/**********************************************************************
eval.c -
$Author$
created at: Thu Jun 10 14:22:17 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
Copyright (C) 2000 Information-technology Promotion Agency, Japan
**********************************************************************/
#include "internal.h"
#include "eval_intern.h"
#include "iseq.h"
#include "gc.h"
#include "ruby/vm.h"
#include "vm_core.h"
#include "probes_helper.h"
NORETURN(void rb_raise_jump(VALUE, VALUE));
VALUE rb_eLocalJumpError;
VALUE rb_eSysStackError;
ID ruby_static_id_signo, ruby_static_id_status;
#define id_signo ruby_static_id_signo
#define id_status ruby_static_id_status
#define exception_error GET_VM()->special_exceptions[ruby_error_reenter]
#include "eval_error.c"
#include "eval_jump.c"
#define CLASS_OR_MODULE_P(obj) \
(!SPECIAL_CONST_P(obj) && \
(BUILTIN_TYPE(obj) == T_CLASS || BUILTIN_TYPE(obj) == T_MODULE))
/* Initializes the Ruby VM and builtin libraries.
* @retval 0 if succeeded.
* @retval non-zero an error occurred.
*/
int
ruby_setup(void)
{
static int initialized = 0;
int state;
if (initialized)
return 0;
initialized = 1;
ruby_init_stack((void *)&state);
Init_BareVM();
Init_heap();
Init_vm_objects();
Init_frozen_strings();
PUSH_TAG();
if ((state = EXEC_TAG()) == 0) {
rb_call_inits();
ruby_prog_init();
GET_VM()->running = 1;
}
POP_TAG();
return state;
}
/* Calls ruby_setup() and check error.
*
* Prints errors and calls exit(3) if an error occurred.
*/
void
ruby_init(void)
{
int state = ruby_setup();
if (state) {
if (RTEST(ruby_debug))
error_print();
exit(EXIT_FAILURE);
}
}
/*! Processes command line arguments and compiles the Ruby source to execute.
*
* This function does:
* \li Processes the given command line flags and arguments for ruby(1)
* \li compiles the source code from the given argument, -e or stdin, and
* \li returns the compiled source as an opaque pointer to an internal data structure
*
* @return an opaque pointer to the compiled source or an internal special value.
* @sa ruby_executable_node().
*/
void *
ruby_options(int argc, char **argv)
{
int state;
void *volatile iseq = 0;
ruby_init_stack((void *)&iseq);
PUSH_TAG();
if ((state = EXEC_TAG()) == 0) {
SAVE_ROOT_JMPBUF(GET_THREAD(), iseq = ruby_process_options(argc, argv));
}
else {
rb_clear_trace_func();
state = error_handle(state);
iseq = (void *)INT2FIX(state);
}
POP_TAG();
return iseq;
}
static void
ruby_finalize_0(void)
{
PUSH_TAG();
if (EXEC_TAG() == 0) {
rb_trap_exit();
}
POP_TAG();
rb_exec_end_proc();
rb_clear_trace_func();
}
static void
ruby_finalize_1(void)
{
ruby_sig_finalize();
GET_THREAD()->errinfo = Qnil;
rb_gc_call_finalizer_at_exit();
}
/** Runs the VM finalization processes.
*
* END{}
and procs registered by Kernel.#at_exit
are
* executed here. See the Ruby language spec for more details.
*
* @note This function is allowed to raise an exception if an error occurred.
*/
void
ruby_finalize(void)
{
ruby_finalize_0();
ruby_finalize_1();
}
/** Destructs the VM.
*
* Runs the VM finalization processes as well as ruby_finalize(), and frees
* resources used by the VM.
*
* @param ex Default value to the return value.
* @return If an error occurred returns a non-zero. If otherwise, returns the
* given ex.
* @note This function does not raise any exception.
*/
int
ruby_cleanup(volatile int ex)
{
int state;
volatile VALUE errs[2];
rb_thread_t *th = GET_THREAD();
int nerr;
rb_threadptr_interrupt(th);
rb_threadptr_check_signal(th);
TH_PUSH_TAG(th);
if ((state = EXEC_TAG()) == 0) {
SAVE_ROOT_JMPBUF(th, { RUBY_VM_CHECK_INTS(th); });
}
TH_POP_TAG();
errs[1] = th->errinfo;
th->safe_level = 0;
ruby_init_stack(&errs[STACK_UPPER(errs, 0, 1)]);
TH_PUSH_TAG(th);
if ((state = EXEC_TAG()) == 0) {
SAVE_ROOT_JMPBUF(th, ruby_finalize_0());
}
TH_POP_TAG();
/* protect from Thread#raise */
th->status = THREAD_KILLED;
errs[0] = th->errinfo;
TH_PUSH_TAG(th);
if ((state = EXEC_TAG()) == 0) {
SAVE_ROOT_JMPBUF(th, rb_thread_terminate_all());
}
else if (ex == 0) {
ex = state;
}
th->errinfo = errs[1];
ex = error_handle(ex);
#if EXIT_SUCCESS != 0 || EXIT_FAILURE != 1
switch (ex) {
#if EXIT_SUCCESS != 0
case 0: ex = EXIT_SUCCESS; break;
#endif
#if EXIT_FAILURE != 1
case 1: ex = EXIT_FAILURE; break;
#endif
}
#endif
state = 0;
for (nerr = 0; nerr < numberof(errs); ++nerr) {
VALUE err = errs[nerr];
if (!RTEST(err)) continue;
/* th->errinfo contains a NODE while break'ing */
if (THROW_DATA_P(err)) continue;
if (rb_obj_is_kind_of(err, rb_eSystemExit)) {
ex = sysexit_status(err);
break;
}
else if (rb_obj_is_kind_of(err, rb_eSignal)) {
VALUE sig = rb_ivar_get(err, id_signo);
state = NUM2INT(sig);
break;
}
else if (ex == EXIT_SUCCESS) {
ex = EXIT_FAILURE;
}
}
ruby_finalize_1();
/* unlock again if finalizer took mutexes. */
rb_threadptr_unlock_all_locking_mutexes(GET_THREAD());
TH_POP_TAG();
rb_thread_stop_timer_thread(1);
ruby_vm_destruct(GET_VM());
if (state) ruby_default_signal(state);
return ex;
}
static int
ruby_exec_internal(void *n)
{
volatile int state;
VALUE iseq = (VALUE)n;
rb_thread_t *th = GET_THREAD();
if (!n) return 0;
TH_PUSH_TAG(th);
if ((state = EXEC_TAG()) == 0) {
SAVE_ROOT_JMPBUF(th, {
th->base_block = 0;
rb_iseq_eval_main(iseq);
});
}
TH_POP_TAG();
return state;
}
/*! Calls ruby_cleanup() and exits the process */
void
ruby_stop(int ex)
{
exit(ruby_cleanup(ex));
}
/*! Checks the return value of ruby_options().
