/**********************************************************************
array.c -
$Author$
$Date$
created at: Fri Aug 6 09:46:12 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/util.h"
#include "ruby/st.h"
VALUE rb_cArray;
static ID id_cmp;
#define ARY_DEFAULT_SIZE 16
void
rb_mem_clear(register VALUE *mem, register long size)
{
while (size--) {
*mem++ = Qnil;
}
}
static inline void
memfill(register VALUE *mem, register long size, register VALUE val)
{
while (size--) {
*mem++ = val;
}
}
#define ARY_ITERLOCK FL_USER1
static void
ary_iter_check(VALUE ary)
{
if (FL_TEST(ary, ARY_ITERLOCK)) {
rb_raise(rb_eRuntimeError, "can't modify array during iteration");
}
}
#define ARY_SORTLOCK FL_USER3
#define ARY_SHARED_P(a) FL_TEST(a, ELTS_SHARED)
#define ARY_SET_LEN(ary, n) do { \
RARRAY(ary)->len = (n);\
} while (0)
#define ARY_CAPA(ary) RARRAY(ary)->aux.capa
#define RESIZE_CAPA(ary,capacity) do {\
REALLOC_N(RARRAY(ary)->ptr, VALUE, (capacity));\
RARRAY(ary)->aux.capa = (capacity);\
} while (0)
#define ITERATE(func, ary) do { \
FL_SET(ary, ARY_ITERLOCK); \
return rb_ensure(func, (ary), each_unlock, (ary));\
} while (0)
static inline void
rb_ary_modify_check(VALUE ary)
{
if (OBJ_FROZEN(ary)) rb_error_frozen("array");
if (FL_TEST(ary, ARY_SORTLOCK))
rb_raise(rb_eRuntimeError, "can't modify array during sort");
if (!OBJ_TAINTED(ary) && rb_safe_level() >= 4)
rb_raise(rb_eSecurityError, "Insecure: can't modify array");
}
static void
rb_ary_modify(VALUE ary)
{
VALUE *ptr;
rb_ary_modify_check(ary);
if (ARY_SHARED_P(ary)) {
ptr = ALLOC_N(VALUE, RARRAY_LEN(ary));
FL_UNSET(ary, ELTS_SHARED);
RARRAY(ary)->aux.capa = RARRAY_LEN(ary);
MEMCPY(ptr, RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
RARRAY(ary)->ptr = ptr;
}
}
VALUE
rb_ary_freeze(VALUE ary)
{
return rb_obj_freeze(ary);
}
/*
* call-seq:
* array.frozen? -> true or false
*
* Return true
if this array is frozen (or temporarily frozen
* while being sorted).
*/
static VALUE
rb_ary_frozen_p(VALUE ary)
{
if (OBJ_FROZEN(ary)) return Qtrue;
if (FL_TEST(ary, ARY_SORTLOCK)) return Qtrue;
return Qfalse;
}
static VALUE
ary_alloc(VALUE klass)
{
NEWOBJ(ary, struct RArray);
OBJSETUP(ary, klass, T_ARRAY);
ary->len = 0;
ary->ptr = 0;
ary->aux.capa = 0;
return (VALUE)ary;
}
static VALUE
ary_new(VALUE klass, long len)
{
VALUE ary;
if (len < 0) {
rb_raise(rb_eArgError, "negative array size (or size too big)");
}
if (len > 0 && len * sizeof(VALUE) <= len) {
rb_raise(rb_eArgError, "array size too big");
}
ary = ary_alloc(klass);
if (len == 0) len++;
RARRAY(ary)->ptr = ALLOC_N(VALUE, len);
RARRAY(ary)->aux.capa = len;
return ary;
}
VALUE
rb_ary_new2(long len)
{
return ary_new(rb_cArray, len);
}
VALUE
rb_ary_new(void)
{
return rb_ary_new2(ARY_DEFAULT_SIZE);
}
#include
VALUE
rb_ary_new3(long n, ...)
{
va_list ar;
VALUE ary;
long i;
ary = rb_ary_new2(n);
va_start(ar, n);
for (i=0; ilen = n;
return ary;
}
VALUE
rb_ary_new4(long n, const VALUE *elts)
{
VALUE ary;
ary = rb_ary_new2(n);
if (n > 0 && elts) {
MEMCPY(RARRAY_PTR(ary), elts, VALUE, n);
RARRAY(ary)->len = n;
}
return ary;
}
void
rb_ary_free(VALUE ary)
{
if (!ARY_SHARED_P(ary)) {
xfree(RARRAY(ary)->ptr);
}
}
static VALUE
ary_make_shared(VALUE ary)
{
if (ARY_SHARED_P(ary)) {
return RARRAY(ary)->aux.shared;
}
else {
NEWOBJ(shared, struct RArray);
OBJSETUP(shared, 0, T_ARRAY);
shared->len = RARRAY(ary)->len;
shared->ptr = RARRAY(ary)->ptr;
shared->aux.capa = RARRAY(ary)->aux.capa;
RARRAY(ary)->aux.shared = (VALUE)shared;
FL_SET(ary, ELTS_SHARED);
OBJ_FREEZE(shared);
return (VALUE)shared;
}
}
VALUE
rb_assoc_new(VALUE car, VALUE cdr)
{
return rb_ary_new3(2, car, cdr);
}
static VALUE
to_ary(VALUE ary)
{
return rb_convert_type(ary, T_ARRAY, "Array", "to_ary");
}
VALUE
rb_check_array_type(VALUE ary)
{
return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");
}
/*
* call-seq:
* Array.try_convert(obj) -> array or nil
*
* Try to convert obj into an array, using to_ary method.
* Returns converted array or nil if obj cannot be converted
* for any reason. This method is to check if an argument is an
* array.
*
* Array.try_convert([1]) # => [1]
* Array.try_convert("1") # => nil
*
* if tmp = Array.try_convert(arg)
* # the argument is an array
* elsif tmp = String.try_convert(arg)
* # the argument is a string
* end
*
*/
static VALUE
rb_ary_s_try_convert(VALUE dummy, VALUE ary)
{
return rb_check_array_type(ary);
}
/*
* call-seq:
* Array.new(size=0, obj=nil)
* Array.new(array)
* Array.new(size) {|index| block }
*
* Returns a new array. In the first form, the new array is
* empty. In the second it is created with _size_ copies of _obj_
* (that is, _size_ references to the same
* _obj_). The third form creates a copy of the array
* passed as a parameter (the array is generated by calling
* to_ary on the parameter). In the last form, an array
* of the given size is created. Each element in this array is
* calculated by passing the element's index to the given block and
* storing the return value.
*
* Array.new
* Array.new(2)
* Array.new(5, "A")
*
* # only one copy of the object is created
* a = Array.new(2, Hash.new)
* a[0]['cat'] = 'feline'
* a
* a[1]['cat'] = 'Felix'
* a
*
* # here multiple copies are created
* a = Array.new(2) { Hash.new }
* a[0]['cat'] = 'feline'
* a
*
* squares = Array.new(5) {|i| i*i}
* squares
*
* copy = Array.new(squares)
*/
static VALUE
rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
{
long len;
VALUE size, val;
rb_ary_modify(ary);
ary_iter_check(ary);
if (rb_scan_args(argc, argv, "02", &size, &val) == 0) {
if (RARRAY_PTR(ary) && !ARY_SHARED_P(ary)) {
free(RARRAY(ary)->ptr);
}
RARRAY(ary)->len = 0;
if (rb_block_given_p()) {
rb_warning("given block not used");
}
return ary;
}
if (argc == 1 && !FIXNUM_P(size)) {
val = rb_check_array_type(size);
if (!NIL_P(val)) {
rb_ary_replace(ary, val);
return ary;
}
}
len = NUM2LONG(size);
if (len < 0) {
rb_raise(rb_eArgError, "negative array size");
}
if (len > 0 && len * (long)sizeof(VALUE) <= len) {
rb_raise(rb_eArgError, "array size too big");
}
rb_ary_modify(ary);
RESIZE_CAPA(ary, len);
if (rb_block_given_p()) {
long i;
if (argc == 2) {
rb_warn("block supersedes default value argument");
}
for (i=0; ilen = i + 1;
}
}
else {
memfill(RARRAY_PTR(ary), len, val);
RARRAY(ary)->len = len;
}
return ary;
}
/*
* Returns a new array populated with the given objects.
*
* Array.[]( 1, 'a', /^A/ )
* Array[ 1, 'a', /^A/ ]
* [ 1, 'a', /^A/ ]
*/
static VALUE
rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
{
VALUE ary = ary_alloc(klass);
if (argc < 0) {
rb_raise(rb_eArgError, "negative array size");
}
RARRAY(ary)->ptr = ALLOC_N(VALUE, argc);
RARRAY(ary)->aux.capa = argc;
MEMCPY(RARRAY_PTR(ary), argv, VALUE, argc);
RARRAY(ary)->len = argc;
return ary;
}
void
rb_ary_store(VALUE ary, long idx, VALUE val)
{
if (idx < 0) {
idx += RARRAY_LEN(ary);
if (idx < 0) {
rb_raise(rb_eIndexError, "index %ld out of array",
idx - RARRAY_LEN(ary));
}
}
rb_ary_modify(ary);
if (idx >= ARY_CAPA(ary)) {
long new_capa = ARY_CAPA(ary) / 2;
if (new_capa < ARY_DEFAULT_SIZE) {
new_capa = ARY_DEFAULT_SIZE;
}
if (new_capa + idx < new_capa) {
rb_raise(rb_eArgError, "index too big");
}
new_capa += idx;
if (new_capa * (long)sizeof(VALUE) <= new_capa) {
rb_raise(rb_eArgError, "index too big");
}
RESIZE_CAPA(ary, new_capa);
}
if (idx > RARRAY_LEN(ary)) {
rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary),
idx-RARRAY_LEN(ary) + 1);
}
if (idx >= RARRAY_LEN(ary)) {
RARRAY(ary)->len = idx + 1;
}
RARRAY_PTR(ary)[idx] = val;
}
static VALUE
ary_shared_array(VALUE klass, VALUE ary)
{
VALUE val = ary_alloc(klass);
ary_make_shared(ary);
RARRAY(val)->ptr = RARRAY(ary)->ptr;
RARRAY(val)->len = RARRAY(ary)->len;
RARRAY(val)->aux.shared = RARRAY(ary)->aux.shared;
FL_SET(val, ELTS_SHARED);
return val;
}
static VALUE
ary_shared_first(int argc, VALUE *argv, VALUE ary, int last)
{
VALUE nv, result;
long n;
long offset = 0;
rb_scan_args(argc, argv, "1", &nv);
n = NUM2LONG(nv);
if (n > RARRAY_LEN(ary)) {
n = RARRAY_LEN(ary);
}
else if (n < 0) {
rb_raise(rb_eArgError, "negative array size");
}
if (last) {
offset = RARRAY_LEN(ary) - n;
}
result = ary_shared_array(rb_cArray, ary);
RARRAY(result)->ptr += offset;
RARRAY(result)->len = n;
return result;
}
/*
* call-seq:
* array << obj -> array
*
* Append---Pushes the given object on to the end of this array. This
* expression returns the array itself, so several appends
* may be chained together.
