */ if (!FIXABLE(n)) { v = rb_big_plus(LONG2NUM(n), v); n = 0; } } else if (RB_TYPE_P(e, T_BIGNUM)) v = rb_big_plus(e, v); else goto not_integer; } if (n != 0) v = rb_fix_plus(LONG2FIX(n), v); return v; not_integer: if (n != 0) v = rb_fix_plus(LONG2FIX(n), v); } } for (; i < RARRAY_LEN(ary); i++) { v = rb_funcallv_public(v, id, 1, &RARRAY_CONST_PTR(ary)[i]); } return v; } /* * call-seq: * enum.inject(initial, sym) -> obj * enum.inject(sym) -> obj * enum.inject(initial) { |memo, obj| block } -> obj * enum.inject { |memo, obj| block } -> obj * enum.reduce(initial, sym) -> obj * enum.reduce(sym) -> obj * enum.reduce(initial) { |memo, obj| block } -> obj * enum.reduce { |memo, obj| block } -> obj * * Combines all elements of enum by applying a binary * operation, specified by a block or a symbol that names a * method or operator. * * The inject and reduce methods are aliases. There * is no performance benefit to either. * * If you specify a block, then for each element in enum * the block is passed an accumulator value (memo) and the element. * If you specify a symbol instead, then each element in the collection * will be passed to the named method of memo. * In either case, the result becomes the new value for memo. * At the end of the iteration, the final value of memo is the * return value for the method. * * If you do not explicitly specify an initial value for memo, * then the first element of collection is used as the initial value * of memo. * * * # Sum some numbers * (5..10).reduce(:+) #=> 45 * # Same using a block and inject * (5..10).inject { |sum, n| sum + n } #=> 45 * # Multiply some numbers * (5..10).reduce(1, :*) #=> 151200 * # Same using a block * (5..10).inject(1) { |product, n| product * n } #=> 151200 * # find the longest word * longest = %w{ cat sheep bear }.inject do |memo, word| * memo.length > word.length ? memo : word * end * longest #=> "sheep" * */ static VALUE enum_inject(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; VALUE init, op; rb_block_call_func *iter = inject_i; ID id; switch (rb_scan_args(argc, argv, "02", &init, &op)) { case 0: init = Qundef; break; case 1: if (rb_block_given_p()) { break; } id = rb_check_id(&init); op = id ? ID2SYM(id) : init; init = Qundef; iter = inject_op_i; break; case 2: if (rb_block_given_p()) { rb_warning("given block not used"); } id = rb_check_id(&op); if (id) op = ID2SYM(id); iter = inject_op_i; break; } if (iter == inject_op_i && SYMBOL_P(op) && RB_TYPE_P(obj, T_ARRAY) && rb_method_basic_definition_p(CLASS_OF(obj), id_each)) { return ary_inject_op(obj, init, op); } memo = MEMO_NEW(init, Qnil, op); rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo); if (memo->v1 == Qundef) return Qnil; return memo->v1; } static VALUE partition_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, arys)) { struct MEMO *memo = MEMO_CAST(arys); VALUE ary; ENUM_WANT_SVALUE(); if (RTEST(enum_yield(argc, i))) { ary = memo->v1; } else { ary = memo->v2; } rb_ary_push(ary, i); return Qnil; } /* * call-seq: * enum.partition { |obj| block } -> [ true_array, false_array ] * enum.partition -> an_enumerator * * Returns two arrays, the first containing the elements of * enum for which the block evaluates to true, the second * containing the rest. * * If no block is given, an enumerator is returned instead. * * (1..6).partition { |v| v.even? } #=> [[2, 4, 6], [1, 3, 5]] * */ static VALUE enum_partition(VALUE obj) { struct MEMO *memo; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); memo = MEMO_NEW(rb_ary_new(), rb_ary_new(), 0); rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo); return rb_assoc_new(memo->v1, memo->v2); } static VALUE group_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) { VALUE group; VALUE values; ENUM_WANT_SVALUE(); group = enum_yield(argc, i); values = rb_hash_aref(hash, group); if (!RB_TYPE_P(values, T_ARRAY)) { values = rb_ary_new3(1, i); rb_hash_aset(hash, group, values); } else { rb_ary_push(values, i); } return Qnil; } /* * call-seq: * enum.group_by { |obj| block } -> a_hash * enum.group_by -> an_enumerator * * Groups the collection by result of the block. Returns a hash where the * keys are the evaluated result from the block and the values are * arrays of elements in the collection that correspond to the key. * * If no block is given an enumerator is returned. * * (1..6).group_by { |i| i%3 } #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]} * */ static VALUE enum_group_by(VALUE obj) { VALUE hash; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); hash = rb_hash_new(); rb_block_call(obj, id_each, 0, 0, group_by_i, hash); OBJ_INFECT(hash, obj); return hash; } static VALUE first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params)) { struct MEMO *memo = MEMO_CAST(params); ENUM_WANT_SVALUE(); MEMO_V1_SET(memo, i); rb_iter_break(); UNREACHABLE; } static VALUE enum_take(VALUE obj, VALUE n); /* * call-seq: * enum.first -> obj or nil * enum.first(n) -> an_array * * Returns the first element, or the first +n+ elements, of the enumerable. * If the enumerable is empty, the first form returns nil, and the * second form returns an empty array. * * %w[foo bar baz].first #=> "foo" * %w[foo bar baz].first(2) #=> ["foo", "bar"] * %w[foo bar baz].first(10) #=> ["foo", "bar", "baz"] * [].first #=> nil * [].first(10) #=> [] * */ static VALUE enum_first(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; rb_check_arity(argc, 0, 1); if (argc > 0) { return enum_take(obj, argv[0]); } else { memo = MEMO_NEW(Qnil, 0, 0); rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo); return memo->v1; } } /* * call-seq: * enum.sort -> array * enum.sort { |a, b| block } -> array * * Returns an array containing the items in enum sorted. * * Comparisons for the sort will be done using the items' own * <=> operator or using an optional code block. * * The block must implement a comparison between +a+ and +b+ and return * an integer less than 0 when +b+ follows +a+, +0+ when +a+ and +b+ * are equivalent, or an integer greater than 0 when +a+ follows +b+. * * The result is not guaranteed to be stable. When the comparison of two * elements returns +0+, the order of the elements is unpredictable. * * %w(rhea kea flea).sort #=> ["flea", "kea", "rhea"] * (1..10).sort { |a, b| b <=> a } #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] * * See also Enumerable#sort_by. It implements a Schwartzian transform * which is useful when key computation or comparison is expensive. */ static VALUE enum_sort(VALUE obj) { return rb_ary_sort_bang(enum_to_a(0, 0, obj)); } #define SORT_BY_BUFSIZE 16 struct sort_by_data { const VALUE ary; const VALUE buf; long n; }; static VALUE sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data)) { struct sort_by_data *data = (struct sort_by_data *)&MEMO_CAST(_data)->v1; VALUE ary = data->ary; VALUE v; ENUM_WANT_SVALUE(); v = enum_yield(argc, i); if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } RARRAY_ASET(data->buf, data->n*2, v); RARRAY_ASET(data->buf, data->n*2+1, i); data->n++; if (data->n == SORT_BY_BUFSIZE) { rb_ary_concat(ary, data->buf); data->n = 0; } return Qnil; } static int sort_by_cmp(const void *ap, const void *bp, void *data) { struct cmp_opt_data cmp_opt = { 0, 0 }; VALUE a; VALUE b; VALUE ary = (VALUE)data; if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } a = *(VALUE *)ap; b = *(VALUE *)bp; return OPTIMIZED_CMP(a, b, cmp_opt); } /* * call-seq: * enum.sort_by { |obj| block } -> array * enum.sort_by -> an_enumerator * * Sorts enum using a set of keys generated by mapping the * values in enum through the given block. * * The result is not guaranteed to be stable. When two keys are equal, * the order of the corresponding elements is unpredictable. * * If no block is given, an enumerator is returned instead. * * %w{apple pear fig}.sort_by { |word| word.length } * #=> ["fig", "pear", "apple"] * * The current implementation of sort_by generates an * array of tuples containing the original collection element and the * mapped value. This makes sort_by fairly expensive when * the keysets are simple. * * require 'benchmark' * * a = (1..100000).map { rand(100000) } * * Benchmark.bm(10) do |b| * b.report("Sort") { a.sort } * b.report("Sort by") { a.sort_by { |a| a } } * end * * produces: * * user system total real * Sort 0.180000 0.000000 0.180000 ( 0.175469) * Sort by 1.980000 0.040000 2.020000 ( 2.013586) * * However, consider the case where comparing the keys is a non-trivial * operation. The following code sorts some files on modification time * using the basic sort method. * * files = Dir["*"] * sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime } * sorted #=> ["mon", "tues", "wed", "thurs"] * * This sort is inefficient: it generates two new File * objects during every comparison. A slightly better technique is to * use the Kernel#test method to generate the modification * times directly. * * files = Dir["*"] * sorted = files.sort { |a, b| * test(?M, a) <=> test(?M, b) * } * sorted #=> ["mon", "tues", "wed", "thurs"] * * This still generates many unnecessary Time objects. A * more efficient technique is to cache the sort keys (modification * times in this case) before the sort. Perl users often call this * approach a Schwartzian