* @param n return value of ruby_options().
* @param status pointer to the exit status of this process.
*
* ruby_options() sometimes returns a special value to indicate this process
* should immediately exit. This function checks if the case. Also stores the
* exit status that the caller have to pass to exit(3) into
* *status
.
*
* @retval non-zero if the given opaque pointer is actually a compiled source.
* @retval 0 if the given value is such a special value.
*/
int
ruby_executable_node(void *n, int *status)
{
VALUE v = (VALUE)n;
int s;
switch (v) {
case Qtrue: s = EXIT_SUCCESS; break;
case Qfalse: s = EXIT_FAILURE; break;
default:
if (!FIXNUM_P(v)) return TRUE;
s = FIX2INT(v);
}
if (status) *status = s;
return FALSE;
}
/*! Runs the given compiled source and exits this process.
* @retval 0 if successfully run the source
* @retval non-zero if an error occurred.
*/
int
ruby_run_node(void *n)
{
int status;
if (!ruby_executable_node(n, &status)) {
ruby_cleanup(0);
return status;
}
return ruby_cleanup(ruby_exec_node(n));
}
/*! Runs the given compiled source */
int
ruby_exec_node(void *n)
{
ruby_init_stack((void *)&n);
return ruby_exec_internal(n);
}
/*
* call-seq:
* Module.nesting -> array
*
* Returns the list of +Modules+ nested at the point of call.
*
* module M1
* module M2
* $a = Module.nesting
* end
* end
* $a #=> [M1::M2, M1]
* $a[0].name #=> "M1::M2"
*/
static VALUE
rb_mod_nesting(void)
{
VALUE ary = rb_ary_new();
const rb_cref_t *cref = rb_vm_cref();
while (cref && CREF_NEXT(cref)) {
VALUE klass = CREF_CLASS(cref);
if (!CREF_PUSHED_BY_EVAL(cref) &&
!NIL_P(klass)) {
rb_ary_push(ary, klass);
}
cref = CREF_NEXT(cref);
}
return ary;
}
/*
* call-seq:
* Module.constants -> array
* Module.constants(inherited) -> array
*
* In the first form, returns an array of the names of all
* constants accessible from the point of call.
* This list includes the names of all modules and classes
* defined in the global scope.
*
* Module.constants.first(4)
* # => [:ARGF, :ARGV, :ArgumentError, :Array]
*
* Module.constants.include?(:SEEK_SET) # => false
*
* class IO
* Module.constants.include?(:SEEK_SET) # => true
* end
*
* The second form calls the instance method +constants+.
*/
static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
const rb_cref_t *cref = rb_vm_cref();
VALUE klass;
VALUE cbase = 0;
void *data = 0;
if (argc > 0 || mod != rb_cModule) {
return rb_mod_constants(argc, argv, mod);
}
while (cref) {
klass = CREF_CLASS(cref);
if (!CREF_PUSHED_BY_EVAL(cref) &&
!NIL_P(klass)) {
data = rb_mod_const_at(CREF_CLASS(cref), data);
if (!cbase) {
cbase = klass;
}
}
cref = CREF_NEXT(cref);
}
if (cbase) {
data = rb_mod_const_of(cbase, data);
}
return rb_const_list(data);
}
void
rb_frozen_class_p(VALUE klass)
{
if (SPECIAL_CONST_P(klass)) {
noclass:
Check_Type(klass, T_CLASS);
}
if (OBJ_FROZEN(klass)) {
const char *desc;
if (FL_TEST(klass, FL_SINGLETON)) {
desc = "object";
klass = rb_ivar_get(klass, id__attached__);
if (!SPECIAL_CONST_P(klass)) {
switch (BUILTIN_TYPE(klass)) {
case T_MODULE:
case T_ICLASS:
desc = "Module";
break;
case T_CLASS:
desc = "Class";
break;
}
}
}
else {
switch (BUILTIN_TYPE(klass)) {
case T_MODULE:
case T_ICLASS:
desc = "module";
break;
case T_CLASS:
desc = "class";
break;
default:
goto noclass;
}
}
rb_error_frozen(desc);
}
}
NORETURN(static void rb_longjmp(int, volatile VALUE, VALUE));
static VALUE get_errinfo(void);
static VALUE get_thread_errinfo(rb_thread_t *th);
static VALUE
exc_setup_cause(VALUE exc, VALUE cause)
{
ID id_cause;
CONST_ID(id_cause, "cause");
#if SUPPORT_JOKE
if (NIL_P(cause)) {
ID id_true_cause;
CONST_ID(id_true_cause, "true_cause");
cause = rb_attr_get(rb_eFatal, id_true_cause);
if (NIL_P(cause)) {
cause = rb_exc_new_cstr(rb_eFatal, "because using such Ruby");