*
* [ 1, 2 ] << "c" << "d" << [ 3, 4 ]
* #=> [ 1, 2, "c", "d", [ 3, 4 ] ]
*
*/
VALUE
rb_ary_push(VALUE ary, VALUE item)
{
rb_ary_store(ary, RARRAY_LEN(ary), item);
return ary;
}
/*
* call-seq:
* array.push(obj, ... ) -> array
*
* Append---Pushes the given object(s) on to the end of this array. This
* expression returns the array itself, so several appends
* may be chained together.
*
* a = [ "a", "b", "c" ]
* a.push("d", "e", "f")
* #=> ["a", "b", "c", "d", "e", "f"]
*/
static VALUE
rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
{
while (argc--) {
rb_ary_push(ary, *argv++);
}
return ary;
}
VALUE
rb_ary_pop(VALUE ary)
{
long n;
rb_ary_modify_check(ary);
if (RARRAY_LEN(ary) == 0) return Qnil;
if (!ARY_SHARED_P(ary) &&
RARRAY_LEN(ary) * 3 < ARY_CAPA(ary) &&
ARY_CAPA(ary) > ARY_DEFAULT_SIZE)
{
RESIZE_CAPA(ary, RARRAY_LEN(ary) * 2);
}
n = RARRAY_LEN(ary)-1;
RARRAY(ary)->len = n;
return RARRAY_PTR(ary)[n];
}
/*
* call-seq:
* array.pop -> obj or nil
*
* Removes the last element from self and returns it, or
* nil
if the array is empty.
*
* a = [ "a", "b", "c", "d" ]
* a.pop #=> "d"
* a.pop(2) #=> ["b", "c"]
* a #=> ["a"]
*/
static VALUE
rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
{
VALUE result;
if (argc == 0) {
return rb_ary_pop(ary);
}
rb_ary_modify_check(ary);
result = ary_shared_first(argc, argv, ary, Qtrue);
RARRAY(ary)->len -= RARRAY_LEN(result);
return result;
}
VALUE
rb_ary_shift(VALUE ary)
{
VALUE top;
rb_ary_modify_check(ary);
ary_iter_check(ary);
if (RARRAY_LEN(ary) == 0) return Qnil;
top = RARRAY_PTR(ary)[0];
if (!ARY_SHARED_P(ary)) {
if (RARRAY_LEN(ary) < ARY_DEFAULT_SIZE) {
MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+1, VALUE, RARRAY_LEN(ary)-1);
RARRAY(ary)->len--;
return top;
}
RARRAY_PTR(ary)[0] = Qnil;
ary_make_shared(ary);
}
RARRAY(ary)->ptr++; /* shift ptr */
RARRAY(ary)->len--;
return top;
}
/*
* call-seq:
* array.shift -> obj or nil
*
* Returns the first element of self and removes it (shifting all
* other elements down by one). Returns nil
if the array
* is empty.
*
* args = [ "-m", "-q", "filename" ]
* args.shift #=> "-m"
* args #=> ["-q", "filename"]
*
* args = [ "-m", "-q", "filename" ]
* args.shift(2) #=> ["-m", "-q"]
* args #=> ["filename"]
*/
static VALUE
rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
{
VALUE result;
long n;
if (argc == 0) {
return rb_ary_shift(ary);
}
rb_ary_modify_check(ary);
ary_iter_check(ary);
result = ary_shared_first(argc, argv, ary, Qfalse);
n = RARRAY_LEN(result);
if (ARY_SHARED_P(ary)) {
RARRAY(ary)->ptr += n;
RARRAY(ary)->len -= n;
}
else {
MEMMOVE(RARRAY_PTR(ary), RARRAY_PTR(ary)+n, VALUE, RARRAY_LEN(ary)-n);
RARRAY(ary)->len -= n;
}
return result;
}
/*
* call-seq:
* array.unshift(obj, ...) -> array
*
* Prepends objects to the front of array.
* other elements up one.
*
* a = [ "b", "c", "d" ]
* a.unshift("a") #=> ["a", "b", "c", "d"]
* a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"]
*/
static VALUE
rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
{
long len = RARRAY(ary)->len;
if (argc == 0) return ary;
rb_ary_modify(ary);
ary_iter_check(ary);
if (RARRAY(ary)->aux.capa <= RARRAY_LEN(ary)+argc) {
RESIZE_CAPA(ary, RARRAY(ary)->aux.capa + ARY_DEFAULT_SIZE);
}
/* sliding items */
MEMMOVE(RARRAY(ary)->ptr + argc, RARRAY(ary)->ptr, VALUE, len);
MEMCPY(RARRAY(ary)->ptr, argv, VALUE, argc);
RARRAY(ary)->len += argc;
return ary;
}
VALUE
rb_ary_unshift(VALUE ary, VALUE item)
{
return rb_ary_unshift_m(1,&item,ary);
}
/* faster version - use this if you don't need to treat negative offset */
static inline VALUE
rb_ary_elt(VALUE ary, long offset)
{
if (RARRAY_LEN(ary) == 0) return Qnil;
if (offset < 0 || RARRAY_LEN(ary) <= offset) {
return Qnil;
}
return RARRAY_PTR(ary)[offset];
}
VALUE
rb_ary_entry(VALUE ary, long offset)
{
if (offset < 0) {
offset += RARRAY_LEN(ary);
}
return rb_ary_elt(ary, offset);
}
VALUE
rb_ary_subseq(VALUE ary, long beg, long len)
{
VALUE klass, ary2, shared;
VALUE *ptr;
if (beg > RARRAY_LEN(ary)) return Qnil;
if (beg < 0 || len < 0) return Qnil;
if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
len = RARRAY_LEN(ary) - beg;
}
klass = rb_obj_class(ary);
if (len == 0) return ary_new(klass, 0);
shared = ary_make_shared(ary);
ptr = RARRAY_PTR(ary);
ary2 = ary_alloc(klass);
RARRAY(ary2)->ptr = ptr + beg;
RARRAY(ary2)->len = len;
RARRAY(ary2)->aux.shared = shared;
FL_SET(ary2, ELTS_SHARED);
return ary2;
}
/*
* call-seq:
* array[index] -> obj or nil
* array[start, length] -> an_array or nil
* array[range] -> an_array or nil
* array.slice(index) -> obj or nil
* array.slice(start, length) -> an_array or nil
* array.slice(range) -> an_array or nil
*
* Element Reference---Returns the element at _index_,
* or returns a subarray starting at _start_ and
* continuing for _length_ elements, or returns a subarray
* specified by _range_.
* Negative indices count backward from the end of the
* array (-1 is the last element). Returns nil if the index
* (or starting index) are out of range.
*
* a = [ "a", "b", "c", "d", "e" ]
* a[2] + a[0] + a[1] #=> "cab"
* a[6] #=> nil
* a[1, 2] #=> [ "b", "c" ]
* a[1..3] #=> [ "b", "c", "d" ]
* a[4..7] #=> [ "e" ]
* a[6..10] #=> nil
* a[-3, 3] #=> [ "c", "d", "e" ]
* # special cases
* a[5] #=> nil
* a[5, 1] #=> []
* a[5..10] #=> []
*
*/
VALUE
rb_ary_aref(int argc, VALUE *argv, VALUE ary)
{
VALUE arg;
long beg, len;
if (argc == 2) {
beg = NUM2LONG(argv[0]);
len = NUM2LONG(argv[1]);
if (beg < 0) {
beg += RARRAY_LEN(ary);
}
return rb_ary_subseq(ary, beg, len);
}
if (argc != 1) {
rb_scan_args(argc, argv, "11", 0, 0);
}
arg = argv[0];
/* special case - speeding up */
if (FIXNUM_P(arg)) {
return rb_ary_entry(ary, FIX2LONG(arg));
}
/* check if idx is Range */
switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
case Qfalse:
break;
case Qnil:
return Qnil;
default:
return rb_ary_subseq(ary, beg, len);
}
return rb_ary_entry(ary, NUM2LONG(arg));
}
/*
* call-seq:
* array.at(index) -> obj or nil
*
* Returns the element at _index_. A
* negative index counts from the end of _self_. Returns +nil+
* if the index is out of range. See also Array#[]
.
*
* a = [ "a", "b", "c", "d", "e" ]
* a.at(0) #=> "a"
* a.at(-1) #=> "e"
*/
static VALUE
rb_ary_at(VALUE ary, VALUE pos)
{
return rb_ary_entry(ary, NUM2LONG(pos));
}
/*
* call-seq:
* array.first -> obj or nil
* array.first(n) -> an_array
*
* Returns the first element, or the first +n+ elements, of the array.
