/************************************************ raddrinfo.c - created at: Thu Mar 31 12:21:29 JST 1994 Copyright (C) 1993-2007 Yukihiro Matsumoto ************************************************/ #include "rubysocket.h" #if defined(INET6) && (defined(LOOKUP_ORDER_HACK_INET) || defined(LOOKUP_ORDER_HACK_INET6)) #define LOOKUP_ORDERS (sizeof(lookup_order_table) / sizeof(lookup_order_table[0])) static const int lookup_order_table[] = { #if defined(LOOKUP_ORDER_HACK_INET) PF_INET, PF_INET6, PF_UNSPEC, #elif defined(LOOKUP_ORDER_HACK_INET6) PF_INET6, PF_INET, PF_UNSPEC, #else /* should not happen */ #endif }; static int ruby_getaddrinfo(const char *nodename, const char *servname, const struct addrinfo *hints, struct addrinfo **res) { struct addrinfo tmp_hints; int i, af, error; if (hints->ai_family != PF_UNSPEC) { return getaddrinfo(nodename, servname, hints, res); } for (i = 0; i < LOOKUP_ORDERS; i++) { af = lookup_order_table[i]; MEMCPY(&tmp_hints, hints, struct addrinfo, 1); tmp_hints.ai_family = af; error = getaddrinfo(nodename, servname, &tmp_hints, res); if (error) { if (tmp_hints.ai_family == PF_UNSPEC) { break; } } else { break; } } return error; } #define getaddrinfo(node,serv,hints,res) ruby_getaddrinfo((node),(serv),(hints),(res)) #endif #if defined(_AIX) static int ruby_getaddrinfo__aix(const char *nodename, const char *servname, const struct addrinfo *hints, struct addrinfo **res) { int error = getaddrinfo(nodename, servname, hints, res); struct addrinfo *r; if (error) return error; for (r = *res; r != NULL; r = r->ai_next) { if (r->ai_addr->sa_family == 0) r->ai_addr->sa_family = r->ai_family; if (r->ai_addr->sa_len == 0) r->ai_addr->sa_len = r->ai_addrlen; } return 0; } #undef getaddrinfo #define getaddrinfo(node,serv,hints,res) ruby_getaddrinfo__aix((node),(serv),(hints),(res)) static int ruby_getnameinfo__aix(const struct sockaddr *sa, size_t salen, char *host, size_t hostlen, char *serv, size_t servlen, int flags) { struct sockaddr_in6 *sa6; u_int32_t *a6; if (sa->sa_family == AF_INET6) { sa6 = (struct sockaddr_in6 *)sa; a6 = sa6->sin6_addr.u6_addr.u6_addr32; if (a6[0] == 0 && a6[1] == 0 && a6[2] == 0 && a6[3] == 0) { strncpy(host, "::", hostlen); snprintf(serv, servlen, "%d", sa6->sin6_port); return 0; } } return getnameinfo(sa, salen, host, hostlen, serv, servlen, flags); } #undef getnameinfo #define getnameinfo(sa, salen, host, hostlen, serv, servlen, flags) \ ruby_getnameinfo__aix((sa), (salen), (host), (hostlen), (serv), (servlen), (flags)) #endif static int str_is_number(const char *); #if defined(__APPLE__) static int ruby_getaddrinfo__darwin(const char *nodename, const char *servname, const struct addrinfo *hints, struct addrinfo **res) { /* fix [ruby-core:29427] */ const char *tmp_servname; struct addrinfo tmp_hints; int error; tmp_servname = servname; MEMCPY(&tmp_hints, hints, struct addrinfo, 1); if (nodename && servname) { if (str_is_number(tmp_servname) && atoi(servname) == 0) { tmp_servname = NULL; #ifdef AI_NUMERICSERV if (tmp_hints.ai_flags) tmp_hints.ai_flags &= ~AI_NUMERICSERV; #endif } } error = getaddrinfo(nodename, tmp_servname, &tmp_hints, res); if (error == 0) { /* [ruby-dev:23164] */ struct addrinfo *r; r = *res; while (r) { if (! r->ai_socktype) r->ai_socktype = hints->ai_socktype; if (! r->ai_protocol) { if (r->ai_socktype == SOCK_DGRAM) { r->ai_protocol = IPPROTO_UDP; } else if (r->ai_socktype == SOCK_STREAM) { r->ai_protocol = IPPROTO_TCP; } } r = r->ai_next; } } return error; } #undef getaddrinfo #define getaddrinfo(node,serv,hints,res) ruby_getaddrinfo__darwin((node),(serv),(hints),(res)) #endif #ifndef GETADDRINFO_EMU struct getaddrinfo_arg { const char *node; const char *service; const struct addrinfo *hints; struct addrinfo **res; }; #ifdef HAVE_INET_PTON static int parse_numeric_port(const char *service, int *portp) { unsigned long u; if (!service) { *portp = 0; return 1; } if (strspn(service, "0123456789") != strlen(service)) return 0; errno = 0; u = STRTOUL(service, NULL, 10); if (errno) return 0; if (0x10000 <= u) return 0; *portp = (int)u; return 1; } #endif static void * nogvl_getaddrinfo(void *arg) { int ret; struct getaddrinfo_arg *ptr = arg; ret = getaddrinfo(ptr->node, ptr->service, ptr->hints, ptr->res); #ifdef __linux__ /* On Linux (mainly Ubuntu 13.04) /etc/nsswitch.conf has mdns4 and * it cause getaddrinfo to return EAI_SYSTEM/ENOENT. [ruby-list:49420] */ if (ret == EAI_SYSTEM && errno == ENOENT) ret = EAI_NONAME; #endif return (void *)(VALUE)ret; } #endif static int numeric_getaddrinfo(const char *node, const char *service, const struct addrinfo *hints, struct addrinfo **res) { #ifdef HAVE_INET_PTON # if defined __MINGW64__ # define inet_pton(f,s,d) rb_w32_inet_pton(f,s,d) # endif int port; if (node && parse_numeric_port(service, &port)) { static const struct { int socktype; int protocol; } list[] = { { SOCK_STREAM, IPPROTO_TCP }, { SOCK_DGRAM, IPPROTO_UDP }, { SOCK_RAW, 0 } }; struct addrinfo *ai = NULL; int hint_family = hints ? hints->ai_family : PF_UNSPEC; int hint_socktype = hints ? hints->ai_socktype : 0; int hint_protocol = hints ? hints->ai_protocol : 0; char ipv4addr[4]; #ifdef AF_INET6 char ipv6addr[16]; if ((hint_family == PF_UNSPEC || hint_family == PF_INET6) && strspn(node, "0123456789abcdefABCDEF.:") == strlen(node) && inet_pton(AF_INET6, node, ipv6addr)) { int i; for (i = numberof(list)-1; 0 <= i; i--) { if ((hint_socktype == 0 || hint_socktype == list[i].socktype) && (hint_protocol == 0 || list[i].protocol == 0 || hint_protocol == list[i].protocol)) { struct addrinfo *ai0 = xcalloc(1, sizeof(struct addrinfo)); struct sockaddr_in6 *sa = xmalloc(sizeof(struct sockaddr_in6)); INIT_SOCKADDR_IN6(sa, sizeof(struct sockaddr_in6)); memcpy(&sa->sin6_addr, ipv6addr, sizeof(ipv6addr)); sa->sin6_port = htons(port); ai0->ai_family = PF_INET6; ai0->ai_socktype = list[i].socktype; ai0->ai_protocol = hint_protocol ? hint_protocol : list[i].protocol; ai0->ai_addrlen = sizeof(struct sockaddr_in6); ai0->ai_addr = (struct sockaddr *)sa; ai0->ai_canonname = NULL; ai0->ai_next = ai; ai = ai0; } } } else #endif if ((hint_family == PF_UNSPEC || hint_family == PF_INET) && strspn(node, "0123456789.") == strlen(node) && inet_pton(AF_INET, node, ipv4addr)) { int i; for (i = numberof(list)-1; 0 <= i; i--) { if ((hint_socktype == 0 || hint_socktype == list[i].socktype) && (hint_protocol == 0 || list[i].protocol == 0 || hint_protocol == list[i].protocol)) { struct addrinfo *ai0 = xcalloc(1, sizeof(struct addrinfo)); struct sockaddr_in *sa = xmalloc(sizeof(struct sockaddr_in)); INIT_SOCKADDR_IN(sa, sizeof(struct sockaddr_in)); memcpy(&sa->sin_addr, ipv4addr, sizeof(ipv4addr)); sa->sin_port = htons(port); ai0->ai_family = PF_INET; ai0->ai_socktype = list[i].socktype; ai0->ai_protocol = hint_protocol ? hint_protocol : list[i].protocol; ai0->ai_addrlen = sizeof(struct sockaddr_in); ai0->ai_addr = (struct sockaddr *)sa; ai0->ai_canonname = NULL; ai0->ai_next = ai; ai = ai0; } } } if (ai) { *res = ai; return 0; } } #endif return EAI_FAIL; } int rb_getaddrinfo(const char *node, const char *service, const struct addrinfo *hints, struct rb_addrinfo **res) { struct addrinfo *ai; int ret; int allocated_by_malloc = 0; ret = numeric_getaddrinfo(node, service, hints, &ai); if (ret == 0) allocated_by_malloc = 1; else { #ifdef GETADDRINFO_EMU ret = getaddrinfo(node, service, hints, &ai); #else struct getaddrinfo_arg arg; MEMZERO(&arg, struct getaddrinfo_arg, 1); arg.node = node; arg.service = service; arg.hints = hints; arg.res = &ai; ret = (int)(VALUE)rb_thread_call_without_gvl(nogvl_getaddrinfo, &arg, RUBY_UBF_IO, 0); #endif } if (ret == 0) { *res = (struct rb_addrinfo *)xmalloc(sizeof(struct rb_addrinfo)); (*res)->allocated_by_malloc = allocated_by_malloc; (*res)->ai = ai; } return ret; } void rb_freeaddrinfo(struct rb_addrinfo *ai) { if (!ai->allocated_by_malloc) freeaddrinfo(ai->ai); else { struct addrinfo *ai1, *ai2; ai1 = ai->ai; while (ai1) { ai2 = ai1->ai_next; xfree(ai1->ai_addr); xfree(ai1); ai1 = ai2; } } xfree(ai); } #ifndef GETADDRINFO_EMU struct getnameinfo_arg { const struct sockaddr *sa; socklen_t salen; int flags; char *host; size_t hostlen; char *serv; size_t servlen; }; static void * nogvl_getnameinfo(void *arg) { struct getnameinfo_arg *ptr = arg; return (void *)(VALUE)getnameinfo(ptr->sa, ptr->salen, ptr->host, (socklen_t)ptr->hostlen, ptr->serv, (socklen_t)ptr->servlen, ptr->flags); } #endif int rb_getnameinfo(const struct sockaddr *sa, socklen_t salen, char *host, size_t hostlen, char *serv, size_t servlen, int flags) { #ifdef GETADDRINFO_EMU return getnameinfo(sa, salen, host, hostlen, serv, servlen, flags); #else struct getnameinfo_arg arg; int ret; arg.sa = sa; arg.salen = salen; arg.host = host; arg.hostlen = hostlen; arg.serv = serv; arg.servlen = servlen; arg.flags = flags; ret = (int)(VALUE)rb_thread_call_without_gvl(nogvl_getnameinfo, &arg, RUBY_UBF_IO, 0); return ret; #endif } static void make_ipaddr0(struct sockaddr *addr, socklen_t addrlen, char *buf, size_t buflen) { int error; error = rb_getnameinfo(addr, addrlen, buf, buflen, NULL, 0, NI_NUMERICHOST); if (error) { rsock_raise_socket_error("getnameinfo", error); } } VALUE rsock_make_ipaddr(struct sockaddr *addr, socklen_t addrlen) { char hbuf[1024]; make_ipaddr0(addr, addrlen, hbuf, sizeof(hbuf)); return rb_str_new2(hbuf); } static void make_inetaddr(unsigned int host, char *buf, size_t buflen) { struct sockaddr_in sin; INIT_SOCKADDR_IN(&sin, sizeof(sin)); sin.sin_addr.s_addr = host; make_ipaddr0((struct sockaddr*)&sin, sizeof(sin), buf, buflen); } static int str_is_number(const char *p) { char *ep; if (!p || *p == '\0') return 0; ep = NULL; (void)STRTOUL(p, &ep, 10); if (ep && *ep == '\0') return 1; else return 0; } static char* host_str(VALUE host, char *hbuf, size_t hbuflen, int *flags_ptr) { if (NIL_P(host)) { return NULL; } else if (rb_obj_is_kind_of(host, rb_cInteger)) { unsigned int i = NUM2UINT(host); make_inetaddr(htonl(i), hbuf, hbuflen); if (flags_ptr) *flags_ptr |= AI_NUMERICHOST; return hbuf; } else { char *name; SafeStringValue(host); name = RSTRING_PTR(host); if (!name || *name == 0 || (name[0] == '<' && strcmp(name, "") == 0)) { make_inetaddr(INADDR_ANY, hbuf, hbuflen); if (flags_ptr) *flags_ptr |= AI_NUMERICHOST; } else if (name[0] == '<' && strcmp(name, "") == 0) { make_inetaddr(INADDR_BROADCAST, hbuf, hbuflen); if (flags_ptr) *flags_ptr |= AI_NUMERICHOST; } else if (strlen(name) >= hbuflen) { rb_raise(rb_eArgError, "hostname too long (%"PRIuSIZE")", strlen(name)); } else { strcpy(hbuf, name); } return hbuf; } } static char* port_str(VALUE port, char *pbuf, size_t pbuflen, int *flags_ptr) { if (NIL_P(port)) { return 0; } else if (FIXNUM_P(port)) { snprintf(pbuf, pbuflen, "%ld", FIX2LONG(port)); #ifdef AI_NUMERICSERV if (flags_ptr) *flags_ptr |= AI_NUMERICSERV; #endif return pbuf; } else { char *serv; SafeStringValue(port); serv = RSTRING_PTR(port); if (strlen(serv) >= pbuflen) { rb_raise(rb_eArgError, "service name too long (%"PRIuSIZE")", strlen(serv)); } strcpy(pbuf, serv); return pbuf; } } struct rb_addrinfo* rsock_getaddrinfo(VALUE host, VALUE port, struct addrinfo *hints, int socktype_hack) { struct rb_addrinfo* res = NULL; char *hostp, *portp; int error; char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV]; int additional_flags = 0; hostp = host_str(host, hbuf, sizeof(hbuf), &additional_flags); portp = port_str(port, pbuf, sizeof(pbuf), &additional_flags); if (socktype_hack && hints->ai_socktype == 0 && str_is_number(portp)) { hints->ai_socktype = SOCK_DGRAM; } hints->ai_flags |= additional_flags; error = rb_getaddrinfo(hostp, portp, hints, &res); if (error) { if (hostp && hostp[strlen(hostp)-1] == '\n') { rb_raise(rb_eSocket, "newline at the end of hostname"); } rsock_raise_socket_error("getaddrinfo", error); } return res; } int rsock_fd_family(int fd) { struct sockaddr sa = { 0 }; socklen_t sa_len = sizeof(sa); if (fd < 0 || getsockname(fd, &sa, &sa_len) != 0 || (size_t)sa_len < offsetof(struct sockaddr, sa_family) + sizeof(sa.sa_family)) { return AF_UNSPEC; } return sa.sa_family; } struct rb_addrinfo* rsock_addrinfo(VALUE host, VALUE port, int family, int socktype, int flags) { struct addrinfo hints; MEMZERO(&hints, struct addrinfo, 1); hints.ai_family = family; hints.ai_socktype = socktype; hints.ai_flags = flags; return rsock_getaddrinfo(host, port, &hints, 1); } VALUE rsock_ipaddr(struct sockaddr *sockaddr, socklen_t sockaddrlen, int norevlookup) { VALUE family, port, addr1, addr2; VALUE ary; int error; char hbuf[1024], pbuf[1024]; ID id; id = rsock_intern_family(sockaddr->sa_family); if (id) { family = rb_str_dup(rb_id2str(id)); } else { sprintf(pbuf, "unknown:%d", sockaddr->sa_family); family = rb_str_new2(pbuf); } addr1 = Qnil; if (!norevlookup) { error = rb_getnameinfo(sockaddr, sockaddrlen, hbuf, sizeof(hbuf), NULL, 0, 0); if (! error) { addr1 = rb_str_new2(hbuf); } } error = rb_getnameinfo(sockaddr, sockaddrlen, hbuf, sizeof(hbuf), pbuf, sizeof(pbuf), NI_NUMERICHOST | NI_NUMERICSERV); if (error) { rsock_raise_socket_error("getnameinfo", error); } addr2 = rb_str_new2(hbuf); if (addr1 == Qnil) { addr1 = addr2; } port = INT2FIX(atoi(pbuf)); ary = rb_ary_new3(4, family, port, addr1, addr2); return ary; } #ifdef HAVE_SYS_UN_H VALUE rsock_unixpath_str(struct sockaddr_un *sockaddr, socklen_t len) { char *s, *e; s = sockaddr->sun_path; e = (char *)sockaddr + len; while (s < e && *(e-1) == '\0') e--; if (s <= e) return rb_str_new(s, e-s); else return rb_str_new2(""); } VALUE rsock_unixaddr(struct sockaddr_un *sockaddr, socklen_t len) { return rb_assoc_new(rb_str_new2("AF_UNIX"), rsock_unixpath_str(sockaddr, len)); } socklen_t rsock_unix_sockaddr_len(VALUE path) { #ifdef __linux__ if (RSTRING_LEN(path) == 0) { /* autobind; see unix(7) for details. */ return (socklen_t) sizeof(sa_family_t); } else if (RSTRING_PTR(path)[0] == '\0') { /* abstract namespace; see unix(7) for details. */ if (SOCKLEN_MAX - offsetof(struct sockaddr_un, sun_path) < (size_t)RSTRING_LEN(path)) rb_raise(rb_eArgError, "Linux abstract socket too long"); return (socklen_t) offsetof(struct sockaddr_un, sun_path) + RSTRING_SOCKLEN(path); } else { #endif return (socklen_t) sizeof(struct sockaddr_un); #ifdef __linux__ } #endif } #endif struct hostent_arg { VALUE host; struct rb_addrinfo* addr; VALUE (*ipaddr)(struct sockaddr*, socklen_t); }; static VALUE make_hostent_internal(struct hostent_arg *arg) { VALUE host = arg->host; struct addrinfo* addr = arg->addr->ai; VALUE (*ipaddr)(struct sockaddr*, socklen_t) = arg->ipaddr; struct addrinfo *ai; struct hostent *h; VALUE ary, names; char **pch; const char* hostp; char hbuf[NI_MAXHOST]; ary = rb_ary_new(); if (addr->ai_canonname) { hostp = addr->ai_canonname; } else { hostp = host_str(host, hbuf, sizeof(hbuf), NULL); } rb_ary_push(ary, rb_str_new2(hostp)); if (addr->ai_canonname && strlen(addr->ai_canonname) < NI_MAXHOST && (h = gethostbyname(addr->ai_canonname))) { names = rb_ary_new(); if (h->h_aliases != NULL) { for (pch = h->h_aliases; *pch; pch++) { rb_ary_push(names, rb_str_new2(*pch)); } } } else { names = rb_ary_new2(0); } rb_ary_push(ary, names); rb_ary_push(ary, INT2NUM(addr->ai_family)); for (ai = addr; ai; ai = ai->ai_next) { rb_ary_push(ary, (*ipaddr)(ai->ai_addr, ai->ai_addrlen)); } return ary; } VALUE rsock_freeaddrinfo(VALUE arg) { struct rb_addrinfo *addr = (struct rb_addrinfo *)arg; rb_freeaddrinfo(addr); return Qnil; } VALUE rsock_make_hostent(VALUE host, struct rb_addrinfo *addr, VALUE (*ipaddr)(struct sockaddr *, socklen_t)) { struct hostent_arg arg; arg.host = host; arg.addr = addr; arg.ipaddr = ipaddr; return rb_ensure(make_hostent_internal, (VALUE)&arg, rsock_freeaddrinfo, (VALUE)addr); } typedef struct { VALUE inspectname; VALUE canonname; int pfamily; int socktype; int protocol; socklen_t sockaddr_len; union_sockaddr addr; } rb_addrinfo_t; static void addrinfo_mark(void *ptr) { rb_addrinfo_t *rai = ptr; if (rai) { rb_gc_mark(rai->inspectname); rb_gc_mark(rai->canonname); } } #define addrinfo_free RUBY_TYPED_DEFAULT_FREE static size_t addrinfo_memsize(const void *ptr) { return sizeof(rb_addrinfo_t); } static const rb_data_type_t addrinfo_type = { "socket/addrinfo", {addrinfo_mark, addrinfo_free, addrinfo_memsize,}, }; static VALUE addrinfo_s_allocate(VALUE klass) { return TypedData_Wrap_Struct(klass, &addrinfo_type, 0); } #define IS_ADDRINFO(obj) rb_typeddata_is_kind_of((obj), &addrinfo_type) static inline rb_addrinfo_t * check_addrinfo(VALUE self) { return rb_check_typeddata(self, &addrinfo_type); } static rb_addrinfo_t * get_addrinfo(VALUE self) { rb_addrinfo_t *rai = check_addrinfo(self); if (!rai) { rb_raise(rb_eTypeError, "uninitialized socket address"); } return rai; } static rb_addrinfo_t * alloc_addrinfo(void) { rb_addrinfo_t *rai = ZALLOC(rb_addrinfo_t); rai->inspectname = Qnil; rai->canonname = Qnil; return rai; } static void init_addrinfo(rb_addrinfo_t *rai, struct sockaddr *sa, socklen_t len, int pfamily, int socktype, int protocol, VALUE canonname, VALUE inspectname) { if ((socklen_t)sizeof(rai->addr) < len) rb_raise(rb_eArgError, "sockaddr string too big"); memcpy((void *)&rai->addr, (void *)sa, len); rai->sockaddr_len = len; rai->pfamily = pfamily; rai->socktype = socktype; rai->protocol = protocol; rai->canonname = canonname; rai->inspectname = inspectname; } VALUE rsock_addrinfo_new(struct sockaddr *addr, socklen_t len, int family, int socktype, int protocol, VALUE canonname, VALUE inspectname) { VALUE a; rb_addrinfo_t *rai; a = addrinfo_s_allocate(rb_cAddrinfo); DATA_PTR(a) = rai = alloc_addrinfo(); init_addrinfo(rai, addr, len, family, socktype, protocol, canonname, inspectname); return a; } static struct rb_addrinfo * call_getaddrinfo(VALUE node, VALUE service, VALUE family, VALUE socktype, VALUE protocol, VALUE flags, int socktype_hack) { struct addrinfo hints; struct rb_addrinfo *res; MEMZERO(&hints, struct addrinfo, 1); hints.ai_family = NIL_P(family) ? PF_UNSPEC : rsock_family_arg(family); if (!NIL_P(socktype)) { hints.ai_socktype = rsock_socktype_arg(socktype); } if (!NIL_P(protocol)) { hints.ai_protocol = NUM2INT(protocol); } if (!NIL_P(flags)) { hints.ai_flags = NUM2INT(flags); } res = rsock_getaddrinfo(node, service, &hints, socktype_hack); if (res == NULL) rb_raise(rb_eSocket, "host not found"); return res; } static VALUE make_inspectname(VALUE node, VALUE service, struct addrinfo *res); static void init_addrinfo_getaddrinfo(rb_addrinfo_t *rai, VALUE node, VALUE service, VALUE family, VALUE socktype, VALUE protocol, VALUE flags, VALUE inspectnode, VALUE inspectservice) { struct rb_addrinfo *res = call_getaddrinfo(node, service, family, socktype, protocol, flags, 1); VALUE canonname; VALUE inspectname = rb_str_equal(node, inspectnode) ? Qnil : make_inspectname(inspectnode, inspectservice, res->ai); canonname = Qnil; if (res->ai->ai_canonname) { canonname = rb_tainted_str_new_cstr(res->ai->ai_canonname); OBJ_FREEZE(canonname); } init_addrinfo(rai, res->ai->ai_addr, res->ai->ai_addrlen, NUM2INT(family), NUM2INT(socktype), NUM2INT(protocol), canonname, inspectname); rb_freeaddrinfo(res); } static VALUE make_inspectname(VALUE node, VALUE service, struct addrinfo *res) { VALUE inspectname = Qnil; if (res) { /* drop redundant information which also shown in address:port part. */ char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV]; int ret; ret = rb_getnameinfo(res->ai_addr, res->ai_addrlen, hbuf, sizeof(hbuf), pbuf, sizeof(pbuf), NI_NUMERICHOST|NI_NUMERICSERV); if (ret == 0) { if (RB_TYPE_P(node, T_STRING) && strcmp(hbuf, RSTRING_PTR(node)) == 0) node = Qnil; if (RB_TYPE_P(service, T_STRING) && strcmp(pbuf, RSTRING_PTR(service)) == 0) service = Qnil; else if (RB_TYPE_P(service, T_FIXNUM) && atoi(pbuf) == FIX2INT(service)) service = Qnil; } } if (RB_TYPE_P(node, T_STRING)) { inspectname = rb_str_dup(node); } if (RB_TYPE_P(service, T_STRING)) { if (NIL_P(inspectname)) inspectname = rb_sprintf(":%s", StringValueCStr(service)); else rb_str_catf(inspectname, ":%s", StringValueCStr(service)); } else if (RB_TYPE_P(service, T_FIXNUM) && FIX2INT(service) != 0) { if (NIL_P(inspectname)) inspectname = rb_sprintf(":%d", FIX2INT(service)); else rb_str_catf(inspectname, ":%d", FIX2INT(service)); } if (!NIL_P(inspectname)) { OBJ_INFECT(inspectname, node); OBJ_INFECT(inspectname, service); OBJ_FREEZE(inspectname); } return inspectname; } static VALUE addrinfo_firstonly_new(VALUE node, VALUE service, VALUE family, VALUE socktype, VALUE protocol, VALUE flags) { VALUE ret; VALUE canonname; VALUE inspectname; struct rb_addrinfo *res = call_getaddrinfo(node, service, family, socktype, protocol, flags, 0); inspectname = make_inspectname(node, service, res->ai); canonname = Qnil; if (res->ai->ai_canonname) { canonname = rb_tainted_str_new_cstr(res->ai->ai_canonname); OBJ_FREEZE(canonname); } ret = rsock_addrinfo_new(res->ai->ai_addr, res->ai->ai_addrlen, res->ai->ai_family, res->ai->ai_socktype, res->ai->ai_protocol, canonname, inspectname); rb_freeaddrinfo(res); return ret; } static VALUE addrinfo_list_new(VALUE node, VALUE service, VALUE family, VALUE socktype, VALUE protocol, VALUE flags) { VALUE ret; struct addrinfo *r; VALUE inspectname; struct rb_addrinfo *res = call_getaddrinfo(node, service, family, socktype, protocol, flags, 0); inspectname = make_inspectname(node, service, res->ai); ret = rb_ary_new(); for (r = res->ai; r; r = r->ai_next) { VALUE addr; VALUE canonname = Qnil; if (r->ai_canonname) { canonname = rb_tainted_str_new_cstr(r->ai_canonname); OBJ_FREEZE(canonname); } addr = rsock_addrinfo_new(r->ai_addr, r->ai_addrlen, r->ai_family, r->ai_socktype, r->ai_protocol, canonname, inspectname); rb_ary_push(ret, addr); } rb_freeaddrinfo(res); return ret; } #ifdef HAVE_SYS_UN_H static void init_unix_addrinfo(rb_addrinfo_t *rai, VALUE path, int socktype) { struct sockaddr_un un; socklen_t len; StringValue(path); if (sizeof(un.sun_path) < (size_t)RSTRING_LEN(path)) rb_raise(rb_eArgError, "too long unix socket path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)", (size_t)RSTRING_LEN(path), sizeof(un.sun_path)); INIT_SOCKADDR_UN(&un, sizeof(struct sockaddr_un)); memcpy((void*)&un.sun_path, RSTRING_PTR(path), RSTRING_LEN(path)); len = rsock_unix_sockaddr_len(path); init_addrinfo(rai, (struct sockaddr *)&un, len, PF_UNIX, socktype, 0, Qnil, Qnil); } #endif /* * call-seq: * Addrinfo.new(sockaddr) => addrinfo * Addrinfo.new(sockaddr, family) => addrinfo * Addrinfo.new(sockaddr, family, socktype) => addrinfo * Addrinfo.new(sockaddr, family, socktype, protocol) => addrinfo * * returns a new instance of Addrinfo. * The instance contains sockaddr, family, socktype, protocol. * sockaddr means struct sockaddr which can be used for connect(2), etc. * family, socktype and protocol are integers which is used for arguments of socket(2). * * sockaddr is specified as an array or a string. * The array should be compatible to the value of IPSocket#addr or UNIXSocket#addr. * The string should be struct sockaddr as generated by * Socket.sockaddr_in or Socket.unpack_sockaddr_un. * * sockaddr examples: * - ["AF_INET", 46102, "localhost.localdomain", "127.0.0.1"] * - ["AF_INET6", 42304, "ip6-localhost", "::1"] * - ["AF_UNIX", "/tmp/sock"] * - Socket.sockaddr_in("smtp", "2001:DB8::1") * - Socket.sockaddr_in(80, "172.18.22.42") * - Socket.sockaddr_in(80, "www.ruby-lang.org") * - Socket.sockaddr_un("/tmp/sock") * * In an AF_INET/AF_INET6 sockaddr array, the 4th element, * numeric IP address, is used to construct socket address in the Addrinfo instance. * If the 3rd element, textual host name, is non-nil, it is also recorded but used only for Addrinfo#inspect. * * family is specified as an integer to specify the protocol family such as Socket::PF_INET. * It can be a symbol or a string which is the constant name * with or without PF_ prefix such as :INET, :INET6, :UNIX, "PF_INET", etc. * If omitted, PF_UNSPEC is assumed. * * socktype is specified as an integer to specify the socket type such as Socket::SOCK_STREAM. * It can be a symbol or a string which is the constant name * with or without SOCK_ prefix such as :STREAM, :DGRAM, :RAW, "SOCK_STREAM", etc. * If omitted, 0 is assumed. * * protocol is specified as an integer to specify the protocol such as Socket::IPPROTO_TCP. * It must be an integer, unlike family and socktype. * If omitted, 0 is assumed. * Note that 0 is reasonable value for most protocols, except raw socket. * */ static VALUE addrinfo_initialize(int argc, VALUE *argv, VALUE self) { rb_addrinfo_t *rai; VALUE sockaddr_arg, sockaddr_ary, pfamily, socktype, protocol; int i_pfamily, i_socktype, i_protocol; struct sockaddr *sockaddr_ptr; socklen_t sockaddr_len; VALUE canonname = Qnil, inspectname = Qnil; if (check_addrinfo(self)) rb_raise(rb_eTypeError, "already initialized socket address"); DATA_PTR(self) = rai = alloc_addrinfo(); rb_scan_args(argc, argv, "13", &sockaddr_arg, &pfamily, &socktype, &protocol); i_pfamily = NIL_P(pfamily) ? PF_UNSPEC : rsock_family_arg(pfamily); i_socktype = NIL_P(socktype) ? 