rb_ivar_set(cause, id_cause, INT2FIX(42)); /* the answer */
OBJ_FREEZE(cause);
rb_ivar_set(rb_eFatal, id_true_cause, cause);
}
}
#endif
if (!NIL_P(cause) && cause != exc) {
rb_ivar_set(exc, id_cause, cause);
}
return exc;
}
static inline int
sysstack_error_p(VALUE exc)
{
return exc == sysstack_error || (!SPECIAL_CONST_P(exc) && RBASIC_CLASS(exc) == rb_eSysStackError);
}
static void
setup_exception(rb_thread_t *th, int tag, volatile VALUE mesg, VALUE cause)
{
VALUE e;
const char *file = 0;
volatile int line = 0;
int nocause = 0;
if (NIL_P(mesg)) {
mesg = th->errinfo;
if (INTERNAL_EXCEPTION_P(mesg)) JUMP_TAG(TAG_FATAL);
nocause = 1;
}
if (NIL_P(mesg)) {
mesg = rb_exc_new(rb_eRuntimeError, 0, 0);
nocause = 0;
}
if (cause == Qundef) {
cause = nocause ? Qnil : get_thread_errinfo(th);
}
exc_setup_cause(mesg, cause);
file = rb_sourcefile();
if (file) line = rb_sourceline();
if (file && !NIL_P(mesg)) {
VALUE at;
if (sysstack_error_p(mesg)) {
if (NIL_P(rb_attr_get(mesg, idBt))) {
at = rb_vm_backtrace_object();
if (mesg == sysstack_error) {
mesg = ruby_vm_sysstack_error_copy();
}
rb_ivar_set(mesg, idBt, at);
rb_ivar_set(mesg, idBt_locations, at);
}
}
else if (NIL_P(get_backtrace(mesg))) {
at = rb_vm_backtrace_object();
if (OBJ_FROZEN(mesg)) {
mesg = rb_obj_dup(mesg);
}
rb_ivar_set(mesg, idBt_locations, at);
set_backtrace(mesg, at);
}
}
if (!NIL_P(mesg)) {
th->errinfo = mesg;
}
if (RTEST(ruby_debug) && !NIL_P(e = th->errinfo) &&
!rb_obj_is_kind_of(e, rb_eSystemExit)) {
int status;
mesg = e;
TH_PUSH_TAG(th);
if ((status = EXEC_TAG()) == 0) {
th->errinfo = Qnil;
e = rb_obj_as_string(mesg);
th->errinfo = mesg;
if (file && line) {
warn_printf("Exception `%"PRIsVALUE"' at %s:%d - %"PRIsVALUE"\n",
rb_obj_class(mesg), file, line, e);
}
else if (file) {
warn_printf("Exception `%"PRIsVALUE"' at %s - %"PRIsVALUE"\n",
rb_obj_class(mesg), file, e);
}
else {
warn_printf("Exception `%"PRIsVALUE"' - %"PRIsVALUE"\n",
rb_obj_class(mesg), e);
}
}
TH_POP_TAG();
if (status == TAG_FATAL && th->errinfo == exception_error) {
th->errinfo = mesg;
}
else if (status) {
rb_threadptr_reset_raised(th);
JUMP_TAG(status);
}
}
if (rb_threadptr_set_raised(th)) {
th->errinfo = exception_error;
rb_threadptr_reset_raised(th);
JUMP_TAG(TAG_FATAL);
}
if (tag != TAG_FATAL) {
if (RUBY_DTRACE_RAISE_ENABLED()) {
RUBY_DTRACE_RAISE(rb_obj_classname(th->errinfo),
rb_sourcefile(),
rb_sourceline());
}
EXEC_EVENT_HOOK(th, RUBY_EVENT_RAISE, th->cfp->self, 0, 0, mesg);
}
}
static void
rb_longjmp(int tag, volatile VALUE mesg, VALUE cause)
{
rb_thread_t *th = GET_THREAD();
setup_exception(th, tag, mesg, cause);
rb_thread_raised_clear(th);
JUMP_TAG(tag);
}
static VALUE make_exception(int argc, const VALUE *argv, int isstr);
void
rb_exc_raise(VALUE mesg)
{
if (!NIL_P(mesg)) {
mesg = make_exception(1, &mesg, FALSE);
}
rb_longjmp(TAG_RAISE, mesg, Qundef);
}
void
rb_exc_fatal(VALUE mesg)
{
if (!NIL_P(mesg)) {
mesg = make_exception(1, &mesg, FALSE);
}
rb_longjmp(TAG_FATAL, mesg, Qnil);
}
void
rb_interrupt(void)
{
rb_raise(rb_eInterrupt, "%s", "");
}
enum {raise_opt_cause, raise_max_opt};
static int
extract_raise_opts(int argc, VALUE *argv, VALUE *opts)
{
int i;
if (argc > 0) {
VALUE opt = argv[argc-1];
if (RB_TYPE_P(opt, T_HASH)) {
if (!RHASH_EMPTY_P(opt)) {
ID keywords[1];
CONST_ID(keywords[0], "cause");
rb_get_kwargs(opt, keywords, 0, -1-raise_max_opt, opts);
if (RHASH_EMPTY_P(opt)) --argc;
return argc;
}
}
}
for (i = 0; i < raise_max_opt; ++i) {
opts[i] = Qundef;
}
return argc;
}
/*
* call-seq:
* raise
* raise(string)
* raise(exception [, string [, array]])
* fail
* fail(string)
* fail(exception [, string [, array]])
*
* With no arguments, raises the exception in $!
or raises
* a RuntimeError
if $!
is +nil+.