* If the array is empty, the first form returns nil
, and the
* second form returns an empty array.
*
* a = [ "q", "r", "s", "t" ]
* a.first #=> "q"
* a.first(2) #=> ["q", "r"]
*/
static VALUE
rb_ary_first(int argc, VALUE *argv, VALUE ary)
{
if (argc == 0) {
if (RARRAY_LEN(ary) == 0) return Qnil;
return RARRAY_PTR(ary)[0];
}
else {
return ary_shared_first(argc, argv, ary, Qfalse);
}
}
/*
* call-seq:
* array.last -> obj or nil
* array.last(n) -> an_array
*
* Returns the last element(s) of self. If the array is empty,
* the first form returns nil
.
*
* a = [ "w", "x", "y", "z" ]
* a.last #=> "z"
* a.last(2) #=> ["y", "z"]
*/
VALUE
rb_ary_last(int argc, VALUE *argv, VALUE ary)
{
if (argc == 0) {
if (RARRAY_LEN(ary) == 0) return Qnil;
return RARRAY_PTR(ary)[RARRAY_LEN(ary)-1];
}
else {
return ary_shared_first(argc, argv, ary, Qtrue);
}
}
/*
* call-seq:
* array.fetch(index) -> obj
* array.fetch(index, default ) -> obj
* array.fetch(index) {|index| block } -> obj
*
* Tries to return the element at position index. If the index
* lies outside the array, the first form throws an
* IndexError
exception, the second form returns
* default, and the third form returns the value of invoking
* the block, passing in the index. Negative values of index
* count from the end of the array.
*
* a = [ 11, 22, 33, 44 ]
* a.fetch(1) #=> 22
* a.fetch(-1) #=> 44
* a.fetch(4, 'cat') #=> "cat"
* a.fetch(4) { |i| i*i } #=> 16
*/
static VALUE
rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
{
VALUE pos, ifnone;
long block_given;
long idx;
rb_scan_args(argc, argv, "11", &pos, &ifnone);
block_given = rb_block_given_p();
if (block_given && argc == 2) {
rb_warn("block supersedes default value argument");
}
idx = NUM2LONG(pos);
if (idx < 0) {
idx += RARRAY_LEN(ary);
}
if (idx < 0 || RARRAY_LEN(ary) <= idx) {
if (block_given) return rb_yield(pos);
if (argc == 1) {
rb_raise(rb_eIndexError, "index %ld out of array", idx);
}
return ifnone;
}
return RARRAY_PTR(ary)[idx];
}
/*
* call-seq:
* array.index(obj) -> int or nil
* array.index {|item| block} -> int or nil
*
* Returns the index of the first object in self such that is
* ==
to obj. If a block is given instead of an
* argument, returns first object for which block is true.
* Returns nil
if no match is found.
*
* a = [ "a", "b", "c" ]
* a.index("b") #=> 1
* a.index("z") #=> nil
* a.index{|x|x=="b"} #=> 1
*/
static VALUE
rb_ary_index(int argc, VALUE *argv, VALUE ary)
{
VALUE val;
long i;
if (rb_scan_args(argc, argv, "01", &val) == 0) {
RETURN_ENUMERATOR(ary, 0, 0);
for (i=0; i int or nil
*
* Returns the index of the last object in array
* ==
to obj. If a block is given instead of an
* argument, returns first object for which block is
* true. Returns nil
if no match is found.
*
* a = [ "a", "b", "b", "b", "c" ]
* a.rindex("b") #=> 3
* a.rindex("z") #=> nil
* a.rindex{|x|x=="b"} #=> 3
*/
static VALUE
rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
{
VALUE val;
long i = RARRAY_LEN(ary);
if (rb_scan_args(argc, argv, "01", &val) == 0) {
RETURN_ENUMERATOR(ary, 0, 0);
while (i--) {
if (RTEST(rb_yield(RARRAY_PTR(ary)[i])))
return LONG2NUM(i);
if (i > RARRAY_LEN(ary)) {
i = RARRAY_LEN(ary);
}
}
}
else {
while (i--) {
if (rb_equal(RARRAY_PTR(ary)[i], val))
return LONG2NUM(i);
if (i > RARRAY_LEN(ary)) {
i = RARRAY_LEN(ary);
}
}
}
return Qnil;
}
VALUE
rb_ary_to_ary(VALUE obj)
{
if (TYPE(obj) == T_ARRAY) {
return obj;
}
if (rb_respond_to(obj, rb_intern("to_ary"))) {
return to_ary(obj);
}
return rb_ary_new3(1, obj);
}
static void
rb_ary_splice(VALUE ary, long beg, long len, VALUE rpl)
{
long rlen;
if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
if (beg < 0) {
beg += RARRAY_LEN(ary);
if (beg < 0) {
beg -= RARRAY_LEN(ary);
rb_raise(rb_eIndexError, "index %ld out of array", beg);
}
}
if (RARRAY_LEN(ary) < len || RARRAY_LEN(ary) < beg + len) {
len = RARRAY_LEN(ary) - beg;
}
if (rpl == Qundef) {
rlen = 0;
}
else {
rpl = rb_ary_to_ary(rpl);
rlen = RARRAY_LEN(rpl);
}
rb_ary_modify(ary);
ary_iter_check(ary);
if (beg >= RARRAY_LEN(ary)) {
len = beg + rlen;
if (len >= ARY_CAPA(ary)) {
RESIZE_CAPA(ary, len);
}
rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), beg - RARRAY_LEN(ary));
if (rlen > 0) {
MEMCPY(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
}
RARRAY(ary)->len = len;
}
else {
long alen;
if (beg + len > RARRAY_LEN(ary)) {
len = RARRAY_LEN(ary) - beg;
}
alen = RARRAY_LEN(ary) + rlen - len;
if (alen >= ARY_CAPA(ary)) {
RESIZE_CAPA(ary, alen);
}
if (len != rlen) {
MEMMOVE(RARRAY_PTR(ary) + beg + rlen, RARRAY_PTR(ary) + beg + len,
VALUE, RARRAY_LEN(ary) - (beg + len));
RARRAY(ary)->len = alen;
}
if (rlen > 0) {
MEMMOVE(RARRAY_PTR(ary) + beg, RARRAY_PTR(rpl), VALUE, rlen);
}
}
}
/*
* call-seq:
* array[index] = obj -> obj
* array[start, length] = obj or an_array or nil -> obj or an_array or nil
* array[range] = obj or an_array or nil -> obj or an_array or nil
*
* Element Assignment---Sets the element at _index_,
* or replaces a subarray starting at _start_ and
* continuing for _length_ elements, or replaces a subarray
* specified by _range_. If indices are greater than
* the current capacity of the array, the array grows
* automatically. A negative indices will count backward
* from the end of the array. Inserts elements if _length_ is
* zero. An +IndexError+ is raised if a negative index points
* past the beginning of the array. See also
* Array#push
, and Array#unshift
.
*
* a = Array.new
* a[4] = "4"; #=> [nil, nil, nil, nil, "4"]
* a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
* a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"]
* a[0, 2] = "?" #=> ["?", 2, nil, "4"]
* a[0..2] = "A" #=> ["A", "4"]
* a[-1] = "Z" #=> ["A", "Z"]
* a[1..-1] = nil #=> ["A", nil]
* a[1..-1] = [] #=> ["A"]
*/
static VALUE
rb_ary_aset(int argc, VALUE *argv, VALUE ary)
{
long offset, beg, len;
if (argc == 3) {
rb_ary_splice(ary, NUM2LONG(argv[0]), NUM2LONG(argv[1]), argv[2]);
return argv[2];
}
if (argc != 2) {
rb_raise(rb_eArgError, "wrong number of arguments (%d for 2)", argc);
}
if (FIXNUM_P(argv[0])) {
offset = FIX2LONG(argv[0]);
goto fixnum;
}
if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
/* check if idx is Range */
rb_ary_splice(ary, beg, len, argv[1]);
return argv[1];
}
offset = NUM2LONG(argv[0]);
fixnum:
rb_ary_store(ary, offset, argv[1]);
return argv[1];
}
/*
* call-seq:
* array.insert(index, obj...) -> array
*
* Inserts the given values before the element with the given index
* (which may be negative).
*
* a = %w{ a b c d }
* a.insert(2, 99) #=> ["a", "b", 99, "c", "d"]
* a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
*/
static VALUE
rb_ary_insert(int argc, VALUE *argv, VALUE ary)
{
long pos;
if (argc == 1) return ary;
if (argc < 1) {
rb_raise(rb_eArgError, "wrong number of arguments (at least 1)");
}
pos = NUM2LONG(argv[0]);
if (pos == -1) {
pos = RARRAY_LEN(ary);
}
if (pos < 0) {
pos++;
}
rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
return ary;
}
static VALUE
each_unlock(VALUE ary)
{
FL_UNSET(ary, ARY_ITERLOCK);
return ary;
}
static VALUE
each_i(VALUE ary)
{
long i;
for (i=0; i array
*
* Calls block once for each element in self, passing that
* element as a parameter.
*
* a = [ "a", "b", "c" ]
* a.each {|x| print x, " -- " }
*
* produces:
*
* a -- b -- c --
*/
VALUE
rb_ary_each(VALUE ary)
{
RETURN_ENUMERATOR(ary, 0, 0);
ITERATE(each_i, ary);
return ary;
}
static VALUE
each_index_i(VALUE ary)
{
long i;
for (i=0; i array
*
* Same as Array#each
, but passes the index of the element
* instead of the element itself.