0 : rsock_socktype_arg(socktype); i_protocol = NIL_P(protocol) ? 0 : NUM2INT(protocol); sockaddr_ary = rb_check_array_type(sockaddr_arg); if (!NIL_P(sockaddr_ary)) { VALUE afamily = rb_ary_entry(sockaddr_ary, 0); int af; StringValue(afamily); if (rsock_family_to_int(RSTRING_PTR(afamily), RSTRING_LEN(afamily), &af) == -1) rb_raise(rb_eSocket, "unknown address family: %s", StringValueCStr(afamily)); switch (af) { case AF_INET: /* ["AF_INET", 46102, "localhost.localdomain", "127.0.0.1"] */ #ifdef INET6 case AF_INET6: /* ["AF_INET6", 42304, "ip6-localhost", "::1"] */ #endif { VALUE service = rb_ary_entry(sockaddr_ary, 1); VALUE nodename = rb_ary_entry(sockaddr_ary, 2); VALUE numericnode = rb_ary_entry(sockaddr_ary, 3); int flags; service = INT2NUM(NUM2INT(service)); if (!NIL_P(nodename)) StringValue(nodename); StringValue(numericnode); flags = AI_NUMERICHOST; #ifdef AI_NUMERICSERV flags |= AI_NUMERICSERV; #endif init_addrinfo_getaddrinfo(rai, numericnode, service, INT2NUM(i_pfamily ? i_pfamily : af), INT2NUM(i_socktype), INT2NUM(i_protocol), INT2NUM(flags), nodename, service); break; } #ifdef HAVE_SYS_UN_H case AF_UNIX: /* ["AF_UNIX", "/tmp/sock"] */ { VALUE path = rb_ary_entry(sockaddr_ary, 1); StringValue(path); init_unix_addrinfo(rai, path, SOCK_STREAM); break; } #endif default: rb_raise(rb_eSocket, "unexpected address family"); } } else { StringValue(sockaddr_arg); sockaddr_ptr = (struct sockaddr *)RSTRING_PTR(sockaddr_arg); sockaddr_len = RSTRING_SOCKLEN(sockaddr_arg); init_addrinfo(rai, sockaddr_ptr, sockaddr_len, i_pfamily, i_socktype, i_protocol, canonname, inspectname); } return self; } static int get_afamily(struct sockaddr *addr, socklen_t len) { if ((socklen_t)((char*)&addr->sa_family + sizeof(addr->sa_family) - (char*)addr) <= len) return addr->sa_family; else return AF_UNSPEC; } static int ai_get_afamily(rb_addrinfo_t *rai) { return get_afamily(&rai->addr.addr, rai->sockaddr_len); } static VALUE inspect_sockaddr(VALUE addrinfo, VALUE ret) { rb_addrinfo_t *rai = get_addrinfo(addrinfo); union_sockaddr *sockaddr = &rai->addr; socklen_t socklen = rai->sockaddr_len; return rsock_inspect_sockaddr((struct sockaddr *)sockaddr, socklen, ret); } VALUE rsock_inspect_sockaddr(struct sockaddr *sockaddr_arg, socklen_t socklen, VALUE ret) { union_sockaddr *sockaddr = (union_sockaddr *)sockaddr_arg; if (socklen == 0) { rb_str_cat2(ret, "empty-sockaddr"); } else if ((long)socklen < ((char*)&sockaddr->addr.sa_family + sizeof(sockaddr->addr.sa_family)) - (char*)sockaddr) rb_str_cat2(ret, "too-short-sockaddr"); else { switch (sockaddr->addr.sa_family) { case AF_UNSPEC: { rb_str_cat2(ret, "UNSPEC"); break; } case AF_INET: { struct sockaddr_in *addr; int port; addr = &sockaddr->in; if ((socklen_t)(((char*)&addr->sin_addr)-(char*)addr+0+1) <= socklen) rb_str_catf(ret, "%d", ((unsigned char*)&addr->sin_addr)[0]); else rb_str_cat2(ret, "?"); if ((socklen_t)(((char*)&addr->sin_addr)-(char*)addr+1+1) <= socklen) rb_str_catf(ret, ".%d", ((unsigned char*)&addr->sin_addr)[1]); else rb_str_cat2(ret, ".?"); if ((socklen_t)(((char*)&addr->sin_addr)-(char*)addr+2+1) <= socklen) rb_str_catf(ret, ".%d", ((unsigned char*)&addr->sin_addr)[2]); else rb_str_cat2(ret, ".?"); if ((socklen_t)(((char*)&addr->sin_addr)-(char*)addr+3+1) <= socklen) rb_str_catf(ret, ".%d", ((unsigned char*)&addr->sin_addr)[3]); else rb_str_cat2(ret, ".?"); if ((socklen_t)(((char*)&addr->sin_port)-(char*)addr+(int)sizeof(addr->sin_port)) < socklen) { port = ntohs(addr->sin_port); if (port) rb_str_catf(ret, ":%d", port); } else { rb_str_cat2(ret, ":?"); } if ((socklen_t)sizeof(struct sockaddr_in) != socklen) rb_str_catf(ret, " (%d bytes for %d bytes sockaddr_in)", (int)socklen, (int)sizeof(struct sockaddr_in)); break; } #ifdef AF_INET6 case AF_INET6: { struct sockaddr_in6 *addr; char hbuf[1024]; int port; int error; if (socklen < (socklen_t)sizeof(struct sockaddr_in6)) { rb_str_catf(ret, "too-short-AF_INET6-sockaddr %d bytes", (int)socklen); } else { addr = &sockaddr->in6; /* use getnameinfo for scope_id. * RFC 4007: IPv6 Scoped Address Architecture * draft-ietf-ipv6-scope-api-00.txt: Scoped Address Extensions to the IPv6 Basic Socket API */ error = getnameinfo(&sockaddr->addr, socklen, hbuf, (socklen_t)sizeof(hbuf), NULL, 0, NI_NUMERICHOST|NI_NUMERICSERV); if (error) { rsock_raise_socket_error("getnameinfo", error); } if (addr->sin6_port == 0) { rb_str_cat2(ret, hbuf); } else { port = ntohs(addr->sin6_port); rb_str_catf(ret, "[%s]:%d", hbuf, port); } if ((socklen_t)sizeof(struct sockaddr_in6) < socklen) rb_str_catf(ret, "(sockaddr %d bytes too long)", (int)(socklen - sizeof(struct sockaddr_in6))); } break; } #endif #ifdef HAVE_SYS_UN_H case AF_UNIX: { struct sockaddr_un *addr = &sockaddr->un; char *p, *s, *e; s = addr->sun_path; e = (char*)addr + socklen; while (s < e && *(e-1) == '\0') e--; if (e < s) rb_str_cat2(ret, "too-short-AF_UNIX-sockaddr"); else if (s == e) rb_str_cat2(ret, "empty-path-AF_UNIX-sockaddr"); else { int printable_only = 1; p = s; while (p < e) { printable_only = printable_only && ISPRINT(*p) && !ISSPACE(*p); p++; } if (printable_only) { /* only printable, no space */ if (s[0] != '/') /* relative path */ rb_str_cat2(ret, "UNIX "); rb_str_cat(ret, s, p - s); } else { rb_str_cat2(ret, "UNIX"); while (s < e) rb_str_catf(ret, ":%02x", (unsigned char)*s++); } } break; } #endif #if defined(AF_PACKET) && defined(__linux__) /* GNU/Linux */ case AF_PACKET: { struct sockaddr_ll *addr; const char *sep = "["; #define CATSEP do { rb_str_cat2(ret, sep); sep = " "; } while (0); addr = (struct sockaddr_ll *)sockaddr; rb_str_cat2(ret, "PACKET"); if (offsetof(struct sockaddr_ll, sll_protocol) + sizeof(addr->sll_protocol) <= (size_t)socklen) { CATSEP; rb_str_catf(ret, "protocol=%d", ntohs(addr->sll_protocol)); } if (offsetof(struct sockaddr_ll, sll_ifindex) + sizeof(addr->sll_ifindex) <= (size_t)socklen) { char buf[IFNAMSIZ]; CATSEP; if (if_indextoname(addr->sll_ifindex, buf) == NULL) rb_str_catf(ret, "ifindex=%d", addr->sll_ifindex); else rb_str_catf(ret, "%s", buf); } if (offsetof(struct sockaddr_ll, sll_hatype) + sizeof(addr->sll_hatype) <= (size_t)socklen) { CATSEP; rb_str_catf(ret, "hatype=%d", addr->sll_hatype); } if (offsetof(struct sockaddr_ll, sll_pkttype) + sizeof(addr->sll_pkttype) <= (size_t)socklen) { CATSEP; if (addr->sll_pkttype == PACKET_HOST) rb_str_cat2(ret, "HOST"); else if (addr->sll_pkttype == PACKET_BROADCAST) rb_str_cat2(ret, "BROADCAST"); else if (addr->sll_pkttype == PACKET_MULTICAST) rb_str_cat2(ret, "MULTICAST"); else if (addr->sll_pkttype == PACKET_OTHERHOST) rb_str_cat2(ret, "OTHERHOST"); else if (addr->sll_pkttype == PACKET_OUTGOING) rb_str_cat2(ret, "OUTGOING"); else rb_str_catf(ret, "pkttype=%d", addr->sll_pkttype); } if (socklen != (socklen_t)(offsetof(struct sockaddr_ll, sll_addr) + addr->sll_halen)) { CATSEP; if (offsetof(struct