* With a single +String+ argument, raises a
* +RuntimeError+ with the string as a message. Otherwise,
* the first parameter should be the name of an +Exception+
* class (or an object that returns an +Exception+ object when sent
* an +exception+ message). The optional second parameter sets the
* message associated with the exception, and the third parameter is an
* array of callback information. Exceptions are caught by the
* +rescue+ clause of begin...end
blocks.
*
* raise "Failed to create socket"
* raise ArgumentError, "No parameters", caller
*/
static VALUE
rb_f_raise(int argc, VALUE *argv)
{
VALUE err;
VALUE opts[raise_max_opt], *const cause = &opts[raise_opt_cause];
argc = extract_raise_opts(argc, argv, opts);
if (argc == 0) {
if (*cause != Qundef) {
rb_raise(rb_eArgError, "only cause is given with no arguments");
}
err = get_errinfo();
if (!NIL_P(err)) {
argc = 1;
argv = &err;
}
}
rb_raise_jump(rb_make_exception(argc, argv), *cause);
UNREACHABLE;
}
static VALUE
make_exception(int argc, const VALUE *argv, int isstr)
{
VALUE mesg, exc;
int n;
mesg = Qnil;
switch (argc) {
case 0:
break;
case 1:
exc = argv[0];
if (NIL_P(exc))
break;
if (isstr) {
mesg = rb_check_string_type(exc);
if (!NIL_P(mesg)) {
mesg = rb_exc_new3(rb_eRuntimeError, mesg);
break;
}
}
n = 0;
goto exception_call;
case 2:
case 3:
exc = argv[0];
n = 1;
exception_call:
if (sysstack_error_p(exc)) return exc;
mesg = rb_check_funcall(exc, idException, n, argv+1);
if (mesg == Qundef) {
rb_raise(rb_eTypeError, "exception class/object expected");
}
break;
default:
rb_check_arity(argc, 0, 3);
break;
}
if (argc > 0) {
if (!rb_obj_is_kind_of(mesg, rb_eException))
rb_raise(rb_eTypeError, "exception object expected");
if (argc > 2)
set_backtrace(mesg, argv[2]);
}
return mesg;
}
VALUE
rb_make_exception(int argc, const VALUE *argv)
{
return make_exception(argc, argv, TRUE);
}
void
rb_raise_jump(VALUE mesg, VALUE cause)
{
rb_thread_t *th = GET_THREAD();
const rb_control_frame_t *cfp = th->cfp;
const rb_method_entry_t *me = rb_vm_frame_method_entry(cfp);
VALUE klass = me->klass;
VALUE self = cfp->self;
ID mid = me->called_id;
th->cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp);
EXEC_EVENT_HOOK(th, RUBY_EVENT_C_RETURN, self, mid, klass, Qnil);
setup_exception(th, TAG_RAISE, mesg, cause);
rb_thread_raised_clear(th);
JUMP_TAG(TAG_RAISE);
}
void
rb_jump_tag(int tag)
{
JUMP_TAG(tag);
}
int
rb_block_given_p(void)
{
rb_thread_t *th = GET_THREAD();
if (rb_vm_control_frame_block_ptr(th->cfp)) {
return TRUE;
}
else {
return FALSE;
}
}
int
rb_iterator_p(void)
{
return rb_block_given_p();
}
VALUE rb_eThreadError;
void
rb_need_block(void)
{
if (!rb_block_given_p()) {
rb_vm_localjump_error("no block given", Qnil, 0);
}
}
VALUE
rb_rescue2(VALUE (* b_proc) (ANYARGS), VALUE data1,
VALUE (* r_proc) (ANYARGS), VALUE data2, ...)
{
int state;
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = th->cfp;
volatile VALUE result = Qfalse;
volatile VALUE e_info = th->errinfo;
va_list args;
TH_PUSH_TAG(th);
if ((state = TH_EXEC_TAG()) == 0) {
retry_entry:
result = (*b_proc) (data1);
}
else if (result) {
/* escape from r_proc */
if (state == TAG_RETRY) {
state = 0;
th->errinfo = Qnil;
result = Qfalse;
goto retry_entry;
}
}
else {
rb_vm_rewind_cfp(th, cfp);
if (state == TAG_RAISE) {
int handle = FALSE;
VALUE eclass;
va_init_list(args, data2);
while ((eclass = va_arg(args, VALUE)) != 0) {
if (rb_obj_is_kind_of(th->errinfo, eclass)) {
handle = TRUE;
break;
}
}
va_end(args);
if (handle) {
result = Qnil;
state = 0;
if (r_proc) {
result = (*r_proc) (data2, th->errinfo);
}
th->errinfo = e_info;
}
}
}
TH_POP_TAG();
if (state)
JUMP_TAG(state);
return result;
}
VALUE
rb_rescue(VALUE (* b_proc)(ANYARGS), VALUE data1,
VALUE (* r_proc)(ANYARGS), VALUE data2)
{
return rb_rescue2(b_proc, data1, r_proc, data2, rb_eStandardError,
(VALUE)0);
}
VALUE
rb_protect(VALUE (* proc) (VALUE), VALUE data, int * state)
{
volatile VALUE result = Qnil;
volatile int status;
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = th->cfp;
struct rb_vm_protect_tag protect_tag;
rb_jmpbuf_t org_jmpbuf;
protect_tag.prev = th->protect_tag;
TH_PUSH_TAG(th);
th->protect_tag = &protect_tag;
MEMCPY(&org_jmpbuf, &(th)->root_jmpbuf, rb_jmpbuf_t, 1);
if ((status = TH_EXEC_TAG()) == 0) {