*
* a = [ "a", "b", "c" ]
* a.each_index {|x| print x, " -- " }
*
* produces:
*
* 0 -- 1 -- 2 --
*/
static VALUE
rb_ary_each_index(VALUE ary)
{
RETURN_ENUMERATOR(ary, 0, 0);
ITERATE(each_index_i, ary);
return ary;
}
static VALUE
reverse_each_i(VALUE ary)
{
long len = RARRAY_LEN(ary);
while (len--) {
rb_yield(RARRAY_PTR(ary)[len]);
if (RARRAY_LEN(ary) < len) {
len = RARRAY_LEN(ary);
}
}
return ary;
}
/*
* call-seq:
* array.reverse_each {|item| block }
*
* Same as Array#each
, but traverses self in reverse
* order.
*
* a = [ "a", "b", "c" ]
* a.reverse_each {|x| print x, " " }
*
* produces:
*
* c b a
*/
static VALUE
rb_ary_reverse_each(VALUE ary)
{
RETURN_ENUMERATOR(ary, 0, 0);
ITERATE(reverse_each_i, ary);
}
/*
* call-seq:
* array.length -> int
*
* Returns the number of elements in self. May be zero.
*
* [ 1, 2, 3, 4, 5 ].length #=> 5
*/
static VALUE
rb_ary_length(VALUE ary)
{
long len = RARRAY_LEN(ary);
return LONG2NUM(len);
}
/*
* call-seq:
* array.empty? -> true or false
*
* Returns true
if self array contains no elements.
*
* [].empty? #=> true
*/
static VALUE
rb_ary_empty_p(VALUE ary)
{
if (RARRAY_LEN(ary) == 0)
return Qtrue;
return Qfalse;
}
VALUE
rb_ary_dup(VALUE ary)
{
VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
MEMCPY(RARRAY_PTR(dup), RARRAY_PTR(ary), VALUE, RARRAY_LEN(ary));
RARRAY(dup)->len = RARRAY_LEN(ary);
OBJ_INFECT(dup, ary);
return dup;
}
extern VALUE rb_output_fs;
static VALUE
recursive_join(VALUE ary, VALUE argp, int recur)
{
VALUE *arg = (VALUE *)argp;
if (recur) {
return rb_str_new2("[...]");
}
return rb_ary_join(arg[0], arg[1]);
}
VALUE
rb_ary_join(VALUE ary, VALUE sep)
{
long len = 1, i;
int taint = Qfalse;
VALUE result, tmp;
if (RARRAY_LEN(ary) == 0) return rb_str_new(0, 0);
if (OBJ_TAINTED(ary) || OBJ_TAINTED(sep)) taint = Qtrue;
for (i=0; i 0 && !NIL_P(sep))
rb_str_buf_append(result, sep);
rb_str_buf_append(result, tmp);
if (OBJ_TAINTED(tmp)) taint = Qtrue;
}
if (taint) OBJ_TAINT(result);
return result;
}
/*
* call-seq:
* array.join(sep=$,) -> str
*
* Returns a string created by converting each element of the array to
* a string, separated by sep.
*
* [ "a", "b", "c" ].join #=> "abc"
* [ "a", "b", "c" ].join("-") #=> "a-b-c"
*/
static VALUE
rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
{
VALUE sep;
rb_scan_args(argc, argv, "01", &sep);
if (NIL_P(sep)) sep = rb_output_fs;
return rb_ary_join(ary, sep);
}
static VALUE
inspect_ary(VALUE ary, VALUE dummy, int recur)
{
int tainted = OBJ_TAINTED(ary);
long i;
VALUE s, str;
if (recur) return rb_tainted_str_new2("[...]");
str = rb_str_buf_new2("[");
for (i=0; i 0) rb_str_buf_cat2(str, ", ");
rb_str_buf_append(str, s);
}
rb_str_buf_cat2(str, "]");
if (tainted) OBJ_TAINT(str);
return str;
}
/*
* call-seq:
* array.to_s -> string
* array.inspect -> string
*
* Create a printable version of array.
*/
static VALUE
rb_ary_inspect(VALUE ary)
{
if (RARRAY_LEN(ary) == 0) return rb_str_new2("[]");
return rb_exec_recursive(inspect_ary, ary, 0);
}
VALUE
rb_ary_to_s(VALUE ary)
{
return rb_ary_inspect(ary);
}
/*
* call-seq:
* array.to_a -> array
*
* Returns _self_. If called on a subclass of Array, converts
* the receiver to an Array object.
*/
static VALUE
rb_ary_to_a(VALUE ary)
{
if (rb_obj_class(ary) != rb_cArray) {
VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
rb_ary_replace(dup, ary);
return dup;
}
return ary;
}
/*
* call-seq:
* array.to_ary -> array
*
* Returns _self_.
*/
static VALUE
rb_ary_to_ary_m(VALUE ary)
{
return ary;
}
VALUE
rb_ary_reverse(VALUE ary)
{
VALUE *p1, *p2;
VALUE tmp;
rb_ary_modify(ary);
ary_iter_check(ary);
if (RARRAY_LEN(ary) > 1) {
p1 = RARRAY_PTR(ary);
p2 = p1 + RARRAY_LEN(ary) - 1; /* points last item */
while (p1 < p2) {
tmp = *p1;
*p1++ = *p2;
*p2-- = tmp;
}
}
return ary;
}
/*
* call-seq:
* array.reverse! -> array
*
* Reverses _self_ in place.
*
* a = [ "a", "b", "c" ]
* a.reverse! #=> ["c", "b", "a"]
* a #=> ["c", "b", "a"]
*/
static VALUE
rb_ary_reverse_bang(VALUE ary)
{
return rb_ary_reverse(ary);
}
/*
* call-seq:
* array.reverse -> an_array
*
* Returns a new array containing self's elements in reverse order.
*
* [ "a", "b", "c" ].reverse #=> ["c", "b", "a"]
* [ 1 ].reverse #=> [1]
*/
static VALUE
rb_ary_reverse_m(VALUE ary)
{
return rb_ary_reverse(rb_ary_dup(ary));
}
struct ary_sort_data {
VALUE ary;
VALUE *ptr;
long len;
};
static void
ary_sort_check(struct ary_sort_data *data)
{
if (RARRAY_PTR(data->ary) != data->ptr || RARRAY_LEN(data->ary) != data->len) {
rb_raise(rb_eRuntimeError, "array modified during sort");
}
}
static int
sort_1(const void *ap, const void *bp, void *data)
{
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
VALUE retval = rb_yield_values(2, a, b);
int n;
n = rb_cmpint(retval, a, b);
ary_sort_check((struct ary_sort_data *)data);
return n;
}
static int
sort_2(const void *ap, const void *bp, void *data)
{
VALUE retval;
VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
int n;
if (FIXNUM_P(a) && FIXNUM_P(b)) {
if ((long)a > (long)b) return 1;
if ((long)a < (long)b) return -1;
return 0;
}
if (TYPE(a) == T_STRING) {
if (TYPE(b) == T_STRING) return rb_str_cmp(a, b);
}
retval = rb_funcall(a, id_cmp, 1, b);
n = rb_cmpint(retval, a, b);
ary_sort_check((struct ary_sort_data *)data);
return n;
}
static VALUE
sort_i(VALUE ary)
{
struct ary_sort_data data;
data.ary = ary;
data.ptr = RARRAY_PTR(ary); data.len = RARRAY_LEN(ary);
ruby_qsort(RARRAY_PTR(ary), RARRAY_LEN(ary), sizeof(VALUE),
rb_block_given_p()?sort_1:sort_2, &data);
return ary;
}
static VALUE
sort_unlock(VALUE ary)
{
FL_UNSET(ary, ARY_SORTLOCK);
return ary;
}
/*
* call-seq:
* array.sort! -> array
* array.sort! {| a,b | block } -> array
*
* Sorts _self_. Comparisons for
* the sort will be done using the <=>
operator or using
* an optional code block. The block implements a comparison between
* a and b, returning -1, 0, or +1. See also
* Enumerable#sort_by
.
*
* a = [ "d", "a", "e", "c", "b" ]
* a.sort #=> ["a", "b", "c", "d", "e"]
* a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
*/
VALUE
rb_ary_sort_bang(VALUE ary)
{
rb_ary_modify(ary);
ary_iter_check(ary);
if (RARRAY_LEN(ary) > 1) {
FL_SET(ary, ARY_SORTLOCK); /* prohibit modification during sort */
rb_ensure(sort_i, ary, sort_unlock, ary);
}
return ary;
}
/*
* call-seq:
* array.sort -> an_array
* array.sort {| a,b | block } -> an_array
*
* Returns a new array created by sorting self. Comparisons for
* the sort will be done using the <=>
operator or using
* an optional code block. The block implements a comparison between
* a and b, returning -1, 0, or +1. See also
* Enumerable#sort_by
.
*
* a = [ "d", "a", "e", "c", "b" ]
* a.sort #=> ["a", "b", "c", "d", "e"]
* a.sort {|x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
*/
VALUE
rb_ary_sort(VALUE ary)
{
ary = rb_ary_dup(ary);
rb_ary_sort_bang(ary);
return ary;
}
static VALUE
collect_i(VALUE ary)
{
long i;
VALUE collect;
collect = rb_ary_new2(RARRAY_LEN(ary));
for (i = 0; i < RARRAY_LEN(ary); i++) {
rb_ary_push(collect, rb_yield(RARRAY_PTR(ary)[i]));
}
return collect;
}
/*
* call-seq:
* array.collect {|item| block } -> an_array
* array.map {|item| block } -> an_array
*
* Invokes block once for each element of self. Creates a
* new array containing the values returned by the block.
* See also Enumerable#collect
.
*
* a = [ "a", "b", "c", "d" ]
* a.collect {|x| x + "!" } #=> ["a!", "b!", "c!", "d!"]