transform, after Randal Schwartz. We * construct a temporary array, where each element is an array * containing our sort key along with the filename. We sort this array, * and then extract the filename from the result. * * sorted = Dir["*"].collect { |f| * [test(?M, f), f] * }.sort.collect { |f| f[1] } * sorted #=> ["mon", "tues", "wed", "thurs"] * * This is exactly what sort_by does internally. * * sorted = Dir["*"].sort_by { |f| test(?M, f) } * sorted #=> ["mon", "tues", "wed", "thurs"] */ static VALUE enum_sort_by(VALUE obj) { VALUE ary, buf; struct MEMO *memo; long i; struct sort_by_data *data; RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) { ary = rb_ary_new2(RARRAY_LEN(obj)*2); } else { ary = rb_ary_new(); } RBASIC_CLEAR_CLASS(ary); buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2); rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil); memo = MEMO_NEW(0, 0, 0); OBJ_INFECT(memo, obj); data = (struct sort_by_data *)&memo->v1; RB_OBJ_WRITE(memo, &data->ary, ary); RB_OBJ_WRITE(memo, &data->buf, buf); data->n = 0; rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo); ary = data->ary; buf = data->buf; if (data->n) { rb_ary_resize(buf, data->n*2); rb_ary_concat(ary, buf); } if (RARRAY_LEN(ary) > 2) { RARRAY_PTR_USE(ary, ptr, ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE), sort_by_cmp, (void *)ary)); } if (RBASIC(ary)->klass) { rb_raise(rb_eRuntimeError, "sort_by reentered"); } for (i=1; iv2, id_eqq, 1, &i), MEMO_CAST(memo)); \ } \ \ static VALUE \ enum_##name##_func(VALUE result, struct MEMO *memo) DEFINE_ENUMFUNCS(all) { if (!RTEST(result)) { MEMO_V1_SET(memo, Qfalse); rb_iter_break(); } return Qnil; } /* * call-seq: * enum.all? [{ |obj| block } ] -> true or false * enum.all?(pattern) -> true or false * * Passes each element of the collection to the given block. The method * returns true if the block never returns * false or nil. If the block is not given, * Ruby adds an implicit block of { |obj| obj } which will * cause #all? to return +true+ when none of the collection members are * +false+ or +nil+. * * If instead a pattern is supplied, the method returns whether * pattern === element for every collection member. * * %w[ant bear cat].all? { |word| word.length >= 3 } #=> true * %w[ant bear cat].all? { |word| word.length >= 4 } #=> false * %w[ant bear cat].all?(/t/) #=> false * [1, 2i, 3.14].all?(Numeric) #=> true * [nil, true, 99].all? #=> false * [].all? #=> true * */ static VALUE enum_all(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo = MEMO_ENUM_NEW(Qtrue); rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo); return memo->v1; } DEFINE_ENUMFUNCS(any) { if (RTEST(result)) { MEMO_V1_SET(memo, Qtrue); rb_iter_break(); } return Qnil; } /* * call-seq: * enum.any? [{ |obj| block }] -> true or false * enum.any?(pattern) -> true or false * * Passes each element of the collection to the given block. The method * returns true if the block ever returns a value other * than false or nil. If the block is not * given, Ruby adds an implicit block of { |obj| obj } that * will cause #any? to return +true+ if at least one of the collection * members is not +false+ or +nil+. * * If instead a pattern is supplied, the method returns whether * pattern === element for any collection member. * * %w[ant bear cat].any? { |word| word.length >= 3 } #=> true * %w[ant bear cat].any? { |word| word.length >= 4 } #=> true * %w[ant bear cat].any?(/d/) #=> false * [nil, true, 99].any?(Integer) #=> true * [nil, true, 99].any? #=> true * [].any? #=> false * */ static VALUE enum_any(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo = MEMO_ENUM_NEW(Qfalse); rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo); return memo->v1; } DEFINE_ENUMFUNCS(one) { if (RTEST(result)) { if (memo->v1 == Qundef) { MEMO_V1_SET(memo, Qtrue); } else if (memo->v1 == Qtrue) { MEMO_V1_SET(memo, Qfalse); rb_iter_break(); } } return Qnil; } struct nmin_data { long n; long bufmax; long curlen; VALUE buf; VALUE limit; int (*cmpfunc)(const void *, const void *, void *); int rev; /* max if 1 */ int by; /* min_by if 1 */ const char *method; }; static VALUE cmpint_reenter_check(struct nmin_data *data, VALUE val) { if (RBASIC(data->buf)->klass) { rb_raise(rb_eRuntimeError, "%s reentered", data->method); } return val; } static int nmin_cmp(const void *ap, const void *bp, void *_data) { struct cmp_opt_data cmp_opt = { 0, 0 }; struct nmin_data *data = (struct nmin_data *)_data; VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; #define rb_cmpint(cmp, a, b) rb_cmpint(cmpint_reenter_check(data, (cmp)), a, b) return OPTIMIZED_CMP(a, b, cmp_opt); #undef rb_cmpint } static int nmin_block_cmp(const void *ap, const void *bp, void *_data) { struct nmin_data *data = (struct nmin_data *)_data; VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; VALUE cmp = rb_yield_values(2, a, b); cmpint_reenter_check(data, cmp); return rb_cmpint(cmp, a, b); } static void nmin_filter(struct nmin_data *data) { long n; VALUE *beg; int eltsize; long numelts; long left, right; long store_index; long i, j; if (data->curlen <= data->n) return; n = data->n; beg = RARRAY_PTR(data->buf); eltsize = data->by ? 2 : 1; numelts = data->curlen; left = 0; right = numelts-1; #define GETPTR(i) (beg+(i)*eltsize) #define SWAP(i, j) do { \ VALUE tmp[2]; \ memcpy(tmp, GETPTR(i), sizeof(VALUE)*eltsize); \ memcpy(GETPTR(i), GETPTR(j), sizeof(VALUE)*eltsize); \ memcpy(GETPTR(j), tmp, sizeof(VALUE)*eltsize); \ } while (0) while (1) { long pivot_index = left + (right-left)/2; long num_pivots = 1; SWAP(pivot_index, right); pivot_index = right; store_index = left; i = left; while (i <= right-num_pivots) { int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data); if (data->rev) c = -c; if (c == 0) { SWAP(i, right-num_pivots); num_pivots++; continue; } if (c < 0) { SWAP(i, store_index); store_index++; } i++; } j = store_index; for (i = right; right-num_pivots < i; i--) { if (i <= j) break; SWAP(j, i); j++; } if (store_index <= n && n <= store_index+num_pivots) break; if (n < store_index) { right = store_index-1; } else { left = store_index+num_pivots; } } #undef GETPTR #undef SWAP data->limit = RARRAY_PTR(data->buf)[store_index*eltsize]; /* the last pivot */ data->curlen = data->n; rb_ary_resize(data->buf, data->n * eltsize); } static VALUE nmin_i(VALUE i, VALUE *_data, int argc, VALUE *argv) { struct nmin_data *data = (struct nmin_data *)_data; VALUE cmpv; ENUM_WANT_SVALUE(); if (data->by) cmpv = enum_yield(argc, i); else cmpv = i; if (data->limit != Qundef) { int c = data->cmpfunc(&cmpv, &data->limit, data); if (data->rev) c = -c; if (c >= 0) return Qnil; } if (data->by) rb_ary_push(data->buf, cmpv); rb_ary_push(data->buf, i); data->curlen++; if (data->curlen == data->bufmax) { nmin_filter(data); } return Qnil; } VALUE rb_nmin_run(VALUE obj, VALUE num, int by, int rev, int ary) { VALUE result; struct nmin_data data; data.n = NUM2LONG(num); if (data.n < 0) rb_raise(rb_eArgError, "negative size (%ld)", data.n); if (data.n == 0) return rb_ary_new2(0); if (LONG_MAX/4/(by ? 2 : 1) < data.n) rb_raise(rb_eArgError, "too big size"); data.bufmax = data.n * 4; data.curlen = 0; data.buf = rb_ary_tmp_new(data.bufmax * (by ? 2 : 1)); data.limit = Qundef; data.cmpfunc = by ? nmin_cmp : rb_block_given_p() ? nmin_block_cmp : nmin_cmp; data.rev = rev; data.by = by; data.method = rev ? (by ? "max_by" : "max") : (by ? "min_by" : "min"); if (ary) { long i; for (i = 0; i < RARRAY_LEN(obj); i++) { VALUE args[1]; args[0] = RARRAY_AREF(obj, i); nmin_i(obj, (VALUE*)&data, 1, args); } } else { rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data); } nmin_filter(&data); result = data.buf; if (by) { long i; ruby_qsort(RARRAY_PTR(result), RARRAY_LEN(result)/2, sizeof(VALUE)*2, data.cmpfunc, (void *)&data); for (i=1; i true or false * enum.one?(pattern) -> true or false * * Passes each element of the collection to the given block. The method * returns true if the block returns true * exactly once. If the block is not given, one? will return * true only if exactly one of the collection members is * true. * * If instead a pattern is supplied, the method returns whether * pattern === element for exactly one collection member. * * %w{ant bear cat}.one? { |word| word.length == 4 } #=> true * %w{ant bear cat}.one? { |word| word.length > 4 } #=> false * %w{ant bear cat}.one? { |word| word.length < 4 } #=> false * %w{ant bear cat}.one?(/t/) #=> false * [ nil, true, 99 ].one? #=> false * [ nil, true, false ].one? #=> true * [ nil, true, 99 ].one?(Integer) #=> true * [].one? #=> false * */ static VALUE enum_one(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo = MEMO_ENUM_NEW(Qundef); VALUE result; rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo); result = memo->v1; if (result == Qundef) return Qfalse; return result; } DEFINE_ENUMFUNCS(none) { if (RTEST(result)) { MEMO_V1_SET(memo, Qfalse); rb_iter_break(); } return Qnil; } /* * call-seq: * enum.none? [{ |obj| block }] -> true or false * enum.none?