/********************************************************************** gc.c - $Author$ $Date$ created at: Tue Oct 5 09:44:46 JST 1993 Copyright (C) 1993-2000 Yukihiro Matsumoto Copyright (C) 2000 Network Applied Communication Laboratory, Inc. Copyright (C) 2000 Information-technology Promotion Agency, Japan **********************************************************************/ #include "ruby.h" #include "rubysig.h" #include "st.h" #include "node.h" #include "env.h" #include "re.h" #include #include void re_free_registers _((struct re_registers*)); void rb_io_fptr_finalize _((struct OpenFile*)); #ifndef setjmp #ifdef HAVE__SETJMP #define setjmp(env) _setjmp(env) #define longjmp(env,val) _longjmp(env,val) #endif #endif #ifdef C_ALLOCA #ifndef alloca void *alloca(); #endif #endif static void run_final(); #ifndef GC_MALLOC_LIMIT #if defined(MSDOS) || defined(__human68k__) #define GC_MALLOC_LIMIT 100000 #else #define GC_MALLOC_LIMIT 4000000 #endif #endif static unsigned long malloc_memories = 0; static void mem_error(mesg) char *mesg; { if (rb_safe_level() >= 4) { rb_raise(rb_eNoMemError, mesg); } rb_fatal(mesg); } void * ruby_xmalloc(size) size_t size; { void *mem; if (size < 0) { rb_raise(rb_eNoMemError, "negative allocation size (or too big)"); } if (size == 0) size = 1; malloc_memories += size; if (malloc_memories > GC_MALLOC_LIMIT) { rb_gc(); } mem = malloc(size); if (!mem) { rb_gc(); mem = malloc(size); if (!mem) { if (size >= 10 * 1024 * 1024) { rb_raise(rb_eNoMemError, "tryed to allocate too big memory"); } mem_error("failed to allocate memory"); } } return mem; } void * ruby_xcalloc(n, size) size_t n, size; { void *mem; mem = xmalloc(n * size); memset(mem, 0, n * size); return mem; } void * ruby_xrealloc(ptr, size) void *ptr; size_t size; { void *mem; if (size < 0) { rb_raise(rb_eArgError, "negative re-allocation size"); } if (!ptr) return xmalloc(size); if (size == 0) size = 1; malloc_memories += size; mem = realloc(ptr, size); if (!mem) { rb_gc(); mem = realloc(ptr, size); if (!mem) if (size >= 10 * 1024 * 1024) { rb_raise(rb_eNoMemError, "tryed to re-allocate too big memory"); } mem_error("failed to allocate memory(realloc)"); } return mem; } void ruby_xfree(x) void *x; { if (x) free(x); } extern int ruby_in_compile; static int dont_gc; static int during_gc; static int need_call_final = 0; static st_table *finalizer_table = 0; static VALUE gc_enable() { int old = dont_gc; dont_gc = Qfalse; return old; } static VALUE gc_disable() { int old = dont_gc; dont_gc = Qtrue; return old; } VALUE rb_mGC; static struct gc_list { VALUE *varptr; struct gc_list *next; } *Global_List = 0; void rb_gc_register_address(addr) VALUE *addr; { struct gc_list *tmp; tmp = ALLOC(struct gc_list); tmp->next = Global_List; tmp->varptr = addr; Global_List = tmp; } void rb_gc_unregister_address(addr) VALUE *addr; { struct gc_list *tmp = Global_List; if (tmp->varptr == addr) { Global_List = tmp->next; free(tmp); return; } while (tmp->next) { if (tmp->next->varptr == addr) { struct gc_list *t = tmp->next; tmp->next = tmp->next->next; free(t); break; } tmp = tmp->next; } } void rb_global_variable(var) VALUE *var; { rb_gc_register_address(var); } typedef struct RVALUE { union { struct { unsigned long flag; /* always 0 for