* a #=> ["a", "b", "c", "d"]
*/
static VALUE
rb_ary_collect(VALUE ary)
{
RETURN_ENUMERATOR(ary, 0, 0);
ITERATE(collect_i, ary);
}
static VALUE
collect_bang_i(VALUE ary)
{
long i;
rb_ary_modify(ary);
for (i = 0; i < RARRAY_LEN(ary); i++) {
RARRAY_PTR(ary)[i] = rb_yield(RARRAY_PTR(ary)[i]);
}
return ary;
}
/*
* call-seq:
* array.collect! {|item| block } -> array
* array.map! {|item| block } -> array
*
* Invokes the block once for each element of _self_, replacing the
* element with the value returned by _block_.
* See also Enumerable#collect
.
*
* a = [ "a", "b", "c", "d" ]
* a.collect! {|x| x + "!" }
* a #=> [ "a!", "b!", "c!", "d!" ]
*/
static VALUE
rb_ary_collect_bang(VALUE ary)
{
RETURN_ENUMERATOR(ary, 0, 0);
ITERATE(collect_bang_i, ary);
}
VALUE
rb_get_values_at(VALUE obj, long olen, int argc, VALUE *argv, VALUE (*func) (VALUE, long))
{
VALUE result = rb_ary_new2(argc);
long beg, len, i, j;
for (i=0; i an_array
*
* Returns an array containing the elements in
* _self_ corresponding to the given selector(s). The selectors
* may be either integer indices or ranges.
* See also Array#select
.
*
* a = %w{ a b c d e f }
* a.values_at(1, 3, 5)
* a.values_at(1, 3, 5, 7)
* a.values_at(-1, -3, -5, -7)
* a.values_at(1..3, 2...5)
*/
static VALUE
rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
{
return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry);
}
static VALUE
select_i(VALUE ary)
{
VALUE result;
long i;
result = rb_ary_new2(RARRAY_LEN(ary));
for (i = 0; i < RARRAY_LEN(ary); i++) {
if (RTEST(rb_yield(RARRAY_PTR(ary)[i]))) {
rb_ary_push(result, rb_ary_elt(ary, i));
}
}
return result;
}
/*
* call-seq:
* array.select {|item| block } -> an_array
*
* Invokes the block passing in successive elements from array,
* returning an array containing those elements for which the block
* returns a true value (equivalent to Enumerable#select
).
*
* a = %w{ a b c d e f }
* a.select {|v| v =~ /[aeiou]/} #=> ["a", "e"]
*/
static VALUE
rb_ary_select(VALUE ary)
{
RETURN_ENUMERATOR(ary, 0, 0);
ITERATE(select_i, ary);
}
/*
* call-seq:
* array.delete(obj) -> obj or nil
* array.delete(obj) { block } -> obj or nil
*
* Deletes items from self that are equal to obj. If
* the item is not found, returns nil
. If the optional
* code block is given, returns the result of block if the item
* is not found.
*
* a = [ "a", "b", "b", "b", "c" ]
* a.delete("b") #=> "b"
* a #=> ["a", "c"]
* a.delete("z") #=> nil
* a.delete("z") { "not found" } #=> "not found"
*/
VALUE
rb_ary_delete(VALUE ary, VALUE item)
{
long i1, i2;
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
VALUE e = RARRAY_PTR(ary)[i1];
if (rb_equal(e, item)) continue;
if (i1 != i2) {
rb_ary_store(ary, i2, e);
}
i2++;
}
if (RARRAY_LEN(ary) == i2) {
if (rb_block_given_p()) {
return rb_yield(item);
}
return Qnil;
}
rb_ary_modify(ary);
ary_iter_check(ary);
if (RARRAY_LEN(ary) > i2) {
RARRAY(ary)->len = i2;
if (i2 * 2 < ARY_CAPA(ary) &&
ARY_CAPA(ary) > ARY_DEFAULT_SIZE) {
RESIZE_CAPA(ary, i2*2);
}
}
return item;
}
VALUE
rb_ary_delete_at(VALUE ary, long pos)
{
long len = RARRAY_LEN(ary);
VALUE del;
if (pos >= len) return Qnil;
if (pos < 0) {
pos += len;
if (pos < 0) return Qnil;
}
rb_ary_modify(ary);
ary_iter_check(ary);
del = RARRAY_PTR(ary)[pos];
MEMMOVE(RARRAY_PTR(ary)+pos, RARRAY_PTR(ary)+pos+1, VALUE,
RARRAY_LEN(ary)-pos-1);
RARRAY(ary)->len--;
return del;
}
/*
* call-seq:
* array.delete_at(index) -> obj or nil
*
* Deletes the element at the specified index, returning that element,
* or nil
if the index is out of range. See also
* Array#slice!
.
*
* a = %w( ant bat cat dog )
* a.delete_at(2) #=> "cat"
* a #=> ["ant", "bat", "dog"]
* a.delete_at(99) #=> nil
*/
static VALUE
rb_ary_delete_at_m(VALUE ary, VALUE pos)
{
return rb_ary_delete_at(ary, NUM2LONG(pos));
}
/*
* call-seq:
* array.slice!(index) -> obj or nil
* array.slice!(start, length) -> sub_array or nil
* array.slice!(range) -> sub_array or nil
*
* Deletes the element(s) given by an index (optionally with a length)
* or by a range. Returns the deleted object, subarray, or
* nil
if the index is out of range. Equivalent to:
*
* def slice!(*args)
* result = self[*args]
* self[*args] = nil
* result
* end
*
* a = [ "a", "b", "c" ]
* a.slice!(1) #=> "b"
* a #=> ["a", "c"]
* a.slice!(-1) #=> "c"
* a #=> ["a"]
* a.slice!(100) #=> nil
* a #=> ["a"]
*/
static VALUE
rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
{
VALUE arg1, arg2;
long pos, len;
if (rb_scan_args(argc, argv, "11", &arg1, &arg2) == 2) {
pos = NUM2LONG(arg1);
len = NUM2LONG(arg2);
delete_pos_len:
if (pos < 0) {
pos = RARRAY_LEN(ary) + pos;
if (pos < 0) return Qnil;
}
arg2 = rb_ary_subseq(ary, pos, len);
rb_ary_splice(ary, pos, len, Qundef); /* Qnil/rb_ary_new2(0) */
return arg2;
}
if (!FIXNUM_P(arg1)) {
switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
case Qtrue:
/* valid range */
goto delete_pos_len;
case Qnil:
/* invalid range */
return Qnil;
default:
/* not a range */
break;
}
}
return rb_ary_delete_at(ary, NUM2LONG(arg1));
}
static VALUE
reject_bang_i(VALUE ary)
{
long i1, i2;
rb_ary_modify(ary);
for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
VALUE v = RARRAY_PTR(ary)[i1];
if (RTEST(rb_yield(v))) continue;
if (i1 != i2) {
rb_ary_store(ary, i2, v);
}
i2++;
}
if (RARRAY_LEN(ary) == i2) return Qnil;
if (i2 < RARRAY_LEN(ary))
RARRAY(ary)->len = i2;
return ary;
}
/*
* call-seq:
* array.reject! {|item| block } -> array or nil
*
* Equivalent to Array#delete_if
, deleting elements from
* _self_ for which the block evaluates to true, but returns
* nil
if no changes were made. Also see
* Enumerable#reject
.
*/
static VALUE
rb_ary_reject_bang(VALUE ary)
{
RETURN_ENUMERATOR(ary, 0, 0);
ary_iter_check(ary);
ITERATE(reject_bang_i, ary);
}
/*
* call-seq:
* array.reject {|item| block } -> an_array
*
* Returns a new array containing the items in _self_
* for which the block is not true.
*/
static VALUE
rb_ary_reject(VALUE ary)
{
RETURN_ENUMERATOR(ary, 0, 0);
ary = rb_ary_dup(ary);
rb_ary_reject_bang(ary);
return ary;
}
/*
* call-seq:
* array.delete_if {|item| block } -> array
*
* Deletes every element of self for which block evaluates
* to true
.
*
* a = [ "a", "b", "c" ]
* a.delete_if {|x| x >= "b" } #=> ["a"]
*/
static VALUE
rb_ary_delete_if(VALUE ary)
{
rb_ary_reject_bang(ary);
return ary;
}
/*
* call-seq:
* array.transpose -> an_array
*
* Assumes that self is an array of arrays and transposes the
* rows and columns.
*
* a = [[1,2], [3,4], [5,6]]
* a.transpose #=> [[1, 3, 5], [2, 4, 6]]
*/
static VALUE
rb_ary_transpose(VALUE ary)
{
long elen = -1, alen, i, j;
VALUE tmp, result = 0;
alen = RARRAY_LEN(ary);
if (alen == 0) return rb_ary_dup(ary);
for (i=0; i array
*
* Replaces the contents of self with the contents of
* other_array, truncating or expanding if necessary.
*
* a = [ "a", "b", "c", "d", "e" ]
* a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"]
* a #=> ["x", "y", "z"]
*/
VALUE
rb_ary_replace(VALUE copy, VALUE orig)
{
VALUE shared;
VALUE *ptr;
orig = to_ary(orig);
rb_ary_modify_check(copy);
ary_iter_check(copy);
if (copy == orig) return copy;
shared = ary_make_shared(orig);
if (!ARY_SHARED_P(copy)) {
ptr = RARRAY(copy)->ptr;
xfree(ptr);
}
RARRAY(copy)->ptr = RARRAY(orig)->ptr;
RARRAY(copy)->len = RARRAY(orig)->len;
RARRAY(copy)->aux.shared = shared;
FL_SET(copy, ELTS_SHARED);
return copy;
}
/*
* call-seq:
* array.clear -> array
*
* Removes all elements from _self_.
