/********************************************************************** proc.c - Proc, Binding, Env $Author$ created at: Wed Jan 17 12:13:14 2007 Copyright (C) 2004-2007 Koichi Sasada **********************************************************************/ #include "eval_intern.h" #include "internal.h" #include "gc.h" #include "iseq.h" /* Proc.new with no block will raise an exception in the future * versions */ #define PROC_NEW_REQUIRES_BLOCK 0 const rb_cref_t *rb_vm_cref_in_context(VALUE self, VALUE cbase); struct METHOD { const VALUE recv; const VALUE klass; const rb_method_entry_t * const me; /* for bound methods, `me' should be rb_callable_method_entry_t * */ }; VALUE rb_cUnboundMethod; VALUE rb_cMethod; VALUE rb_cBinding; VALUE rb_cProc; static VALUE bmcall(VALUE, VALUE, int, VALUE *, VALUE); static int method_arity(VALUE); static int method_min_max_arity(VALUE, int *max); #define attached id__attached__ /* Proc */ #define IS_METHOD_PROC_IFUNC(ifunc) ((ifunc)->func == bmcall) #define IS_METHOD_PROC_ISEQ(iseq) \ (RUBY_VM_IFUNC_P(iseq) && \ IS_METHOD_PROC_IFUNC((struct vm_ifunc *)(iseq))) static void proc_mark(void *ptr) { rb_proc_t *proc = ptr; RUBY_MARK_UNLESS_NULL(proc->block.proc); RUBY_MARK_UNLESS_NULL(proc->block.self); if (proc->block.ep) { RUBY_MARK_UNLESS_NULL(rb_vm_proc_envval(proc)); } if (proc->block.iseq && RUBY_VM_IFUNC_P(proc->block.iseq)) { rb_gc_mark((VALUE)(proc->block.iseq)); } RUBY_MARK_LEAVE("proc"); } typedef struct { rb_proc_t basic; VALUE env[3]; /* me, specval, envval */ } cfunc_proc_t; static size_t proc_memsize(const void *ptr) { const rb_proc_t *proc = ptr; if (proc->block.ep == ((const cfunc_proc_t *)ptr)->env+1) return sizeof(cfunc_proc_t); return sizeof(rb_proc_t); } static const rb_data_type_t proc_data_type = { "proc", { proc_mark, RUBY_TYPED_DEFAULT_FREE, proc_memsize, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; VALUE rb_proc_alloc(VALUE klass) { rb_proc_t *proc; return TypedData_Make_Struct(klass, rb_proc_t, &proc_data_type, proc); } VALUE rb_obj_is_proc(VALUE proc) { if (rb_typeddata_is_kind_of(proc, &proc_data_type)) { return Qtrue; } else { return Qfalse; } } /* :nodoc: */ static VALUE proc_dup(VALUE self) { VALUE procval; rb_proc_t *src; rb_proc_t *dst; GetProcPtr(self, src); procval = rb_proc_alloc(rb_cProc); GetProcPtr(procval, dst); *dst = *src; dst->block.proc = procval; RB_GC_GUARD(self); /* for: body = proc_dup(body) */ return procval; } /* :nodoc: */ static VALUE proc_clone(VALUE self) { VALUE procval = proc_dup(self); CLONESETUP(procval, self); return procval; } /* * call-seq: * prc.lambda? -> true or false * * Returns +true+ for a Proc object for which argument handling is rigid. * Such procs are typically generated by +lambda+. * * A Proc object generated by +proc+ ignores extra arguments. * * proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2] * * It provides +nil+ for missing arguments. * * proc {|a,b| [a,b] }.call(1) #=> [1,nil] * * It expands a single array argument. * * proc {|a,b| [a,b] }.call([1,2]) #=> [1,2] * * A Proc object generated by +lambda+ doesn't have such tricks. * * lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError * lambda {|a,b| [a,b] }.call(1) #=> ArgumentError * lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError * * Proc#lambda? is a predicate for the tricks. * It returns +true+ if no tricks apply. * * lambda {}.lambda? #=> true * proc {}.lambda? #=> false * * Proc.new is the same as +proc+. * * Proc.new {}.lambda? #=> false * * +lambda+, +proc+ and Proc.new preserve the tricks of * a Proc object given by & argument. * * lambda(&lambda {}).lambda? #=> true * proc(&lambda {}).lambda? #=> true * Proc.new(&lambda {}).lambda? #=> true * * lambda(&proc {}).lambda? #=> false * proc(&proc {}).lambda? #=> false * Proc.new(&proc {}).lambda? #=> false * * A Proc object generated by & argument has the tricks * * def n(&b) b.lambda? end * n {} #=> false * * The & argument preserves the tricks if a Proc object * is given by & argument. * * n(&lambda {}) #=> true * n(&proc {}) #=> false * n(&Proc.new {}) #=> false * * A Proc object converted from a method has no tricks. * * def m() end * method(:m).to_proc.lambda? #=> true * * n(&method(:m)) #=> true * n(&method(:m).to_proc) #=> true * * +define_method+ is treated the same as method definition. * The defined method has no tricks. * * class C * define_method(:d) {} * end * C.new.d(1,2) #=> ArgumentError * C.new.method(:d).to_proc.lambda? #=> true * * +define_method+ always defines a method without the tricks, * even if a non-lambda Proc object is given. * This is the only exception for which the tricks are not preserved. * * class C * define_method(:e, &proc {}) * end * C.new.e(1,2) #=> ArgumentError * C.new.method(:e).to_proc.lambda? #=> true * * This exception insures that methods never have tricks * and makes it easy to have wrappers to define methods that behave as usual. * * class C * def self.def2(name, &body) * define_method(name, &body) * end * * def2(:f) {} * end * C.new.f(1,2) #=> ArgumentError * * The wrapper def2 defines a method which has no tricks. * */ VALUE rb_proc_lambda_p(VALUE procval) { rb_proc_t *proc; GetProcPtr(procval, proc); return proc->is_lambda ? Qtrue : Qfalse; } /* Binding */ static void binding_free(void *ptr) { rb_binding_t *bind; RUBY_FREE_ENTER("binding"); if (ptr) { bind = ptr; ruby_xfree(bind); } RUBY_FREE_LEAVE("binding"); } static void binding_mark(void *ptr) { rb_binding_t *bind = ptr; RUBY_MARK_ENTER("binding"); RUBY_MARK_UNLESS_NULL(bind->env); RUBY_MARK_UNLESS_NULL(bind->path); RUBY_MARK_LEAVE("binding"); } static size_t binding_memsize(const void *ptr) { return sizeof(rb_binding_t); } const rb_data_type_t ruby_binding_data_type = { "binding", { binding_mark, binding_free, binding_memsize, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; VALUE rb_binding_alloc(VALUE klass) { VALUE obj; rb_binding_t *bind; obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind); return obj; } /* :nodoc: */ static VALUE binding_dup(VALUE self) { VALUE bindval = rb_binding_alloc(rb_cBinding); rb_binding_t *src, *dst; GetBindingPtr(self, src); GetBindingPtr(bindval, dst); dst->env = src->env; dst->path = src->path; dst->first_lineno = src->first_lineno; return bindval; } /* :nodoc: */ static VALUE binding_clone(VALUE self) { VALUE bindval = binding_dup(self); CLONESETUP(bindval, self); return bindval; } VALUE rb_binding_new(void) { rb_thread_t *th = GET_THREAD(); return rb_vm_make_binding(th, th->cfp); } /* * call-seq: * binding -> a_binding * * Returns a +Binding+ object, describing the variable and * method bindings at the point of call. This object can be used when * calling +eval+ to execute the evaluated command in this * environment. See also the description of class +Binding+. * * def get_binding(param) * return binding * end * b = get_binding("hello") * eval("param", b) #=> "hello" */ static VALUE rb_f_binding(VALUE self) { return rb_binding_new(); } /* * call-seq: * binding.eval(string [, filename [,lineno]]) -> obj * * Evaluates the Ruby expression(s) in string, in the * binding's context. If the optional filename and * lineno parameters are present, they will be used when * reporting syntax errors. * * def get_binding(param) * return binding * end * b = get_binding("hello") * b.eval("param") #=> "hello" */ static VALUE bind_eval(int argc, VALUE *argv, VALUE bindval) { VALUE args[4]; rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]); args[1] = bindval; return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */); } static VALUE * get_local_variable_ptr(VALUE envval, ID lid) { rb_env_t *env; do { const rb_iseq_t *iseq; unsigned int i; GetEnvPtr(envval, env); iseq = env->block.iseq; if (RUBY_VM_NORMAL_ISEQ_P(iseq)) { for (i=0; ibody->local_table_size; i++) { if (iseq->body->local_table[i] == lid) { return &env->env[i]; } } } else { return NULL; } } while ((envval = rb_vm_env_prev_envval(env)) != Qfalse); return NULL; } /* * check local variable name. * returns ID if it's an already interned symbol, or 0 with setting * local name in String to *namep. */ static ID check_local_id(VALUE bindval, volatile VALUE *pname) { ID lid = rb_check_id(pname); VALUE name = *pname; if (lid) { if (!rb_is_local_id(lid)) { rb_name_err_raise("wrong local variable name `%1$s' for %2$s", bindval, ID2SYM(lid)); } } else { if (!rb_is_local_name(name)) { rb_name_err_raise("wrong local variable name `%1$s' for %2$s", bindval, name); } return 0; } return