sockaddr_ll, sll_halen) + sizeof(addr->sll_halen) <= (size_t)socklen) { rb_str_catf(ret, "halen=%d", addr->sll_halen); } } if (offsetof(struct sockaddr_ll, sll_addr) < (size_t)socklen) { socklen_t len, i; CATSEP; rb_str_cat2(ret, "hwaddr"); len = addr->sll_halen; if ((size_t)socklen < offsetof(struct sockaddr_ll, sll_addr) + len) len = socklen - offsetof(struct sockaddr_ll, sll_addr); for (i = 0; i < len; i++) { rb_str_cat2(ret, i == 0 ? "=" : ":"); rb_str_catf(ret, "%02x", addr->sll_addr[i]); } } if (socklen < (socklen_t)(offsetof(struct sockaddr_ll, sll_halen) + sizeof(addr->sll_halen)) || (socklen_t)(offsetof(struct sockaddr_ll, sll_addr) + addr->sll_halen) != socklen) { CATSEP; rb_str_catf(ret, "(%d bytes for %d bytes sockaddr_ll)", (int)socklen, (int)sizeof(struct sockaddr_ll)); } rb_str_cat2(ret, "]"); #undef CATSEP break; } #endif #if defined(AF_LINK) && defined(HAVE_TYPE_STRUCT_SOCKADDR_DL) /* AF_LINK is defined in 4.4BSD derivations since Net2. link_ntoa is also defined at Net2. However Debian GNU/kFreeBSD defines AF_LINK but don't have link_ntoa. */ case AF_LINK: { /* * Simple implementation using link_ntoa(): * This doesn't work on Debian GNU/kFreeBSD 6.0.7 (squeeze). * Also, the format is bit different. * * rb_str_catf(ret, "LINK %s", link_ntoa(&sockaddr->dl)); * break; */ struct sockaddr_dl *addr = &sockaddr->dl; char *np = NULL, *ap = NULL, *endp; int nlen = 0, alen = 0; int i, off; const char *sep = "["; #define CATSEP do { rb_str_cat2(ret, sep); sep = " "; } while (0); rb_str_cat2(ret, "LINK"); endp = ((char *)addr) + socklen; if (offsetof(struct sockaddr_dl, sdl_data) < socklen) { np = addr->sdl_data; nlen = addr->sdl_nlen; if (endp - np < nlen) nlen = (int)(endp - np); } off = addr->sdl_nlen; if (offsetof(struct sockaddr_dl, sdl_data) + off < socklen) { ap = addr->sdl_data + off; alen = addr->sdl_alen; if (endp - ap < alen) alen = (int)(endp - ap); } CATSEP; if (np) rb_str_catf(ret, "%.*s", nlen, np); else rb_str_cat2(ret, "?"); if (ap && 0 < alen) { CATSEP; for (i = 0; i < alen; i++) rb_str_catf(ret, "%s%02x", i == 0 ? "" : ":", (unsigned char)ap[i]); } if (socklen < (socklen_t)(offsetof(struct sockaddr_dl, sdl_nlen) + sizeof(addr->sdl_nlen)) || socklen < (socklen_t)(offsetof(struct sockaddr_dl, sdl_alen) + sizeof(addr->sdl_alen)) || socklen < (socklen_t)(offsetof(struct sockaddr_dl, sdl_slen) + sizeof(addr->sdl_slen)) || /* longer length is possible behavior because struct sockaddr_dl has "minimum work area, can be larger" as the last field. * cf. Net2:/usr/src/sys/net/if_dl.h. */ socklen < (socklen_t)(offsetof(struct sockaddr_dl, sdl_data) + addr->sdl_nlen + addr->sdl_alen + addr->sdl_slen)) { CATSEP; rb_str_catf(ret, "(%d bytes for %d bytes sockaddr_dl)", (int)socklen, (int)sizeof(struct sockaddr_dl)); } rb_str_cat2(ret, "]"); #undef CATSEP break; } #endif default: { ID id = rsock_intern_family(sockaddr->addr.sa_family); if (id == 0) rb_str_catf(ret, "unknown address family %d", sockaddr->addr.sa_family); else rb_str_catf(ret, "%s address format unknown", rb_id2name(id)); break; } } } return ret; } /* * call-seq: * addrinfo.inspect => string * * returns a string which shows addrinfo in human-readable form. * * Addrinfo.tcp("localhost", 80).inspect #=> "#" * Addrinfo.unix("/tmp/sock").inspect #=> "#" * */ static VALUE addrinfo_inspect(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int internet_p; VALUE ret; ret = rb_sprintf("#<%s: ", rb_obj_classname(self)); inspect_sockaddr(self, ret); if (rai->pfamily && ai_get_afamily(rai) != rai->pfamily) { ID id = rsock_intern_protocol_family(rai->pfamily); if (id) rb_str_catf(ret, " %s", rb_id2name(id)); else rb_str_catf(ret, " PF_\?\?\?(%d)", rai->pfamily); } internet_p = rai->pfamily == PF_INET; #ifdef INET6 internet_p = internet_p || rai->pfamily == PF_INET6; #endif if (internet_p && rai->socktype == SOCK_STREAM && (rai->protocol == 0 || rai->protocol == IPPROTO_TCP)) { rb_str_cat2(ret, " TCP"); } else if (internet_p && rai->socktype == SOCK_DGRAM && (rai->protocol == 0 || rai->protocol == IPPROTO_UDP)) { rb_str_cat2(ret, " UDP"); } else { if (rai->socktype) { ID id = rsock_intern_socktype(rai->socktype); if (id) rb_str_catf(ret, " %s", rb_id2name(id)); else rb_str_catf(ret, " SOCK_\?\?\?(%d)", rai->socktype); } if (rai->protocol) { if (internet_p) { ID id = rsock_intern_ipproto(rai->protocol); if (id) rb_str_catf(ret, " %s", rb_id2name(id)); else goto unknown_protocol; } else { unknown_protocol: rb_str_catf(ret, " UNKNOWN_PROTOCOL(%d)", rai->protocol); } } } if (!NIL_P(rai->canonname)) { VALUE name = rai->canonname; rb_str_catf(ret, " %s", StringValueCStr(name)); } if (!NIL_P(rai->inspectname)) { VALUE name = rai->inspectname; rb_str_catf(ret, " (%s)", StringValueCStr(name)); } rb_str_buf_cat2(ret, ">"); return ret; } /* * call-seq: * addrinfo.inspect_sockaddr => string * * returns a string which shows the sockaddr in _addrinfo_ with human-readable form. * * Addrinfo.tcp("localhost", 80).inspect_sockaddr #=> "127.0.0.1:80" * Addrinfo.tcp("ip6-localhost", 80).inspect_sockaddr #=> "[::1]:80" * Addrinfo.unix("/tmp/sock").inspect_sockaddr #=> "/tmp/sock" * */ VALUE rsock_addrinfo_inspect_sockaddr(VALUE self) { return inspect_sockaddr(self, rb_str_new("", 0)); } /* :nodoc: */ static VALUE addrinfo_mdump(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); VALUE sockaddr, afamily, pfamily, socktype, protocol, canonname, inspectname; int afamily_int = ai_get_afamily(rai); ID id; id = rsock_intern_protocol_family(rai->pfamily); if (id == 0) rb_raise(rb_eSocket, "unknown protocol family: %d", rai->pfamily); pfamily = rb_id2str(id); if (rai->socktype == 0) socktype = INT2FIX(0); else { id = rsock_intern_socktype(rai->socktype); if (id == 0) rb_raise(rb_eSocket, "unknown socktype: %d", rai->socktype); socktype = rb_id2str(id); } if (rai->protocol == 0) protocol = INT2FIX(0); else if (IS_IP_FAMILY(afamily_int)) { id = rsock_intern_ipproto(rai->protocol); if (id == 0) rb_raise(rb_eSocket, "unknown IP protocol: %d", rai->protocol); protocol = rb_id2str(id); } else { rb_raise(rb_eSocket, "unknown protocol: %d", rai->protocol); } canonname = rai->canonname; inspectname = rai->inspectname; id = rsock_intern_family(afamily_int); if (id == 0) rb_raise(rb_eSocket, "unknown address family: %d", afamily_int); afamily = rb_id2str(id); switch(afamily_int) { #ifdef HAVE_SYS_UN_H case AF_UNIX: { struct sockaddr_un *su = &rai->addr.un; char *s, *e; s = su->sun_path; e = (char*)su + rai->sockaddr_len; while (s < e && *(e-1) == '\0') e--; sockaddr = rb_str_new(s, e-s); break; } #endif default: { char hbuf[NI_MAXHOST], pbuf[NI_MAXSERV]; int error; error = getnameinfo(&rai->addr.addr, rai->sockaddr_len, hbuf, (socklen_t)sizeof(hbuf), pbuf, (socklen_t)sizeof(pbuf), NI_NUMERICHOST|NI_NUMERICSERV); if (error) { rsock_raise_socket_error("getnameinfo", error); } sockaddr = rb_assoc_new(rb_str_new_cstr(hbuf), rb_str_new_cstr(pbuf)); break; } } return rb_ary_new3(7, afamily, sockaddr, pfamily, socktype, protocol, canonname, inspectname); } /* :nodoc: */ static VALUE addrinfo_mload(VALUE self, VALUE ary) { VALUE v; VALUE canonname, inspectname; int afamily, pfamily, socktype, protocol; union_sockaddr ss; socklen_t len; rb_addrinfo_t *rai; if (check_addrinfo(self)) rb_raise(rb_eTypeError, "already initialized socket address"); ary = rb_convert_type(ary, T_ARRAY, "Array", "to_ary"); v = rb_ary_entry(ary, 0); StringValue(v); if (rsock_family_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &afamily) == -1) rb_raise(rb_eTypeError, "unexpected address family"); v = rb_ary_entry(ary, 2); StringValue(v); if (rsock_family_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &pfamily) == -1) rb_raise(rb_eTypeError, "unexpected protocol family"); v = rb_ary_entry(ary, 3); if (v == INT2FIX(0)) socktype = 0; else { StringValue(v); if (rsock_socktype_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &socktype) == -1) rb_raise(rb_eTypeError, "unexpected socktype"); } v = rb_ary_entry(ary, 4); if (v == INT2FIX(0)) protocol = 0; else { StringValue(v); if (IS_IP_FAMILY(afamily)) { if (rsock_ipproto_to_int(RSTRING_PTR(v), RSTRING_LEN(v), &protocol) == -1) rb_raise(rb_eTypeError, "unexpected protocol"); } else { rb_raise(rb_eTypeError, "unexpected protocol"); } } v = rb_ary_entry(ary, 5); if (NIL_P(v)) canonname = Qnil; else { StringValue(v); canonname = v; } v = rb_ary_entry(ary, 6); if (NIL_P(v)) inspectname = Qnil; else { StringValue(v); inspectname = v; } v = rb_ary_entry(ary, 1); switch(afamily) { #ifdef HAVE_SYS_UN_H case AF_UNIX: { struct sockaddr_un uaddr; INIT_SOCKADDR_UN(&uaddr, sizeof(struct sockaddr_un)); StringValue(v); if (sizeof(uaddr.sun_path) < (size_t)RSTRING_LEN(v)) rb_raise(rb_eSocket, "too long AF_UNIX path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)", (size_t)RSTRING_LEN(v), sizeof(uaddr.sun_path)); memcpy(uaddr.sun_path, RSTRING_PTR(v), RSTRING_LEN(v)); len = (socklen_t)sizeof(uaddr); memcpy(&ss, &uaddr, len); break; } #endif default: { VALUE pair = rb_convert_type(v, T_ARRAY, "Array", "to_ary"); struct rb_addrinfo *res; int flags = AI_NUMERICHOST; #ifdef AI_NUMERICSERV flags |= AI_NUMERICSERV; #endif res = call_getaddrinfo(rb_ary_entry(pair, 0), rb_ary_entry(pair, 1), INT2NUM(pfamily), INT2NUM(socktype), INT2NUM(protocol), INT2NUM(flags), 1); len = res->ai->ai_addrlen; memcpy(&ss, res->ai->ai_addr, res->ai->ai_addrlen); rb_freeaddrinfo(res); break; } } DATA_PTR(self) = rai = alloc_addrinfo(); init_addrinfo(rai, &ss.addr, len, pfamily, socktype, protocol, canonname, inspectname); return self; } /* * call-seq: * addrinfo.afamily => integer * * returns the address family as an integer. * * Addrinfo.tcp("localhost", 80).afamily == Socket::AF_INET #=> true * */ static VALUE addrinfo_afamily(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return INT2NUM(ai_get_afamily(rai)); } /* * call-seq: * addrinfo.pfamily => integer * * returns the protocol family as an integer. * * Addrinfo.tcp("localhost", 80).pfamily == Socket::PF_INET #=> true * */ static VALUE addrinfo_pfamily(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return INT2NUM(rai->pfamily); } /* * call-seq: * addrinfo.socktype => integer * * returns the socket type as an integer. * * Addrinfo.tcp("localhost", 80).socktype == Socket::SOCK_STREAM #=> true * */ static VALUE addrinfo_socktype(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return INT2NUM(rai->socktype); } /* * call-seq: * addrinfo.protocol => integer * * returns the socket type as an integer. * * Addrinfo.tcp("localhost", 80).protocol == Socket::IPPROTO_TCP #=> true * */ static VALUE addrinfo_protocol(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return INT2NUM(rai->protocol); } /* * call-seq: * addrinfo.to_sockaddr => string * addrinfo.to_s => string * * returns the socket address as packed struct sockaddr string. * * Addrinfo.tcp("localhost", 80).to_sockaddr * #=> "\x02\x00\x00P\x7F\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00" * */ static VALUE addrinfo_to_sockaddr(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); VALUE ret; ret = rb_str_new((char*)&rai->addr, rai->sockaddr_len); OBJ_INFECT(ret, self); return ret; } /* * call-seq: * addrinfo.canonname => string or nil * * returns the canonical name as an string. * * nil is returned if no canonical name. * * The canonical name is set by Addrinfo.getaddrinfo when AI_CANONNAME is specified. * * list = Addrinfo.getaddrinfo("www.ruby-lang.org", 80, :INET, :STREAM, nil, Socket::AI_CANONNAME) * p list[0] #=> # * p list[0].canonname #=> "carbon.ruby-lang.org" * */ static VALUE addrinfo_canonname(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return rai->canonname; } /* * call-seq: * addrinfo.ip? => true or false * * returns true if addrinfo is internet (IPv4/IPv6) address. * returns false otherwise. * * Addrinfo.tcp("127.0.0.1", 80).ip? #=> true * Addrinfo.tcp("::1", 80).ip? #=> true * Addrinfo.unix("/tmp/sock").ip? #=> false * */ static VALUE addrinfo_ip_p(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); return IS_IP_FAMILY(family) ? Qtrue : Qfalse; } /* * call-seq: * addrinfo.ipv4? => true or false * * returns true if addrinfo is IPv4 address. * returns false otherwise. * * Addrinfo.tcp("127.0.0.1", 80).ipv4? #=> true * Addrinfo.tcp("::1", 80).ipv4? #=> false * Addrinfo.unix("/tmp/sock").ipv4? #=> false * */ static VALUE addrinfo_ipv4_p(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); return ai_get_afamily(rai) == AF_INET ? Qtrue : Qfalse; } /* * call-seq: * addrinfo.ipv6? => true or false * * returns true if addrinfo is IPv6 address. * returns false otherwise. * * Addrinfo.tcp("127.0.0.1", 80).ipv6? #=> false * Addrinfo.tcp("::1", 80).ipv6? #=> true * Addrinfo.unix("/tmp/sock").ipv6? #=> false * */ static VALUE addrinfo_ipv6_p(VALUE self) { #ifdef AF_INET6 rb_addrinfo_t *rai = get_addrinfo(self); return ai_get_afamily(rai) == AF_INET6 ? Qtrue : Qfalse; #else return Qfalse; #endif } /* * call-seq: * addrinfo.unix? => true or false * * returns true if addrinfo is UNIX address. * returns false otherwise. * * Addrinfo.tcp("127.0.0.1", 80).unix? #=> false * Addrinfo.tcp("::1", 80).unix? #=> false * Addrinfo.unix("/tmp/sock").unix? #=> true * */ static VALUE addrinfo_unix_p(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); #ifdef AF_UNIX return ai_get_afamily(rai) == AF_UNIX ? Qtrue : Qfalse; #else return Qfalse; #endif } /* * call-seq: * addrinfo.getnameinfo => [nodename, service] * addrinfo.getnameinfo(flags) => [nodename, service] * * returns nodename and service as a pair of strings. * This converts struct sockaddr in addrinfo to textual representation. * * flags should be bitwise OR of Socket::NI_??? constants. * * Addrinfo.tcp("127.0.0.1", 80).getnameinfo #=> ["localhost", "www"] * * Addrinfo.tcp("127.0.0.1", 80).getnameinfo(Socket::NI_NUMERICSERV) * #=> ["localhost", "80"] */ static VALUE addrinfo_getnameinfo(int argc, VALUE *argv, VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); VALUE vflags; char hbuf[1024], pbuf[1024]; int flags, error; rb_scan_args(argc, argv, "01", &vflags); flags = NIL_P(vflags) ? 0 : NUM2INT(vflags); if (rai->socktype == SOCK_DGRAM) flags |= NI_DGRAM; error = getnameinfo(&rai->addr.addr, rai->sockaddr_len, hbuf, (socklen_t)sizeof(hbuf), pbuf, (socklen_t)sizeof(pbuf), flags); if (error) { rsock_raise_socket_error("getnameinfo", error); } return rb_assoc_new(rb_str_new2(hbuf), rb_str_new2(pbuf)); } /* * call-seq: * addrinfo.ip_unpack => [addr, port] * * Returns the IP address and port number as 2-element array. * * Addrinfo.tcp("127.0.0.1", 80).ip_unpack #=> ["127.0.0.1", 80] * Addrinfo.tcp("::1", 80).ip_unpack #=> ["::1", 80] */ static VALUE addrinfo_ip_unpack(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); VALUE vflags; VALUE ret, portstr; if (!IS_IP_FAMILY(family)) rb_raise(rb_eSocket, "need IPv4 or IPv6 address"); vflags = INT2NUM(NI_NUMERICHOST|NI_NUMERICSERV); ret = addrinfo_getnameinfo(1, &vflags, self); portstr = rb_ary_entry(ret, 1); rb_ary_store(ret, 1, INT2NUM(atoi(StringValueCStr(portstr)))); return ret; } /* * call-seq: * addrinfo.ip_address => string * * Returns the IP address as a string. * * Addrinfo.tcp("127.0.0.1", 80).ip_address #=> "127.0.0.1" * Addrinfo.tcp("::1", 80).ip_address #=> "::1" */ static VALUE addrinfo_ip_address(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); VALUE vflags; VALUE ret; if (!IS_IP_FAMILY(family)) rb_raise(rb_eSocket, "need IPv4 or IPv6 address"); vflags = INT2NUM(NI_NUMERICHOST|NI_NUMERICSERV); ret = addrinfo_getnameinfo(1, &vflags, self); return rb_ary_entry(ret, 0); } /* * call-seq: * addrinfo.ip_port => port * * Returns the port number as an integer. * * Addrinfo.tcp("127.0.0.1", 80).ip_port #=> 80 * Addrinfo.tcp("::1", 80).ip_port #=> 80 */ static VALUE addrinfo_ip_port(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); int port; if (!IS_IP_FAMILY(family)) { bad_family: #ifdef AF_INET6 rb_raise(rb_eSocket, "need IPv4 or IPv6 address"); #else rb_raise(rb_eSocket, "need IPv4 address"); #endif } switch (family) { case AF_INET: if (rai->sockaddr_len != sizeof(struct sockaddr_in)) rb_raise(rb_eSocket, "unexpected sockaddr size for IPv4"); port = ntohs(rai->addr.in.sin_port); break; #ifdef AF_INET6 case AF_INET6: if (rai->sockaddr_len != sizeof(struct sockaddr_in6)) rb_raise(rb_eSocket, "unexpected sockaddr size for IPv6"); port = ntohs(rai->addr.in6.sin6_port); break; #endif default: goto bad_family; } return INT2NUM(port); } static int extract_in_addr(VALUE self, uint32_t *addrp) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); if (family != AF_INET) return 0; *addrp = ntohl(rai->addr.in.sin_addr.s_addr); return 1; } /* * Returns true for IPv4 private address (10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16). * It returns false otherwise. */ static VALUE addrinfo_ipv4_private_p(VALUE self) { uint32_t a; if (!extract_in_addr(self, &a)) return Qfalse; if ((a & 0xff000000) == 0x0a000000 || /* 10.0.0.0/8 */ (a & 0xfff00000) == 0xac100000 || /* 172.16.0.0/12 */ (a & 0xffff0000) == 0xc0a80000) /* 192.168.0.0/16 */ return Qtrue; return Qfalse; } /* * Returns true for IPv4 loopback address (127.0.0.0/8). * It returns false otherwise. */ static VALUE addrinfo_ipv4_loopback_p(VALUE self) { uint32_t a; if (!extract_in_addr(self, &a)) return Qfalse; if ((a & 0xff000000) == 0x7f000000) /* 127.0.0.0/8 */ return Qtrue; return Qfalse; } /* * Returns true for IPv4 multicast address (224.0.0.0/4). * It returns false otherwise. */ static VALUE addrinfo_ipv4_multicast_p(VALUE self) { uint32_t a; if (!extract_in_addr(self, &a)) return Qfalse; if ((a & 0xf0000000) == 0xe0000000) /* 224.0.0.0/4 */ return Qtrue; return Qfalse; } #ifdef INET6 static struct in6_addr * extract_in6_addr(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); if (family != AF_INET6) return NULL; return &rai->addr.in6.sin6_addr; } /* * Returns true for IPv6 unspecified address (::). * It returns false otherwise. */ static VALUE addrinfo_ipv6_unspecified_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_UNSPECIFIED(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 loopback address (::1). * It returns false otherwise. */ static VALUE addrinfo_ipv6_loopback_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_LOOPBACK(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast address (ff00::/8). * It returns false otherwise. */ static VALUE addrinfo_ipv6_multicast_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MULTICAST(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 link local address (ff80::/10). * It returns false otherwise. */ static VALUE addrinfo_ipv6_linklocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_LINKLOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 site local address (ffc0::/10). * It returns false otherwise. */ static VALUE addrinfo_ipv6_sitelocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_SITELOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 unique local address (fc00::/7, RFC4193). * It returns false otherwise. */ static VALUE addrinfo_ipv6_unique_local_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_UNIQUE_LOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv4-mapped IPv6 address (::ffff:0:0/80). * It returns false otherwise. */ static VALUE addrinfo_ipv6_v4mapped_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_V4MAPPED(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv4-compatible IPv6 address (::/80). * It returns false otherwise. */ static VALUE addrinfo_ipv6_v4compat_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_V4COMPAT(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast node-local scope address. * It returns false otherwise. */ static VALUE addrinfo_ipv6_mc_nodelocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MC_NODELOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast link-local scope address. * It returns false otherwise. */ static VALUE addrinfo_ipv6_mc_linklocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MC_LINKLOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast site-local scope address. * It returns false otherwise. */ static VALUE addrinfo_ipv6_mc_sitelocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MC_SITELOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast organization-local scope address. * It returns false otherwise. */ static VALUE addrinfo_ipv6_mc_orglocal_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MC_ORGLOCAL(addr)) return Qtrue; return Qfalse; } /* * Returns true for IPv6 multicast global scope address. * It returns false otherwise. */ static VALUE addrinfo_ipv6_mc_global_p(VALUE self) { struct in6_addr *addr = extract_in6_addr(self); if (addr && IN6_IS_ADDR_MC_GLOBAL(addr)) return Qtrue; return Qfalse; } /* * Returns IPv4 address of IPv4 mapped/compatible IPv6 address. * It returns nil if +self+ is not IPv4 mapped/compatible IPv6 address. * * Addrinfo.ip("::192.0.2.3").ipv6_to_ipv4 #=> # * Addrinfo.ip("::ffff:192.0.2.3").ipv6_to_ipv4 #=> # * Addrinfo.ip("::1").ipv6_to_ipv4 #=> nil * Addrinfo.ip("192.0.2.3").ipv6_to_ipv4 #=> nil * Addrinfo.unix("/tmp/sock").ipv6_to_ipv4 #=> nil */ static VALUE addrinfo_ipv6_to_ipv4(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); struct in6_addr *addr; int family = ai_get_afamily(rai); if (family != AF_INET6) return Qnil; addr = &rai->addr.in6.sin6_addr; if (IN6_IS_ADDR_V4MAPPED(addr) || IN6_IS_ADDR_V4COMPAT(addr)) { struct sockaddr_in sin4; INIT_SOCKADDR_IN(&sin4, sizeof(sin4)); memcpy(&sin4.sin_addr, (char*)addr + sizeof(*addr) - sizeof(sin4.sin_addr), sizeof(sin4.sin_addr)); return rsock_addrinfo_new((struct sockaddr *)&sin4, (socklen_t)sizeof(sin4), PF_INET, rai->socktype, rai->protocol, rai->canonname, rai->inspectname); } else { return Qnil; } } #endif #ifdef HAVE_SYS_UN_H /* * call-seq: * addrinfo.unix_path => path * * Returns the socket path as a string. * * Addrinfo.unix("/tmp/sock").unix_path #=> "/tmp/sock" */ static VALUE addrinfo_unix_path(VALUE self) { rb_addrinfo_t *rai = get_addrinfo(self); int family = ai_get_afamily(rai); struct sockaddr_un *addr; char *s, *e; if (family != AF_UNIX) rb_raise(rb_eSocket, "need AF_UNIX address"); addr = &rai->addr.un; s = addr->sun_path; e = (char*)addr + rai->sockaddr_len; if (e < s) rb_raise(rb_eSocket, "too short AF_UNIX address: %"PRIuSIZE" bytes given for minimum %"PRIuSIZE" bytes.", (size_t)rai->sockaddr_len, (size_t)(s - (char *)addr)); if (addr->sun_path + sizeof(addr->sun_path) < e) rb_raise(rb_eSocket, "too long AF_UNIX path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)", (size_t)(e - addr->sun_path), sizeof(addr->sun_path)); while (s < e && *(e-1) == '\0') e--; return rb_str_new(s, e-s); } #endif /* * call-seq: * Addrinfo.getaddrinfo(nodename, service, family, socktype, protocol, flags) => [addrinfo, ...] * Addrinfo.getaddrinfo(nodename, service, family, socktype, protocol) => [addrinfo, ...] * Addrinfo.getaddrinfo(nodename, service, family, socktype) => [addrinfo, ...] * Addrinfo.getaddrinfo(nodename, service, family) => [addrinfo, ...] * Addrinfo.getaddrinfo(nodename, service) => [addrinfo, ...] * * returns a list of addrinfo objects as an array. * * This method converts nodename (hostname) and service (port) to addrinfo. * Since the conversion is not unique, the result is a list of addrinfo objects. * * nodename or service can be nil if no conversion intended. * * family, socktype and protocol are hint for preferred protocol. * If the result will be used for a socket with SOCK_STREAM, * SOCK_STREAM should be specified as socktype. * If so, Addrinfo.getaddrinfo returns addrinfo list appropriate for SOCK_STREAM. * If they are omitted or nil is given, the result is not restricted. * * Similarly, PF_INET6 as family restricts for IPv6. * * flags should be bitwise OR of Socket::AI_??? constants such as follows. * Note that the exact list of the constants depends on OS. * * AI_PASSIVE Get address to use with bind() * AI_CANONNAME Fill in the canonical name * AI_NUMERICHOST Prevent