/**********************************************************************
cont.c -
$Author$
created at: Thu May 23 09:03:43 2007
Copyright (C) 2007 Koichi Sasada
**********************************************************************/
#include "ruby/ruby.h"
#include "vm_core.h"
#include "gc.h"
#include "eval_intern.h"
#define CAPTURE_JUST_VALID_VM_STACK 1
enum context_type {
CONTINUATION_CONTEXT = 0,
FIBER_CONTEXT = 1,
ROOT_FIBER_CONTEXT = 2
};
typedef struct rb_context_struct {
enum context_type type;
VALUE self;
int argc;
VALUE value;
VALUE *vm_stack;
#ifdef CAPTURE_JUST_VALID_VM_STACK
int vm_stack_slen; /* length of stack (head of th->stack) */
int vm_stack_clen; /* length of control frames (tail of th->stack) */
#endif
VALUE *machine_stack;
VALUE *machine_stack_src;
#ifdef __ia64
VALUE *machine_register_stack;
VALUE *machine_register_stack_src;
int machine_register_stack_size;
#endif
rb_thread_t saved_thread;
rb_jmpbuf_t jmpbuf;
int machine_stack_size;
} rb_context_t;
enum fiber_status {
CREATED,
RUNNING,
TERMINATED
};
typedef struct rb_fiber_struct {
rb_context_t cont;
VALUE prev;
enum fiber_status status;
struct rb_fiber_struct *prev_fiber;
struct rb_fiber_struct *next_fiber;
} rb_fiber_t;
static VALUE rb_cContinuation;
static VALUE rb_cFiber;
static VALUE rb_eFiberError;
#define GetContPtr(obj, ptr) \
Data_Get_Struct(obj, rb_context_t, ptr)
#define GetFiberPtr(obj, ptr) do {\
ptr = (rb_fiber_t*)DATA_PTR(obj);\
if (!ptr) rb_raise(rb_eFiberError, "uninitialized fiber");\
} while(0)
NOINLINE(static VALUE cont_capture(volatile int *stat));
void rb_thread_mark(rb_thread_t *th);
static void
cont_mark(void *ptr)
{
RUBY_MARK_ENTER("cont");
if (ptr) {
rb_context_t *cont = ptr;
rb_gc_mark(cont->value);
rb_thread_mark(&cont->saved_thread);
if (cont->vm_stack) {
#ifdef CAPTURE_JUST_VALID_VM_STACK
rb_gc_mark_locations(cont->vm_stack,
cont->vm_stack + cont->vm_stack_slen + cont->vm_stack_clen);
#elif
rb_gc_mark_localtion(cont->vm_stack,
cont->vm_stack, cont->saved_thread.stack_size);
#endif
}
if (cont->machine_stack) {
rb_gc_mark_locations(cont->machine_stack,
cont->machine_stack + cont->machine_stack_size);
}
#ifdef __ia64
if (cont->machine_register_stack) {
rb_gc_mark_locations(cont->machine_register_stack,
cont->machine_register_stack + cont->machine_register_stack_size);
}
#endif
}
RUBY_MARK_LEAVE("cont");
}
static void
cont_free(void *ptr)
{
RUBY_FREE_ENTER("cont");
if (ptr) {
rb_context_t *cont = ptr;
RUBY_FREE_UNLESS_NULL(cont->saved_thread.stack); fflush(stdout);
RUBY_FREE_UNLESS_NULL(cont->machine_stack);
#ifdef __ia64
RUBY_FREE_UNLESS_NULL(cont->machine_register_stack);
#endif
RUBY_FREE_UNLESS_NULL(cont->vm_stack);
/* free rb_cont_t or rb_fiber_t */
ruby_xfree(ptr);
}
RUBY_FREE_LEAVE("cont");
}
static void
fiber_mark(void *ptr)
{
RUBY_MARK_ENTER("cont");
if (ptr) {
rb_fiber_t *fib = ptr;
rb_gc_mark(fib->prev);
cont_mark(&fib->cont);
}
RUBY_MARK_LEAVE("cont");
}
static void
fiber_link_join(rb_fiber_t *fib)
{
VALUE current_fibval = rb_fiber_current();
rb_fiber_t *current_fib;
GetFiberPtr(current_fibval, current_fib);
/* join fiber link */
fib->next_fiber = current_fib->next_fiber;