*
* a = [ "a", "b", "c", "d", "e" ]
* a.clear #=> [ ]
*/
VALUE
rb_ary_clear(VALUE ary)
{
rb_ary_modify(ary);
ary_iter_check(ary);
RARRAY(ary)->len = 0;
if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
RESIZE_CAPA(ary, ARY_DEFAULT_SIZE * 2);
}
return ary;
}
/*
* call-seq:
* array.fill(obj) -> array
* array.fill(obj, start [, length]) -> array
* array.fill(obj, range ) -> array
* array.fill {|index| block } -> array
* array.fill(start [, length] ) {|index| block } -> array
* array.fill(range) {|index| block } -> array
*
* The first three forms set the selected elements of self (which
* may be the entire array) to obj. A start of
* nil
is equivalent to zero. A length of
* nil
is equivalent to self.length. The last three
* forms fill the array with the value of the block. The block is
* passed the absolute index of each element to be filled.
*
* a = [ "a", "b", "c", "d" ]
* a.fill("x") #=> ["x", "x", "x", "x"]
* a.fill("z", 2, 2) #=> ["x", "x", "z", "z"]
* a.fill("y", 0..1) #=> ["y", "y", "z", "z"]
* a.fill {|i| i*i} #=> [0, 1, 4, 9]
* a.fill(-2) {|i| i*i*i} #=> [0, 1, 8, 27]
*/
static VALUE
rb_ary_fill(int argc, VALUE *argv, VALUE ary)
{
VALUE item, arg1, arg2;
long beg = 0, end = 0, len = 0;
VALUE *p, *pend;
int block_p = Qfalse;
if (rb_block_given_p()) {
block_p = Qtrue;
rb_scan_args(argc, argv, "02", &arg1, &arg2);
argc += 1; /* hackish */
}
else {
rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
}
switch (argc) {
case 1:
beg = 0;
len = RARRAY_LEN(ary);
break;
case 2:
if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
break;
}
/* fall through */
case 3:
beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
if (beg < 0) {
beg = RARRAY_LEN(ary) + beg;
if (beg < 0) beg = 0;
}
len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
break;
}
rb_ary_modify(ary);
ary_iter_check(ary);
end = beg + len;
if (end < 0) {
rb_raise(rb_eArgError, "argument too big");
}
if (RARRAY_LEN(ary) < end) {
if (end >= ARY_CAPA(ary)) {
RESIZE_CAPA(ary, end);
}
rb_mem_clear(RARRAY_PTR(ary) + RARRAY_LEN(ary), end - RARRAY_LEN(ary));
RARRAY(ary)->len = end;
}
if (block_p) {
VALUE v;
long i;
for (i=beg; i=RARRAY_LEN(ary)) break;
RARRAY_PTR(ary)[i] = v;
}
}
else {
p = RARRAY_PTR(ary) + beg;
pend = p + len;
while (p < pend) {
*p++ = item;
}
}
return ary;
}
/*
* call-seq:
* array + other_array -> an_array
*
* Concatenation---Returns a new array built by concatenating the
* two arrays together to produce a third array.
*
* [ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ]
*/
VALUE
rb_ary_plus(VALUE x, VALUE y)
{
VALUE z;
long len;
y = to_ary(y);
len = RARRAY_LEN(x) + RARRAY_LEN(y);
z = rb_ary_new2(len);
MEMCPY(RARRAY_PTR(z), RARRAY_PTR(x), VALUE, RARRAY_LEN(x));
MEMCPY(RARRAY_PTR(z) + RARRAY_LEN(x), RARRAY_PTR(y), VALUE, RARRAY_LEN(y));
RARRAY(z)->len = len;
return z;
}
/*
* call-seq:
* array.concat(other_array) -> array
*
* Appends the elements in other_array to _self_.
*
* [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
*/
VALUE
rb_ary_concat(VALUE x, VALUE y)
{
y = to_ary(y);
if (RARRAY_LEN(y) > 0) {
rb_ary_splice(x, RARRAY_LEN(x), 0, y);
}
return x;
}
/*
* call-seq:
* array * int -> an_array
* array * str -> a_string
*
* Repetition---With a String argument, equivalent to
* self.join(str). Otherwise, returns a new array
* built by concatenating the _int_ copies of _self_.
*
*
* [ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
* [ 1, 2, 3 ] * "," #=> "1,2,3"
*
*/
static VALUE
rb_ary_times(VALUE ary, VALUE times)
{
VALUE ary2, tmp;
long i, len;
tmp = rb_check_string_type(times);
if (!NIL_P(tmp)) {
return rb_ary_join(ary, tmp);
}
len = NUM2LONG(times);
if (len == 0) return ary_new(rb_obj_class(ary), 0);
if (len < 0) {
rb_raise(rb_eArgError, "negative argument");
}
if (LONG_MAX/len < RARRAY_LEN(ary)) {
rb_raise(rb_eArgError, "argument too big");
}
len *= RARRAY_LEN(ary);
ary2 = ary_new(rb_obj_class(ary), len);
RARRAY(ary2)->len = len;
for (i=0; i an_array or nil
*
* Searches through an array whose elements are also arrays
* comparing _obj_ with the first element of each contained array
* using obj.==.
* Returns the first contained array that matches (that
* is, the first associated array),
* or +nil+ if no match is found.
* See also Array#rassoc
.
*
* s1 = [ "colors", "red", "blue", "green" ]
* s2 = [ "letters", "a", "b", "c" ]
* s3 = "foo"
* a = [ s1, s2, s3 ]
* a.assoc("letters") #=> [ "letters", "a", "b", "c" ]
* a.assoc("foo") #=> nil
*/
VALUE
rb_ary_assoc(VALUE ary, VALUE key)
{
long i;
VALUE v;
for (i = 0; i < RARRAY_LEN(ary); ++i) {
v = rb_check_array_type(RARRAY_PTR(ary)[i]);
if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
rb_equal(RARRAY_PTR(v)[0], key))
return v;
}
return Qnil;
}
/*
* call-seq:
* array.rassoc(obj) -> an_array or nil
*
* Searches through the array whose elements are also arrays. Compares
* _obj_ with the second element of each contained array using
* ==
. Returns the first contained array that matches. See
* also Array#assoc
.
*
* a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
* a.rassoc("two") #=> [2, "two"]
* a.rassoc("four") #=> nil
*/
VALUE
rb_ary_rassoc(VALUE ary, VALUE value)
{
long i;
VALUE v;
for (i = 0; i < RARRAY_LEN(ary); ++i) {
v = RARRAY_PTR(ary)[i];
if (TYPE(v) == T_ARRAY &&
RARRAY_LEN(v) > 1 &&
rb_equal(RARRAY_PTR(v)[1], value))
return v;
}
return Qnil;
}
static VALUE
recursive_equal(VALUE ary1, VALUE ary2, int recur)
{
long i;
if (recur) return Qfalse;
for (i=0; i bool
*
* Equality---Two arrays are equal if they contain the same number
* of elements and if each element is equal to (according to
* Object.==) the corresponding element in the other array.
*
* [ "a", "c" ] == [ "a", "c", 7 ] #=> false
* [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true
* [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false
*
*/
static VALUE
rb_ary_equal(VALUE ary1, VALUE ary2)
{
if (ary1 == ary2) return Qtrue;
if (TYPE(ary2) != T_ARRAY) {
if (!rb_respond_to(ary2, rb_intern("to_ary"))) {
return Qfalse;
}
return rb_equal(ary2, ary1);
}
if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
return rb_exec_recursive(recursive_equal, ary1, ary2);
}
/*
* call-seq:
* array.eql?(other) -> true or false
*
* Returns true
if _array_ and _other_ are the same object,
* or are both arrays with the same content.
*/
static VALUE
rb_ary_eql(VALUE ary1, VALUE ary2)
{
long i;
if (ary1 == ary2) return Qtrue;
if (TYPE(ary2) != T_ARRAY) return Qfalse;
if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
for (i=0; i fixnum
*
* Compute a hash-code for this array. Two arrays with the same content
* will have the same hash code (and will compare using eql?
).
*/
static VALUE
rb_ary_hash(VALUE ary)
{
return rb_exec_recursive(recursive_hash, ary, 0);
}
/*
* call-seq:
* array.include?(obj) -> true or false
*
* Returns true
if the given object is present in
* self (that is, if any object ==
anObject),
* false
otherwise.
*
* a = [ "a", "b", "c" ]
* a.include?("b") #=> true
* a.include?("z") #=> false
*/
VALUE
rb_ary_includes(VALUE ary, VALUE item)
{
long i;
for (i=0; i other_array -> -1, 0, +1
*
* Comparison---Returns an integer (-1, 0,
* or +1) if this array is less than, equal to, or greater than
* other_array. Each object in each array is compared
* (using <=>). If any value isn't
* equal, then that inequality is the return value. If all the
* values found are equal, then the return is based on a
* comparison of the array lengths. Thus, two arrays are
* ``equal'' according to Array#<=>
if and only if they have
* the same length and the value of each element is equal to the
* value of the corresponding element in the other array.
*
* [ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1
* [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1
*
*/
VALUE
rb_ary_cmp(VALUE ary1, VALUE ary2)
{
long i, len;
ary2 = to_ary(ary2);
len = RARRAY_LEN(ary1);
if (len > RARRAY_LEN(ary2)) {
len = RARRAY_LEN(ary2);
}
for (i=0; i 0) return INT2FIX(1);
return INT2FIX(-1);
}
static VALUE
ary_make_hash(VALUE ary1, VALUE ary2)
{
VALUE hash = rb_hash_new();
long i;
for (i=0; i an_array
*
* Array Difference---Returns a new array that is a copy of
* the original array, removing any items that also appear in
* other_array. (If you need set-like behavior, see the
* library class Set.)
*
* [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
*/
static VALUE
rb_ary_diff(VALUE ary1, VALUE ary2)
{
VALUE ary3;
volatile VALUE hash;
long i;
hash = ary_make_hash(to_ary(ary2), 0);
ary3 = rb_ary_new();
for (i=0; i [ 1, 3 ]
*/
static VALUE
rb_ary_and(VALUE ary1, VALUE ary2)
{
VALUE hash, ary3, v, vv;
long i;
ary2 = to_ary(ary2);
ary3 = rb_ary_new2(RARRAY_LEN(ary1) < RARRAY_LEN(ary2) ?