(pattern) -> true or false * * Passes each element of the collection to the given block. The method * returns true if the block never returns true * for all elements. If the block is not given, none? will return * true only if none of the collection members is true. * * If instead a pattern is supplied, the method returns whether * pattern === element for none of the collection members. * * %w{ant bear cat}.none? { |word| word.length == 5 } #=> true * %w{ant bear cat}.none? { |word| word.length >= 4 } #=> false * %w{ant bear cat}.none?(/d/) #=> true * [1, 3.14, 42].none?(Float) #=> false * [].none? #=> true * [nil].none? #=> true * [nil, false].none? #=> true * [nil, false, true].none? #=> false */ static VALUE enum_none(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo = MEMO_ENUM_NEW(Qtrue); rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo); return memo->v1; } struct min_t { VALUE min; struct cmp_opt_data cmp_opt; }; static VALUE min_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct min_t *memo = MEMO_FOR(struct min_t, args); ENUM_WANT_SVALUE(); if (memo->min == Qundef) { memo->min = i; } else { if (OPTIMIZED_CMP(i, memo->min, memo->cmp_opt) < 0) { memo->min = i; } } return Qnil; } static VALUE min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { VALUE cmp; struct min_t *memo = MEMO_FOR(struct min_t, args); ENUM_WANT_SVALUE(); if (memo->min == Qundef) { memo->min = i; } else { cmp = rb_yield_values(2, i, memo->min); if (rb_cmpint(cmp, i, memo->min) < 0) { memo->min = i; } } return Qnil; } /* * call-seq: * enum.min -> obj * enum.min { |a, b| block } -> obj * enum.min(n) -> array * enum.min(n) { |a, b| block } -> array * * Returns the object in _enum_ with the minimum value. The * first form assumes all objects implement Comparable; * the second uses the block to return a <=> b. * * a = %w(albatross dog horse) * a.min #=> "albatross" * a.min { |a, b| a.length <=> b.length } #=> "dog" * * If the +n+ argument is given, minimum +n+ elements are returned * as a sorted array. * * a = %w[albatross dog horse] * a.min(2) #=> ["albatross", "dog"] * a.min(2) {|a, b| a.length <=> b.length } #=> ["dog", "horse"] * [5, 1, 3, 4, 2].min(3) #=> [1, 2, 3] */ static VALUE enum_min(int argc, VALUE *argv, VALUE obj) { VALUE memo; struct min_t *m = NEW_CMP_OPT_MEMO(struct min_t, memo); VALUE result; VALUE num; rb_scan_args(argc, argv, "01", &num); if (!NIL_P(num)) return rb_nmin_run(obj, num, 0, 0, 0); m->min = Qundef; m->cmp_opt.opt_methods = 0; m->cmp_opt.opt_inited = 0; if (rb_block_given_p()) { rb_block_call(obj, id_each, 0, 0, min_ii, memo); } else { rb_block_call(obj, id_each, 0, 0, min_i, memo); } result = m->min; if (result == Qundef) return Qnil; return result; } struct max_t { VALUE max; struct cmp_opt_data cmp_opt; }; static VALUE max_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct max_t *memo = MEMO_FOR(struct max_t, args); ENUM_WANT_SVALUE(); if (memo->max == Qundef) { memo->max = i; } else { if (OPTIMIZED_CMP(i, memo->max, memo->cmp_opt) > 0) { memo->max = i; } } return Qnil; } static VALUE max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct max_t *memo = MEMO_FOR(struct max_t, args); VALUE cmp; ENUM_WANT_SVALUE(); if (memo->max == Qundef) { memo->max = i; } else { cmp = rb_yield_values(2, i, memo->max); if (rb_cmpint(cmp, i, memo->max) > 0) { memo->max = i; } } return Qnil; } /* * call-seq: * enum.max -> obj * enum.max { |a, b| block } -> obj * enum.max(n) -> array * enum.max(n) { |a, b| block } -> array * * Returns the object in _enum_ with the maximum value. The * first form assumes all objects implement Comparable; * the second uses the block to return a <=> b. * * a = %w(albatross dog horse) * a.max #=> "horse" * a.max { |a, b| a.length <=> b.length } #=> "albatross" * * If the +n+ argument is given, maximum +n+ elements are returned * as an array, sorted in descending order. * * a = %w[albatross dog horse] * a.max(2) #=> ["horse", "dog"] * a.max(2) {|a, b| a.length <=> b.length } #=> ["albatross", "horse"] * [5, 1, 3, 4, 2].max(3) #=> [5, 4, 3] */ static VALUE enum_max(int argc, VALUE *argv, VALUE obj) { VALUE memo; struct max_t *m = NEW_CMP_OPT_MEMO(struct max_t, memo); VALUE result; VALUE num; rb_scan_args(argc, argv, "01", &num); if (!NIL_P(num)) return rb_nmin_run(obj, num, 0, 1, 0); m->max = Qundef; m->cmp_opt.opt_methods = 0; m->cmp_opt.opt_inited = 0; if (rb_block_given_p()) { rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo); } else { rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo); } result = m->max; if (result == Qundef) return Qnil; return result; } struct minmax_t { VALUE min; VALUE max; VALUE last; struct cmp_opt_data cmp_opt; }; static void minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo) { int n; if (memo->min == Qundef) { memo->min = i; memo->max = j; } else { n = OPTIMIZED_CMP(i, memo->min, memo->cmp_opt); if (n < 0) { memo->min = i; } n = OPTIMIZED_CMP(j, memo->max, memo->cmp_opt); if (n > 0) { memo->max = j; } } } static VALUE minmax_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) { struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo); int n; VALUE j; ENUM_WANT_SVALUE(); if (memo->last == Qundef) { memo->last = i; return Qnil; } j = memo->last; memo->last = Qundef; n = OPTIMIZED_CMP(j, i, memo->cmp_opt); if (n == 0) i = j; else if (n < 0) { VALUE tmp; tmp = i; i = j; j = tmp; } minmax_i_update(i, j, memo); return Qnil; } static void minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo) { int n; if (memo->min == Qundef) { memo->min = i; memo->max = j; } else { n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min); if (n < 0) { memo->min = i; } n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max); if (n > 0) { memo->max = j; } } } static VALUE minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) { struct minmax_t *memo = MEMO_FOR(struct minmax_t, _memo); int n; VALUE j; ENUM_WANT_SVALUE(); if (memo->last == Qundef) { memo->last = i; return Qnil; } j = memo->last; memo->last = Qundef; n = rb_cmpint(rb_yield_values(2, j, i), j, i); if (n == 0) i = j; else if (n < 0) { VALUE tmp; tmp = i; i = j; j = tmp; } minmax_ii_update(i, j, memo); return Qnil; } /* * call-seq: * enum.minmax -> [min, max] * enum.minmax { |a, b| block } -> [min, max] * * Returns a two element array which contains the minimum and the * maximum value in the enumerable. The first form assumes all * objects implement Comparable; the second uses the * block to return a <=> b. * * a = %w(albatross dog horse) * a.minmax #=> ["albatross", "horse"] * a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"] */ static VALUE enum_minmax(VALUE obj) { VALUE memo; struct minmax_t *m = NEW_CMP_OPT_MEMO(struct minmax_t, memo); m->min = Qundef; m->last = Qundef; m->cmp_opt.opt_methods = 0; m->cmp_opt.opt_inited = 0; if (rb_block_given_p()) { rb_block_call(obj, id_each, 0, 0, minmax_ii, memo); if (m->last != Qundef) minmax_ii_update(m->last, m->last, m); } else { rb_block_call(obj, id_each, 0, 0, minmax_i, memo); if (m->last != Qundef) minmax_i_update(m->last, m->last, m); } if (m->min != Qundef) { return rb_assoc_new(m->min, m->max); } return rb_assoc_new(Qnil, Qnil); } static VALUE min_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct cmp_opt_data cmp_opt = { 0, 0 }; struct MEMO *memo = MEMO_CAST(args); VALUE v; ENUM_WANT_SVALUE(); v = enum_yield(argc, i); if (memo->v1 == Qundef) { MEMO_V1_SET(memo, v); MEMO_V2_SET(memo, i); } else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) < 0) { MEMO_V1_SET(memo, v); MEMO_V2_SET(memo, i); } return Qnil; } /* * call-seq: * enum.min_by {|obj| block } -> obj * enum.min_by -> an_enumerator * enum.min_by(n) {|obj| block } -> array * enum.min_by(n) -> an_enumerator * * Returns the object in enum that gives the minimum * value from the given block. * * If no block is given, an enumerator is returned instead. * * a = %w(albatross dog horse) * a.min_by { |x| x.length } #=> "dog" * * If the +n+ argument is given, minimum +n+ elements are returned * as an array. These +n+ elements are sorted by the value from the * given block. * * a = %w[albatross dog horse] * p a.min_by(2) {|x| x.length } #=> ["dog", "horse"] */ static VALUE enum_min_by(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; VALUE num; rb_scan_args(argc, argv, "01", &num); RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); if (!NIL_P(num)) return rb_nmin_run(obj, num, 1, 0, 0); memo = MEMO_NEW(Qundef, Qnil, 0); rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo); return memo->v2; } static VALUE max_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct cmp_opt_data cmp_opt = { 0, 0 }; struct MEMO *memo = MEMO_CAST(args); VALUE v; ENUM_WANT_SVALUE(); v = enum_yield(argc, i); if (memo->v1 == Qundef) { MEMO_V1_SET(memo, v); MEMO_V2_SET(memo, i); } else if (OPTIMIZED_CMP(v, memo->v1, cmp_opt) > 0) { MEMO_V1_SET(memo, v); MEMO_V2_SET(memo, i); } return Qnil; } /* * call-seq: * enum.max_by {|obj| block } -> obj * enum.max_by -> an_enumerator * enum.max_by(n) {|obj| block } -> obj * enum.max_by(n) -> an_enumerator * * Returns the object in enum that gives the maximum * value from the given block. * * If no block is given, an enumerator is returned instead. * * a = %w(albatross dog horse) * a.max_by { |x| x.length } #=> "albatross" * * If the +n+ argument is given, maximum +n+ elements are returned * as an array. These +n+ elements are sorted by the value from the * given block, in descending order. * * a = %w[albatross dog