fib->prev_fiber = current_fib;
current_fib->next_fiber->prev_fiber = fib;
current_fib->next_fiber = fib;
}
static void
fiber_link_remove(rb_fiber_t *fib)
{
fib->prev_fiber->next_fiber = fib->next_fiber;
fib->next_fiber->prev_fiber = fib->prev_fiber;
}
static void
fiber_free(void *ptr)
{
RUBY_FREE_ENTER("fiber");
if (ptr) {
rb_fiber_t *fib = ptr;
if (fib->cont.type != ROOT_FIBER_CONTEXT) {
st_free_table(fib->cont.saved_thread.local_storage);
}
fiber_link_remove(fib);
cont_free(&fib->cont);
}
RUBY_FREE_LEAVE("fiber");
}
static void
cont_save_machine_stack(rb_thread_t *th, rb_context_t *cont)
{
int size;
rb_thread_t *sth = &cont->saved_thread;
SET_MACHINE_STACK_END(&th->machine_stack_end);
#ifdef __ia64
th->machine_register_stack_end = rb_ia64_bsp();
#endif
if (th->machine_stack_start > th->machine_stack_end) {
size = cont->machine_stack_size = th->machine_stack_start - th->machine_stack_end;
cont->machine_stack_src = th->machine_stack_end;
}
else {
size = cont->machine_stack_size = th->machine_stack_end - th->machine_stack_start;
cont->machine_stack_src = th->machine_stack_start;
}
if (cont->machine_stack) {
REALLOC_N(cont->machine_stack, VALUE, size);
}
else {
cont->machine_stack = ALLOC_N(VALUE, size);
}
FLUSH_REGISTER_WINDOWS;
MEMCPY(cont->machine_stack, cont->machine_stack_src, VALUE, size);
#ifdef __ia64
rb_ia64_flushrs();
size = cont->machine_register_stack_size = th->machine_register_stack_end - th->machine_register_stack_start;
cont->machine_register_stack_src = th->machine_register_stack_start;
if (cont->machine_register_stack) {
REALLOC_N(cont->machine_register_stack, VALUE, size);
}
else {
cont->machine_register_stack = ALLOC_N(VALUE, size);
}
MEMCPY(cont->machine_register_stack, cont->machine_register_stack_src, VALUE, size);
#endif
sth->machine_stack_start = sth->machine_stack_end = 0;
#ifdef __ia64
sth->machine_register_stack_start = sth->machine_register_stack_end = 0;
#endif
}
static void
cont_init(rb_context_t *cont)
{
rb_thread_t *th = GET_THREAD();
/* save thread context */
cont->saved_thread = *th;
}
static rb_context_t *
cont_new(VALUE klass)
{
rb_context_t *cont;
volatile VALUE contval;
contval = Data_Make_Struct(klass, rb_context_t, cont_mark, cont_free, cont);
cont->self = contval;
cont_init(cont);
return cont;
}
void vm_stack_to_heap(rb_thread_t *th);
static VALUE
cont_capture(volatile int *stat)
{
rb_context_t *cont;
rb_thread_t *th = GET_THREAD(), *sth;
volatile VALUE contval;
vm_stack_to_heap(th);
cont = cont_new(rb_cContinuation);
contval = cont->self;
sth = &cont->saved_thread;
#ifdef CAPTURE_JUST_VALID_VM_STACK
cont->vm_stack_slen = th->cfp->sp + th->mark_stack_len - th->stack;
cont->vm_stack_clen = th->stack + th->stack_size - (VALUE*)th->cfp;
cont->vm_stack = ALLOC_N(VALUE, cont->vm_stack_slen + cont->vm_stack_clen);
MEMCPY(cont->vm_stack, th->stack, VALUE, cont->vm_stack_slen);
MEMCPY(cont->vm_stack + cont->vm_stack_slen, (VALUE*)th->cfp, VALUE, cont->vm_stack_clen);
#elif
cont->vm_stack = ALLOC_N(VALUE, th->stack_size);
MEMCPY(cont->vm_stack, th->stack, VALUE, th->stack_size);
#endif
sth->stack = 0;
cont_save_machine_stack(th, cont);