RARRAY_LEN(ary1) : RARRAY_LEN(ary2));
hash = ary_make_hash(ary2, 0);
if (RHASH_EMPTY_P(hash))
return ary3;
for (i=0; i an_array
*
* Set Union---Returns a new array by joining this array with
* other_array, removing duplicates.
*
* [ "a", "b", "c" ] | [ "c", "d", "a" ]
* #=> [ "a", "b", "c", "d" ]
*/
static VALUE
rb_ary_or(VALUE ary1, VALUE ary2)
{
VALUE hash, ary3;
VALUE v, vv;
long i;
ary2 = to_ary(ary2);
ary3 = rb_ary_new2(RARRAY_LEN(ary1)+RARRAY_LEN(ary2));
hash = ary_make_hash(ary1, ary2);
for (i=0; i array or nil
*
* Removes duplicate elements from _self_.
* Returns nil
if no changes are made (that is, no
* duplicates are found).
*
* a = [ "a", "a", "b", "b", "c" ]
* a.uniq! #=> ["a", "b", "c"]
* b = [ "a", "b", "c" ]
* b.uniq! #=> nil
*/
static VALUE
rb_ary_uniq_bang(VALUE ary)
{
VALUE hash, v, vv;
long i, j;
ary_iter_check(ary);
hash = ary_make_hash(ary, 0);
if (RARRAY_LEN(ary) == RHASH_SIZE(hash)) {
return Qnil;
}
for (i=j=0; ilen = j;
return ary;
}
/*
* call-seq:
* array.uniq -> an_array
*
* Returns a new array by removing duplicate values in self.
*
* a = [ "a", "a", "b", "b", "c" ]
* a.uniq #=> ["a", "b", "c"]
*/
static VALUE
rb_ary_uniq(VALUE ary)
{
ary = rb_ary_dup(ary);
rb_ary_uniq_bang(ary);
return ary;
}
/*
* call-seq:
* array.compact! -> array or nil
*
* Removes +nil+ elements from array.
* Returns +nil+ if no changes were made.
*
* [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
* [ "a", "b", "c" ].compact! #=> nil
*/
static VALUE
rb_ary_compact_bang(VALUE ary)
{
VALUE *p, *t, *end;
long n;
rb_ary_modify(ary);
ary_iter_check(ary);
p = t = RARRAY_PTR(ary);
end = p + RARRAY_LEN(ary);
while (t < end) {
if (NIL_P(*t)) t++;
else *p++ = *t++;
}
if (RARRAY_LEN(ary) == (p - RARRAY_PTR(ary))) {
return Qnil;
}
n = p - RARRAY_PTR(ary);
RESIZE_CAPA(ary, n);
RARRAY(ary)->len = n;
return ary;
}
/*
* call-seq:
* array.compact -> an_array
*
* Returns a copy of _self_ with all +nil+ elements removed.
*
* [ "a", nil, "b", nil, "c", nil ].compact
* #=> [ "a", "b", "c" ]
*/
static VALUE
rb_ary_compact(VALUE ary)
{
ary = rb_ary_dup(ary);
rb_ary_compact_bang(ary);
return ary;
}
/*
* call-seq:
* array.nitems -> int
* array.nitems { |item| block } -> int
*
* Returns the number of non-nil
elements in _self_.
* If a block is given, the elements yielding a true value are
* counted.
*
* May be zero.
*
* [ 1, nil, 3, nil, 5 ].nitems #=> 3
* [5,6,7,8,9].nitems { |x| x % 2 != 0 } #=> 3
*/
static VALUE
rb_ary_nitems(VALUE ary)
{
long n = 0;
if (rb_block_given_p()) {
long i;
for (i=0; i= 0 && RARRAY_LEN(stack) / 2 >= level)) {
rb_ary_push(result, elt);
}
else {
*modified = 1;
id = (st_data_t)tmp;
if (st_lookup(memo, id, 0)) {
rb_raise(rb_eArgError, "tried to flatten recursive array");
}
st_insert(memo, id, (st_data_t)Qtrue);
rb_ary_push(stack, ary);
rb_ary_push(stack, LONG2NUM(i));
ary = tmp;
i = 0;
}
}
if (RARRAY_LEN(stack) == 0) {
break;
}
id = (st_data_t)ary;
st_delete(memo, &id, 0);
tmp = rb_ary_pop(stack);
i = NUM2LONG(tmp);
ary = rb_ary_pop(stack);
}
return result;
}
/*
* call-seq:
* array.flatten! -> array or nil
* array.flatten!(level) -> array or nil
*
* Flattens _self_ in place.
* Returns nil
if no modifications were made (i.e.,
* array contains no subarrays.) If the optional level
* argument determins the level of recursion to flatten.
*
* a = [ 1, 2, [3, [4, 5] ] ]
* a.flatten! #=> [1, 2, 3, 4, 5]
* a.flatten! #=> nil
* a #=> [1, 2, 3, 4, 5]
* a = [ 1, 2, [3, [4, 5] ] ]
* a.flatten!(1) #=> [1, 2, 3, [4, 5]]
*/
static VALUE
rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
{
int mod = 0, level = -1;
VALUE result, lv;
rb_scan_args(argc, argv, "01", &lv);
if (!NIL_P(lv)) level = NUM2INT(lv);
if (level == 0) return ary;
result = flatten(ary, level, &mod);
if (mod == 0) return Qnil;
rb_ary_replace(ary, result);
return ary;
}
/*
* call-seq:
* array.flatten -> an_array
* array.flatten(level) -> an_array
*
* Returns a new array that is a one-dimensional flattening of this
* array (recursively). That is, for every element that is an array,
* extract its elements into the new array. If the optional
* level argument determins the level of recursion to flatten.
*
* s = [ 1, 2, 3 ] #=> [1, 2, 3]
* t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]]
* a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
* a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10
* a = [ 1, 2, [3, [4, 5] ] ]
* a.flatten(1) #=> [1, 2, 3, [4, 5]]
*/
static VALUE
rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
{
int mod = 0, level = -1;
VALUE result, lv;
rb_scan_args(argc, argv, "01", &lv);
if (!NIL_P(lv)) level = NUM2INT(lv);
if (level == 0) return ary;
result = flatten(ary, level, &mod);
if (OBJ_TAINTED(ary)) OBJ_TAINT(result);
return result;
}
/*
* call-seq:
* array.shuffle! -> array or nil
*
* Shuffles elements in _self_ in place.
*/
static VALUE
rb_ary_shuffle_bang(VALUE ary)
{
long i = RARRAY_LEN(ary);
rb_ary_modify(ary);
ary_iter_check(ary);
while (i) {
long j = genrand_real()*i;
VALUE tmp = RARRAY_PTR(ary)[--i];
RARRAY_PTR(ary)[i] = RARRAY_PTR(ary)[j];
RARRAY_PTR(ary)[j] = tmp;
}
return ary;
}
/*
* call-seq:
* array.shuffle -> an_array
*
* Returns a new array with elements of this array shuffled.
*
* a = [ 1, 2, 3 ] #=> [1, 2, 3]
* a.shuffle #=> [2, 3, 1]
*/
static VALUE
rb_ary_shuffle(VALUE ary)
{
ary = rb_ary_dup(ary);
rb_ary_shuffle_bang(ary);
return ary;
}
/*
* call-seq:
* array.choice -> obj
*
* Choose a random element from an array.
*/
static VALUE
rb_ary_choice(VALUE ary)
{
long i, j;
i = RARRAY_LEN(ary);
if (i == 0) return Qnil;
j = genrand_real()*i;
return RARRAY_PTR(ary)[j];
}
/*
* call-seq:
* ary.cycle {|obj| block }
*
* Calls block repeatedly forever.
*
* a = ["a", "b", "c"]
* a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever.
*
*/
static VALUE
rb_ary_cycle(VALUE ary)
{
long i;
RETURN_ENUMERATOR(ary, 0, 0);
while (RARRAY_LEN(ary) > 0) {
for (i=0; iklass = 0;
return buf;
}
/*
* Recursively compute permutations of r elements of the set [0..n-1].
* When we have a complete permutation of array indexes, copy the values
* at those indexes into a new array and yield that array.
*
* n: the size of the set
* r: the number of elements in each permutation
* p: the array (of size r) that we're filling in
* index: what index we're filling in now
* used: an array of booleans: whether a given index is already used
* values: the Ruby array that holds the actual values to permute
*/
static void
permute0(long n, long r, long *p, long index, int *used, VALUE values)
{
long i,j;
for (i = 0; i < n; i++) {
if (used[i] == 0) {
p[index] = i;
if (index < r-1) { /* if not done yet */
used[i] = 1; /* mark index used */
permute0(n, r, p, index+1, /* recurse */
used, values);
used[i] = 0; /* index unused */
}
else {
/* We have a complete permutation of array indexes */
/* Build a ruby array of the corresponding values */
/* And yield it to the associated block */
VALUE result = rb_ary_new2(r);
VALUE *result_array = RARRAY_PTR(result);
const VALUE *values_array = RARRAY_PTR(values);
for (j = 0; j < r; j++) result_array[j] = values_array[p[j]];
RARRAY(result)->len = r;
rb_yield(result);
}
}
}
}
/*
* call-seq:
* ary.permutation { |p| block } -> array
* ary.permutation -> enumerator
* ary.permutation(n) { |p| block } -> array
* ary.permutation(n) -> enumerator
*
* When invoked with a block, yield all permutations of length n
* of the elements of ary, then return the array itself.
* If n is not specified, yield all permutations of all elements.
* The implementation makes no guarantees about the order in which
* the permutations are yielded.
*
* When invoked without a block, return an enumerator object instead.