SAVE_ROOT_JMPBUF(th, result = (*proc) (data));
}
else {
rb_vm_rewind_cfp(th, cfp);
}
MEMCPY(&(th)->root_jmpbuf, &org_jmpbuf, rb_jmpbuf_t, 1);
th->protect_tag = protect_tag.prev;
TH_POP_TAG();
if (state) {
*state = status;
}
return result;
}
VALUE
rb_ensure(VALUE (*b_proc)(ANYARGS), VALUE data1, VALUE (*e_proc)(ANYARGS), VALUE data2)
{
int state;
volatile VALUE result = Qnil;
volatile VALUE errinfo;
rb_thread_t *const th = GET_THREAD();
rb_ensure_list_t ensure_list;
ensure_list.entry.marker = 0;
ensure_list.entry.e_proc = e_proc;
ensure_list.entry.data2 = data2;
ensure_list.next = th->ensure_list;
th->ensure_list = &ensure_list;
TH_PUSH_TAG(th);
if ((state = EXEC_TAG()) == 0) {
result = (*b_proc) (data1);
}
TH_POP_TAG();
errinfo = th->errinfo;
th->ensure_list=ensure_list.next;
(*ensure_list.entry.e_proc)(ensure_list.entry.data2);
th->errinfo = errinfo;
if (state)
JUMP_TAG(state);
return result;
}
static const rb_method_entry_t *
method_entry_of_iseq(const rb_control_frame_t *cfp, const rb_iseq_t *iseq)
{
rb_thread_t *th = GET_THREAD();
const rb_control_frame_t *cfp_limit;
cfp_limit = (rb_control_frame_t *)(th->stack + th->stack_size);
while (cfp_limit > cfp) {
if (cfp->iseq == iseq) return rb_vm_frame_method_entry(cfp); /* TODO: fix me */
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
static ID
frame_func_id(rb_control_frame_t *cfp)
{
const rb_method_entry_t *me_local;
const rb_iseq_t *iseq = cfp->iseq;
const rb_method_entry_t *me = rb_vm_frame_method_entry(cfp);
if (me) {
return me->def->original_id;
}
while (iseq) {
if (RUBY_VM_IFUNC_P(iseq)) {
const struct vm_ifunc *ifunc = (struct vm_ifunc *)iseq;
if (ifunc->id) return ifunc->id;
return idIFUNC;
}
me_local = method_entry_of_iseq(cfp, iseq);
if (me_local) {
return me_local->def->original_id;
}
if (iseq->defined_method_id) {
return iseq->defined_method_id;
}
if (iseq->local_iseq == iseq) {
break;
}
iseq = iseq->parent_iseq;
}
return 0;
}
static ID
frame_called_id(rb_control_frame_t *cfp)
{
const rb_method_entry_t *me_local;
const rb_iseq_t *iseq = cfp->iseq;
const rb_method_entry_t *me = rb_vm_frame_method_entry(cfp);
if (me) {
return me->called_id;
}
while (iseq) {
if (RUBY_VM_IFUNC_P(iseq)) {
const struct vm_ifunc *ifunc = (struct vm_ifunc *)iseq;
if (ifunc->id) return ifunc->id;
return idIFUNC;
}
me_local = method_entry_of_iseq(cfp, iseq);
if (me_local) {
return me_local->called_id;
}
if (iseq->defined_method_id) {
return iseq->defined_method_id;
}
if (iseq->local_iseq == iseq) {
break;
}
iseq = iseq->parent_iseq;
}
return 0;
}
ID
rb_frame_this_func(void)
{
return frame_func_id(GET_THREAD()->cfp);
}
ID
rb_frame_callee(void)
{
return frame_called_id(GET_THREAD()->cfp);
}
static rb_control_frame_t *
previous_frame(rb_thread_t *th)
{
rb_control_frame_t *prev_cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(th->cfp);
/* check if prev_cfp can be accessible */
if ((void *)(th->stack + th->stack_size) == (void *)(prev_cfp)) {
return 0;
}
return prev_cfp;
}
static ID
prev_frame_callee(void)
{
rb_control_frame_t *prev_cfp = previous_frame(GET_THREAD());
if (!prev_cfp) return 0;
return frame_called_id(prev_cfp);
}
static ID
prev_frame_func(void)
{
rb_control_frame_t *prev_cfp = previous_frame(GET_THREAD());
if (!prev_cfp) return 0;
return frame_func_id(prev_cfp);
}
ID
rb_frame_last_func(void)
{
rb_thread_t *th = GET_THREAD();
rb_control_frame_t *cfp = th->cfp;
ID mid;
while (!(mid = frame_func_id(cfp)) &&
(cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp),
!RUBY_VM_CONTROL_FRAME_STACK_OVERFLOW_P(th, cfp)));
return mid;
}
/*
* call-seq:
* append_features(mod) -> mod
*
* When this module is included in another, Ruby calls
* append_features
in this module, passing it the
* receiving module in _mod_. Ruby's default implementation is
* to add the constants, methods, and module variables of this module
* to _mod_ if this module has not already been added to
* _mod_ or one of its ancestors. See also Module#include
.
*/
static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
if (!CLASS_OR_MODULE_P(include)) {
Check_Type(include, T_CLASS);
}
rb_include_module(include, module);
return module;
}
/*
* call-seq:
* include(module, ...) -> self
*
* Invokes Module.append_features
on each parameter in reverse order.