if (ruby_setjmp(cont->jmpbuf)) {
VALUE value;
value = cont->value;
cont->value = Qnil;
*stat = 1;
return value;
}
else {
*stat = 0;
return cont->self;
}
}
NOINLINE(NORETURN(static void cont_restore_1(rb_context_t *)));
static void
cont_restore_1(rb_context_t *cont)
{
rb_thread_t *th = GET_THREAD(), *sth = &cont->saved_thread;
/* restore thread context */
if (cont->type == CONTINUATION_CONTEXT) {
/* continuation */
VALUE fib;
th->fiber = sth->fiber;
fib = th->fiber ? th->fiber : th->root_fiber;
if (fib) {
rb_context_t *fcont;
GetContPtr(fib, fcont);
th->stack_size = fcont->saved_thread.stack_size;
th->stack = fcont->saved_thread.stack;
}
#ifdef CAPTURE_JUST_VALID_VM_STACK
MEMCPY(th->stack, cont->vm_stack, VALUE, cont->vm_stack_slen);
MEMCPY(th->stack + sth->stack_size - cont->vm_stack_clen,
cont->vm_stack + cont->vm_stack_slen, VALUE, cont->vm_stack_clen);
#elif
MEMCPY(th->stack, cont->vm_stack, VALUE, sth->stack_size);
#endif
}
else {
/* fiber */
th->stack = sth->stack;
th->stack_size = sth->stack_size;
th->local_storage = sth->local_storage;
th->fiber = cont->self;
}
th->cfp = sth->cfp;
th->safe_level = sth->safe_level;
th->raised_flag = sth->raised_flag;
th->state = sth->state;
th->status = sth->status;
th->tag = sth->tag;
th->trap_tag = sth->trap_tag;
th->errinfo = sth->errinfo;
th->first_proc = sth->first_proc;
/* restore machine stack */
#ifdef _M_AMD64
{
/* workaround for x64 SEH */
jmp_buf buf;
setjmp(buf);
((_JUMP_BUFFER*)(&cont->jmpbuf))->Frame =
((_JUMP_BUFFER*)(&buf))->Frame;
}
#endif
if (cont->machine_stack_src) {
FLUSH_REGISTER_WINDOWS;
MEMCPY(cont->machine_stack_src, cont->machine_stack,
VALUE, cont->machine_stack_size);
}
#ifdef __ia64
if (cont->machine_register_stack_src) {
MEMCPY(cont->machine_register_stack_src, cont->machine_register_stack,
VALUE, cont->machine_register_stack_size);
}
#endif
ruby_longjmp(cont->jmpbuf, 1);
}
NORETURN(NOINLINE(static void cont_restore_0(rb_context_t *, VALUE *)));
#ifdef __ia64
#define C(a) rse_##a##0, rse_##a##1, rse_##a##2, rse_##a##3, rse_##a##4
#define E(a) rse_##a##0= rse_##a##1= rse_##a##2= rse_##a##3= rse_##a##4
static volatile int C(a), C(b), C(c), C(d), C(e);
static volatile int C(f), C(g), C(h), C(i), C(j);
static volatile int C(k), C(l), C(m), C(n), C(o);
static volatile int C(p), C(q), C(r), C(s), C(t);
#if 0
{/* the above lines make cc-mode.el confused so much */}
#endif
int rb_dummy_false = 0;
NORETURN(NOINLINE(static void register_stack_extend(rb_context_t *, VALUE *, VALUE *)));
static void
register_stack_extend(rb_context_t *cont, VALUE *vp, VALUE *curr_bsp)
{
if (rb_dummy_false) {
/* use registers as much as possible */
E(a) = E(b) = E(c) = E(d) = E(e) =
E(f) = E(g) = E(h) = E(i) = E(j) =
E(k) = E(l) = E(m) = E(n) = E(o) =
E(p) = E(q) = E(r) = E(s) = E(t) = 0;
E(a) = E(b) = E(c) = E(d) = E(e) =
E(f) = E(g) = E(h) = E(i) = E(j) =
E(k) = E(l) = E(m) = E(n) = E(o) =
E(p) = E(q) = E(r) = E(s) = E(t) = 0;
}
if (curr_bsp < cont->machine_register_stack_src+cont->machine_register_stack_size) {
register_stack_extend(cont, vp, (VALUE*)rb_ia64_bsp());
}
cont_restore_0(cont, vp);
}
#undef C
#undef E
#endif
static void