lid; } /* * call-seq: * binding.local_variables -> Array * * Returns the +symbol+ names of the binding's local variables * * def foo * a = 1 * 2.times do |n| * binding.local_variables #=> [:a, :n] * end * end * * This method is short version of the following code. * * binding.eval("local_variables") * */ static VALUE bind_local_variables(VALUE bindval) { const rb_binding_t *bind; const rb_env_t *env; GetBindingPtr(bindval, bind); GetEnvPtr(bind->env, env); return rb_vm_env_local_variables(env); } /* * call-seq: * binding.local_variable_get(symbol) -> obj * * Returns a +value+ of local variable +symbol+. * * def foo * a = 1 * binding.local_variable_get(:a) #=> 1 * binding.local_variable_get(:b) #=> NameError * end * * This method is short version of the following code. * * binding.eval("#{symbol}") * */ static VALUE bind_local_variable_get(VALUE bindval, VALUE sym) { ID lid = check_local_id(bindval, &sym); const rb_binding_t *bind; const VALUE *ptr; if (!lid) goto undefined; GetBindingPtr(bindval, bind); if ((ptr = get_local_variable_ptr(bind->env, lid)) == NULL) { sym = ID2SYM(lid); undefined: rb_name_err_raise("local variable `%1$s' not defined for %2$s", bindval, sym); } return *ptr; } /* * call-seq: * binding.local_variable_set(symbol, obj) -> obj * * Set local variable named +symbol+ as +obj+. * * def foo * a = 1 * bind = binding * bind.local_variable_set(:a, 2) # set existing local variable `a' * bind.local_variable_set(:b, 3) # create new local variable `b' * # `b' exists only in binding. * p bind.local_variable_get(:a) #=> 2 * p bind.local_variable_get(:b) #=> 3 * p a #=> 2 * p b #=> NameError * end * * This method is a similar behavior of the following code * * binding.eval("#{symbol} = #{obj}") * * if obj can be dumped in Ruby code. */ static VALUE bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val) { ID lid = check_local_id(bindval, &sym); rb_binding_t *bind; VALUE *ptr; if (!lid) lid = rb_intern_str(sym); GetBindingPtr(bindval, bind); if ((ptr = get_local_variable_ptr(bind->env, lid)) == NULL) { /* not found. create new env */ ptr = rb_binding_add_dynavars(bind, 1, &lid); } *ptr = val; return val; } /* * call-seq: * binding.local_variable_defined?(symbol) -> obj * * Returns a +true+ if a local variable +symbol+ exists. * * def foo * a = 1 * binding.local_variable_defined?(:a) #=> true * binding.local_variable_defined?(:b) #=> false * end * * This method is short version of the following code. * * binding.eval("defined?(#{symbol}) == 'local-variable'") * */ static VALUE bind_local_variable_defined_p(VALUE bindval, VALUE sym) { ID lid = check_local_id(bindval, &sym); const rb_binding_t *bind; if (!lid) return Qfalse; GetBindingPtr(bindval, bind); return get_local_variable_ptr(bind->env, lid) ? Qtrue : Qfalse; } /* * call-seq: * binding.receiver -> object * * Returns the bound receiver of the binding object. */ static VALUE bind_receiver(VALUE bindval) { const rb_binding_t *bind; const rb_env_t *env; GetBindingPtr(bindval, bind); GetEnvPtr(bind->env, env); return env->block.self; } static VALUE cfunc_proc_new(VALUE klass, VALUE ifunc, int8_t is_lambda) { rb_proc_t *proc; cfunc_proc_t *sproc; VALUE procval = TypedData_Make_Struct(klass, cfunc_proc_t, &proc_data_type, sproc); sproc->env[1] = VM_ENVVAL_BLOCK_PTR(0); proc = &sproc->basic; proc->block.ep = sproc->env+1; proc->block.iseq = (rb_iseq_t *)ifunc; proc->block.proc = procval; proc->is_lambda = is_lambda; return procval; } static VALUE sym_proc_new(VALUE klass, VALUE sym) { return cfunc_proc_new(klass, sym, 0); } VALUE rb_func_proc_new(rb_block_call_func_t func, VALUE val) { return cfunc_proc_new(rb_cProc, (VALUE)IFUNC_NEW(func, val, 0), 0); } VALUE rb_func_lambda_new(rb_block_call_func_t func, VALUE val) { return cfunc_proc_new(rb_cProc, (VALUE)IFUNC_NEW(func, val, 0), 1); } static const char proc_without_block[] = "tried to create Proc object without a block"; static VALUE proc_new(VALUE klass, int8_t is_lambda) { VALUE procval = Qnil; rb_thread_t *th = GET_THREAD(); rb_control_frame_t *cfp = th->cfp; rb_block_t *block; if (!(block = rb_vm_control_frame_block_ptr(cfp))) { #if !PROC_NEW_REQUIRES_BLOCK cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp); if ((block = rb_vm_control_frame_block_ptr(cfp)) != 0) { if (is_lambda) { rb_warn(proc_without_block); } } #else if (0) #endif else { rb_raise(rb_eArgError, proc_without_block); } } procval = block->proc; if (procval) { if (SYMBOL_P(procval)) { return (klass != rb_cProc) ? sym_proc_new(klass, procval) : rb_sym_to_proc(procval); } else if (RBASIC_CLASS(procval) == klass) { return procval; } else { VALUE newprocval = proc_dup(procval); RBASIC_SET_CLASS(newprocval, klass); return newprocval; } } procval = rb_vm_make_proc_lambda(th, block, klass, is_lambda); return procval; } /* * call-seq: * Proc.new {|...| block } -> a_proc * Proc.new -> a_proc * * Creates a new Proc object, bound to the current * context. Proc::new may be called without a block only * within a method with an attached block, in which case that block is * converted to the Proc object. * * def proc_from * Proc.new * end * proc = proc_from { "hello" } * proc.call #=> "hello" */ static VALUE rb_proc_s_new(int argc, VALUE *argv, VALUE klass) { VALUE block = proc_new(klass, FALSE); rb_obj_call_init(block, argc, argv); return block; } /* * call-seq: * proc { |...| block } -> a_proc * * Equivalent to Proc.new. */ VALUE rb_block_proc(void) { return proc_new(rb_cProc, FALSE); } /* * call-seq: * lambda { |...| block } -> a_proc * * Equivalent to Proc.new, except the resulting Proc objects * check the number of parameters passed when called. */ VALUE rb_block_lambda(void) { return proc_new(rb_cProc, TRUE); } /* Document-method: === * * call-seq: * proc === obj -> result_of_proc * * Invokes the block with +obj+ as the proc's parameter like Proc#call. It * is to allow a proc object to be a target of +when+ clause in a case * statement. */ /* CHECKME: are the argument checking semantics correct? */ /* * call-seq: * prc.call(params,...) -> obj * prc[params,...] -> obj * prc.(params,...) -> obj * * Invokes the block, setting the block's parameters to the values in * params using something close to method calling semantics. * Generates a warning if multiple values are passed to a proc that * expects just one (previously this silently converted the parameters * to an array). Note that prc.() invokes * prc.call() with the parameters given. It's a syntax sugar to * hide "call". * * Returns the value of the last expression evaluated in the block. See * also Proc#yield. * * a_proc = Proc.new { |scalar, *values| values.collect { |value| value*scalar } } * a_proc.call(9, 1, 2, 3) #=> [9, 18, 27] * a_proc[9, 1, 2, 3] #=> [9, 18, 27] * a_proc.(9, 1, 2, 3) #=> [9, 18, 27] * * For procs created using lambda or ->() an error * is generated if the wrong number of parameters are passed to a Proc with * multiple parameters. For procs created using Proc.new or * Kernel.proc, extra parameters are silently discarded. * * a_proc = lambda {|a,b| a} * a_proc.call(1,2,3) * * produces: * * prog.rb:4:in `block in
': wrong number of arguments (given 3, expected 2) (ArgumentError) * from prog.rb:5:in `call' * from prog.rb:5:in `
' * */ #if 0 static VALUE proc_call(int argc, VALUE *argv, VALUE procval) { VALUE vret; const rb_block_t *blockptr = 0; const rb_iseq_t *iseq; rb_proc_t *proc; VALUE passed_procval; GetProcPtr(procval, proc); iseq = proc->block.iseq; if (RUBY_VM_IFUNC_P(iseq) || iseq->body->param.flags.has_block) { if (rb_block_given_p()) { rb_proc_t *passed_proc; passed_procval = rb_block_proc(); GetProcPtr(passed_procval, passed_proc); blockptr = &passed_proc->block; } } vret = rb_vm_invoke_proc(GET_THREAD(), proc, argc, argv, blockptr); RB_GC_GUARD(procval); RB_GC_GUARD(passed_procval); return vret; } #endif #if SIZEOF_LONG > SIZEOF_INT static inline int check_argc(long argc) { if (argc > INT_MAX || argc < 0) { rb_raise(rb_eArgError, "too many arguments (%lu)", (unsigned long)argc); } return (int)argc; } #else #define check_argc(argc) (argc) #endif VALUE rb_proc_call(VALUE self, VALUE args) { VALUE vret; rb_proc_t *proc; GetProcPtr(self, proc); vret = rb_vm_invoke_proc(GET_THREAD(), proc, check_argc(RARRAY_LEN(args)), RARRAY_CONST_PTR(args), 0); RB_GC_GUARD(self); RB_GC_GUARD(args); return vret; } VALUE rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE pass_procval) { VALUE vret; rb_proc_t *proc; rb_block_t *block = 0; GetProcPtr(self, proc); if (!NIL_P(pass_procval)) { rb_proc_t *pass_proc; GetProcPtr(pass_procval, pass_proc); block = &pass_proc->block; } vret = rb_vm_invoke_proc(GET_THREAD(), proc, argc, argv, block); RB_GC_GUARD(self); RB_GC_GUARD(pass_procval); return vret; } /* * call-seq: * prc.arity -> fixnum * * Returns the number of mandatory arguments. If the block * is declared to take no arguments, returns 0. If the block is known * to take exactly n arguments, returns n. * If the block has optional arguments, returns -n-1, where n is the * number of mandatory arguments, with the exception for blocks that * are not lambdas and have only a finite number of optional arguments; * in this latter case, returns n. * Keywords arguments will considered as a single additional argument, * that argument being mandatory if any keyword argument is mandatory. * A proc with no argument declarations * is the same as a block declaring || as its arguments. * * proc {}.arity #=> 0 * proc { || }.arity #=> 0 * proc { |a| }.arity #=> 1 * proc { |a, b| }.arity #=> 2 * proc { |a, b, c| }.arity #=> 3 * proc { |*a| }.arity #=> -1 * proc { |a, *b| }.arity #=> -2 * proc { |a, *b, c| }.arity #=> -3 * proc { |x:, y:, z:0| }.arity #=> 1 * proc { |*a, x:, y:0| }.arity #=> -2 * * proc { |x=0| }.arity #=> 0 * lambda { |x=0| }.arity #=> -1 * proc { |x=0, y| }.arity #=> 1 * lambda { |x=0, y| }.arity #=> -2 * proc { |x=0, y=0| }.arity #=> 0 * lambda { |x=0, y=0| }.arity #=> -1 * proc { |x, y=0| }.arity #=> 1 * lambda { |x, y=0| }.arity #=> -2 * proc { |(x, y), z=0| }.arity #=> 1 * lambda { |(x, y), z=0| }.arity #=> -2 * proc { |a, x:0, y:0| }.arity #=> 1 * lambda { |a, x:0, y:0| }.arity #=> -2 */ static VALUE proc_arity(VALUE self) { int arity = rb_proc_arity(self); return INT2FIX(arity); } static inline int rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max) { *max = iseq->body->param.flags.has_rest == FALSE ? iseq->body->param.lead_num + iseq->body->param.opt_num + iseq->body->param.post_num + (iseq->body->param.flags.has_kw == TRUE || iseq->body->param.flags.has_kwrest == TRUE) : UNLIMITED_ARGUMENTS; return iseq->body->param.lead_num + iseq->body->param.post_num + (iseq->body->param.flags.has_kw && iseq->body->param.keyword->required_num > 0); } static int rb_block_min_max_arity(rb_block_t *block, int *max) { const rb_iseq_t *iseq = block->iseq; if (iseq) { if (RUBY_VM_NORMAL_ISEQ_P(iseq)) { return rb_iseq_min_max_arity(iseq, max); } else { if (IS_METHOD_PROC_ISEQ(iseq)) { const struct vm_ifunc *ifunc = (struct vm_ifunc *)iseq; /* e.g. method(:foo).to_proc.arity */ return method_min_max_arity((VALUE)ifunc->data, max); } } } *max = UNLIMITED_ARGUMENTS; return 0; } /* * Returns the number of required parameters and stores the maximum * number of parameters in max, or UNLIMITED_ARGUMENTS if no max. * For non-lambda procs, the maximum is the number of non-ignored * parameters even though there is no actual limit to the number of parameters */ static int rb_proc_min_max_arity(VALUE self, int *max) { rb_proc_t *proc; rb_block_t *block; GetProcPtr(self, proc); block = &proc->block; return rb_block_min_max_arity(block, max); } int rb_proc_arity(VALUE self) { rb_proc_t *proc; int max, min = rb_proc_min_max_arity(self, &max); GetProcPtr(self, proc); return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1; } int rb_block_arity(void) { int min, max; rb_thread_t *th = GET_THREAD(); rb_control_frame_t *cfp = th->cfp; rb_block_t *block = rb_vm_control_frame_block_ptr(cfp); VALUE proc_value; if (!block) rb_raise(rb_eArgError, "no block given"); min = rb_block_min_max_arity(block, &max); proc_value = block->proc; if (proc_value) { if (SYMBOL_P(proc_value)) { return -1; } else { rb_proc_t *proc; GetProcPtr(proc_value, proc); if (proc) return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1; } } return max != UNLIMITED_ARGUMENTS ? min : -min-1; } const rb_iseq_t * rb_proc_get_iseq(VALUE self, int *is_proc) { const rb_proc_t *proc; const rb_iseq_t *iseq; GetProcPtr(self, proc); iseq = proc->block.iseq; if (is_proc) *is_proc = !proc->is_lambda; if (RUBY_VM_IFUNC_P(iseq)) { const struct vm_ifunc *ifunc = (struct vm_ifunc *)iseq; iseq = 0; if (IS_METHOD_PROC_IFUNC(ifunc)) { /* method(:foo).to_proc */ iseq = rb_method_iseq((VALUE)ifunc->data); if (is_proc) *is_proc = 0; } return iseq; } else if (SYMBOL_P(iseq)) { return NULL; } else { return rb_iseq_check(iseq); } } static VALUE iseq_location(const rb_iseq_t *iseq) { VALUE loc[2]; if (!iseq) return Qnil; rb_iseq_check(iseq); loc[0] = iseq->body->location.path; if (iseq->body->line_info_table) { loc[1] = rb_iseq_first_lineno(iseq); } else { loc[1] = Qnil; } return rb_ary_new4(2, loc); } /* * call-seq: * prc.source_location -> [String, Fixnum] * * Returns the Ruby source filename and line number containing this proc * or +nil+ if this proc was not defined in Ruby (i.e. native) */ VALUE rb_proc_location(VALUE self) { return iseq_location(rb_proc_get_iseq(self, 0)); } static VALUE unnamed_parameters(int arity) { VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity); int n = (arity < 0) ? ~arity : arity; ID req, rest; CONST_ID(req, "req"); a = rb_ary_new3(1, ID2SYM(req)); OBJ_FREEZE(a); for (; n; --n) { rb_ary_push(param, a); } if (arity < 0) { CONST_ID(rest, "rest"); rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest))); } return param; } /* * call-seq: * prc.parameters -> array * * Returns the parameter information of this proc. * * prc = lambda{|x, y=42, *other|} * prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]] */ static VALUE rb_proc_parameters(VALUE self) { int is_proc; const rb_iseq_t *iseq = rb_proc_get_iseq(self, &is_proc); if (!iseq) { return unnamed_parameters(rb_proc_arity(self)); } return rb_iseq_parameters(iseq, is_proc); } st_index_t rb_hash_proc(st_index_t hash, VALUE prc) { rb_proc_t *proc; GetProcPtr(prc, proc); hash = rb_hash_uint(hash, (st_index_t)proc->block.iseq); return rb_hash_uint(hash, (st_index_t)proc->block.ep >> 16); } VALUE rb_sym_to_proc(VALUE sym) { static VALUE sym_proc_cache = Qfalse; enum {SYM_PROC_CACHE_SIZE = 67}; VALUE proc; long index; ID id; VALUE *aryp; if (!sym_proc_cache) { sym_proc_cache = rb_ary_tmp_new(SYM_PROC_CACHE_SIZE * 2); rb_gc_register_mark_object(sym_proc_cache); rb_ary_store(sym_proc_cache, SYM_PROC_CACHE_SIZE*2 - 1, Qnil); } id = SYM2ID(sym); index = (id % SYM_PROC_CACHE_SIZE) << 1; aryp = RARRAY_PTR(sym_proc_cache); if (aryp[index] == sym) { return aryp[index + 1]; } else { proc = sym_proc_new(rb_cProc, ID2SYM(id)); aryp[index] = sym; aryp[index + 1] = proc; return proc; } } /* * call-seq: * prc.hash -> integer * * Returns a hash value corresponding to proc body. * * See also Object#hash. */ static VALUE proc_hash(VALUE self) { st_index_t hash; hash = rb_hash_start(0); hash = rb_hash_proc(hash, self); hash = rb_hash_end(hash); return LONG2FIX(hash); } /* * call-seq: * prc.to_s -> string * * Returns the unique identifier for this proc, along with * an indication of where the proc was defined. */ static VALUE proc_to_s(VALUE self) { VALUE str = 0; rb_proc_t *proc; const char *cname = rb_obj_classname(self); const rb_iseq_t *iseq; const char *is_lambda; GetProcPtr(self, proc); iseq = proc->block.iseq; is_lambda = proc->is_lambda ? " (lambda)" : ""; if (RUBY_VM_NORMAL_ISEQ_P(iseq) && rb_iseq_check(iseq)) { int first_lineno = 0; if (iseq->body->line_info_table) { first_lineno = FIX2INT(rb_iseq_first_lineno(iseq)); } str = rb_sprintf("#<%s:%p@%"PRIsVALUE":%d%s>", cname, (void *)self, iseq->body->location.path, first_lineno, is_lambda); } else if (SYMBOL_P(iseq)) { str = rb_sprintf("#<%s:%p(&%+"PRIsVALUE")%s>", cname, (void *)self, (VALUE)iseq, is_lambda); } else { str = rb_sprintf("#<%s:%p%s>", cname, (void *)proc->block.iseq, is_lambda); } if (OBJ_TAINTED(self)) { OBJ_TAINT(str); } return str; } /* * call-seq: * prc.to_proc -> proc * * Part of the protocol for converting objects to Proc * objects. Instances of class Proc simply return * themselves. */ static VALUE proc_to_proc(VALUE self) { return self; } static void bm_mark(void *ptr) { struct METHOD *data = ptr; rb_gc_mark(data->recv); rb_gc_mark(data->klass); rb_gc_mark((VALUE)data->me); } static size_t bm_memsize(const void *ptr) { return sizeof(struct METHOD); } static const rb_data_type_t method_data_type = { "method", { bm_mark, RUBY_TYPED_DEFAULT_FREE, bm_memsize, }, 0, 0, RUBY_TYPED_FREE_IMMEDIATELY }; VALUE rb_obj_is_method(VALUE m) { if (rb_typeddata_is_kind_of(m, &method_data_type)) { return Qtrue; } else { return