*/
static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_append_features, id_included;
CONST_ID(id_append_features, "append_features");
CONST_ID(id_included, "included");
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_append_features, 1, module);
rb_funcall(argv[argc], id_included, 1, module);
}
return module;
}
/*
* call-seq:
* prepend_features(mod) -> mod
*
* When this module is prepended in another, Ruby calls
* prepend_features
in this module, passing it the
* receiving module in _mod_. Ruby's default implementation is
* to overlay the constants, methods, and module variables of this module
* to _mod_ if this module has not already been added to
* _mod_ or one of its ancestors. See also Module#prepend
.
*/
static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
if (!CLASS_OR_MODULE_P(prepend)) {
Check_Type(prepend, T_CLASS);
}
rb_prepend_module(prepend, module);
return module;
}
/*
* call-seq:
* prepend(module, ...) -> self
*
* Invokes Module.prepend_features
on each parameter in reverse order.
*/
static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
int i;
ID id_prepend_features, id_prepended;
CONST_ID(id_prepend_features, "prepend_features");
CONST_ID(id_prepended, "prepended");
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_prepend_features, 1, module);
rb_funcall(argv[argc], id_prepended, 1, module);
}
return module;
}
static VALUE
hidden_identity_hash_new(void)
{
VALUE hash = rb_hash_new();
rb_funcall(hash, rb_intern("compare_by_identity"), 0);
RBASIC_CLEAR_CLASS(hash); /* hide from ObjectSpace */
return hash;
}
void
rb_using_refinement(rb_cref_t *cref, VALUE klass, VALUE module)
{
VALUE iclass, c, superclass = klass;
Check_Type(klass, T_CLASS);
Check_Type(module, T_MODULE);
if (NIL_P(CREF_REFINEMENTS(cref))) {
CREF_REFINEMENTS_SET(cref, hidden_identity_hash_new());
}
else {
if (CREF_OMOD_SHARED(cref)) {
CREF_REFINEMENTS_SET(cref, rb_hash_dup(CREF_REFINEMENTS(cref)));
CREF_OMOD_SHARED_UNSET(cref);
}
if (!NIL_P(c = rb_hash_lookup(CREF_REFINEMENTS(cref), klass))) {
superclass = c;
while (c && RB_TYPE_P(c, T_ICLASS)) {
if (RBASIC(c)->klass == module) {
/* already used refinement */
return;
}
c = RCLASS_SUPER(c);
}
}
}
FL_SET(module, RMODULE_IS_OVERLAID);
c = iclass = rb_include_class_new(module, superclass);
RCLASS_REFINED_CLASS(c) = klass;
RCLASS_M_TBL(OBJ_WB_UNPROTECT(c)) =
RCLASS_M_TBL(OBJ_WB_UNPROTECT(module)); /* TODO: check unprotecting */
module = RCLASS_SUPER(module);
while (module && module != klass) {
FL_SET(module, RMODULE_IS_OVERLAID);
c = RCLASS_SET_SUPER(c, rb_include_class_new(module, RCLASS_SUPER(c)));
RCLASS_REFINED_CLASS(c) = klass;
module = RCLASS_SUPER(module);
}
rb_hash_aset(CREF_REFINEMENTS(cref), klass, iclass);
}
static int
using_refinement(VALUE klass, VALUE module, VALUE arg)
{
rb_cref_t *cref = (rb_cref_t *) arg;
rb_using_refinement(cref, klass, module);
return ST_CONTINUE;
}
static void
using_module_recursive(const rb_cref_t *cref, VALUE klass)
{
ID id_refinements;
VALUE super, module, refinements;
super = RCLASS_SUPER(klass);
if (super) {
using_module_recursive(cref, super);
}
switch (BUILTIN_TYPE(klass)) {
case T_MODULE:
module = klass;
break;
case T_ICLASS:
module = RBASIC(klass)->klass;
break;
default:
rb_raise(rb_eTypeError, "wrong argument type %s (expected Module)",
rb_obj_classname(klass));
break;
}
CONST_ID(id_refinements, "__refinements__");
refinements = rb_attr_get(module, id_refinements);
if (NIL_P(refinements)) return;
rb_hash_foreach(refinements, using_refinement, (VALUE) cref);
}
void
rb_using_module(const rb_cref_t *cref, VALUE module)
{
Check_Type(module, T_MODULE);
using_module_recursive(cref, module);
rb_clear_method_cache_by_class(rb_cObject);
}
VALUE
rb_refinement_module_get_refined_class(VALUE module)
{
ID id_refined_class;
CONST_ID(id_refined_class, "__refined_class__");
return rb_attr_get(module, id_refined_class);
}
static void
add_activated_refinement(VALUE activated_refinements,
VALUE klass, VALUE refinement)
{
VALUE iclass, c, superclass = klass;
if (!NIL_P(c = rb_hash_lookup(activated_refinements, klass))) {
superclass = c;
while (c && RB_TYPE_P(c, T_ICLASS)) {
if (RBASIC(c)->klass == refinement) {
/* already used refinement */
return;
}
c = RCLASS_SUPER(c);
}
}
FL_SET(refinement, RMODULE_IS_OVERLAID);
c = iclass = rb_include_class_new(refinement, superclass);
RCLASS_REFINED_CLASS(c) = klass;
refinement = RCLASS_SUPER(refinement);
while (refinement) {
FL_SET(refinement, RMODULE_IS_OVERLAID);
c = RCLASS_SET_SUPER(c, rb_include_class_new(refinement, RCLASS_SUPER(c)));
RCLASS_REFINED_CLASS(c) = klass;
refinement = RCLASS_SUPER(refinement);
}
rb_hash_aset(activated_refinements, klass, iclass);
}
/*
* call-seq:
* refine(klass) { block } -> module
*
* Refine klass in the receiver.