freed obj */ struct RVALUE *next; } free; struct RBasic basic; struct RObject object; struct RClass klass; struct RFloat flonum; struct RString string; struct RArray array; struct RRegexp regexp; struct RHash hash; struct RData data; struct RStruct rstruct; struct RBignum bignum; struct RFile file; struct RNode node; struct RMatch match; struct RVarmap varmap; struct SCOPE scope; } as; } RVALUE; static RVALUE *freelist = 0; #define HEAPS_INCREMENT 10 static RVALUE **heaps; static int heaps_length = 0; static int heaps_used = 0; #define HEAP_SLOTS 10000 #define FREE_MIN 4096 static RVALUE *himem, *lomem; static void add_heap() { RVALUE *p, *pend; if (heaps_used == heaps_length) { /* Realloc heaps */ heaps_length += HEAPS_INCREMENT; heaps = (heaps_used>0)? (RVALUE**)realloc(heaps, heaps_length*sizeof(RVALUE*)): (RVALUE**)malloc(heaps_length*sizeof(RVALUE*)); if (heaps == 0) mem_error("heaps: can't alloc memory"); } p = heaps[heaps_used++] = (RVALUE*)malloc(sizeof(RVALUE)*HEAP_SLOTS); if (p == 0) mem_error("add_heap: can't alloc memory"); pend = p + HEAP_SLOTS; if (lomem == 0 || lomem > p) lomem = p; if (himem < pend) himem = pend; while (p < pend) { p->as.free.flag = 0; p->as.free.next = freelist; freelist = p; p++; } } #define RANY(o) ((RVALUE*)(o)) VALUE rb_newobj() { VALUE obj; if (freelist) { retry: obj = (VALUE)freelist; freelist = freelist->as.free.next; return obj; } if (dont_gc || during_gc || rb_prohibit_interrupt) add_heap(); else rb_gc(); goto retry; } VALUE rb_data_object_alloc(klass, datap, dmark, dfree) VALUE klass; void *datap; RUBY_DATA_FUNC dmark; RUBY_DATA_FUNC dfree; { NEWOBJ(data, struct RData); OBJSETUP(data, klass, T_DATA); data->data = datap; data->dfree = dfree; data->dmark = dmark; return (VALUE)data; } extern st_table *rb_class_tbl; VALUE *rb_gc_stack_start = 0; #if defined(__GNUC__) && __GNUC__ >= 2 __inline__ #endif static int is_pointer_to_heap(ptr) void *ptr; { register RVALUE *p = RANY(ptr); register RVALUE *heap_org; register long i; if (p < lomem || p > himem) return Qfalse; /* check if p looks like a pointer */ for (i=0; i < heaps_used; i++) { heap_org = heaps[i]; if (heap_org <= p && p < heap_org + HEAP_SLOTS && ((((char*)p)-((char*)heap_org))%sizeof(RVALUE)) == 0) return Qtrue; } return Qfalse; } static void mark_locations_array(x, n) register VALUE *x; register long n; { while (n--) { if (is_pointer_to_heap(*x)) { rb_gc_mark(*x); } x++; } } void rb_gc_mark_locations(start, end) VALUE *start, *end; { VALUE *tmp; long n; if (start > end) { tmp = start; start = end; end = tmp; } n = end - start + 1; mark_locations_array(start,n); } static int mark_entry(key, value) ID key; VALUE value; { rb_gc_mark(value); return ST_CONTINUE; } void rb_mark_tbl(tbl) st_table *tbl; { if (!tbl) return; st_foreach(tbl, mark_entry, 0); } static int mark_hashentry(key, value) VALUE key; VALUE value; { rb_gc_mark(key); rb_gc_mark(value); return ST_CONTINUE; } void rb_mark_hash(tbl) st_table *tbl; { if (!tbl) return; st_foreach(tbl, mark_hashentry, 0); } void rb_gc_mark_maybe(obj) void *obj; { if (is_pointer_to_heap(obj)) { rb_gc_mark(obj); } } void rb_gc_mark(ptr) void *ptr; { register RVALUE *obj = RANY(ptr); Top: if (FIXNUM_P(obj)) return; /* fixnum not marked */ if (rb_special_const_p((VALUE)obj)) return; /* special const not marked */ if (obj->as.basic.flags == 0) return; /* free cell */ if (obj->as.basic.flags & FL_MARK) return; /* already marked */ obj->as.basic.flags |= FL_MARK; if (FL_TEST(obj, FL_EXIVAR)) { rb_mark_generic_ivar((VALUE)obj); } switch (obj->as.basic.flags & T_MASK) { case T_NIL: case T_FIXNUM: rb_bug("rb_gc_mark() called for broken object"); break; case T_NODE: switch (nd_type(obj)) { case NODE_IF: /* 1,2,3 */ case NODE_FOR: case NODE_ITER: case NODE_CREF: case NODE_WHEN: case NODE_MASGN: case NODE_RESCUE: case NODE_RESBODY: rb_gc_mark(obj->as.node.u2.node); /* fall through */ case NODE_BLOCK: /* 1,3 */ case NODE_ARRAY: case NODE_DSTR: case NODE_DXSTR: case NODE_EVSTR: case NODE_DREGX: case NODE_DREGX_ONCE: case NODE_FBODY: case NODE_ENSURE: case NODE_CALL: case NODE_DEFS: case NODE_OP_ASGN1: rb_gc_mark(obj->as.node.u1.node); /* fall through */ case NODE_SUPER: /* 3 */ case NODE_FCALL: case NODE_DEFN: case NODE_NEWLINE: obj = RANY(obj->as.node.u3.node); goto Top; case NODE_WHILE: /* 1,2 */ case NODE_UNTIL: case NODE_AND: case NODE_OR: case NODE_CASE: case NODE_SCLASS: case NODE_DOT2: case NODE_DOT3: case NODE_FLIP2: case NODE_FLIP3: case NODE_MATCH2: case NODE_MATCH3: case NODE_OP_ASGN_OR: case NODE_OP_ASGN_AND: rb_gc_mark(obj->as.node.u1.node); /* fall through */ case NODE_METHOD: /* 2 */ case NODE_NOT: case NODE_GASGN: case NODE_LASGN: case NODE_DASGN: case NODE_DASGN_CURR: case NODE_IASGN: case NODE_CASGN: case NODE_MODULE: case NODE_COLON3: case NODE_OPT_N: obj = RANY(obj->as.node.u2.node); goto Top; case NODE_HASH: /* 1 */ case NODE_LIT: case NODE_STR: case NODE_XSTR: case NODE_DEFINED: case NODE_MATCH: case NODE_RETURN: case NODE_YIELD: case NODE_COLON2: case NODE_ARGS: obj = RANY(obj->as.node.u1.node); goto Top; case NODE_SCOPE: /* 2,3 */ case NODE_CLASS: case NODE_BLOCK_PASS: rb_gc_mark(obj->as.node.u3.node); obj = RANY(obj->as.node.u2.node); goto Top; case NODE_ZARRAY: /* - */ case NODE_ZSUPER: case NODE_CFUNC: case NODE_VCALL: case NODE_GVAR: case NODE_LVAR: case NODE_DVAR: case NODE_IVAR: case NODE_CVAR: case NODE_NTH_REF: case NODE_BACK_REF: case NODE_ALIAS: case NODE_VALIAS: case NODE_BREAK: case NODE_NEXT: case NODE_REDO: case NODE_RETRY: case NODE_UNDEF: case NODE_SELF: case NODE_NIL: case NODE_TRUE: case NODE_FALSE: case NODE_ATTRSET: case NODE_BLOCK_ARG: case NODE_POSTEXE: break; #ifdef C_ALLOCA case NODE_ALLOCA: mark_locations_array((VALUE*)obj->as.node.u1.value, obj->as.node.u3.cnt); obj = RANY(obj->as.node.u2.node); goto Top; #endif default: if (is_pointer_to_heap(obj->as.node.u1.node)) { rb_gc_mark(obj->as.node.u1.node); } if (is_pointer_to_heap(obj->as.node.u2.node)) { rb_gc_mark(obj->as.node.u2.node); } if (is_pointer_to_heap(obj->as.node.u3.node)) { obj = RANY(obj->as.node.u3.node); goto Top; } } return; /* no need to mark class. */ } rb_gc_mark(obj->as.basic.klass); switch (obj->as.basic.flags & T_MASK) { case T_ICLASS: case T_CLASS: case T_MODULE: rb_gc_mark(obj->as.klass.super); rb_mark_tbl(obj->as.klass.m_tbl); rb_mark_tbl(obj->as.klass.iv_tbl); break; case T_ARRAY: { int i, len = obj->as.array.len; VALUE *ptr = obj->as.array.ptr; for (i=0; i < len; i++) rb_gc_mark(*ptr++); } break; case T_HASH: rb_mark_hash(obj->as.hash.tbl); rb_gc_mark(obj->as.hash.ifnone); break; case T_STRING: if (obj->as.string.orig) { obj = RANY(obj->as.string.orig); goto Top; } break; case T_DATA: if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj)); break; case T_OBJECT: rb_mark_tbl(obj->as.object.iv_tbl); break; case T_FILE: case T_REGEXP: case T_FLOAT: case T_BIGNUM: break; case T_MATCH: if (obj->as.match.str) { obj = RANY(obj->as.match.str); goto Top; } break; case T_VARMAP: rb_gc_mark(obj->as.varmap.val); obj = RANY(obj->as.varmap.next); goto Top; break; case T_SCOPE: if (obj->as.scope.local_vars && obj->as.scope.flag != SCOPE_ALLOCA) { int n = obj->as.scope.local_tbl[0]+1; VALUE *vars = &obj->as.scope.local_vars[-1]; while (n--) { rb_gc_mark(*vars); vars++; } } break; case T_STRUCT: { int i, len = obj->as.rstruct.len; VALUE *ptr = obj->as.rstruct.ptr; for (i=0; i < len; i++) rb_gc_mark(*ptr++); } break; default: rb_bug("rb_gc_mark(): unknown data type 0x%x(0x%x) %s", obj->as.basic.flags & T_MASK, obj, is_pointer_to_heap(obj)?"corrupted object":"non object"); } } #define MIN_FREE_OBJ 512 static void obj_free _((VALUE)); static void gc_sweep() { RVALUE *p, *pend, *final_list; int freed = 0; int i, used = heaps_used; if (ruby_in_compile) { /* sould not reclaim nodes during compilation */ for (i = 0; i < used; i++) { p = heaps[i]; pend = p + HEAP_SLOTS; while (p < pend) { if (!(p->as.basic.flags&FL_MARK) && BUILTIN_TYPE(p) == T_NODE) rb_gc_mark(p); p++; } } } freelist = 0; final_list = 0; for (i = 0; i < used; i++) { int n = 0; p = heaps[i]; pend = p + HEAP_SLOTS; while (p < pend) { if (!(p->as.basic.flags & FL_MARK)) { if (p->as.basic.flags) { obj_free((VALUE)p); } if (need_call_final && FL_TEST(p, FL_FINALIZE)) { p->as.free.flag = FL_MARK; /* remain marked */ p->as.free.next = final_list; final_list = p; } else { p->as.free.flag = 0; p->as.free.next = freelist; freelist = p; } n++; } else if (RBASIC(p)->flags == FL_MARK) { /* objects to be finalized */ /* do notning remain marked */ } else { RBASIC(p)->flags &= ~FL_MARK; } p++; } freed += n; } if (freed < FREE_MIN) { add_heap(); } during_gc = 0; /* clear finalization list */ if (need_call_final) { RVALUE *tmp; for (p = final_list; p; p = tmp) { tmp = p->as.free.next; run_final((VALUE)p); p->as.free.flag = 0; p->as.free.next = freelist; freelist = p; } } } void rb_gc_force_recycle(p) VALUE p; { RANY(p)->as.free.flag = 0; RANY(p)->as.free.next = freelist; freelist = RANY(p); } static void obj_free(obj) VALUE obj; { switch (RANY(obj)->as.basic.flags & T_MASK) { case T_NIL: case T_FIXNUM: case T_TRUE: case T_FALSE: rb_bug("obj_free() called for broken object"); break; } if (FL_TEST(obj, FL_EXIVAR)) { rb_free_generic_ivar((VALUE)obj); } switch (RANY(obj)->as.basic.flags & T_MASK) { case T_OBJECT: if (RANY(obj)->as.object.iv_tbl) { st_free_table(RANY(obj)->as.object.iv_tbl); } break; case T_MODULE: case T_CLASS: rb_clear_cache(); st_free_table(RANY(obj)->as.klass.m_tbl); if (RANY(obj)->as.object.iv_tbl) { st_free_table(RANY(obj)->as.object.iv_tbl); } break; case T_STRING: #define STR_NO_ORIG FL_USER3 /* copied from string.c */ if (!RANY(obj)->as.string.orig || FL_TEST(obj, STR_NO_ORIG)) free(RANY(obj)->as.string.ptr); break; case T_ARRAY: if (RANY(obj)->as.array.ptr) free(RANY(obj)->as.array.ptr); break; case