Qfalse; } } static int respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope) { /* TODO: merge with obj_respond_to() */ ID rmiss = idRespond_to_missing; if (obj == Qundef) return 0; if (rb_method_basic_definition_p(klass, rmiss)) return 0; return RTEST(rb_funcall(obj, rmiss, 2, sym, scope ? Qfalse : Qtrue)); } static VALUE mnew_missing(VALUE klass, VALUE obj, ID id, ID rid, VALUE mclass) { struct METHOD *data; VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data); rb_method_entry_t *me; rb_method_definition_t *def; RB_OBJ_WRITE(method, &data->recv, obj); RB_OBJ_WRITE(method, &data->klass, klass); def = ZALLOC(rb_method_definition_t); def->type = VM_METHOD_TYPE_MISSING; def->original_id = id; me = rb_method_entry_create(id, klass, METHOD_VISI_UNDEF, def); RB_OBJ_WRITE(method, &data->me, me); OBJ_INFECT(method, klass); return method; } static VALUE mnew_internal(const rb_method_entry_t *me, VALUE klass, VALUE obj, ID id, VALUE mclass, int scope, int error) { struct METHOD *data; VALUE method; ID rid = id; rb_method_visibility_t visi = METHOD_VISI_UNDEF; again: if (UNDEFINED_METHOD_ENTRY_P(me)) { if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) { return mnew_missing(klass, obj, id, rid, mclass); } if (!error) return Qnil; rb_print_undef(klass, id, METHOD_VISI_UNDEF); } if (visi == METHOD_VISI_UNDEF) { visi = METHOD_ENTRY_VISI(me); if (scope && (visi != METHOD_VISI_PUBLIC)) { if (!error) return Qnil; rb_print_inaccessible(klass, id, visi); } } if (me->def->type == VM_METHOD_TYPE_ZSUPER) { if (me->defined_class) { VALUE klass = RCLASS_SUPER(me->defined_class); id = me->def->original_id; me = (rb_method_entry_t *)rb_callable_method_entry_without_refinements(klass, id); } else { VALUE klass = RCLASS_SUPER(me->owner); id = me->def->original_id; me = rb_method_entry_without_refinements(klass, id); } goto again; } while (klass != me->owner && (FL_TEST(klass, FL_SINGLETON) || RB_TYPE_P(klass, T_ICLASS))) { klass = RCLASS_SUPER(klass); } method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data); RB_OBJ_WRITE(method, &data->recv, obj); RB_OBJ_WRITE(method, &data->klass, klass); RB_OBJ_WRITE(method, &data->me, me); OBJ_INFECT(method, klass); return method; } static VALUE mnew_from_me(const rb_method_entry_t *me, VALUE klass, VALUE obj, ID id, VALUE mclass, int scope) { return mnew_internal(me, klass, obj, id, mclass, scope, TRUE); } static VALUE mnew(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope) { const rb_method_entry_t *me; if (obj == Qundef) { /* UnboundMethod */ me = rb_method_entry_without_refinements(klass, id); } else { me = (rb_method_entry_t *)rb_callable_method_entry_without_refinements(klass, id); } return mnew_from_me(me, klass, obj, id, mclass, scope); } static inline VALUE method_entry_defined_class(const rb_method_entry_t *me) { VALUE defined_class = me->defined_class; return defined_class ? defined_class : me->owner; } /********************************************************************** * * Document-class : Method * * Method objects are created by Object#method, and are * associated with a particular object (not just with a class). They * may be used to invoke the method within the object, and as a block * associated with an iterator. They may also be unbound from one * object (creating an UnboundMethod) and bound to * another. * * class Thing * def square(n) * n*n * end * end * thing = Thing.new * meth = thing.method(:square) * * meth.call(9) #=> 81 * [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9] * */ /* * call-seq: * meth.eql?(other_meth) -> true or false * meth == other_meth -> true or false * * Two method objects are equal if they are bound to the same * object and refer to the same method definition and their owners are the * same class or module. */ static VALUE method_eq(VALUE method, VALUE other) { struct METHOD *m1, *m2; VALUE klass1, klass2; if (!rb_obj_is_method(other)) return Qfalse; if (CLASS_OF(method) != CLASS_OF(other)) return Qfalse; Check_TypedStruct(method, &method_data_type); m1 = (struct METHOD *)DATA_PTR(method); m2 = (struct METHOD *)DATA_PTR(other); klass1 = method_entry_defined_class(m1->me); klass2 = method_entry_defined_class(m2->me); if (!rb_method_entry_eq(m1->me, m2->me) || klass1 != klass2 || m1->klass != m2->klass || m1->recv != m2->recv) { return Qfalse; } return Qtrue; } /* * call-seq: * meth.hash -> integer * * Returns a hash value corresponding to the method object. * * See also Object#hash. */ static VALUE method_hash(VALUE method) { struct METHOD *m; st_index_t hash; TypedData_Get_Struct(method, struct METHOD, &method_data_type, m); hash = rb_hash_start((st_index_t)m->recv); hash = rb_hash_method_entry(hash, m->me); hash = rb_hash_end(hash); return INT2FIX(hash); } /* * call-seq: * meth.unbind -> unbound_method * * Dissociates meth from its current receiver. The resulting * UnboundMethod can subsequently be bound to a new object * of the same class (see UnboundMethod). */ static VALUE method_unbind(VALUE obj) { VALUE method; struct METHOD *orig, *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig); method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD, &method_data_type, data); RB_OBJ_WRITE(method, &data->recv, Qundef); RB_OBJ_WRITE(method, &data->klass, orig->klass); RB_OBJ_WRITE(method, &data->me, rb_method_entry_clone(orig->me)); OBJ_INFECT(method, obj); return method; } /* * call-seq: * meth.receiver -> object * * Returns the bound receiver of the method object. */ static VALUE method_receiver(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return data->recv; } /* * call-seq: * meth.name -> symbol * * Returns the name of the method. */ static VALUE method_name(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return ID2SYM(data->me->called_id); } /* * call-seq: * meth.original_name -> symbol * * Returns the original name of the method. */ static VALUE method_original_name(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return ID2SYM(data->me->def->original_id); } /* * call-seq: * meth.owner -> class_or_module * * Returns the class or module that defines the method. */ static VALUE method_owner(VALUE obj) { struct METHOD *data; TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data); return data->me->owner; } void rb_method_name_error(VALUE klass, VALUE str) { #define MSG(s) rb_fstring_cstr("undefined method `%1$s' for"s" `%2$s'") VALUE c = klass; VALUE s; if (FL_TEST(c, FL_SINGLETON)) { VALUE obj = rb_ivar_get(klass, attached); switch (BUILTIN_TYPE(obj)) { case T_MODULE: case T_CLASS: c = obj; s = MSG(""); } goto normal_class; } else if (RB_TYPE_P(c, T_MODULE)) { s = MSG(" module"); } else { normal_class: s = MSG(" class"); } rb_name_err_raise_str(s, c, str); #undef MSG } static VALUE obj_method(VALUE obj, VALUE vid, int scope) { ID id = rb_check_id(&vid); const VALUE klass = CLASS_OF(obj); const VALUE mclass = rb_cMethod; if (!id) { if (respond_to_missing_p(klass, obj, vid, scope)) { id = rb_intern_str(vid); return mnew_missing(klass, obj, id, id, mclass); } rb_method_name_error(klass, vid); } return mnew(klass, obj, id, mclass, scope); } /* * call-seq: * obj.method(sym) -> method * * Looks up the named method as a receiver in obj, returning a * Method object (or raising NameError). The * Method object acts as a closure in obj's object * instance, so instance variables and the value of self * remain available. * * class Demo * def initialize(n) * @iv = n * end * def hello() * "Hello, @iv = #{@iv}" * end * end * * k = Demo.new(99) * m = k.method(:hello) * m.call #=> "Hello, @iv = 99" * * l = Demo.new('Fred') * m = l.method("hello") * m.call #=> "Hello, @iv = Fred" */ VALUE rb_obj_method(VALUE obj, VALUE vid) { return obj_method(obj, vid, FALSE); } /* * call-seq: * obj.public_method(sym) -> method * * Similar to _method_, searches public method only. */ VALUE rb_obj_public_method(VALUE obj, VALUE vid) { return obj_method(obj, vid, TRUE); } /* * call-seq: * obj.singleton_method(sym) -> method * * Similar to _method_, searches singleton method only. * * class Demo * def initialize(n) * @iv = n * end * def hello() * "Hello, @iv = #{@iv}" * end * end * * k = Demo.new(99) * def k.hi * "Hi, @iv = #{@iv}" * end * m = k.singleton_method(:hi) * m.call #=> "Hi, @iv = 99" * m = k.singleton_method(:hello) #=> NameError */ VALUE rb_obj_singleton_method(VALUE obj, VALUE vid) { const rb_method_entry_t *me; VALUE klass; ID id = rb_check_id(&vid); if (!id) { if (!NIL_P(klass = rb_singleton_class_get(obj)) && respond_to_missing_p(klass, obj, vid, FALSE)) { id = rb_intern_str(vid); return mnew_missing(klass, obj, id, id, rb_cMethod); } undef: rb_name_err_raise("undefined singleton method `%1$s' for `%2$s'", obj, vid); } if (NIL_P(klass = rb_singleton_class_get(obj)) || UNDEFINED_METHOD_ENTRY_P(me = rb_method_entry_at(klass, id)) || UNDEFINED_REFINED_METHOD_P(me->def)) { vid = ID2SYM(id); goto undef; } return mnew_from_me(me, klass, obj, id, rb_cMethod, FALSE); } /* * call-seq: * mod.instance_method(symbol) -> unbound_method * * Returns an +UnboundMethod+ representing the given * instance method in _mod_. * * class Interpreter * def do_a() print "there, "; end * def do_d() print "Hello "; end * def do_e() print "!