horse] * a.max_by(2) {|x| x.length } #=> ["albatross", "horse"] * * enum.max_by(n) can be used to implement weighted random sampling. * Following example implements and use Enumerable#wsample. * * module Enumerable * # weighted random sampling. * # * # Pavlos S. Efraimidis, Paul G. Spirakis * # Weighted random sampling with a reservoir * # Information Processing Letters * # Volume 97, Issue 5 (16 March 2006) * def wsample(n) * self.max_by(n) {|v| rand ** (1.0/yield(v)) } * end * end * e = (-20..20).to_a*10000 * a = e.wsample(20000) {|x| * Math.exp(-(x/5.0)**2) # normal distribution * } * # a is 20000 samples from e. * p a.length #=> 20000 * h = a.group_by {|x| x } * -10.upto(10) {|x| puts "*" * (h[x].length/30.0).to_i if h[x] } * #=> * * # *** * # ****** * # *********** * # ****************** * # ***************************** * # ***************************************** * # **************************************************** * # *************************************************************** * # ******************************************************************** * # *********************************************************************** * # *********************************************************************** * # ************************************************************** * # **************************************************** * # *************************************** * # *************************** * # ****************** * # *********** * # ******* * # *** * # * * */ static VALUE enum_max_by(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; VALUE num; rb_scan_args(argc, argv, "01", &num); RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); if (!NIL_P(num)) return rb_nmin_run(obj, num, 1, 1, 0); memo = MEMO_NEW(Qundef, Qnil, 0); rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo); return memo->v2; } struct minmax_by_t { VALUE min_bv; VALUE max_bv; VALUE min; VALUE max; VALUE last_bv; VALUE last; }; static void minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo) { struct cmp_opt_data cmp_opt = { 0, 0 }; if (memo->min_bv == Qundef) { memo->min_bv = v1; memo->max_bv = v2; memo->min = i1; memo->max = i2; } else { if (OPTIMIZED_CMP(v1, memo->min_bv, cmp_opt) < 0) { memo->min_bv = v1; memo->min = i1; } if (OPTIMIZED_CMP(v2, memo->max_bv, cmp_opt) > 0) { memo->max_bv = v2; memo->max = i2; } } } static VALUE minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) { struct cmp_opt_data cmp_opt = { 0, 0 }; struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo); VALUE vi, vj, j; int n; ENUM_WANT_SVALUE(); vi = enum_yield(argc, i); if (memo->last_bv == Qundef) { memo->last_bv = vi; memo->last = i; return Qnil; } vj = memo->last_bv; j = memo->last; memo->last_bv = Qundef; n = OPTIMIZED_CMP(vj, vi, cmp_opt); if (n == 0) { i = j; vi = vj; } else if (n < 0) { VALUE tmp; tmp = i; i = j; j = tmp; tmp = vi; vi = vj; vj = tmp; } minmax_by_i_update(vi, vj, i, j, memo); return Qnil; } /* * call-seq: * enum.minmax_by { |obj| block } -> [min, max] * enum.minmax_by -> an_enumerator * * Returns a two element array containing the objects in * enum that correspond to the minimum and maximum values respectively * from the given block. * * If no block is given, an enumerator is returned instead. * * a = %w(albatross dog horse) * a.minmax_by { |x| x.length } #=> ["dog", "albatross"] */ static VALUE enum_minmax_by(VALUE obj) { VALUE memo; struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo); RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size); m->min_bv = Qundef; m->max_bv = Qundef; m->min = Qnil; m->max = Qnil; m->last_bv = Qundef; m->last = Qundef; rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo); if (m->last_bv != Qundef) minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m); m = MEMO_FOR(struct minmax_by_t, memo); return rb_assoc_new(m->min, m->max); } static VALUE member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args)) { struct MEMO *memo = MEMO_CAST(args); if (rb_equal(rb_enum_values_pack(argc, argv), memo->v1)) { MEMO_V2_SET(memo, Qtrue); rb_iter_break(); } return Qnil; } /* * call-seq: * enum.include?(obj) -> true or false * enum.member?(obj) -> true or false * * Returns true if any member of enum equals * obj. Equality is tested using ==. * * IO.constants.include? :SEEK_SET #=> true * IO.constants.include? :SEEK_NO_FURTHER #=> false * IO.constants.member? :SEEK_SET #=> true * IO.constants.member? :SEEK_NO_FURTHER #=> false * */ static VALUE enum_member(VALUE obj, VALUE val) { struct MEMO *memo = MEMO_NEW(val, Qfalse, 0); rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo); return memo->v2; } static VALUE each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) { long n = MEMO_CAST(memo)->u3.cnt++; return rb_yield_values(2, rb_enum_values_pack(argc, argv), INT2NUM(n)); } /* * call-seq: * enum.each_with_index(*args) { |obj, i| block } -> enum * enum.each_with_index(*args) -> an_enumerator * * Calls block with two arguments, the item and its index, * for each item in enum. Given arguments are passed through * to #each(). * * If no block is given, an enumerator is returned instead. * * hash = Hash.new * %w(cat dog wombat).each_with_index { |item, index| * hash[item] = index * } * hash #=> {"cat"=>0, "dog"=>1, "wombat"=>2} * */ static VALUE enum_each_with_index(int argc, VALUE *argv, VALUE obj) { struct MEMO *memo; RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); memo = MEMO_NEW(0, 0, 0); rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo); return obj; } /* * call-seq: * enum.reverse_each(*args) { |item| block } -> enum * enum.reverse_each(*args) -> an_enumerator * * Builds a temporary array and traverses that array in reverse order. * * If no block is given, an enumerator is returned instead. * * (1..3).reverse_each { |v| p v } * * produces: * * 3 * 2 * 1 */ static VALUE enum_reverse_each(int argc, VALUE *argv, VALUE obj) { VALUE ary; long i; RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); ary = enum_to_a(argc, argv, obj); for (i = RARRAY_LEN(ary); --i >= 0; ) { rb_yield(RARRAY_AREF(ary, i)); } return obj; } static VALUE each_val_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p)) { ENUM_WANT_SVALUE(); enum_yield(argc, i); return Qnil; } /* * call-seq: * enum.each_entry { |obj| block } -> enum * enum.each_entry -> an_enumerator * * Calls block once for each element in +self+, passing that * element as a parameter, converting multiple values from yield to an * array. * * If no block is given, an enumerator is returned instead. * * class Foo * include Enumerable * def each * yield 1 * yield 1, 2 * yield * end * end * Foo.new.each_entry{ |o| p o } * * produces: * * 1 * [1, 2] * nil * */ static VALUE enum_each_entry(int argc, VALUE *argv, VALUE obj) { RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size); rb_block_call(obj, id_each, argc, argv, each_val_i, 0); return obj; } static VALUE add_int(VALUE x, long n) { const VALUE y = LONG2NUM(n); if (RB_INTEGER_TYPE_P(x)) return rb_int_plus(x, y); return rb_funcallv(x, '+', 1, &y); } static VALUE div_int(VALUE x, long n) { const VALUE y = LONG2NUM(n); if (RB_INTEGER_TYPE_P(x)) return rb_int_idiv(x, y); return rb_funcallv(x, id_div, 1, &y); } #define dont_recycle_block_arg(arity) ((arity) == 1 || (arity) < 0) static VALUE each_slice_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, m)) { struct MEMO *memo = MEMO_CAST(m); VALUE ary = memo->v1; VALUE v = Qnil; long size = memo->u3.cnt; ENUM_WANT_SVALUE(); rb_ary_push(ary, i); if (RARRAY_LEN(ary) == size) { v = rb_yield(ary); if (memo->v2) { MEMO_V1_SET(memo, rb_ary_new2(size)); } else { rb_ary_clear(ary); } } return v; } static VALUE enum_each_slice_size(VALUE obj, VALUE args, VALUE eobj) { VALUE n, size; long slice_size = NUM2LONG(RARRAY_AREF(args, 0)); if (slice_size <= 0) rb_raise(rb_eArgError, "invalid slice size"); size = enum_size(obj, 0, 0); if (size == Qnil) return Qnil; n = add_int(size, slice_size-1); return div_int(n, slice_size); } /* * call-seq: * enum.each_slice(n) { ... } -> nil * enum.each_slice(n) -> an_enumerator * * Iterates the given block for each slice of elements. If no * block is given, returns an enumerator. * * (1..10).each_slice(3) { |a| p a } * # outputs below * [1, 2, 3] * [4, 5, 6] * [7, 8, 9] * [10] * */ static VALUE enum_each_slice(VALUE obj, VALUE n) { long size = NUM2LONG(n); VALUE ary; struct MEMO *memo; int arity; if (size <= 0) rb_raise(rb_eArgError, "invalid slice size"); RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size); size = limit_by_enum_size(obj, size); ary = rb_ary_new2(size); arity = rb_block_arity(); memo = MEMO_NEW(ary, dont_recycle_block_arg(arity), size); rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo); ary = memo->v1; if (RARRAY_LEN(ary) > 0) rb_yield(ary); return Qnil; } static VALUE each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); VALUE ary = memo->v1; VALUE v = Qnil; long size = memo->u3.cnt; ENUM_WANT_SVALUE(); if (RARRAY_LEN(ary) == size) { rb_ary_shift(ary); } rb_ary_push(ary, i); if (RARRAY_LEN(ary) == size) { if (memo->v2) { ary = rb_ary_dup(ary); } v = rb_yield(ary); } return v; } static VALUE enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj) { struct cmp_opt_data cmp_opt = { 0, 0 }; const VALUE zero = LONG2FIX(0); VALUE n, size; long cons_size = NUM2LONG(RARRAY_AREF(args, 0)); if (cons_size <= 0) rb_raise(rb_eArgError, "invalid size"); size = enum_size(obj, 0, 0); if (size == Qnil) return Qnil; n = add_int(size, 1 - cons_size); return (OPTIMIZED_CMP(n, zero, cmp_opt) == -1) ? zero : n; } /* * call-seq: * enum.each_cons(n) { ... } -> nil * enum.each_cons(n) -> an_enumerator * * Iterates the given block for each array of consecutive * elements. If no block is given, returns an enumerator. * * e.g.: * (1..10).each_cons(3) { |a| p a } * # outputs below * [1, 2, 3] * [2, 3, 4] * [3, 4, 5] * [4, 5, 6] * [5, 6, 7] * [6, 7, 8] * [7, 8, 9] * [8, 9, 10] * */ static VALUE enum_each_cons(VALUE obj, VALUE n) { long size = NUM2LONG(n); struct MEMO *memo; int arity; if (size <= 0) rb_raise(rb_eArgError, "invalid size"); RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size); arity = rb_block_arity(); if (enum_size_over_p(obj, size)) return Qnil; memo = MEMO_NEW(rb_ary_new2(size), dont_recycle_block_arg(arity), size); rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo); return Qnil; } static VALUE each_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) { ENUM_WANT_SVALUE(); return rb_yield_values(2, i, memo); } /* * call-seq: * enum.each_with_object(obj) { |(*args), memo_obj| ... } -> obj * enum.each_with_object(obj) -> an_enumerator * * Iterates the given block for each element with an arbitrary * object given, and returns the initially given object. * * If no block is given, returns an enumerator. * * evens = (1..10).each_with_object([]) { |i, a| a << i*2 } * #=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] * */ static VALUE enum_each_with_object(VALUE obj, VALUE memo) { RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size); rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo); return memo; } static VALUE zip_ary(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval)) { struct MEMO *memo = (struct MEMO *)memoval; VALUE result = memo->v1; VALUE args = memo->v2; long n = memo->u3.cnt++; VALUE tmp; int i; tmp = rb_ary_new2(RARRAY_LEN(args) + 1); rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv)); for (i=0; iv1; VALUE args = memo->v2; VALUE tmp; int i; tmp = rb_ary_new2(RARRAY_LEN(args) + 1); rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv)); for (i=0; i an_array_of_array * enum.zip(arg, ...) { |arr| block } -> nil * * Takes one element from enum and merges corresponding * elements from each args. This generates a sequence of * n-element arrays, where n is one more than the * count of arguments. The length of the resulting sequence will be * enum#size. If the size of any argument is less than * enum#size, nil values are supplied. If * a block is given, it is invoked for each output array, otherwise * an array of arrays is returned. * * a = [ 4, 5, 6 ] * b = [ 7, 8, 9 ] * * a.zip(b) #=> [[4, 7], [5, 8], [6, 9]] * [1, 2, 3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]] * [1, 2].zip(a, b) #=> [[1, 4, 7], [2, 5, 8]] * a.zip([1, 2], [8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]] * * c = [] * a.zip(b) { |x, y| c << x + y } #=> nil * c #=> [11, 13, 15] * */ static VALUE enum_zip(int argc, VALUE *argv, VALUE obj) { int i; ID conv; struct MEMO *memo; VALUE result = Qnil; VALUE args = rb_ary_new4(argc, argv); int allary = TRUE; argv = RARRAY_PTR(args); for (i=0; iv1, rb_enum_values_pack(argc, argv)); if (--memo->u3.cnt == 0) rb_iter_break(); return Qnil; } /* * call-seq: * enum.take(n) -> array * * Returns first n elements from enum. * * a = [1, 2, 3, 4, 5, 0] * a.take(3) #=> [1, 2, 3] * a.take(30) #=> [1, 2, 3, 4, 5, 0] * */ static VALUE enum_take(VALUE obj, VALUE n) { struct MEMO *memo; VALUE result; long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to take negative size"); } if (len == 0) return rb_ary_new2(0); result = rb_ary_new2(len); memo = MEMO_NEW(result, 0, len); rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo); return result; } static VALUE take_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { if (!RTEST(rb_yield_values2(argc, argv))) rb_iter_break(); rb_ary_push(ary, rb_enum_values_pack(argc, argv)); return Qnil; } /* * call-seq: * enum.take_while { |obj| block } -> array * enum.take_while -> an_enumerator * * Passes elements to the block until the block returns +nil+ or +false+, * then stops iterating and returns an array of all prior elements. * * If no block is given, an enumerator is returned instead. * * a = [1, 2, 3, 4, 5, 0] * a.take_while { |i| i < 3 } #=> [1, 2] * */ static VALUE enum_take_while(VALUE obj) { VALUE ary; RETURN_ENUMERATOR(obj, 0, 0); ary = rb_ary_new(); rb_block_call(obj, id_each, 0, 0, take_while_i, ary); return ary; } static VALUE drop_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); if (memo->u3.cnt == 0) { rb_ary_push(memo->v1, rb_enum_values_pack(argc, argv)); } else { memo->u3.cnt--; } return Qnil; } /* * call-seq: * enum.drop(n) -> array * * Drops first n elements from enum, and returns rest elements * in an array. * * a = [1, 2, 3, 4, 5, 0] * a.drop(3) #=> [4, 5, 0] * */ static VALUE enum_drop(VALUE obj, VALUE n) { VALUE result; struct MEMO *memo; long len = NUM2LONG(n); if (len < 0) { rb_raise(rb_eArgError, "attempt to drop negative size"); } result = rb_ary_new(); memo = MEMO_NEW(result, 0, len); rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo); return result; } static VALUE drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { struct MEMO *memo = MEMO_CAST(args); ENUM_WANT_SVALUE(); if (!memo->u3.state && !RTEST(enum_yield(argc, i))) { memo->u3.state = TRUE; } if (memo->u3.state) { rb_ary_push(memo->v1, i); } return Qnil; } /* * call-seq: * enum.drop_while { |obj| block } -> array * enum.drop_while -> an_enumerator * * Drops elements up to, but not including, the first element for * which the block returns +nil+ or +false+ and returns an array * containing the remaining elements. * * If no block is given, an enumerator is returned instead. * * a = [1, 2, 3, 4, 5, 0] * a.drop_while { |i| i < 3 } #=> [3, 4, 5, 0] * */ static VALUE enum_drop_while(VALUE obj) { VALUE result; struct MEMO *memo; RETURN_ENUMERATOR(obj, 0, 0); result = rb_ary_new(); memo = MEMO_NEW(result, 0, FALSE); rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo); return result; } static VALUE cycle_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary)) { ENUM_WANT_SVALUE(); rb_ary_push(ary, argc > 1 ? i : rb_ary_new_from_values(argc, argv)); enum_yield(argc, i); return Qnil; } static VALUE enum_cycle_size(VALUE self, VALUE args, VALUE eobj) { long mul = 0; VALUE n = Qnil; VALUE size; if (args && (RARRAY_LEN(args) > 0)) { n = RARRAY_AREF(args, 0); if (!NIL_P(n)) mul = NUM2LONG(n); } size = enum_size(self, args, 0); if (NIL_P(size) || FIXNUM_ZERO_P(size)) return size; if (NIL_P(n)) return DBL2NUM(HUGE_VAL); if (mul <= 0) return INT2FIX(0); n = LONG2FIX(mul); return rb_funcallv(size, '*', 1, &n); } /* * call-seq: * enum.cycle(n=nil) { |obj| block } -> nil * enum.cycle(n=nil) -> an_enumerator * * Calls block for each element of enum repeatedly _n_ * times or forever if none or +nil+ is given. If a non-positive * number is given or the collection is empty, does nothing. Returns * +nil+ if the loop has finished without getting interrupted. * * Enumerable#cycle saves elements in an internal array so changes * to enum after the first pass have no effect. * * If no block is given, an enumerator is returned instead. * * a = ["a", "b", "c"] * a.cycle { |x| puts x } # print, a, b, c, a, b, c,.. forever. * a.cycle(2) { |x| puts x } # print, a, b, c, a, b, c. * */ static VALUE enum_cycle(int argc, VALUE *argv, VALUE obj) { VALUE ary; VALUE nv = Qnil; long n, i, len; rb_scan_args(argc, argv, "01", &nv); RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size); if (NIL_P(nv)) { n = -1; } else { n = NUM2LONG(nv); if (n <= 0) return Qnil; } ary = rb_ary_new(); RBASIC_CLEAR_CLASS(ary); rb_block_call(obj, id_each, 0, 0, cycle_i, ary); len = RARRAY_LEN(ary); if (len == 0) return Qnil; while (n < 0 || 0 < --n) { for (i=0; icategorize, id_call, 1, &i); if (v == alone) { if (!NIL_P(argp->prev_value)) { s = rb_assoc_new(argp->prev_value, argp->prev_elts); rb_funcallv(argp->yielder, id_lshift, 1, &s); argp->prev_value = argp->prev_elts = Qnil; } v = rb_assoc_new(v, rb_ary_new3(1, i)); rb_funcallv(argp->yielder, id_lshift, 1, &v); } else if (NIL_P(v) || v == separator) { if (!NIL_P(argp->prev_value)) { v = rb_assoc_new(argp->prev_value, argp->prev_elts); rb_funcallv(argp->yielder, id_lshift, 1, &v); argp->prev_value = argp->prev_elts = Qnil; } } else if (SYMBOL_P(v) && (s = rb_sym2str(v), RSTRING_PTR(s)[0] == '_')) { rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved"); } else { if (NIL_P(argp->prev_value)) { argp->prev_value = v; argp->prev_elts = rb_ary_new3(1, i); } else { if (rb_equal(argp->prev_value, v)) { rb_ary_push(argp->prev_elts, i); } else { s = rb_assoc_new(argp->prev_value, argp->prev_elts); rb_funcallv(argp->yielder, id_lshift, 1, &s); argp->prev_value = v; argp->prev_elts = rb_ary_new3(1, i); } } } return Qnil; } static VALUE chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) { VALUE enumerable; VALUE arg; struct chunk_arg *memo = NEW_MEMO_FOR(struct chunk_arg, arg); enumerable = rb_ivar_get(enumerator, rb_intern("chunk_enumerable")); memo->categorize = rb_ivar_get(enumerator, rb_intern("chunk_categorize")); memo->prev_value = Qnil; memo->prev_elts = Qnil; memo->yielder = yielder; rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg); memo = MEMO_FOR(struct chunk_arg, arg); if (!NIL_P(memo->prev_elts)) { arg = rb_assoc_new(memo->prev_value, memo->prev_elts); rb_funcallv(memo->yielder, id_lshift, 1, &arg); } return Qnil; } /* * call-seq: * enum.chunk { |elt| ... } -> an_enumerator * * Enumerates over the items, chunking them together based on the return * value of the block. * * Consecutive elements which return the same block value are chunked together. * * For example, consecutive even numbers and odd numbers can be * chunked as follows. * * [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n| * n.even? * }.each { |even, ary| * p [even, ary] * } * #=> [false, [3, 1]] * # [true, [4]] * # [false, [1, 5, 9]] * # [true, [2, 6]] * # [false, [5, 3, 5]] * * This method is especially useful for sorted series of elements. * The following example counts words for each initial letter. * * open("/usr/share/dict/words", "r:iso-8859-1") { |f| * f.chunk { |line| line.ord }.each { |ch, lines| p [ch.chr, lines.length] } * } * #=> ["\n", 1] * # ["A", 1327] * # ["B", 1372] * # ["C", 1507] * # ["D", 791] * # ... * * The following key values have special meaning: * - +nil+ and +:_separator+ specifies that the elements should be dropped. * - +:_alone+ specifies that the element should be chunked by itself. * * Any other symbols that begin with an underscore will raise an error: * * items.chunk { |item| :_underscore } * #=> RuntimeError: symbols beginning with an underscore are reserved * * +nil+ and +:_separator+ can be used to ignore some elements. * * For example, the sequence of hyphens in svn log can be eliminated as follows: * * sep = "-"*72 + "\n" * IO.popen("svn log README") { |f| * f.chunk { |line| * line != sep || nil * }.each { |_, lines| * pp lines * } * } * #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n", * # "\n", * # "* README, README.ja: Update the portability section.\n", * # "\n"] * # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n", * # "\n", * # "* README, README.ja: Add a note about default C flags.\n", * # "\n"] * # ... * * Paragraphs separated by empty lines can be parsed as follows: * * File.foreach("README").chunk { |line| * /\A\s*\z/ !~ line || nil * }.each { |_, lines| * pp lines * } * * +:_alone+ can be used to force items into their own chunk. * For example, you can put lines that contain a URL by themselves, * and chunk the rest of the lines together, like this: * * pattern = /http/ * open(filename) { |f| * f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines| * pp lines * } * } * * If no block is given, an enumerator to `chunk` is returned instead. */ static VALUE enum_chunk(VALUE enumerable) { VALUE enumerator; RETURN_SIZED_ENUMERATOR(enumerable, 0, 0, enum_size); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable); rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc()); rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator); return enumerator; } struct slicebefore_arg { VALUE sep_pred; VALUE sep_pat; VALUE prev_elts; VALUE yielder; }; static VALUE slicebefore_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp)) { struct slicebefore_arg *argp = MEMO_FOR(struct slicebefore_arg, _argp); VALUE header_p; ENUM_WANT_SVALUE(); if (!NIL_P(argp->sep_pat)) header_p = rb_funcallv(argp->sep_pat, id_eqq, 1, &i); else header_p = rb_funcallv(argp->sep_pred, id_call, 1, &i); if (RTEST(header_p)) { if (!NIL_P(argp->prev_elts)) rb_funcallv(argp->yielder, id_lshift, 1, &argp->prev_elts); argp->prev_elts = rb_ary_new3(1, i); } else { if (NIL_P(argp->prev_elts)) argp->prev_elts = rb_ary_new3(1, i); else rb_ary_push(argp->prev_elts, i); } return Qnil; } static VALUE slicebefore_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) { VALUE enumerable; VALUE arg; struct slicebefore_arg *memo = NEW_MEMO_FOR(struct slicebefore_arg, arg); enumerable = rb_ivar_get(enumerator, rb_intern("slicebefore_enumerable")); memo->sep_pred = rb_attr_get(enumerator, rb_intern("slicebefore_sep_pred")); memo->sep_pat = NIL_P(memo->sep_pred) ? rb_ivar_get(enumerator, rb_intern("slicebefore_sep_pat")) : Qnil; memo->prev_elts = Qnil; memo->yielder = yielder; rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, arg); memo = MEMO_FOR(struct slicebefore_arg, arg); if (!NIL_P(memo->prev_elts)) rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); return Qnil; } /* * call-seq: * enum.slice_before(pattern) -> an_enumerator * enum.slice_before { |elt| bool } -> an_enumerator * * Creates an enumerator for each chunked elements. * The beginnings of chunks are defined by _pattern_ and the block. * If _pattern_ === _elt_ returns true or the block * returns true for the element, the element is beginning of a * chunk. * The === and _block_ is called from the first element to the last * element of _enum_. The result for the first element is ignored. * The result enumerator yields the chunked elements as an array. * So +each+ method can be called as follows: * * enum.slice_before(pattern).each { |ary| ... } * enum.slice_before { |elt| bool }.each { |ary| ... } * * Other methods of the Enumerator class and Enumerable module, * such as +to_a+, +map+, etc., are also usable. * * For example, iteration over ChangeLog entries can be implemented as * follows: * * # iterate over ChangeLog entries. * open("ChangeLog") { |f| * f.slice_before(/\A\S/).each { |e| pp e } * } * * # same as above. block is used instead of pattern argument. * open("ChangeLog") { |f| * f.slice_before { |line| /\A\S/ === line }.each { |e| pp e } * } * * * "svn proplist -R" produces multiline output for each file. * They can be chunked as follows: * * IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f| * f.lines.slice_before(/\AProp/).each { |lines| p lines } * } * #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"] * # ["Properties on 'goruby.c':\n", " svn:eol-style\n"] * # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"] * # ["Properties on 'regparse.c':\n", " svn:eol-style\n"] * # ... * * If the block needs to maintain state over multiple elements, * local variables can be used. * For example, three or more consecutive increasing numbers can be squashed * as follows (see +chunk_while+ for a better way): * * a = [0, 2, 3, 4, 6, 7, 9] * prev = a[0] * p a.slice_before { |e| * prev, prev2 = e, prev * prev2 + 1 != e * }.map { |es| * es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}" * }.join(",") * #=> "0,2-4,6,7,9" * * However local variables should be used carefully * if the result enumerator is enumerated twice or more. * The local variables should be initialized for each enumeration. * Enumerator.new can be used to do it. * * # Word wrapping. This assumes all characters have same width. * def wordwrap(words, maxwidth) * Enumerator.new {|y| * # cols is initialized in Enumerator.new. * cols = 0 * words.slice_before { |w| * cols += 1 if cols != 0 * cols += w.length * if maxwidth < cols * cols = w.length * true * else * false * end * }.each {|ws| y.yield ws } * } * end * text = (1..20).to_a.join(" ") * enum = wordwrap(text.split(/\s+/), 10) * puts "-"*10 * enum.each { |ws| puts ws.join(" ") } # first enumeration. * puts "-"*10 * enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first. * puts "-"*10 * #=> ---------- * # 1 2 3 4 5 * # 6 7 8 9 10 * # 11 12 13 * # 14 15 16 * # 17 18 19 * # 20 * # ---------- * # 1 2 3 4 5 * # 6 7 8 9 10 * # 11 12 13 * # 14 15 16 * # 17 18 19 * # 20 * # ---------- * * mbox contains series of mails which start with Unix From line. * So each mail can be extracted by slice before Unix From line. * * # parse mbox * open("mbox") { |f| * f.slice_before { |line| * line.start_with? "From " * }.each { |mail| * unix_from = mail.shift * i = mail.index("\n") * header = mail[0...i] * body = mail[(i+1)..-1] * body.pop if body.last == "\n" * fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a * p unix_from * pp fields * pp body * } * } * * # split mails in mbox (slice before Unix From line after an empty line) * open("mbox") { |f| * emp = true * f.slice_before { |line| * prevemp = emp * emp = line == "\n" * prevemp && line.start_with?