T_HASH: if (RANY(obj)->as.hash.tbl) st_free_table(RANY(obj)->as.hash.tbl); break; case T_REGEXP: if (RANY(obj)->as.regexp.ptr) re_free_pattern(RANY(obj)->as.regexp.ptr); if (RANY(obj)->as.regexp.str) free(RANY(obj)->as.regexp.str); break; case T_DATA: if (DATA_PTR(obj)) { if ((long)RANY(obj)->as.data.dfree == -1) { free(DATA_PTR(obj)); } else if (RANY(obj)->as.data.dfree) { (*RANY(obj)->as.data.dfree)(DATA_PTR(obj)); } } break; case T_MATCH: if (RANY(obj)->as.match.regs) { re_free_registers(RANY(obj)->as.match.regs); free(RANY(obj)->as.match.regs); } break; case T_FILE: if (RANY(obj)->as.file.fptr) { rb_io_fptr_finalize(RANY(obj)->as.file.fptr); free(RANY(obj)->as.file.fptr); } break; case T_ICLASS: /* iClass shares table with the module */ break; case T_FLOAT: case T_VARMAP: break; case T_BIGNUM: if (RANY(obj)->as.bignum.digits) free(RANY(obj)->as.bignum.digits); break; case T_NODE: switch (nd_type(obj)) { case NODE_SCOPE: if (RANY(obj)->as.node.u1.tbl) { free(RANY(obj)->as.node.u1.tbl); } break; #ifdef C_ALLOCA case NODE_ALLOCA: free(RANY(obj)->as.node.u1.value); break; #endif } return; /* no need to free iv_tbl */ case T_SCOPE: if (RANY(obj)->as.scope.local_vars && RANY(obj)->as.scope.flag != SCOPE_ALLOCA) { VALUE *vars = RANY(obj)->as.scope.local_vars-1; if (vars[0] == 0) free(RANY(obj)->as.scope.local_tbl); if (RANY(obj)->as.scope.flag&SCOPE_MALLOC) free(vars); } break; case T_STRUCT: if (RANY(obj)->as.rstruct.ptr) free(RANY(obj)->as.rstruct.ptr); break; default: rb_bug("gc_sweep(): unknown data type %d", RANY(obj)->as.basic.flags & T_MASK); } } void rb_gc_mark_frame(frame) struct FRAME *frame; { mark_locations_array(frame->argv, frame->argc); rb_gc_mark(frame->cbase); } #ifdef __GNUC__ #if defined(__human68k__) || defined(DJGPP) #if defined(__human68k__) typedef unsigned long rb_jmp_buf[8]; __asm__ (".even _rb_setjmp: move.l 4(sp),a0 movem.l d3-d7/a3-a5,(a0) moveq.l #0,d0 rts"); #ifdef setjmp #undef setjmp #endif #else #if defined(DJGPP) typedef unsigned long rb_jmp_buf[6]; __asm__ (".align 4 _rb_setjmp: pushl %ebp movl %esp,%ebp movl 8(%ebp),%ebp movl %eax,(%ebp) movl %ebx,4(%ebp) movl %ecx,8(%ebp) movl %edx,12(%ebp) movl %esi,16(%ebp) movl %edi,20(%ebp) popl %ebp xorl %eax,%eax ret"); #endif #endif int rb_setjmp (rb_jmp_buf); #define jmp_buf rb_jmp_buf #define setjmp rb_setjmp #endif /* __human68k__ or DJGPP */ #endif /* __GNUC__ */ void rb_gc() { struct gc_list *list; struct FRAME * volatile frame; /* gcc 2.7.2.3 -O2 bug?? */ jmp_buf save_regs_gc_mark; #ifdef C_ALLOCA VALUE stack_end; alloca(0); # define STACK_END (&stack_end) #else VALUE *stack_end = alloca(1); # define STACK_END (stack_end) #endif malloc_memories = 0; if (during_gc) return; during_gc++; /* mark frame stack */ for (frame = ruby_frame; frame; frame = frame->prev) { rb_gc_mark_frame(frame); if (frame->tmp) { struct FRAME *tmp = frame->tmp; while (tmp) { rb_gc_mark_frame(tmp); tmp = tmp->prev; } } } rb_gc_mark(ruby_class); rb_gc_mark(ruby_scope); rb_gc_mark(ruby_dyna_vars); if (finalizer_table) { rb_mark_tbl(finalizer_table); } FLUSH_REGISTER_WINDOWS; /* This assumes that all registers are saved into the jmp_buf */ setjmp(save_regs_gc_mark); mark_locations_array((VALUE*)save_regs_gc_mark, sizeof(save_regs_gc_mark) / sizeof(VALUE *)); rb_gc_mark_locations(rb_gc_stack_start, (VALUE*)STACK_END); #if defined(__human68k__) rb_gc_mark_locations((VALUE*)((char*)rb_gc_stack_start + 2), (VALUE*)((char*)STACK_END + 2)); #endif rb_gc_mark_threads(); /* mark protected global variables */ for (list = Global_List; list; list = list->next) { rb_gc_mark(*list->varptr); } rb_mark_end_proc(); rb_gc_mark_global_tbl(); rb_mark_tbl(rb_class_tbl); rb_gc_mark_trap_list(); /* mark generic instance variables for special constants */ rb_mark_generic_ivar_tbl(); gc_sweep(); } static VALUE gc_start() { rb_gc(); return Qnil; } void Init_stack(addr) VALUE *addr; { #ifdef __human68k__ extern void *_SEND; rb_gc_stack_start = _SEND; #else VALUE start; if (!addr) addr = &start; rb_gc_stack_start = addr; #endif } void Init_heap() { if (!rb_gc_stack_start) { Init_stack(0); } add_heap(); } static VALUE os_live_obj() { int i; int n = 0; for (i = 0; i < heaps_used; i++) { RVALUE *p, *pend; p = heaps[i]; pend = p + HEAP_SLOTS; for (;p < pend; p++) { if (p->as.basic.flags) { switch (TYPE(p)) { case T_ICLASS: case T_VARMAP: case T_SCOPE: case T_NODE: continue; case T_CLASS: if (FL_TEST(p, FL_SINGLETON)) continue; default: rb_yield((VALUE)p); n++; } } } } return INT2FIX(n); } static VALUE os_obj_of(of) VALUE of; { int i; int n = 0; for (i = 0; i < heaps_used; i++) { RVALUE *p, *pend; p = heaps[i]; pend = p + HEAP_SLOTS; for (;p < pend; p++) { if (p->as.basic.flags) { switch (TYPE(p)) { case T_ICLASS: case T_VARMAP: case T_SCOPE: case T_NODE: continue; case T_CLASS: if (FL_TEST(p, FL_SINGLETON)) continue; default: if (rb_obj_is_kind_of((VALUE)p, of)) { rb_yield((VALUE)p); n++; } } } } } return INT2FIX(n); } static VALUE os_each_obj(argc, argv) int argc; VALUE *argv; { VALUE of; if (rb_scan_args(argc, argv, "01", &of) == 0) { return os_live_obj(); } else { return os_obj_of(of); } } static VALUE finalizers; static VALUE add_final(os, proc) VALUE os, proc; { rb_warn("ObjectSpace::add_finalizer is deprecated; use define_finalizer"); if (!rb_obj_is_kind_of(proc, rb_cProc)) { rb_raise(rb_eArgError, "wrong type argument %s (Proc required)", rb_class2name(CLASS_OF(proc))); } rb_ary_push(finalizers, proc); return proc; } static VALUE rm_final(os, proc) VALUE os, proc; { rb_warn("ObjectSpace::remove_finalizer is deprecated; use undefine_finalizer"); rb_ary_delete(finalizers, proc); return proc; } static VALUE finals() { rb_warn("ObjectSpace::finals is deprecated"); return finalizers; } static VALUE call_final(os, obj) VALUE os, obj; { rb_warn("ObjectSpace::call_final is deprecated; use define_finalizer"); need_call_final = 1; FL_SET(obj, FL_FINALIZE); return obj; } static VALUE undefine_final(os, obj) VALUE os, obj; { VALUE table; if (finalizer_table) { st_delete(finalizer_table, &obj, 0); } return obj; } static VALUE define_final(argc, argv, os) int argc; VALUE *argv; VALUE os; { VALUE obj, proc, table; rb_scan_args(argc, argv, "11", &obj, &proc); if (argc == 1) { proc = rb_f_lambda(); } else if (!rb_obj_is_kind_of(proc, rb_cProc)) { rb_raise(rb_eArgError, "wrong type argument %s (Proc required)", rb_class2name(CLASS_OF(proc))); } need_call_final = 1; FL_SET(obj, FL_FINALIZE); if (!finalizer_table) { finalizer_table = st_init_numtable(); } if (st_lookup(finalizer_table, obj, &table)) { rb_ary_push(table, proc); } else { st_add_direct(finalizer_table, obj, rb_ary_new3(1, proc)); } return proc; } static VALUE run_single_final(args) VALUE *args; { rb_eval_cmd(args[0], args[1]); return Qnil; } static void run_final(obj) VALUE obj; { int i, status; VALUE args[2], table; args[1] = rb_ary_new3(1, rb_obj_id(obj)); /* make obj into id */ for (i=0; ilen; i++) { args[0] = RARRAY(finalizers)->ptr[i]; rb_protect(run_single_final, (VALUE)args, &status); } if (finalizer_table && st_lookup(finalizer_table, obj, &table)) { st_delete(finalizer_table, &obj, 0); for (i=0; ilen; i++) { args[0] = RARRAY(table)->ptr[i]; rb_protect(run_single_final, (VALUE)args, &status); } } } void rb_gc_call_finalizer_at_exit() { RVALUE *p, *pend; int i; /* run finalizers */ for (i = 0; i < heaps_used; i++) { p = heaps[i]; pend = p + HEAP_SLOTS; while (p < pend) { if (FL_TEST(p, FL_FINALIZE)) { p->as.free.flag = 0; run_final((VALUE)p); } p++; } } /* run data object's finaliers */ for (i = 0; i < heaps_used; i++) { p = heaps[i]; pend = p + HEAP_SLOTS; while (p < pend) { if (BUILTIN_TYPE(p) == T_DATA && DATA_PTR(p) && RANY(p)->as.data.dfree) { (*RANY(p)->as.data.dfree)(DATA_PTR(p)); } else if (BUILTIN_TYPE(p) == T_FILE) { rb_io_fptr_finalize(RANY(p)->as.file.fptr); } p++; } } } static VALUE id2ref(obj, id) VALUE obj, id; { unsigned long ptr; rb_secure(4); ptr = NUM2UINT(id); if (FIXNUM_P(ptr)) return (VALUE)ptr; if (ptr == Qtrue) return Qtrue; if (ptr == Qfalse) return Qfalse; if (ptr == Qnil) return Qnil; ptr = id ^ FIXNUM_FLAG; /* unset FIXNUM_FLAG */ if (!is_pointer_to_heap(ptr)) { rb_raise(rb_eRangeError, "0x%x is not id value", ptr); } if (BUILTIN_TYPE(ptr) == 0) { rb_raise(rb_eRangeError, "0x%x is recycled object", ptr); } return (VALUE)ptr; } void Init_GC() { VALUE rb_mObSpace; rb_mGC = rb_define_module("GC"); rb_define_singleton_method(rb_mGC, "start", gc_start, 0); rb_define_singleton_method(rb_mGC, "enable", gc_enable, 0); rb_define_singleton_method(rb_mGC, "disable", gc_disable, 0); rb_define_method(rb_mGC, "garbage_collect", gc_start, 0); rb_mObSpace = rb_define_module("ObjectSpace"); rb_define_module_function(rb_mObSpace, "each_object", os_each_obj, -1); rb_define_module_function(rb_mObSpace, "garbage_collect", gc_start, 0); rb_define_module_function(rb_mObSpace, "add_finalizer", add_final, 1); rb_define_module_function(rb_mObSpace, "remove_finalizer", rm_final, 1); rb_define_module_function(rb_mObSpace, "finalizers", finals, 0); rb_define_module_function(rb_mObSpace, "call_finalizer", call_final, 1); rb_define_module_function(rb_mObSpace, "define_finalizer", define_final, -1); rb_define_module_function(rb_mObSpace, "undefine_finalizer", undefine_final, 1); rb_define_module_function(rb_mObSpace, "_id2ref", id2ref, 1); rb_gc_register_address(&rb_mObSpace); rb_global_variable(&finalizers); rb_gc_unregister_address(&rb_mObSpace); finalizers = rb_ary_new(); } #undef xmalloc #undef xcalloc #undef xrealloc #undef xfree void* xmalloc(size) size_t size; { return ruby_xmalloc(size); } void* xcalloc(n,size) size_t n,size; { return ruby_xcalloc(n, size); } void* xrealloc(ptr,size) void *ptr; size_t size; { return ruby_xrealloc(ptr, size); } void xfree(ptr) void *ptr; { ruby_xfree(ptr); }