\n"; end * def do_v() print "Dave"; end * Dispatcher = { * "a" => instance_method(:do_a), * "d" => instance_method(:do_d), * "e" => instance_method(:do_e), * "v" => instance_method(:do_v) * } * def interpret(string) * string.each_char {|b| Dispatcher[b].bind(self).call } * end * end * * interpreter = Interpreter.new * interpreter.interpret('dave') * * produces: * * Hello there, Dave! */ static VALUE rb_mod_instance_method(VALUE mod, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(mod, vid); } return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE); } /* * call-seq: * mod.public_instance_method(symbol) -> unbound_method * * Similar to _instance_method_, searches public method only. */ static VALUE rb_mod_public_instance_method(VALUE mod, VALUE vid) { ID id = rb_check_id(&vid); if (!id) { rb_method_name_error(mod, vid); } return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE); } /* * call-seq: * define_method(symbol, method) -> symbol * define_method(symbol) { block } -> symbol * * Defines an instance method in the receiver. The _method_ * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object. * If a block is specified, it is used as the method body. This block * is evaluated using instance_eval, a point that is * tricky to demonstrate because define_method is private. * (This is why we resort to the +send+ hack in this example.) * * class A * def fred * puts "In Fred" * end * def create_method(name, &block) * self.class.send(:define_method, name, &block) * end * define_method(:wilma) { puts "Charge it!" } * end * class B < A * define_method(:barney, instance_method(:fred)) * end * a = B.new * a.barney * a.wilma * a.create_method(:betty) { p self } * a.betty * * produces: * * In Fred * Charge it! * # */ static VALUE rb_mod_define_method(int argc, VALUE *argv, VALUE mod) { ID id; VALUE body; VALUE name; const rb_cref_t *cref = rb_vm_cref_in_context(mod, mod); const rb_scope_visibility_t default_scope_visi = {METHOD_VISI_PUBLIC, FALSE}; const rb_scope_visibility_t *scope_visi = &default_scope_visi; int is_method = FALSE; if (cref) { scope_visi = CREF_SCOPE_VISI(cref); } rb_check_arity(argc, 1, 2); name = argv[0]; id = rb_check_id(&name); if (argc == 1) { #if PROC_NEW_REQUIRES_BLOCK body = rb_block_lambda(); #else rb_thread_t *th = GET_THREAD(); rb_block_t *block = rb_vm_control_frame_block_ptr(th->cfp); if (!block) rb_raise(rb_eArgError, proc_without_block); body = block->proc; if (SYMBOL_P(body)) { body = rb_sym_to_proc(body); } else if (!body) { body = rb_vm_make_proc_lambda(th, block, rb_cProc, TRUE); } #endif } else { body = argv[1]; if (rb_obj_is_method(body)) { is_method = TRUE; } else if (rb_obj_is_proc(body)) { is_method = FALSE; } else { rb_raise(rb_eTypeError, "wrong argument type %s (expected Proc/Method)", rb_obj_classname(body)); } } if (!id) id = rb_to_id(name); if (is_method) { struct METHOD *method = (struct METHOD *)DATA_PTR(body); if (method->me->owner != mod && !RB_TYPE_P(method->me->owner, T_MODULE) && !RTEST(rb_class_inherited_p(mod, method->me->owner))) { if (FL_TEST(method->me->owner, FL_SINGLETON)) { rb_raise(rb_eTypeError, "can't bind singleton method to a different class"); } else { rb_raise(rb_eTypeError, "bind argument must be a subclass of % "PRIsVALUE, rb_class_name(method->me->owner)); } } rb_method_entry_set(mod, id, method->me, scope_visi->method_visi); if (scope_visi->module_func) { rb_method_entry_set(rb_singleton_class(mod), id, method->me, METHOD_VISI_PUBLIC); } RB_GC_GUARD(body); } else { rb_proc_t *proc; body = proc_dup(body); GetProcPtr(body, proc); if (RUBY_VM_NORMAL_ISEQ_P(proc->block.iseq)) { proc->is_lambda = TRUE; proc->is_from_method = TRUE; } rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)body, scope_visi->method_visi); if (scope_visi->module_func) { rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, METHOD_VISI_PUBLIC); } } return ID2SYM(id); } /* * call-seq: * define_singleton_method(symbol, method) -> new_method * define_singleton_method(symbol) { block } -> proc * * Defines a singleton method in the receiver. The _method_ * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object. * If a block is specified, it is used as the method body. * * class A * class << self * def class_name * to_s * end * end * end * A.define_singleton_method(:who_am_i) do * "I am: #{class_name}" * end * A.who_am_i # ==> "I am: A" * * guy = "Bob" * guy.define_singleton_method(:hello) { "#{self}: Hello there!" } * guy.hello #=> "Bob: Hello there!" */ static VALUE rb_obj_define_method(int argc, VALUE *argv, VALUE obj) { VALUE klass = rb_singleton_class(obj); return rb_mod_define_method(argc, argv, klass); } /* * define_method(symbol, method) -> new_method * define_method(symbol) { block } -> proc * * Defines a global function by _method_ or the block. */ static VALUE top_define_method(int argc, VALUE *argv, VALUE obj) { rb_thread_t *th = GET_THREAD(); VALUE klass; klass = th->top_wrapper; if (klass) { rb_warning("main.define_method in the wrapped load is effective only in wrapper module"); } else { klass = rb_cObject; } return rb_mod_define_method(argc, argv, klass); } /* * call-seq: * method.clone -> new_method * * Returns a clone of this method. * * class A * def foo * return "bar" * end * end * * m = A.new.method(:foo) * m.call # => "bar" * n = m.clone.call # => "bar" */ static VALUE method_clone(VALUE self) { VALUE clone; struct METHOD *orig, *data; TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig); clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data); CLONESETUP(clone, self); RB_OBJ_WRITE(clone, &data->recv, orig->recv); RB_OBJ_WRITE(clone, &data->klass, orig->klass); RB_OBJ_WRITE(clone, &data->me, rb_method_entry_clone(orig->me)); return clone; } /* * call-seq: * meth.call(args, ...) -> obj * meth[args, ...] -> obj * * Invokes the meth with the specified arguments, returning the * method's return value. * * m = 12.method("+") * m.call(3) #=> 15 * m.call(20) #=> 32 */ VALUE rb_method_call(int argc, const VALUE *argv, VALUE method) { VALUE proc = rb_block_given_p() ? rb_block_proc() : Qnil; return rb_method_call_with_block(argc, argv, method, proc); } static const rb_callable_method_entry_t * method_callable_method_entry(const struct METHOD *data) { if (data->me->defined_class == 0) rb_bug("method_callable_method_entry: not callable."); return (const rb_callable_method_entry_t *)data->me; } VALUE rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE pass_procval) { VALUE result = Qnil; /* OK */ struct METHOD *data; int state; volatile int safe = -1; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); if (data->recv == Qundef) { rb_raise(rb_eTypeError, "can't call unbound method; bind first"); } PUSH_TAG(); if (OBJ_TAINTED(method)) { const int safe_level_to_run = RUBY_SAFE_LEVEL_MAX; safe = rb_safe_level(); if (safe < safe_level_to_run) { rb_set_safe_level_force(safe_level_to_run); } } if ((state = EXEC_TAG()) == 0) { rb_thread_t *th = GET_THREAD(); rb_block_t *block = 0; if (!NIL_P(pass_procval)) { rb_proc_t *pass_proc; GetProcPtr(pass_procval, pass_proc); block = &pass_proc->block; } th->passed_block = block; VAR_INITIALIZED(data); result = rb_vm_call(th, data->recv, data->me->called_id, argc, argv, method_callable_method_entry(data)); } POP_TAG(); if (safe >= 0) rb_set_safe_level_force(safe); if (state) JUMP_TAG(state); return result; } /********************************************************************** * * Document-class: UnboundMethod * * Ruby supports two forms of objectified methods. Class * Method is used to represent methods that are associated * with a particular object: these method objects are bound to that * object. Bound method objects for an object can be created using * Object#method. * * Ruby also supports unbound methods; methods objects that are not * associated with a particular object. These can be created either by * calling Module#instance_method or by calling * unbind on a bound method object. The result of both of * these is an UnboundMethod object. * * Unbound methods can only be called after they are bound to an * object. That object must be a kind_of? the method's original * class. * * class Square * def area * @side * @side * end * def initialize(side) * @side = side * end * end * * area_un = Square.instance_method(:area) * * s = Square.new(12) * area = area_un.bind(s) * area.call #=> 144 * * Unbound methods are a reference to the method at the time it was * objectified: subsequent changes to the underlying class will not * affect the unbound method. * * class Test * def test * :original * end * end * um = Test.instance_method(:test) * class Test * def test * :modified * end * end * t = Test.new * t.test #=> :modified * um.bind(t).call #=> :original * */ /* * call-seq: * umeth.bind(obj) -> method * * Bind umeth to obj. If Klass was the class * from which umeth was obtained, * obj.kind_of?