cont_restore_0(rb_context_t *cont, VALUE *addr_in_prev_frame)
{
if (cont->machine_stack_src) {
#ifdef HAVE_ALLOCA
#define STACK_PAD_SIZE 1
#else
#define STACK_PAD_SIZE 1024
#endif
VALUE space[STACK_PAD_SIZE];
#if !STACK_GROW_DIRECTION
if (addr_in_prev_frame > &space[0]) {
/* Stack grows downward */
#endif
#if STACK_GROW_DIRECTION <= 0
volatile VALUE *const end = cont->machine_stack_src;
if (&space[0] > end) {
# ifdef HAVE_ALLOCA
volatile VALUE *sp = ALLOCA_N(VALUE, &space[0] - end);
(void)sp;
# else
cont_restore_0(cont, &space[0]);
# endif
}
#endif
#if !STACK_GROW_DIRECTION
}
else {
/* Stack grows upward */
#endif
#if STACK_GROW_DIRECTION >= 0
volatile VALUE *const end = cont->machine_stack_src + cont->machine_stack_size;
if (&space[STACK_PAD_SIZE] < end) {
# ifdef HAVE_ALLOCA
volatile VALUE *sp = ALLOCA_N(VALUE, end - &space[STACK_PAD_SIZE]);
(void)sp;
# else
cont_restore_0(cont, &space[STACK_PAD_SIZE-1]);
# endif
}
#endif
#if !STACK_GROW_DIRECTION
}
#endif
}
cont_restore_1(cont);
}
#ifdef __ia64
#define cont_restore_0(cont, vp) register_stack_extend(cont, vp, (VALUE*)rb_ia64_bsp());
#endif
/*
* Document-class: Continuation
*
* Continuation objects are generated by
* Kernel#callcc
. They hold a return address and execution
* context, allowing a nonlocal return to the end of the
* callcc
block from anywhere within a program.
* Continuations are somewhat analogous to a structured version of C's
* setjmp/longjmp
(although they contain more state, so
* you might consider them closer to threads).
*
* For instance:
*
* arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
* callcc{|$cc|}
* puts(message = arr.shift)
* $cc.call unless message =~ /Max/
*
* produces:
*
* Freddie
* Herbie
* Ron
* Max
*
* This (somewhat contrived) example allows the inner loop to abandon
* processing early:
*
* callcc {|cont|
* for i in 0..4
* print "\n#{i}: "
* for j in i*5...(i+1)*5
* cont.call() if j == 17
* printf "%3d", j
* end
* end
* }
* print "\n"
*
* produces:
*
* 0: 0 1 2 3 4
* 1: 5 6 7 8 9
* 2: 10 11 12 13 14
* 3: 15 16
*/
/*
* call-seq:
* callcc {|cont| block } => obj
*
* Generates a Continuation
object, which it passes to the
* associated block. Performing a cont.call
will
* cause the callcc
to return (as will falling through the
* end of the block). The value returned by the callcc
is
* the value of the block, or the value passed to
* cont.call
. See class Continuation
* for more details. Also see Kernel::throw
for
* an alternative mechanism for unwinding a call stack.
*/
static VALUE
rb_callcc(VALUE self)
{
volatile int called;
volatile VALUE val = cont_capture(&called);
if (called) {
return val;
}
else {
return rb_yield(val);
}
}
static VALUE
make_passing_arg(int argc, VALUE *argv)
{
switch(argc) {
case 0:
return Qnil;
case 1:
return argv[0];
default:
return rb_ary_new4(argc, argv);
}
}
/*
* call-seq:
* cont.call(args, ...)
* cont[args, ...]
*
* Invokes the continuation. The program continues from the end of the
* callcc
block. If no arguments are given, the original
* callcc
returns nil
. If one argument is
* given, callcc
returns it. Otherwise, an array
* containing args is returned.