host name resolution * AI_NUMERICSERV Prevent service name resolution * AI_V4MAPPED Accept IPv4-mapped IPv6 addresses * AI_ALL Allow all addresses * AI_ADDRCONFIG Accept only if any address is assigned * * Note that socktype should be specified whenever application knows the usage of the address. * Some platform causes an error when socktype is omitted and servname is specified as an integer * because some port numbers, 512 for example, are ambiguous without socktype. * * Addrinfo.getaddrinfo("www.kame.net", 80, nil, :STREAM) * #=> [#, * # #] * */ static VALUE addrinfo_s_getaddrinfo(int argc, VALUE *argv, VALUE self) { VALUE node, service, family, socktype, protocol, flags; rb_scan_args(argc, argv, "24", &node, &service, &family, &socktype, &protocol, &flags); return addrinfo_list_new(node, service, family, socktype, protocol, flags); } /* * call-seq: * Addrinfo.ip(host) => addrinfo * * returns an addrinfo object for IP address. * * The port, socktype, protocol of the result is filled by zero. * So, it is not appropriate to create a socket. * * Addrinfo.ip("localhost") #=> # */ static VALUE addrinfo_s_ip(VALUE self, VALUE host) { VALUE ret; rb_addrinfo_t *rai; ret = addrinfo_firstonly_new(host, Qnil, INT2NUM(PF_UNSPEC), INT2FIX(0), INT2FIX(0), INT2FIX(0)); rai = get_addrinfo(ret); rai->socktype = 0; rai->protocol = 0; return ret; } /* * call-seq: * Addrinfo.tcp(host, port) => addrinfo * * returns an addrinfo object for TCP address. * * Addrinfo.tcp("localhost", "smtp") #=> # */ static VALUE addrinfo_s_tcp(VALUE self, VALUE host, VALUE port) { return addrinfo_firstonly_new(host, port, INT2NUM(PF_UNSPEC), INT2NUM(SOCK_STREAM), INT2NUM(IPPROTO_TCP), INT2FIX(0)); } /* * call-seq: * Addrinfo.udp(host, port) => addrinfo * * returns an addrinfo object for UDP address. * * Addrinfo.udp("localhost", "daytime") #=> # */ static VALUE addrinfo_s_udp(VALUE self, VALUE host, VALUE port) { return addrinfo_firstonly_new(host, port, INT2NUM(PF_UNSPEC), INT2NUM(SOCK_DGRAM), INT2NUM(IPPROTO_UDP), INT2FIX(0)); } #ifdef HAVE_SYS_UN_H /* * call-seq: * Addrinfo.unix(path [, socktype]) => addrinfo * * returns an addrinfo object for UNIX socket address. * * _socktype_ specifies the socket type. * If it is omitted, :STREAM is used. * * Addrinfo.unix("/tmp/sock") #=> # * Addrinfo.unix("/tmp/sock", :DGRAM) #=> # */ static VALUE addrinfo_s_unix(int argc, VALUE *argv, VALUE self) { VALUE path, vsocktype, addr; int socktype; rb_addrinfo_t *rai; rb_scan_args(argc, argv, "11", &path, &vsocktype); if (NIL_P(vsocktype)) socktype = SOCK_STREAM; else socktype = rsock_socktype_arg(vsocktype); addr = addrinfo_s_allocate(rb_cAddrinfo); DATA_PTR(addr) = rai = alloc_addrinfo(); init_unix_addrinfo(rai, path, socktype); OBJ_INFECT(addr, path); return addr; } #endif VALUE rsock_sockaddr_string_value(volatile VALUE *v) { VALUE val = *v; if (IS_ADDRINFO(val)) { *v = addrinfo_to_sockaddr(val); } StringValue(*v); return *v; } VALUE rsock_sockaddr_string_value_with_addrinfo(volatile VALUE *v, VALUE *rai_ret) { VALUE val = *v; *rai_ret = Qnil; if (IS_ADDRINFO(val)) { *v = addrinfo_to_sockaddr(val); *rai_ret = val; } StringValue(*v); return *v; } char * rsock_sockaddr_string_value_ptr(volatile VALUE *v) { rsock_sockaddr_string_value(v); return RSTRING_PTR(*v); } VALUE rb_check_sockaddr_string_type(VALUE val) { if (IS_ADDRINFO(val)) return addrinfo_to_sockaddr(val); return rb_check_string_type(val); } VALUE rsock_fd_socket_addrinfo(int fd, struct sockaddr *addr, socklen_t len) { int family; int socktype; int ret; socklen_t optlen = (socklen_t)sizeof(socktype); /* assumes protocol family and address family are identical */ family = get_afamily(addr, len); ret = getsockopt(fd, SOL_SOCKET, SO_TYPE, (void*)&socktype, &optlen); if (ret == -1) { rb_sys_fail("getsockopt(SO_TYPE)"); } return rsock_addrinfo_new(addr, len, family, socktype, 0, Qnil, Qnil); } VALUE rsock_io_socket_addrinfo(VALUE io, struct sockaddr *addr, socklen_t len) { rb_io_t *fptr; switch (TYPE(io)) { case T_FIXNUM: return rsock_fd_socket_addrinfo(FIX2INT(io), addr, len); case T_BIGNUM: return rsock_fd_socket_addrinfo(NUM2INT(io), addr, len); case T_FILE: GetOpenFile(io, fptr); return rsock_fd_socket_addrinfo(fptr->fd, addr, len); default: rb_raise(rb_eTypeError, "neither IO nor file descriptor"); } UNREACHABLE; } /* * Addrinfo class */ void rsock_init_addrinfo(void) { /* * The Addrinfo class maps struct addrinfo to ruby. This * structure identifies an Internet host and a service. */ rb_cAddrinfo = rb_define_class("Addrinfo", rb_cData); rb_define_alloc_func(rb_cAddrinfo, addrinfo_s_allocate); rb_define_method(rb_cAddrinfo, "initialize", addrinfo_initialize, -1); rb_define_method(rb_cAddrinfo, "inspect", addrinfo_inspect, 0); rb_define_method(rb_cAddrinfo, "inspect_sockaddr", rsock_addrinfo_inspect_sockaddr, 0); rb_define_singleton_method(rb_cAddrinfo, "getaddrinfo", addrinfo_s_getaddrinfo, -1); rb_define_singleton_method(rb_cAddrinfo, "ip", addrinfo_s_ip, 1); rb_define_singleton_method(rb_cAddrinfo, "tcp", addrinfo_s_tcp, 2); rb_define_singleton_method(rb_cAddrinfo, "udp", addrinfo_s_udp, 2); #ifdef HAVE_SYS_UN_H rb_define_singleton_method(rb_cAddrinfo, "unix", addrinfo_s_unix, -1); #endif rb_define_method(rb_cAddrinfo, "afamily", addrinfo_afamily, 0); rb_define_method(rb_cAddrinfo, "pfamily", addrinfo_pfamily, 0); rb_define_method(rb_cAddrinfo, "socktype", addrinfo_socktype, 0); rb_define_method(rb_cAddrinfo, "protocol", addrinfo_protocol, 0); rb_define_method(rb_cAddrinfo, "canonname", addrinfo_canonname, 0); rb_define_method(rb_cAddrinfo, "ipv4?", addrinfo_ipv4_p, 0); rb_define_method(rb_cAddrinfo, "ipv6?", addrinfo_ipv6_p, 0); rb_define_method(rb_cAddrinfo, "unix?", addrinfo_unix_p, 0); rb_define_method(rb_cAddrinfo, "ip?", addrinfo_ip_p, 0); rb_define_method(rb_cAddrinfo, "ip_unpack", addrinfo_ip_unpack, 0); rb_define_method(rb_cAddrinfo, "ip_address", addrinfo_ip_address, 0); rb_define_method(rb_cAddrinfo, "ip_port", addrinfo_ip_port, 0); rb_define_method(rb_cAddrinfo, "ipv4_private?", addrinfo_ipv4_private_p, 0); rb_define_method(rb_cAddrinfo, "ipv4_loopback?", addrinfo_ipv4_loopback_p, 0); rb_define_method(rb_cAddrinfo, "ipv4_multicast?", addrinfo_ipv4_multicast_p, 0); #ifdef INET6 rb_define_method(rb_cAddrinfo, "ipv6_unspecified?", addrinfo_ipv6_unspecified_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_loopback?", addrinfo_ipv6_loopback_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_multicast?", addrinfo_ipv6_multicast_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_linklocal?", addrinfo_ipv6_linklocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_sitelocal?", addrinfo_ipv6_sitelocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_unique_local?", addrinfo_ipv6_unique_local_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_v4mapped?", addrinfo_ipv6_v4mapped_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_v4compat?", addrinfo_ipv6_v4compat_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_mc_nodelocal?", addrinfo_ipv6_mc_nodelocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_mc_linklocal?", addrinfo_ipv6_mc_linklocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_mc_sitelocal?", addrinfo_ipv6_mc_sitelocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_mc_orglocal?", addrinfo_ipv6_mc_orglocal_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_mc_global?", addrinfo_ipv6_mc_global_p, 0); rb_define_method(rb_cAddrinfo, "ipv6_to_ipv4", addrinfo_ipv6_to_ipv4, 0); #endif #ifdef HAVE_SYS_UN_H rb_define_method(rb_cAddrinfo, "unix_path", addrinfo_unix_path, 0); #endif rb_define_method(rb_cAddrinfo, "to_sockaddr", addrinfo_to_sockaddr, 0); rb_define_method(rb_cAddrinfo, "to_s", addrinfo_to_sockaddr, 0); /* compatibility for ruby before 1.9.2 */ rb_define_method(rb_cAddrinfo, "getnameinfo", addrinfo_getnameinfo, -1); rb_define_method(rb_cAddrinfo, "marshal_dump", addrinfo_mdump, 0); rb_define_method(rb_cAddrinfo, "marshal_load", addrinfo_mload, 1); }