(Klass) must be true. * * class A * def test * puts "In test, class = #{self.class}" * end * end * class B < A * end * class C < B * end * * * um = B.instance_method(:test) * bm = um.bind(C.new) * bm.call * bm = um.bind(B.new) * bm.call * bm = um.bind(A.new) * bm.call * * produces: * * In test, class = C * In test, class = B * prog.rb:16:in `bind': bind argument must be an instance of B (TypeError) * from prog.rb:16 */ static VALUE umethod_bind(VALUE method, VALUE recv) { struct METHOD *data, *bound; VALUE methclass, klass; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); methclass = data->me->owner; if (!RB_TYPE_P(methclass, T_MODULE) && methclass != CLASS_OF(recv) && !rb_obj_is_kind_of(recv, methclass)) { if (FL_TEST(methclass, FL_SINGLETON)) { rb_raise(rb_eTypeError, "singleton method called for a different object"); } else { rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE, rb_class_name(methclass)); } } klass = CLASS_OF(recv); method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound); RB_OBJ_WRITE(method, &bound->recv, recv); RB_OBJ_WRITE(method, &bound->klass, data->klass); RB_OBJ_WRITE(method, &bound->me, rb_method_entry_clone(data->me)); if (RB_TYPE_P(bound->me->owner, T_MODULE)) { VALUE ic = rb_class_search_ancestor(klass, bound->me->owner); if (ic) { klass = ic; } else { klass = rb_include_class_new(methclass, klass); } RB_OBJ_WRITE(method, &bound->me, rb_method_entry_complement_defined_class(bound->me, klass)); } return method; } /* * Returns the number of required parameters and stores the maximum * number of parameters in max, or UNLIMITED_ARGUMENTS * if there is no maximum. */ static int rb_method_entry_min_max_arity(const rb_method_entry_t *me, int *max) { const rb_method_definition_t *def = me->def; if (!def) return *max = 0; switch (def->type) { case VM_METHOD_TYPE_CFUNC: if (def->body.cfunc.argc < 0) { *max = UNLIMITED_ARGUMENTS; return 0; } return *max = check_argc(def->body.cfunc.argc); case VM_METHOD_TYPE_ZSUPER: *max = UNLIMITED_ARGUMENTS; return 0; case VM_METHOD_TYPE_ATTRSET: return *max = 1; case VM_METHOD_TYPE_IVAR: return *max = 0; case VM_METHOD_TYPE_ALIAS: return rb_method_entry_min_max_arity(def->body.alias.original_me, max); case VM_METHOD_TYPE_BMETHOD: return rb_proc_min_max_arity(def->body.proc, max); case VM_METHOD_TYPE_ISEQ: { const rb_iseq_t *iseq = rb_iseq_check(def->body.iseq.iseqptr); return rb_iseq_min_max_arity(iseq, max); } case VM_METHOD_TYPE_UNDEF: case VM_METHOD_TYPE_NOTIMPLEMENTED: return *max = 0; case VM_METHOD_TYPE_MISSING: *max = UNLIMITED_ARGUMENTS; return 0; case VM_METHOD_TYPE_OPTIMIZED: { switch (def->body.optimize_type) { case OPTIMIZED_METHOD_TYPE_SEND: *max = UNLIMITED_ARGUMENTS; return 0; case OPTIMIZED_METHOD_TYPE_CALL: *max = UNLIMITED_ARGUMENTS; return 0; default: break; } break; } case VM_METHOD_TYPE_REFINED: *max = UNLIMITED_ARGUMENTS; return 0; } rb_bug("rb_method_entry_min_max_arity: invalid method entry type (%d)", def->type); UNREACHABLE; } int rb_method_entry_arity(const rb_method_entry_t *me) { int max, min = rb_method_entry_min_max_arity(me, &max); return min == max ? min : -min-1; } /* * call-seq: * meth.arity -> fixnum * * Returns an indication of the number of arguments accepted by a * method. Returns a nonnegative integer for methods that take a fixed * number of arguments. For Ruby methods that take a variable number of * arguments, returns -n-1, where n is the number of required * arguments. For methods written in C, returns -1 if the call takes a * variable number of arguments. * * class C * def one; end * def two(a); end * def three(*a); end * def four(a, b); end * def five(a, b, *c); end * def six(a, b, *c, &d); end * end * c = C.new * c.method(:one).arity #=> 0 * c.method(:two).arity #=> 1 * c.method(:three).arity #=> -1 * c.method(:four).arity #=> 2 * c.method(:five).arity #=> -3 * c.method(:six).arity #=> -3 * * "cat".method(:size).arity #=> 0 * "cat".method(:replace).arity #=> 1 * "cat".method(:squeeze).arity #=> -1 * "cat".method(:count).arity #=> -1 */ static VALUE method_arity_m(VALUE method) { int n = method_arity(method); return INT2FIX(n); } static int method_arity(VALUE method) { struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); return rb_method_entry_arity(data->me); } static const rb_method_entry_t * original_method_entry(VALUE mod, ID id) { const rb_method_entry_t *me; while ((me = rb_method_entry(mod, id)) != 0) { const rb_method_definition_t *def = me->def; if (def->type != VM_METHOD_TYPE_ZSUPER) break; mod = RCLASS_SUPER(me->owner); id = def->original_id; } return me; } static int method_min_max_arity(VALUE method, int *max) { const struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); return rb_method_entry_min_max_arity(data->me, max); } int rb_mod_method_arity(VALUE mod, ID id) { const rb_method_entry_t *me = original_method_entry(mod, id); if (!me) return 0; /* should raise? */ return rb_method_entry_arity(me); } int rb_obj_method_arity(VALUE obj, ID id) { return rb_mod_method_arity(CLASS_OF(obj), id); } static inline const rb_method_definition_t * method_def(VALUE method) { const struct METHOD *data; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); return data->me->def; } static const rb_iseq_t * method_def_iseq(const rb_method_definition_t *def) { switch (def->type) { case VM_METHOD_TYPE_ISEQ: return rb_iseq_check(def->body.iseq.iseqptr); case VM_METHOD_TYPE_BMETHOD: return rb_proc_get_iseq(def->body.proc, 0); case VM_METHOD_TYPE_ALIAS: return method_def_iseq(def->body.alias.original_me->def); case VM_METHOD_TYPE_CFUNC: case VM_METHOD_TYPE_ATTRSET: case VM_METHOD_TYPE_IVAR: case VM_METHOD_TYPE_ZSUPER: case VM_METHOD_TYPE_UNDEF: case VM_METHOD_TYPE_NOTIMPLEMENTED: case VM_METHOD_TYPE_OPTIMIZED: case VM_METHOD_TYPE_MISSING: case VM_METHOD_TYPE_REFINED: break; } return NULL; } const rb_iseq_t * rb_method_iseq(VALUE method) { return method_def_iseq(method_def(method)); } static const rb_cref_t * method_cref(VALUE method) { const rb_method_definition_t *def = method_def(method); again: switch (def->type) { case VM_METHOD_TYPE_ISEQ: return def->body.iseq.cref; case VM_METHOD_TYPE_ALIAS: def = def->body.alias.original_me->def; goto again; default: return NULL; } } static VALUE method_def_location(const rb_method_definition_t *def) { if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) { if (!def->body.attr.location) return Qnil; return rb_ary_dup(def->body.attr.location); } return iseq_location(method_def_iseq(def)); } VALUE rb_method_entry_location(const rb_method_entry_t *me) { if (!me) return Qnil; return method_def_location(me->def); } VALUE rb_mod_method_location(VALUE mod, ID id) { const rb_method_entry_t *me = original_method_entry(mod, id); return rb_method_entry_location(me); } VALUE rb_obj_method_location(VALUE obj, ID id) { return rb_mod_method_location(CLASS_OF(obj), id); } /* * call-seq: * meth.source_location -> [String, Fixnum] * * Returns the Ruby source filename and line number containing this method * or nil if this method was not defined in Ruby (i.e. native) */ VALUE rb_method_location(VALUE method) { return method_def_location(method_def(method)); } /* * call-seq: * meth.parameters -> array * * Returns the parameter information of this method. * * def foo(bar); end * method(:foo).parameters #=> [[:req, :bar]] * * def foo(bar, baz, bat, &blk); end * method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:req, :bat], [:block, :blk]] * * def foo(bar, *args); end * method(:foo).parameters #=> [[:req, :bar], [:rest, :args]] * * def foo(bar, baz, *args, &blk); end * method(:foo).parameters #=> [[:req, :bar], [:req, :baz], [:rest, :args], [:block, :blk]] */ static VALUE rb_method_parameters(VALUE method) { const rb_iseq_t *iseq = rb_method_iseq(method); if (!iseq) { return unnamed_parameters(method_arity(method)); } return rb_iseq_parameters(iseq, 0); } /* * call-seq: * meth.to_s -> string * meth.inspect -> string * * Returns the name of the underlying method. * * "cat".method(:count).inspect #=> "#" */ static VALUE method_inspect(VALUE method) { struct METHOD *data; VALUE str; const char *s; const char *sharp = "#"; VALUE mklass; VALUE defined_class; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); str = rb_str_buf_new2("#<"); s = rb_obj_classname(method); rb_str_buf_cat2(str, s); rb_str_buf_cat2(str, ": "); mklass = data->klass; if (data->me->def->type == VM_METHOD_TYPE_ALIAS) { defined_class = data->me->def->body.alias.original_me->owner; } else { defined_class = method_entry_defined_class(data->me); } if (RB_TYPE_P(defined_class, T_ICLASS)) { defined_class = RBASIC_CLASS(defined_class); } if (FL_TEST(mklass, FL_SINGLETON)) { VALUE v = rb_ivar_get(mklass, attached); if (data->recv == Qundef) { rb_str_buf_append(str, rb_inspect(mklass)); } else if (data->recv == v) { rb_str_buf_append(str, rb_inspect(v)); sharp = "."; } else { rb_str_buf_append(str, rb_inspect(data->recv)); rb_str_buf_cat2(str, "("); rb_str_buf_append(str, rb_inspect(v)); rb_str_buf_cat2(str, ")"); sharp = "."; } } else { rb_str_buf_append(str, rb_class_name(mklass)); if (defined_class != mklass) { rb_str_buf_cat2(str, "("); rb_str_buf_append(str, rb_class_name(defined_class)); rb_str_buf_cat2(str, ")"); } } rb_str_buf_cat2(str, sharp); rb_str_append(str, rb_id2str(data->me->called_id)); if (data->me->called_id != data->me->def->original_id) { rb_str_catf(str, "(%"PRIsVALUE")", rb_id2str(data->me->def->original_id)); } if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) { rb_str_buf_cat2(str, " (not-implemented)"); } rb_str_buf_cat2(str, ">"); return str; } static VALUE mproc(VALUE method) { return rb_funcallv(rb_mRubyVMFrozenCore, idProc, 0, 0); } static VALUE mlambda(VALUE method) { return rb_funcallv(rb_mRubyVMFrozenCore, idLambda, 0, 0); } static VALUE bmcall(VALUE args, VALUE method, int argc, VALUE *argv, VALUE passed_proc) { volatile VALUE a; VALUE ret; if (CLASS_OF(args) != rb_cArray) { args = rb_ary_new3(1, args); argc = 1; } else { argc = check_argc(RARRAY_LEN(args)); } ret = rb_method_call_with_block(argc, RARRAY_PTR(args), method, passed_proc); RB_GC_GUARD(a) = args; return ret; } VALUE rb_proc_new( VALUE (*func)(ANYARGS), /* VALUE yieldarg[, VALUE procarg] */ VALUE val) { VALUE procval = rb_iterate(mproc, 0, func, val); return procval; } /* * call-seq: * meth.to_proc -> proc * * Returns a Proc object corresponding to this method. */ static VALUE method_to_proc(VALUE method) { VALUE procval; rb_proc_t *proc; /* * class Method * def to_proc * lambda{|*args| * self.call(*args) * } * end * end */ procval = rb_iterate(mlambda, 0, bmcall, method); GetProcPtr(procval, proc); proc->is_from_method = 1; return procval; } /* * call-seq: * meth.super_method -> method * * Returns a Method of superclass which would be called when super is used * or nil if there is no method on superclass. */ static VALUE method_super_method(VALUE method) { const struct METHOD *data; VALUE super_class; const rb_method_entry_t *me; TypedData_Get_Struct(method, struct METHOD, &method_data_type, data); super_class = RCLASS_SUPER(method_entry_defined_class(data->me)); if (!super_class) return Qnil; me = (rb_method_entry_t *)rb_callable_method_entry_without_refinements(super_class, data->me->called_id); if (!me) return Qnil; return mnew_internal(me, super_class, data->recv, data->me->called_id, rb_obj_class(method), FALSE, FALSE); } /* * call-seq: * local_jump_error.exit_value -> obj * * Returns the exit value associated with this +LocalJumpError+. */ static VALUE localjump_xvalue(VALUE exc) { return rb_iv_get(exc, "@exit_value"); } /* * call-seq: * local_jump_error.reason -> symbol * * The reason this block was terminated: * :break, :redo, :retry, :next, :return, or :noreason. */ static VALUE localjump_reason(VALUE exc) { return rb_iv_get(exc, "@reason"); } rb_cref_t *rb_vm_cref_new_toplevel(void); /* vm.c */ static VALUE env_clone(VALUE envval, VALUE receiver, const rb_cref_t *cref) { VALUE newenvval = TypedData_Wrap_Struct(RBASIC_CLASS(envval), RTYPEDDATA_TYPE(envval), 0); rb_env_t *env, *newenv; int envsize; if (cref == NULL) { cref = rb_vm_cref_new_toplevel(); } GetEnvPtr(envval, env); envsize = sizeof(rb_env_t) + (env->env_size - 1) * sizeof(VALUE); newenv = xmalloc(envsize); memcpy(newenv, env, envsize); RTYPEDDATA_DATA(newenvval) = newenv; newenv->block.self = receiver; newenv->block.ep[-1] = (VALUE)cref; return newenvval; } /* * call-seq: * prc.binding -> binding * * Returns the binding associated with prc. Note that * Kernel#eval accepts either a Proc or a * Binding object as its second parameter. * * def fred(param) * proc {} * end * * b = fred(99) * eval("param", b.binding) #=> 99 */ static VALUE proc_binding(VALUE self) { VALUE bindval, envval; const rb_proc_t *proc; const rb_iseq_t *iseq; rb_binding_t *bind; GetProcPtr(self, proc); envval = rb_vm_proc_envval(proc); iseq = proc->block.iseq; if (SYMBOL_P(iseq)) goto error; if (RUBY_VM_IFUNC_P(iseq)) { struct vm_ifunc *ifunc = (struct vm_ifunc *)iseq; if (IS_METHOD_PROC_IFUNC(ifunc)) { VALUE method = (VALUE)ifunc->data; envval = env_clone(envval, method_receiver(method), method_cref(method)); iseq = rb_method_iseq(method); } else { error: rb_raise(rb_eArgError, "Can't create Binding from C level Proc"); } } bindval = rb_binding_alloc(rb_cBinding); GetBindingPtr(bindval, bind); bind->env = envval; if (iseq) { rb_iseq_check(iseq); bind->path = iseq->body->location.path; bind->first_lineno = FIX2INT(rb_iseq_first_lineno(iseq)); } else { bind->path = Qnil; bind->first_lineno = 0; } return bindval; } static VALUE curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc); static VALUE make_curry_proc(VALUE proc, VALUE passed, VALUE arity) { VALUE args = rb_ary_new3(3, proc, passed, arity); rb_proc_t *procp; int is_lambda; GetProcPtr(proc, procp); is_lambda = procp->is_lambda; rb_ary_freeze(passed); rb_ary_freeze(args); proc = rb_proc_new(curry, args); GetProcPtr(proc, procp); procp->is_lambda = is_lambda; return proc; } static VALUE curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc) { VALUE proc, passed, arity; proc = RARRAY_AREF(args, 0); passed = RARRAY_AREF(args, 1); arity = RARRAY_AREF(args, 2); passed = rb_ary_plus(passed, rb_ary_new4(argc, argv)); rb_ary_freeze(passed); if (RARRAY_LEN(passed) < FIX2INT(arity)) { if (!NIL_P(passed_proc)) { rb_warn("given block not used"); } arity = make_curry_proc(proc, passed, arity); return arity; } else { return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), passed_proc); } } /* * call-seq: * prc.curry -> a_proc * prc.curry(arity) -> a_proc * * Returns a curried proc. If the optional arity argument is given, * it determines the number of arguments. * A curried proc receives some arguments. If a sufficient number of * arguments are supplied, it passes the supplied arguments to the original * proc and returns the result. Otherwise, returns another curried proc that * takes the rest of arguments. * * b = proc {|x, y, z| (x||0) + (y||0) + (z||0) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> 6 * p b.curry(5)[1][2][3][4][5] #=> 6 * p b.curry(5)[1, 2][3, 4][5] #=> 6 * p b.curry(1)[1] #=> 1 * * b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> 10 * p b.curry(5)[1][2][3][4][5] #=> 15 * p b.curry(5)[1, 2][3, 4][5] #=> 15 * p b.curry(1)[1] #=> 1 * * b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> wrong number of arguments (given 4, expected 3) * p b.curry(5) #=> wrong number of arguments (given 5, expected 3) * p b.curry(1) #=> wrong number of arguments (given 1, expected 3) * * b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) } * p b.curry[1][2][3] #=> 6 * p b.curry[1, 2][3, 4] #=> 10 * p b.curry(5)[1][2][3][4][5] #=> 15 * p b.curry(5)[1, 2][3, 4][5] #=> 15 * p b.curry(1) #=> wrong number of arguments (given 1, expected 3) * * b = proc { :foo } * p b.curry[] #=> :foo */ static VALUE proc_curry(int argc, const VALUE *argv, VALUE