*
* callcc {|cont| cont.call } #=> nil
* callcc {|cont| cont.call 1 } #=> 1
* callcc {|cont| cont.call 1, 2, 3 } #=> [1, 2, 3]
*/
static VALUE
rb_cont_call(int argc, VALUE *argv, VALUE contval)
{
rb_context_t *cont;
rb_thread_t *th = GET_THREAD();
GetContPtr(contval, cont);
if (cont->saved_thread.self != th->self) {
rb_raise(rb_eRuntimeError, "continuation called across threads");
}
if (cont->saved_thread.trap_tag != th->trap_tag) {
rb_raise(rb_eRuntimeError, "continuation called across trap");
}
if (cont->saved_thread.fiber) {
rb_context_t *fcont;
GetContPtr(cont->saved_thread.fiber, fcont);
if (th->fiber != cont->saved_thread.fiber) {
rb_raise(rb_eRuntimeError, "continuation called across fiber");
}
}
cont->argc = argc;
cont->value = make_passing_arg(argc, argv);
cont_restore_0(cont, &contval);
return Qnil; /* unreachable */
}
/*********/
/* fiber */
/*********/
/*
* Document-class: Fiber
*
* Fibers are primitives for implementing light weight cooperative
* concurrency in Ruby. Basically they are a means of creating code blocks
* that can be paused and resumed, much like threads. The main difference
* is that they are never preempted and that the scheduling must be done by
* the programmer and not the VM.
*
* As opposed to other stackless light weight concurrency models, each fiber
* comes with a small 4KB stack. This enables the fiber to be paused from deeply
* nested function calls within the fiber block.
*
* When a fiber is created it will not run automatically. Rather it must be
* be explicitly asked to run using the Fiber#resume
method.
* The code running inside the fiber can give up control by calling
* Fiber.yield
in which case it yields control back to caller
* (the caller of the Fiber#resume
).
*
* Upon yielding or termination the Fiber returns the value of the last
* executed expression
*
* For instance:
*
* fiber = Fiber.new do
* Fiber.yield 1
* 2
* end
*
* puts fiber.resume
* puts fiber.resume
* puts fiber.resume
*
* produces
*
* 1
* 2
* FiberError: dead fiber called
*
* The Fiber#resume
method accepts an arbitary number of
* parameters, if it is the first call to resume
then they
* will be passed as block arguments. Otherwise they will be the return
* value of the call to Fiber.yield
*
* Example:
*
* fiber = Fiber.new do |first|
* second = Fiber.yield first + 2
* end
*
* puts fiber.resume 10
* puts fiber.resume 14
* puts fiber.resume 18
*
* produces
*
* 12
* 14
* FiberError: dead fiber called
*
*/
#define FIBER_VM_STACK_SIZE (4 * 1024)
static VALUE
fiber_alloc(VALUE klass)
{
return Data_Wrap_Struct(klass, fiber_mark, fiber_free, 0);
}
static rb_fiber_t*
fiber_t_alloc(VALUE fibval)
{
rb_fiber_t *fib = ALLOC(rb_fiber_t);
memset(fib, 0, sizeof(rb_fiber_t));
fib->cont.self = fibval;
fib->cont.type = FIBER_CONTEXT;
cont_init(&fib->cont);
fib->prev = Qnil;
fib->status = CREATED;
DATA_PTR(fibval) = fib;
return fib;
}
static VALUE
fiber_init(VALUE fibval, VALUE proc)
{
rb_fiber_t *fib = fiber_t_alloc(fibval);
rb_context_t *cont = &fib->cont;
rb_thread_t *th = &cont->saved_thread;
fiber_link_join(fib);
/* initialize cont */
cont->vm_stack = 0;
th->stack = 0;
th->stack_size = FIBER_VM_STACK_SIZE;
th->stack = ALLOC_N(VALUE, th->stack_size);
th->cfp = (void *)(th->stack + th->stack_size);
th->cfp--;
th->cfp->pc = 0;
th->cfp->sp = th->stack + 1;
th->cfp->bp = 0;
th->cfp->lfp = th->stack;
*th->cfp->lfp = 0;
th->cfp->dfp = th->stack;
th->cfp->self = Qnil;
th->cfp->flag = 0;
th->cfp->iseq = 0;
th->cfp->proc = 0;
th->cfp->block_iseq = 0;
th->tag = 0;
th->local_storage = st_init_numtable();
th->first_proc = proc;
MEMCPY(&cont->jmpbuf, &th->root_jmpbuf, rb_jmpbuf_t, 1);
return fibval;
}
static VALUE
rb_fiber_init(VALUE fibval)
{
return fiber_init(fibval, rb_block_proc());
}
VALUE