("From ") * }.each { |mail| * mail.pop if mail.last == "\n" * pp mail * } * } * */ static VALUE enum_slice_before(int argc, VALUE *argv, VALUE enumerable) { VALUE enumerator; if (rb_block_given_p()) { if (argc != 0) rb_error_arity(argc, 0, 0); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pred"), rb_block_proc()); } else { VALUE sep_pat; rb_scan_args(argc, argv, "1", &sep_pat); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pat"), sep_pat); } rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable); rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator); return enumerator; } struct sliceafter_arg { VALUE pat; VALUE pred; VALUE prev_elts; VALUE yielder; }; static VALUE sliceafter_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) { #define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct sliceafter_arg, _memo))) struct sliceafter_arg *memo; int split_p; UPDATE_MEMO; ENUM_WANT_SVALUE(); if (NIL_P(memo->prev_elts)) { memo->prev_elts = rb_ary_new3(1, i); } else { rb_ary_push(memo->prev_elts, i); } if (NIL_P(memo->pred)) { split_p = RTEST(rb_funcallv(memo->pat, id_eqq, 1, &i)); UPDATE_MEMO; } else { split_p = RTEST(rb_funcallv(memo->pred, id_call, 1, &i)); UPDATE_MEMO; } if (split_p) { rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); UPDATE_MEMO; memo->prev_elts = Qnil; } return Qnil; #undef UPDATE_MEMO } static VALUE sliceafter_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) { VALUE enumerable; VALUE arg; struct sliceafter_arg *memo = NEW_MEMO_FOR(struct sliceafter_arg, arg); enumerable = rb_ivar_get(enumerator, rb_intern("sliceafter_enum")); memo->pat = rb_ivar_get(enumerator, rb_intern("sliceafter_pat")); memo->pred = rb_attr_get(enumerator, rb_intern("sliceafter_pred")); memo->prev_elts = Qnil; memo->yielder = yielder; rb_block_call(enumerable, id_each, 0, 0, sliceafter_ii, arg); memo = MEMO_FOR(struct sliceafter_arg, arg); if (!NIL_P(memo->prev_elts)) rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); return Qnil; } /* * call-seq: * enum.slice_after(pattern) -> an_enumerator * enum.slice_after { |elt| bool } -> an_enumerator * * Creates an enumerator for each chunked elements. * The ends of chunks are defined by _pattern_ and the block. * * If _pattern_ === _elt_ returns true or the block * returns true for the element, the element is end of a * chunk. * * The === and _block_ is called from the first element to the last * element of _enum_. * * The result enumerator yields the chunked elements as an array. * So +each+ method can be called as follows: * * enum.slice_after(pattern).each { |ary| ... } * enum.slice_after { |elt| bool }.each { |ary| ... } * * Other methods of the Enumerator class and Enumerable module, * such as +map+, etc., are also usable. * * For example, continuation lines (lines end with backslash) can be * concatenated as follows: * * lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"] * e = lines.slice_after(/(? [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]] * p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last } * #=>["foo\n", "barbaz\n", "\n", "qux\n"] * */ static VALUE enum_slice_after(int argc, VALUE *argv, VALUE enumerable) { VALUE enumerator; VALUE pat = Qnil, pred = Qnil; if (rb_block_given_p()) { if (0 < argc) rb_raise(rb_eArgError, "both pattern and block are given"); pred = rb_block_proc(); } else { rb_scan_args(argc, argv, "1", &pat); } enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, rb_intern("sliceafter_enum"), enumerable); rb_ivar_set(enumerator, rb_intern("sliceafter_pat"), pat); rb_ivar_set(enumerator, rb_intern("sliceafter_pred"), pred); rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator); return enumerator; } struct slicewhen_arg { VALUE pred; VALUE prev_elt; VALUE prev_elts; VALUE yielder; int inverted; /* 0 for slice_when and 1 for chunk_while. */ }; static VALUE slicewhen_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo)) { #define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct slicewhen_arg, _memo))) struct slicewhen_arg *memo; int split_p; UPDATE_MEMO; ENUM_WANT_SVALUE(); if (memo->prev_elt == Qundef) { /* The first element */ memo->prev_elt = i; memo->prev_elts = rb_ary_new3(1, i); } else { VALUE args[2]; args[0] = memo->prev_elt; args[1] = i; split_p = RTEST(rb_funcallv(memo->pred, id_call, 2, args)); UPDATE_MEMO; if (memo->inverted) split_p = !split_p; if (split_p) { rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); UPDATE_MEMO; memo->prev_elts = rb_ary_new3(1, i); } else { rb_ary_push(memo->prev_elts, i); } memo->prev_elt = i; } return Qnil; #undef UPDATE_MEMO } static VALUE slicewhen_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator)) { VALUE enumerable; VALUE arg; struct slicewhen_arg *memo = NEW_PARTIAL_MEMO_FOR(struct slicewhen_arg, arg, inverted); enumerable = rb_ivar_get(enumerator, rb_intern("slicewhen_enum")); memo->pred = rb_attr_get(enumerator, rb_intern("slicewhen_pred")); memo->prev_elt = Qundef; memo->prev_elts = Qnil; memo->yielder = yielder; memo->inverted = RTEST(rb_attr_get(enumerator, rb_intern("slicewhen_inverted"))); rb_block_call(enumerable, id_each, 0, 0, slicewhen_ii, arg); memo = MEMO_FOR(struct slicewhen_arg, arg); if (!NIL_P(memo->prev_elts)) rb_funcallv(memo->yielder, id_lshift, 1, &memo->prev_elts); return Qnil; } /* * call-seq: * enum.slice_when {|elt_before, elt_after| bool } -> an_enumerator * * Creates an enumerator for each chunked elements. * The beginnings of chunks are defined by the block. * * This method split each chunk using adjacent elements, * _elt_before_ and _elt_after_, * in the receiver enumerator. * This method split chunks between _elt_before_ and _elt_after_ where * the block returns true. * * The block is called the length of the receiver enumerator minus one. * * The result enumerator yields the chunked elements as an array. * So +each+ method can be called as follows: * * enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... } * * Other methods of the Enumerator class and Enumerable module, * such as +to_a+, +map+, etc., are also usable. * * For example, one-by-one increasing subsequence can be chunked as follows: * * a = [1,2,4,9,10,11,12,15,16,19,20,21] * b = a.slice_when {|i, j| i+1 != j } * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]] * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" } * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"] * d = c.join(",") * p d #=> "1,2,4,9-12,15,16,19-21" * * Near elements (threshold: 6) in sorted array can be chunked as follows: * * a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57] * p a.slice_when {|i, j| 6 < j - i }.to_a * #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]] * * Increasing (non-decreasing) subsequence can be chunked as follows: * * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5] * p a.slice_when {|i, j| i > j }.to_a * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]] * * Adjacent evens and odds can be chunked as follows: * (Enumerable#chunk is another way to do it.) * * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0] * p a.slice_when {|i, j| i.even? != j.even? }.to_a * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]] * * Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows: * (See Enumerable#chunk to ignore empty lines.) * * lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"] * p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a * #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]] * * Enumerable#chunk_while does the same, except splitting when the block * returns false instead of true. */ static VALUE enum_slice_when(VALUE enumerable) { VALUE enumerator; VALUE pred; pred = rb_block_proc(); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable); rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred); rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qfalse); rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator); return enumerator; } /* * call-seq: * enum.chunk_while {|elt_before, elt_after| bool } -> an_enumerator * * Creates an enumerator for each chunked elements. * The beginnings of chunks are defined by the block. * * This method split each chunk using adjacent elements, * _elt_before_ and _elt_after_, * in the receiver enumerator. * This method split chunks between _elt_before_ and _elt_after_ where * the block returns false. * * The block is called the length of the receiver enumerator minus one. * * The result enumerator yields the chunked elements as an array. * So +each+ method can be called as follows: * * enum.chunk_while { |elt_before, elt_after| bool }.each { |ary| ... } * * Other methods of the Enumerator class and Enumerable module, * such as +to_a+, +map+, etc., are also usable. * * For example, one-by-one increasing subsequence can be chunked as follows: * * a = [1,2,4,9,10,11,12,15,16,19,20,21] * b = a.chunk_while {|i, j| i+1 == j } * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]] * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" } * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"] * d = c.join(",") * p d #=> "1,2,4,9-12,15,16,19-21" * * Increasing (non-decreasing) subsequence can be chunked as follows: * * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5] * p a.chunk_while {|i, j| i <= j }.to_a * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]] * * Adjacent evens and odds can be chunked as follows: * (Enumerable#chunk is another way to do it.) * * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0] * p a.chunk_while {|i, j| i.even? == j.even? }.to_a * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]] * * Enumerable#slice_when does the same, except splitting when the block * returns true instead of false. */ static VALUE enum_chunk_while(VALUE enumerable) { VALUE enumerator; VALUE pred; pred = rb_block_proc(); enumerator = rb_obj_alloc(rb_cEnumerator); rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable); rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred); rb_ivar_set(enumerator, rb_intern("slicewhen_inverted"), Qtrue); rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator); return