self) { int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity); VALUE arity; rb_scan_args(argc, argv, "01", &arity); if (NIL_P(arity)) { arity = INT2FIX(min_arity); } else { sarity = FIX2INT(arity); if (rb_proc_lambda_p(self)) { rb_check_arity(sarity, min_arity, max_arity); } } return make_curry_proc(self, rb_ary_new(), arity); } /* * call-seq: * meth.curry -> proc * meth.curry(arity) -> proc * * Returns a curried proc based on the method. When the proc is called with a number of * arguments that is lower than the method's arity, then another curried proc is returned. * Only when enough arguments have been supplied to satisfy the method signature, will the * method actually be called. * * The optional arity argument should be supplied when currying methods with * variable arguments to determine how many arguments are needed before the method is * called. * * def foo(a,b,c) * [a, b, c] * end * * proc = self.method(:foo).curry * proc2 = proc.call(1, 2) #=> # * proc2.call(3) #=> [1,2,3] * * def vararg(*args) * args * end * * proc = self.method(:vararg).curry(4) * proc2 = proc.call(:x) #=> # * proc3 = proc2.call(:y, :z) #=> # * proc3.call(:a) #=> [:x, :y, :z, :a] */ static VALUE rb_method_curry(int argc, const VALUE *argv, VALUE self) { VALUE proc = method_to_proc(self); return proc_curry(argc, argv, proc); } /* * Document-class: LocalJumpError * * Raised when Ruby can't yield as requested. * * A typical scenario is attempting to yield when no block is given: * * def call_block * yield 42 * end * call_block * * raises the exception: * * LocalJumpError: no block given (yield) * * A more subtle example: * * def get_me_a_return * Proc.new { return 42 } * end * get_me_a_return.call * * raises the exception: * * LocalJumpError: unexpected return */ /* * Document-class: SystemStackError * * Raised in case of a stack overflow. * * def me_myself_and_i * me_myself_and_i * end * me_myself_and_i * * raises the exception: * * SystemStackError: stack level too deep */ /* * Proc objects are blocks of code that have been bound to * a set of local variables. Once bound, the code may be called in * different contexts and still access those variables. * * def gen_times(factor) * return Proc.new {|n| n*factor } * end * * times3 = gen_times(3) * times5 = gen_times(5) * * times3.call(12) #=> 36 * times5.call(5) #=> 25 * times3.call(times5.call(4)) #=> 60 * */ void Init_Proc(void) { /* Proc */ rb_cProc = rb_define_class("Proc", rb_cObject); rb_undef_alloc_func(rb_cProc); rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1); rb_add_method(rb_cProc, rb_intern("call"), VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); rb_add_method(rb_cProc, rb_intern("[]"), VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); rb_add_method(rb_cProc, rb_intern("==="), VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); rb_add_method(rb_cProc, rb_intern("yield"), VM_METHOD_TYPE_OPTIMIZED, (void *)OPTIMIZED_METHOD_TYPE_CALL, METHOD_VISI_PUBLIC); rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0); rb_define_method(rb_cProc, "arity", proc_arity, 0); rb_define_method(rb_cProc, "clone", proc_clone, 0); rb_define_method(rb_cProc, "dup", proc_dup, 0); rb_define_method(rb_cProc, "hash", proc_hash, 0); rb_define_method(rb_cProc, "to_s", proc_to_s, 0); rb_define_alias(rb_cProc, "inspect", "to_s"); rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0); rb_define_method(rb_cProc, "binding", proc_binding, 0); rb_define_method(rb_cProc, "curry", proc_curry, -1); rb_define_method(rb_cProc, "source_location", rb_proc_location, 0); rb_define_method(rb_cProc, "parameters", rb_proc_parameters, 0); /* Exceptions */ rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError); rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0); rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0); rb_eSysStackError = rb_define_class("SystemStackError", rb_eException); rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep"); /* utility functions */ rb_define_global_function("proc", rb_block_proc, 0); rb_define_global_function("lambda", rb_block_lambda, 0); /* Method */ rb_cMethod = rb_define_class("Method", rb_cObject); rb_undef_alloc_func(rb_cMethod); rb_undef_method(CLASS_OF(rb_cMethod), "new"); rb_define_method(rb_cMethod, "==", method_eq, 1); rb_define_method(rb_cMethod, "eql?", method_eq, 1); rb_define_method(rb_cMethod, "hash", method_hash, 0); rb_define_method(rb_cMethod, "clone", method_clone, 0); rb_define_method(rb_cMethod, "call", rb_method_call, -1); rb_define_method(rb_cMethod, "curry", rb_method_curry, -1); rb_define_method(rb_cMethod, "[]", rb_method_call, -1); rb_define_method(rb_cMethod, "arity", method_arity_m, 0); rb_define_method(rb_cMethod, "inspect", method_inspect, 0); rb_define_method(rb_cMethod, "to_s", method_inspect, 0); rb_define_method(rb_cMethod, "to_proc", method_to_proc, 0); rb_define_method(rb_cMethod, "receiver", method_receiver, 0); rb_define_method(rb_cMethod, "name", method_name, 0); rb_define_method(rb_cMethod, "original_name", method_original_name, 0); rb_define_method(rb_cMethod, "owner", method_owner, 0); rb_define_method(rb_cMethod, "unbind", method_unbind, 0); rb_define_method(rb_cMethod, "source_location", rb_method_location, 0); rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0); rb_define_method(rb_cMethod, "super_method", method_super_method, 0); rb_define_method(rb_mKernel, "method", rb_obj_method, 1); rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1); rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1); /* UnboundMethod */ rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject); rb_undef_alloc_func(rb_cUnboundMethod); rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new"); rb_define_method(rb_cUnboundMethod, "==", method_eq, 1); rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1); rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0); rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0); rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0); rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0); rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0); rb_define_method(rb_cUnboundMethod, "name", method_name, 0); rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0); rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0); rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1); rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0); rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0); rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0); /* Module#*_method */ rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1); rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1); rb_define_private_method(rb_cModule, "define_method", rb_mod_define_method, -1); /* Kernel */ rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1); rb_define_private_method(rb_singleton_class(rb_vm_top_self()), "define_method", top_define_method, -1); } /* * Objects of class Binding encapsulate the execution * context at some particular place in the code and retain this context * for future use. The variables, methods, value of self, * and possibly an iterator block that can be accessed in this context * are all retained. Binding objects can be created using * Kernel#binding, and are made available to the callback * of Kernel#set_trace_func. * * These binding objects can be passed as the second argument of the * Kernel#eval method, establishing an environment for the * evaluation. * * class Demo * def initialize(n) * @secret = n * end * def get_binding * return binding() * end * end * * k1 = Demo.new(99) * b1 = k1.get_binding * k2 = Demo.new(-3) * b2 = k2.get_binding * * eval("@secret", b1) #=> 99 * eval("@secret", b2) #=> -3 * eval("@secret") #=> nil * * Binding objects have no class-specific methods. * */ void Init_Binding(void) { rb_cBinding = rb_define_class("Binding", rb_cObject); rb_undef_alloc_func(rb_cBinding); rb_undef_method(CLASS_OF(rb_cBinding), "new"); rb_define_method(rb_cBinding, "clone", binding_clone, 0); rb_define_method(rb_cBinding, "dup", binding_dup, 0); rb_define_method(rb_cBinding, "eval", bind_eval, -1); rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0); rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1); rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2); rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1); rb_define_method(rb_cBinding, "receiver", bind_receiver, 0); rb_define_global_function("binding", rb_f_binding, 0); }