rb_fiber_new(VALUE (*func)(ANYARGS), VALUE obj)
{
return fiber_init(fiber_alloc(rb_cFiber), rb_proc_new(func, obj));
}
static VALUE
return_fiber(void)
{
rb_fiber_t *fib;
VALUE curr = rb_fiber_current();
GetFiberPtr(curr, fib);
if (fib->prev == Qnil) {
rb_thread_t *th = GET_THREAD();
if (th->root_fiber != curr) {
return th->root_fiber;
}
else {
rb_raise(rb_eFiberError, "can't yield from root fiber");
}
}
else {
VALUE prev = fib->prev;
fib->prev = Qnil;
return prev;
}
}
VALUE rb_fiber_transfer(VALUE fib, int argc, VALUE *argv);
static void
rb_fiber_terminate(rb_fiber_t *fib)
{
VALUE value = fib->cont.value;
fib->status = TERMINATED;
rb_fiber_transfer(return_fiber(), 1, &value);
}
void
rb_fiber_start(void)
{
rb_thread_t *th = GET_THREAD();
rb_fiber_t *fib;
rb_context_t *cont;
rb_proc_t *proc;
int state;
GetFiberPtr(th->fiber, fib);
cont = &fib->cont;
TH_PUSH_TAG(th);
if ((state = EXEC_TAG()) == 0) {
int argc;
VALUE *argv, args;
GetProcPtr(cont->saved_thread.first_proc, proc);
args = cont->value;
argv = (argc = cont->argc) > 1 ? RARRAY_PTR(args) : &args;
cont->value = Qnil;
th->errinfo = Qnil;
th->local_lfp = proc->block.lfp;
th->local_svar = Qnil;
fib->status = RUNNING;
cont->value = vm_invoke_proc(th, proc, proc->block.self, argc, argv, 0);
}
TH_POP_TAG();
if (state) {
if (TAG_RAISE) {
th->thrown_errinfo = th->errinfo;
}
else {
th->thrown_errinfo =
vm_make_jump_tag_but_local_jump(state, th->errinfo);
}
RUBY_VM_SET_INTERRUPT(th);
}
rb_fiber_terminate(fib);
rb_bug("rb_fiber_start: unreachable");
}
static rb_fiber_t *
root_fiber_alloc(rb_thread_t *th)
{
rb_fiber_t *fib;
/* no need to allocate vm stack */
fib = fiber_t_alloc(fiber_alloc(rb_cFiber));
fib->cont.type = ROOT_FIBER_CONTEXT;
fib->prev_fiber = fib->next_fiber = fib;
return fib;
}
VALUE
rb_fiber_current()
{
rb_thread_t *th = GET_THREAD();
if (th->fiber == 0) {
/* save root */
rb_fiber_t *fib = root_fiber_alloc(th);
th->root_fiber = th->fiber = fib->cont.self;
}
return th->fiber;
}
static VALUE
fiber_store(rb_fiber_t *next_fib)
{
rb_thread_t *th = GET_THREAD();
rb_fiber_t *fib;
if (th->fiber) {
GetFiberPtr(th->fiber, fib);
fib->cont.saved_thread = *th;
}
else {
/* create current fiber */
fib = root_fiber_alloc(th);
th->root_fiber = th->fiber = fib->cont.self;
}
cont_save_machine_stack(th, &fib->cont);
if (ruby_setjmp(fib->cont.jmpbuf)) {
/* restored */
GetFiberPtr(th->fiber, fib);
return fib->cont.value;
}
else {
return Qundef;
}
}
static inline VALUE
fiber_switch(VALUE fibval, int argc, VALUE *argv, int is_resume)
{
VALUE value;
rb_fiber_t *fib;
rb_context_t *cont;
rb_thread_t *th = GET_THREAD();
GetFiberPtr(fibval, fib);
cont = &fib->cont;
if (cont->saved_thread.self != th->self) {
rb_raise(rb_eFiberError, "fiber called across threads");
}
else if (cont->saved_thread.trap_tag != th->trap_tag) {
rb_raise(rb_eFiberError, "fiber called across trap");
}
else if (fib->status == TERMINATED) {
rb_raise(rb_eFiberError, "dead fiber called");
}
if (is_resume) {
fib->prev = rb_fiber_current();
}
cont->argc = argc;
cont->value = make_passing_arg(argc, argv);
if ((value = fiber_store(fib)) == Qundef) {
cont_restore_0(&fib->cont, &value);
rb_bug("rb_fiber_resume: unreachable");
}
RUBY_VM_CHECK_INTS();
return value;
}
VALUE
rb_fiber_transfer(VALUE fib, int argc, VALUE *argv)
{
return fiber_switch(fib, argc, argv, 0);
}
VALUE
rb_fiber_resume(VALUE fibval, int argc, VALUE *argv)
{
rb_fiber_t *fib;
GetFiberPtr(fibval, fib);
if (fib->prev != Qnil) {
rb_raise(rb_eFiberError, "double resume");
}
return fiber_switch(fibval, argc, argv, 1);
}
VALUE
rb_fiber_yield(int argc, VALUE *argv)
{
return rb_fiber_transfer(return_fiber(), argc, argv);
}
/*
* call-seq:
* fiber.alive? -> true or false
*
* Returns true if the fiber can still be resumed (or transferred to).