*
* Examples:
* a = [1, 2, 3]
* a.permutation.to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
* a.permutation(1).to_a #=> [[1],[2],[3]]
* a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
* a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
* a.permutation(0).to_a #=> [[]]: one permutation of length 0
* a.permutation(4).to_a #=> [] : no permutations of length 4
*/
static VALUE
rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
{
VALUE num;
long r, n, i;
RETURN_ENUMERATOR(ary, argc, argv); /* Return enumerator if no block */
n = RARRAY_LEN(ary); /* Array length */
rb_scan_args(argc, argv, "01", &num);
r = NIL_P(num) ? n : NUM2LONG(num); /* Permutation size from argument */
if (r < 0 || n < r) {
/* no permutations: yield nothing */
}
else if (r == 0) { /* exactly one permutation: the zero-length array */
rb_yield(rb_ary_new2(0));
}
else if (r == 1) { /* this is a special, easy case */
for (i = 0; i < RARRAY_LEN(ary); i++) {
rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
}
}
else { /* this is the general case */
volatile VALUE t0 = tmpbuf(n,sizeof(long));
long *p = (long*)RSTRING_PTR(t0);
volatile VALUE t1 = tmpbuf(n,sizeof(int));
int *used = (int*)RSTRING_PTR(t1);
VALUE ary0 = ary_make_shared(ary); /* private defensive copy of ary */
for (i = 0; i < n; i++) used[i] = 0; /* initialize array */
permute0(n, r, p, 0, used, ary0); /* compute and yield permutations */
RB_GC_GUARD(t0);
RB_GC_GUARD(t1);
}
return ary;
}
static long
combi_len(long n, long k)
{
long i, val = 1;
if (k*2 > n) k = n-k;
if (k == 0) return 1;
if (k < 0) return 0;
val = 1;
for (i=1; i <= k; i++,n--) {
val *= n;
val /= i;
}
return val;
}
/*
* call-seq:
* ary.combination(n) { |c| block } -> ary
* ary.combination(n) -> enumerator
*
* When invoked with a block, yields all combinations of length n
* of elements from ary and then returns ary itself.
* The implementation makes no guarantees about the order in which
* the combinations are yielded.
*
* When invoked without a block, returns an enumerator object instead.
*
* Examples:
* a = [1, 2, 3, 4]
* a.combination(1).to_a #=> [[1],[2],[3],[4]]
* a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
* a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
* a.combination(4).to_a #=> [[1,2,3,4]]
* a.combination(0).to_a #=> [[]]: one combination of length 0
* a.combination(5).to_a #=> [] : no combinations of length 5
*
*/
static VALUE
rb_ary_combination(VALUE ary, VALUE num)
{
long n, i, len;
RETURN_ENUMERATOR(ary, 1, &num);
n = NUM2LONG(num);
len = RARRAY_LEN(ary);
if (n < 0 || len < n) {
/* yield nothing */
}
else if (n == 0) {
rb_yield(rb_ary_new2(0));
}
else if (n == 1) {
for (i = 0; i < len; i++) {
rb_yield(rb_ary_new3(1, RARRAY_PTR(ary)[i]));
}
}
else {
volatile VALUE t0 = tmpbuf(n+1, sizeof(long));
long *stack = (long*)RSTRING_PTR(t0);
long nlen = combi_len(len, n);
volatile VALUE cc = rb_ary_new2(n);
VALUE *chosen = RARRAY_PTR(cc);
long lev = 0;
RBASIC(cc)->klass = 0;
MEMZERO(stack, long, n);
stack[0] = -1;
for (i = 0; i < nlen; i++) {
chosen[lev] = RARRAY_PTR(ary)[stack[lev+1]];
for (lev++; lev < n; lev++) {
chosen[lev] = RARRAY_PTR(ary)[stack[lev+1] = stack[lev]+1];
}
rb_yield(rb_ary_new4(n, chosen));
do {
stack[lev--]++;
} while (lev && (stack[lev+1]+n == len+lev+1));
}
}
return ary;
}
/*
* call-seq:
* ary.product(other_ary, ...)
*
* Returns an array of all combinations of elements from all arrays.
* The length of the returned array is the product of the length
* of ary and the argument arrays
*
* [1,2,3].product([4,5]) # => [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
* [1,2].product([1,2]) # => [[1,1],[1,2],[2,1],[2,2]]
* [1,2].product([3,4],[5,6]) # => [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
* # [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
* [1,2].product() # => [[1],[2]]
* [1,2].product([]) # => []
*/
static VALUE
rb_ary_product(int argc, VALUE *argv, VALUE ary)
{
int n = argc+1; /* How many arrays we're operating on */
volatile VALUE t0 = tmpbuf(n, sizeof(VALUE));
volatile VALUE t1 = tmpbuf(n, sizeof(int));
VALUE *arrays = (VALUE*)RSTRING_PTR(t0); /* The arrays we're computing the product of */
int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */
VALUE result; /* The array we'll be returning */
long i,j;
long resultlen = 1;
RBASIC(t0)->klass = 0;
RBASIC(t1)->klass = 0;
/* initialize the arrays of arrays */
arrays[0] = ary;
for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
/* initialize the counters for the arrays */
for (i = 0; i < n; i++) counters[i] = 0;
/* Compute the length of the result array; return [] if any is empty */
for (i = 0; i < n; i++) {
resultlen *= RARRAY_LEN(arrays[i]);
if (resultlen == 0) return rb_ary_new2(0);
}
/* Otherwise, allocate and fill in an array of results */
result = rb_ary_new2(resultlen);
for (i = 0; i < resultlen; i++) {
int m;
/* fill in one subarray */
VALUE subarray = rb_ary_new2(n);
for (j = 0; j < n; j++) {
rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
}
/* put it on the result array */
rb_ary_push(result, subarray);
/*
* Increment the last counter. If it overflows, reset to 0
* and increment the one before it.
*/
m = n-1;
counters[m]++;
while (m > 0 && counters[m] == RARRAY_LEN(arrays[m])) {
counters[m] = 0;
m--;
counters[m]++;
}
}
return result;
}
/* Arrays are ordered, integer-indexed collections of any object.
* Array indexing starts at 0, as in C or Java. A negative index is
* assumed to be relative to the end of the array---that is, an index of -1
* indicates the last element of the array, -2 is the next to last
* element in the array, and so on.
*/
void
Init_Array(void)
{
rb_cArray = rb_define_class("Array", rb_cObject);
rb_include_module(rb_cArray, rb_mEnumerable);
rb_define_alloc_func(rb_cArray, ary_alloc);
rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1);
rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1);
rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1);
rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1);
rb_define_method(rb_cArray, "to_s", rb_ary_inspect, 0);
rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0);
rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0);
rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0);
rb_define_method(rb_cArray, "frozen?", rb_ary_frozen_p, 0);
rb_define_method(rb_cArray, "==", rb_ary_equal, 1);
rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1);
rb_define_method(rb_cArray, "hash", rb_ary_hash, 0);
rb_define_method(rb_cArray, "[]", rb_ary_aref, -1);
rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1);
rb_define_method(rb_cArray, "at", rb_ary_at, 1);
rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1);
rb_define_method(rb_cArray, "first", rb_ary_first, -1);
rb_define_method(rb_cArray, "last", rb_ary_last, -1);
rb_define_method(rb_cArray, "concat", rb_ary_concat, 1);
rb_define_method(rb_cArray, "<<", rb_ary_push, 1);
rb_define_method(rb_cArray, "push", rb_ary_push_m, -1);
rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1);
rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1);
rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1);
rb_define_method(rb_cArray, "insert", rb_ary_insert, -1);
rb_define_method(rb_cArray, "each", rb_ary_each, 0);
rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0);
rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0);
rb_define_method(rb_cArray, "length", rb_ary_length, 0);
rb_define_alias(rb_cArray, "size", "length");
rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0);
rb_define_method(rb_cArray, "index", rb_ary_index, -1);
rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1);
rb_define_method(rb_cArray, "join", rb_ary_join_m, -1);
rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0);
rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0);
rb_define_method(rb_cArray, "sort", rb_ary_sort, 0);
rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0);
rb_define_method(rb_cArray, "collect", rb_ary_collect, 0);
rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0);
rb_define_method(rb_cArray, "map", rb_ary_collect, 0);
rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0);
rb_define_method(rb_cArray, "select", rb_ary_select, 0);
rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1);
rb_define_method(rb_cArray, "delete", rb_ary_delete, 1);
rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1);
rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0);
rb_define_method(rb_cArray, "reject", rb_ary_reject, 0);
rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0);
rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0);
rb_define_method(rb_cArray, "replace", rb_ary_replace, 1);
rb_define_method(rb_cArray, "clear", rb_ary_clear, 0);
rb_define_method(rb_cArray, "fill", rb_ary_fill, -1);
rb_define_method(rb_cArray, "include?", rb_ary_includes, 1);
rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1);
rb_define_method(rb_cArray, "slice", rb_ary_aref, -1);
rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1);
rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1);
rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1);
rb_define_method(rb_cArray, "+", rb_ary_plus, 1);
rb_define_method(rb_cArray, "*", rb_ary_times, 1);
rb_define_method(rb_cArray, "-", rb_ary_diff, 1);
rb_define_method(rb_cArray, "&", rb_ary_and, 1);
rb_define_method(rb_cArray, "|", rb_ary_or, 1);
rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0);
rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0);
rb_define_method(rb_cArray, "compact", rb_ary_compact, 0);
rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0);
rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1);
rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1);
rb_define_method(rb_cArray, "nitems", rb_ary_nitems, 0);
rb_define_method(rb_cArray, "shuffle!", rb_ary_shuffle_bang, 0);
rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, 0);
rb_define_method(rb_cArray, "choice", rb_ary_choice, 0);
rb_define_method(rb_cArray, "cycle", rb_ary_cycle, 0);
rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1);
rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
rb_define_method(rb_cArray, "product", rb_ary_product, -1);
id_cmp = rb_intern("<=>");
}