*
* Returns an overlaid module.
*/
static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
VALUE refinement;
ID id_refinements, id_activated_refinements,
id_refined_class, id_defined_at;
VALUE refinements, activated_refinements;
rb_thread_t *th = GET_THREAD();
rb_block_t *block = rb_vm_control_frame_block_ptr(th->cfp);
if (!block) {
rb_raise(rb_eArgError, "no block given");
}
if (block->proc) {
rb_raise(rb_eArgError,
"can't pass a Proc as a block to Module#refine");
}
Check_Type(klass, T_CLASS);
CONST_ID(id_refinements, "__refinements__");
refinements = rb_attr_get(module, id_refinements);
if (NIL_P(refinements)) {
refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_refinements, refinements);
}
CONST_ID(id_activated_refinements, "__activated_refinements__");
activated_refinements = rb_attr_get(module, id_activated_refinements);
if (NIL_P(activated_refinements)) {
activated_refinements = hidden_identity_hash_new();
rb_ivar_set(module, id_activated_refinements,
activated_refinements);
}
refinement = rb_hash_lookup(refinements, klass);
if (NIL_P(refinement)) {
refinement = rb_module_new();
RCLASS_SET_SUPER(refinement, klass);
FL_SET(refinement, RMODULE_IS_REFINEMENT);
CONST_ID(id_refined_class, "__refined_class__");
rb_ivar_set(refinement, id_refined_class, klass);
CONST_ID(id_defined_at, "__defined_at__");
rb_ivar_set(refinement, id_defined_at, module);
rb_hash_aset(refinements, klass, refinement);
add_activated_refinement(activated_refinements, klass, refinement);
}
rb_yield_refine_block(refinement, activated_refinements);
return refinement;
}
/*
* call-seq:
* using(module) -> self
*
* Import class refinements from module into the current class or
* module definition.
*/
static VALUE
mod_using(VALUE self, VALUE module)
{
const rb_cref_t *cref = rb_vm_cref();
rb_control_frame_t *prev_cfp = previous_frame(GET_THREAD());
if (prev_frame_func()) {
rb_raise(rb_eRuntimeError,
"Module#using is not permitted in methods");
}
if (prev_cfp && prev_cfp->self != self) {
rb_raise(rb_eRuntimeError, "Module#using is not called on self");
}
rb_using_module(cref, module);
return self;
}
void
rb_obj_call_init(VALUE obj, int argc, const VALUE *argv)
{
PASS_PASSED_BLOCK();
rb_funcall2(obj, idInitialize, argc, argv);
}
void
rb_extend_object(VALUE obj, VALUE module)
{
rb_include_module(rb_singleton_class(obj), module);
}
/*
* call-seq:
* extend_object(obj) -> obj
*
* Extends the specified object by adding this module's constants and
* methods (which are added as singleton methods). This is the callback
* method used by Object#extend
.
*
* module Picky
* def Picky.extend_object(o)
* if String === o
* puts "Can't add Picky to a String"
* else
* puts "Picky added to #{o.class}"
* super
* end
* end
* end
* (s = Array.new).extend Picky # Call Object.extend
* (s = "quick brown fox").extend Picky
*
* produces:
*
* Picky added to Array
* Can't add Picky to a String
*/
static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
rb_extend_object(obj, mod);
return obj;
}
/*
* call-seq:
* obj.extend(module, ...) -> obj
*
* Adds to _obj_ the instance methods from each module given as a
* parameter.
*
* module Mod
* def hello
* "Hello from Mod.\n"
* end
* end
*
* class Klass
* def hello
* "Hello from Klass.\n"
* end
* end
*
* k = Klass.new
* k.hello #=> "Hello from Klass.\n"
* k.extend(Mod) #=> #
* k.hello #=> "Hello from Mod.\n"
*/
static VALUE
rb_obj_extend(int argc, VALUE *argv, VALUE obj)
{
int i;
ID id_extend_object, id_extended;
CONST_ID(id_extend_object, "extend_object");
CONST_ID(id_extended, "extended");
rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
for (i = 0; i < argc; i++)
Check_Type(argv[i], T_MODULE);
while (argc--) {
rb_funcall(argv[argc], id_extend_object, 1, obj);
rb_funcall(argv[argc], id_extended, 1, obj);
}
return obj;
}
/*
* call-seq:
* include(module, ...) -> self
*
* Invokes Module.append_features
* on each parameter in turn. Effectively adds the methods and constants
* in each module to the receiver.
*/
static VALUE
top_include(int argc, VALUE *argv, VALUE self)
{
rb_thread_t *th = GET_THREAD();
if (th->top_wrapper) {
rb_warning("main.include in the wrapped load is effective only in wrapper module");
return rb_mod_include(argc, argv, th->top_wrapper);
}
return rb_mod_include(argc, argv, rb_cObject);
}
/*
* call-seq:
* using(module) -> self
*
* Import class refinements from module into the scope where
* using
is called.