* After finishing execution of the fiber block this method will always
* return false.
*/
VALUE
rb_fiber_alive_p(VALUE fibval)
{
rb_fiber_t *fib;
GetFiberPtr(fibval, fib);
return fib->status != TERMINATED;
}
/*
* call-seq:
* fiber.resume(args, ...) -> obj
*
* Resumes the fiber from the point at which the last Fiber.yield
* was called, or starts running it if it is the first call to
* resume
. Arguments passed to resume will be the value of
* the Fiber.yield
expression or will be passed as block
* parameters to the fiber's block if this is the first resume
.
*
* Alternatively, when resume is called it evaluates to the arguments passed
* to the next Fiber.yield
statement inside the fiber's block
* or to the block value if it runs to completion without any
* Fiber.yield
*/
static VALUE
rb_fiber_m_resume(int argc, VALUE *argv, VALUE fib)
{
return rb_fiber_resume(fib, argc, argv);
}
/*
* call-seq:
* fiber.transfer(args, ...) -> obj
*
* Transfer control to another fiber, resuming it from where it last
* stopped or starting it if it was not resumed before. The calling
* fiber will be suspended much like in a call to Fiber.yield
.
*
* The fiber which recieves the transfer call is treats it much like
* a resume call. Arguments passed to transfer are treated like those
* passed to resume.
*
* You cannot resume a fiber that transferred control to another one.
* This will cause a double resume error. You need to transfer control
* back to this fiber before it can yield and resume.
*/
static VALUE
rb_fiber_m_transfer(int argc, VALUE *argv, VALUE fib)
{
return rb_fiber_transfer(fib, argc, argv);
}
/*
* call-seq:
* Fiber.yield(args, ...) -> obj
*
* Yields control back to the context that resumed the fiber, passing
* along any arguments that were passed to it. The fiber will resume
* processing at this point when resume
is called next.
* Any arguments passed to the next resume
will be the
* value that this Fiber.yield
expression evaluates to.
*/
static VALUE
rb_fiber_s_yield(int argc, VALUE *argv, VALUE klass)
{
return rb_fiber_yield(argc, argv);
}
/*
* call-seq:
* Fiber.current() -> fiber
*
* Returns the current fiber. You need to require 'fiber'
* before using this method. If you are not running in the context of
* a fiber this method will return the root fiber.
*/
static VALUE
rb_fiber_s_current(VALUE klass)
{
return rb_fiber_current();
}
void
Init_Cont(void)
{
rb_cFiber = rb_define_class("Fiber", rb_cObject);
rb_define_alloc_func(rb_cFiber, fiber_alloc);
rb_eFiberError = rb_define_class("FiberError", rb_eStandardError);
rb_define_singleton_method(rb_cFiber, "yield", rb_fiber_s_yield, -1);
rb_define_method(rb_cFiber, "initialize", rb_fiber_init, 0);
rb_define_method(rb_cFiber, "resume", rb_fiber_m_resume, -1);
}
void
Init_Continuation_body(void)
{
rb_cContinuation = rb_define_class("Continuation", rb_cObject);
rb_undef_alloc_func(rb_cContinuation);
rb_undef_method(CLASS_OF(rb_cContinuation), "new");
rb_define_method(rb_cContinuation, "call", rb_cont_call, -1);
rb_define_method(rb_cContinuation, "[]", rb_cont_call, -1);
rb_define_global_function("callcc", rb_callcc, 0);
}
void
Init_Fiber_as_Coroutine(void)
{
rb_define_method(rb_cFiber, "transfer", rb_fiber_m_transfer, -1);
rb_define_method(rb_cFiber, "alive?", rb_fiber_alive_p, 0);
rb_define_singleton_method(rb_cFiber, "current", rb_fiber_s_current, 0);
}