enumerator; } struct enum_sum_memo { VALUE v, r; long n; double f, c; int block_given; int float_value; }; static void sum_iter(VALUE i, struct enum_sum_memo *memo) { const int unused = (assert(memo != NULL), 0); long n = memo->n; VALUE v = memo->v; VALUE r = memo->r; double f = memo->f; double c = memo->c; if (memo->block_given) i = rb_yield(i); if (memo->float_value) goto float_value; if (FIXNUM_P(v) || RB_TYPE_P(v, T_BIGNUM) || RB_TYPE_P(v, T_RATIONAL)) { if (FIXNUM_P(i)) { n += FIX2LONG(i); /* should not overflow long type */ if (!FIXABLE(n)) { v = rb_big_plus(LONG2NUM(n), v); n = 0; } } else if (RB_TYPE_P(i, T_BIGNUM)) v = rb_big_plus(i, v); else if (RB_TYPE_P(i, T_RATIONAL)) { if (r == Qundef) r = i; else r = rb_rational_plus(r, i); } else { if (n != 0) { v = rb_fix_plus(LONG2FIX(n), v); n = 0; } if (r != Qundef) { /* r can be an Integer when mathn is loaded */ if (FIXNUM_P(r)) v = rb_fix_plus(r, v); else if (RB_TYPE_P(r, T_BIGNUM)) v = rb_big_plus(r, v); else v = rb_rational_plus(r, v); r = Qundef; } if (RB_FLOAT_TYPE_P(i)) { f = NUM2DBL(v); c = 0.0; memo->float_value = 1; goto float_value; } else goto some_value; } } else if (RB_FLOAT_TYPE_P(v)) { /* * Kahan-Babuska balancing compensated summation algorithm * See http://link.springer.com/article/10.1007/s00607-005-0139-x */ double x, t; float_value: if (RB_FLOAT_TYPE_P(i)) x = RFLOAT_VALUE(i); else if (FIXNUM_P(i)) x = FIX2LONG(i); else if (RB_TYPE_P(i, T_BIGNUM)) x = rb_big2dbl(i); else if (RB_TYPE_P(i, T_RATIONAL)) x = rb_num2dbl(i); else { v = DBL2NUM(f); memo->float_value = 0; goto some_value; } t = f + x; if (fabs(f) >= fabs(x)) c += ((f - t) + x); else c += ((x - t) + f); f = t; } else { some_value: v = rb_funcallv(v, idPLUS, 1, &i); } memo->v = v; memo->n = n; memo->r = r; memo->f = f; memo->c = c; (void)unused; } static VALUE enum_sum_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args)) { ENUM_WANT_SVALUE(); sum_iter(i, (struct enum_sum_memo *) args); return Qnil; } static int hash_sum_i(VALUE key, VALUE value, VALUE arg) { sum_iter(rb_assoc_new(key, value), (struct enum_sum_memo *) arg); return ST_CONTINUE; } static void hash_sum(VALUE hash, struct enum_sum_memo *memo) { assert(RB_TYPE_P(hash, T_HASH)); assert(memo != NULL); rb_hash_foreach(hash, hash_sum_i, (VALUE)memo); } static VALUE int_range_sum(VALUE beg, VALUE end, int excl, VALUE init) { if (excl) { if (FIXNUM_P(end)) end = LONG2FIX(FIX2LONG(end) - 1); else end = rb_big_minus(end, LONG2FIX(1)); } if (rb_int_ge(end, beg)) { VALUE a; a = rb_int_plus(rb_int_minus(end, beg), LONG2FIX(1)); a = rb_int_mul(a, rb_int_plus(end, beg)); a = rb_int_idiv(a, LONG2FIX(2)); return rb_int_plus(init, a); } return init; } /* * call-seq: * enum.sum(init=0) -> number * enum.sum(init=0) {|e| expr } -> number * * Returns the sum of elements in an Enumerable. * * If a block is given, the block is applied to each element * before addition. * * If enum is empty, it returns init. * * For example: * * { 1 => 10, 2 => 20 }.sum {|k, v| k * v } #=> 50 * (1..10).sum #=> 55 * (1..10).sum {|v| v * 2 } #=> 110 * [Object.new].each.sum #=> TypeError * * This method can be used for non-numeric objects by * explicit init argument. * * { 1 => 10, 2 => 20 }.sum([]) #=> [1, 10, 2, 20] * "a\nb\nc".each_line.lazy.map(&:chomp).sum("") #=> "abc" * * Enumerable#sum method may not respect method redefinition of "+" * methods such as Integer#+. */ static VALUE enum_sum(int argc, VALUE* argv, VALUE obj) { struct enum_sum_memo memo; VALUE beg, end; int excl; if (rb_scan_args(argc, argv, "01", &memo.v) == 0) memo.v = LONG2FIX(0); memo.block_given = rb_block_given_p(); memo.n = 0; memo.r = Qundef; if ((memo.float_value = RB_FLOAT_TYPE_P(memo.v))) { memo.f = RFLOAT_VALUE(memo.v); memo.c = 0.0; } if (RTEST(rb_range_values(obj, &beg, &end, &excl))) { if (!memo.block_given && !memo.float_value && (FIXNUM_P(beg) || RB_TYPE_P(beg, T_BIGNUM)) && (FIXNUM_P(end) || RB_TYPE_P(end, T_BIGNUM))) { return int_range_sum(beg, end, excl, memo.v); } } if (RB_TYPE_P(obj, T_HASH) && rb_method_basic_definition_p(CLASS_OF(obj), id_each)) hash_sum(obj, &memo); else rb_block_call(obj, id_each, 0, 0, enum_sum_i, (VALUE)&memo); if (memo.float_value) { return DBL2NUM(memo.f + memo.c); } else { if (memo.n != 0) memo.v = rb_fix_plus(LONG2FIX(memo.n), memo.v); if (memo.r != Qundef) { /* r can be an Integer when mathn is loaded */ if (FIXNUM_P(memo.r)) memo.v = rb_fix_plus(memo.r, memo.v); else if (RB_TYPE_P(memo.r, T_BIGNUM)) memo.v = rb_big_plus(memo.r, memo.v); else memo.v = rb_rational_plus(memo.r, memo.v); } return memo.v; } } static VALUE uniq_func(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) { ENUM_WANT_SVALUE(); rb_hash_add_new_element(hash, i, i); return Qnil; } static VALUE uniq_iter(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash)) { ENUM_WANT_SVALUE(); rb_hash_add_new_element(hash, rb_yield_values2(argc, argv), i); return Qnil; } /* * call-seq: * enum.uniq -> new_ary * enum.uniq { |item| ... } -> new_ary * * Returns a new array by removing duplicate values in +self+. * * See also Array#uniq. */ static VALUE enum_uniq(VALUE obj) { VALUE hash, ret; rb_block_call_func *const func = rb_block_given_p() ? uniq_iter : uniq_func; hash = rb_obj_hide(rb_hash_new()); rb_block_call(obj, id_each, 0, 0, func, hash); ret = rb_hash_values(hash); rb_hash_clear(hash); return ret; } /* * The Enumerable mixin provides collection classes with * several traversal and searching methods, and with the ability to * sort. The class must provide a method each, which * yields successive members of the collection. If * Enumerable#max, #min, or * #sort is used, the objects in the collection must also * implement a meaningful <=> operator, as these methods * rely on an ordering between members of the collection. */ void Init_Enumerable(void) { #undef rb_intern #define rb_intern(str) rb_intern_const(str) rb_mEnumerable = rb_define_module("Enumerable"); rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1); rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1); rb_define_method(rb_mEnumerable, "to_h", enum_to_h, -1); rb_define_method(rb_mEnumerable, "sort", enum_sort, 0); rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0); rb_define_method(rb_mEnumerable, "grep", enum_grep, 1); rb_define_method(rb_mEnumerable, "grep_v", enum_grep_v, 1); rb_define_method(rb_mEnumerable, "count", enum_count, -1); rb_define_method(rb_mEnumerable, "find", enum_find, -1); rb_define_method(rb_mEnumerable, "detect", enum_find, -1); rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1); rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0); rb_define_method(rb_mEnumerable, "select", enum_find_all, 0); rb_define_method(rb_mEnumerable, "filter", enum_find_all, 0); rb_define_method(rb_mEnumerable, "reject", enum_reject, 0); rb_define_method(rb_mEnumerable, "collect", enum_collect, 0); rb_define_method(rb_mEnumerable, "map", enum_collect, 0); rb_define_method(rb_mEnumerable, "flat_map", enum_flat_map, 0); rb_define_method(rb_mEnumerable, "collect_concat", enum_flat_map, 0); rb_define_method(rb_mEnumerable, "inject", enum_inject, -1); rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1); rb_define_method(rb_mEnumerable, "partition", enum_partition, 0); rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0); rb_define_method(rb_mEnumerable, "first", enum_first, -1); rb_define_method(rb_mEnumerable, "all?", enum_all, -1); rb_define_method(rb_mEnumerable, "any?", enum_any, -1); rb_define_method(rb_mEnumerable, "one?", enum_one, -1); rb_define_method(rb_mEnumerable, "none?", enum_none, -1); rb_define_method(rb_mEnumerable, "min", enum_min, -1); rb_define_method(rb_mEnumerable, "max", enum_max, -1); rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0); rb_define_method(rb_mEnumerable, "min_by", enum_min_by, -1); rb_define_method(rb_mEnumerable, "max_by", enum_max_by, -1); rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0); rb_define_method(rb_mEnumerable, "member?", enum_member, 1); rb_define_method(rb_mEnumerable, "include?", enum_member, 1); rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1); rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1); rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1); rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1); rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1); rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1); rb_define_method(rb_mEnumerable, "zip", enum_zip, -1); rb_define_method(rb_mEnumerable, "take", enum_take, 1); rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0); rb_define_method(rb_mEnumerable, "drop", enum_drop, 1); rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0); rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1); rb_define_method(rb_mEnumerable, "chunk", enum_chunk, 0); rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1); rb_define_method(rb_mEnumerable, "slice_after", enum_slice_after, -1); rb_define_method(rb_mEnumerable, "slice_when", enum_slice_when, 0); rb_define_method(rb_mEnumerable, "chunk_while", enum_chunk_while, 0); rb_define_method(rb_mEnumerable, "sum", enum_sum, -1); rb_define_method(rb_mEnumerable, "uniq", enum_uniq, 0); id_next = rb_intern("next"); id_div = rb_intern("div"); }