*/
static VALUE
top_using(VALUE self, VALUE module)
{
const rb_cref_t *cref = rb_vm_cref();
rb_control_frame_t *prev_cfp = previous_frame(GET_THREAD());
if (CREF_NEXT(cref) || (prev_cfp && rb_vm_frame_method_entry(prev_cfp))) {
rb_raise(rb_eRuntimeError, "main.using is permitted only at toplevel");
}
rb_using_module(cref, module);
return self;
}
static VALUE *
errinfo_place(rb_thread_t *th)
{
rb_control_frame_t *cfp = th->cfp;
rb_control_frame_t *end_cfp = RUBY_VM_END_CONTROL_FRAME(th);
while (RUBY_VM_VALID_CONTROL_FRAME_P(cfp, end_cfp)) {
if (RUBY_VM_NORMAL_ISEQ_P(cfp->iseq)) {
if (cfp->iseq->type == ISEQ_TYPE_RESCUE) {
return &cfp->ep[-2];
}
else if (cfp->iseq->type == ISEQ_TYPE_ENSURE &&
!THROW_DATA_P(cfp->ep[-2]) &&
!FIXNUM_P(cfp->ep[-2])) {
return &cfp->ep[-2];
}
}
cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
}
return 0;
}
static VALUE
get_thread_errinfo(rb_thread_t *th)
{
VALUE *ptr = errinfo_place(th);
if (ptr) {
return *ptr;
}
else {
return th->errinfo;
}
}
static VALUE
get_errinfo(void)
{
return get_thread_errinfo(GET_THREAD());
}
static VALUE
errinfo_getter(ID id)
{
return get_errinfo();
}
#if 0
static void
errinfo_setter(VALUE val, ID id, VALUE *var)
{
if (!NIL_P(val) && !rb_obj_is_kind_of(val, rb_eException)) {
rb_raise(rb_eTypeError, "assigning non-exception to $!");
}
else {
VALUE *ptr = errinfo_place(GET_THREAD());
if (ptr) {
*ptr = val;
}
else {
rb_raise(rb_eRuntimeError, "errinfo_setter: not in rescue clause.");
}
}
}
#endif
VALUE
rb_errinfo(void)
{
rb_thread_t *th = GET_THREAD();
return th->errinfo;
}
void
rb_set_errinfo(VALUE err)
{
if (!NIL_P(err) && !rb_obj_is_kind_of(err, rb_eException)) {
rb_raise(rb_eTypeError, "assigning non-exception to $!");
}
GET_THREAD()->errinfo = err;
}
VALUE
rb_rubylevel_errinfo(void)
{
return get_errinfo();
}
static VALUE
errat_getter(ID id)
{
VALUE err = get_errinfo();
if (!NIL_P(err)) {
return get_backtrace(err);
}
else {
return Qnil;
}
}
static void
errat_setter(VALUE val, ID id, VALUE *var)
{
VALUE err = get_errinfo();
if (NIL_P(err)) {
rb_raise(rb_eArgError, "$! not set");
}
set_backtrace(err, val);
}
/*
* call-seq:
* __method__ -> symbol
*
* Returns the name at the definition of the current method as a
* Symbol.
* If called outside of a method, it returns nil
.
*
*/
static VALUE
rb_f_method_name(void)
{
ID fname = prev_frame_func(); /* need *method* ID */
if (fname) {
return ID2SYM(fname);
}
else {
return Qnil;
}
}
/*
* call-seq:
* __callee__ -> symbol
*
* Returns the called name of the current method as a Symbol.
* If called outside of a method, it returns nil
.
*
*/
static VALUE
rb_f_callee_name(void)
{
ID fname = prev_frame_callee(); /* need *callee* ID */
if (fname) {
return ID2SYM(fname);
}
else {
return Qnil;
}
}
/*
* call-seq:
* __dir__ -> string
*
* Returns the canonicalized absolute path of the directory of the file from
* which this method is called. It means symlinks in the path is resolved.
* If __FILE__
is nil
, it returns nil
.
* The return value equals to File.dirname(File.realpath(__FILE__))
.
*
*/
static VALUE
f_current_dirname(void)
{
VALUE base = rb_current_realfilepath();
if (NIL_P(base)) {
return Qnil;
}
base = rb_file_dirname(base);
return base;
}
void
Init_eval(void)
{
rb_define_virtual_variable("$@", errat_getter, errat_setter);
rb_define_virtual_variable("$!", errinfo_getter, 0);
rb_define_global_function("raise", rb_f_raise, -1);
rb_define_global_function("fail", rb_f_raise, -1);
rb_define_global_function("global_variables", rb_f_global_variables, 0); /* in variable.c */
rb_define_global_function("__method__", rb_f_method_name, 0);
rb_define_global_function("__callee__", rb_f_callee_name, 0);
rb_define_global_function("__dir__", f_current_dirname, 0);
rb_define_method(rb_cModule, "include", rb_mod_include, -1);
rb_define_method(rb_cModule, "prepend", rb_mod_prepend, -1);
rb_define_private_method(rb_cModule, "append_features", rb_mod_append_features, 1);
rb_define_private_method(rb_cModule, "extend_object", rb_mod_extend_object, 1);
rb_define_private_method(rb_cModule, "prepend_features", rb_mod_prepend_features, 1);
rb_define_private_method(rb_cModule, "refine", rb_mod_refine, 1);
rb_define_private_method(rb_cModule, "using", mod_using, 1);
rb_undef_method(rb_cClass, "refine");
rb_undef_method(rb_cClass, "module_function");
Init_vm_eval();
Init_eval_method();
rb_define_singleton_method(rb_cModule, "nesting", rb_mod_nesting, 0);
rb_define_singleton_method(rb_cModule, "constants", rb_mod_s_constants, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"include", top_include, -1);
rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
"using", top_using, 1);
rb_define_method(rb_mKernel, "extend", rb_obj_extend, -1);
rb_define_global_function("trace_var", rb_f_trace_var, -1); /* in variable.c */
rb_define_global_function("untrace_var", rb_f_untrace_var, -1); /* in variable.c */
rb_vm_register_special_exception(ruby_error_reenter, rb_eFatal, "exception reentered");
id_signo = rb_intern_const("signo");
id_status = rb_intern_const("status");
}