/********************************************************************** marshal.c - $Author$ $Date$ created at: Thu Apr 27 16:30:01 JST 1995 Copyright (C) 1993-2003 Yukihiro Matsumoto **********************************************************************/ #include "ruby.h" #include "rubyio.h" #include "st.h" #include "util.h" #include #ifdef HAVE_FLOAT_H #include #endif #ifdef HAVE_IEEEFP_H #include #endif #define BITSPERSHORT (2*CHAR_BIT) #define SHORTMASK ((1<str; rb_str_buf_cat(buf, s, n); if (arg->dest && RSTRING_LEN(buf) >= BUFSIZ) { if (arg->taint) OBJ_TAINT(buf); rb_io_write(arg->dest, buf); rb_str_resize(buf, 0); } } static void w_byte(char c, struct dump_arg *arg) { w_nbyte(&c, 1, arg); } static void w_bytes(const char *s, int n, struct dump_arg *arg) { w_long(n, arg); w_nbyte(s, n, arg); } static void w_short(int x, struct dump_arg *arg) { w_byte((x >> 0) & 0xff, arg); w_byte((x >> 8) & 0xff, arg); } static void w_long(long x, struct dump_arg *arg) { char buf[sizeof(long)+1]; int i, len = 0; #if SIZEOF_LONG > 4 if (!(RSHIFT(x, 31) == 0 || RSHIFT(x, 31) == -1)) { /* big long does not fit in 4 bytes */ rb_raise(rb_eTypeError, "long too big to dump"); } #endif if (x == 0) { w_byte(0, arg); return; } if (0 < x && x < 123) { w_byte(x + 5, arg); return; } if (-124 < x && x < 0) { w_byte((x - 5)&0xff, arg); return; } for (i=1;i 32 #define MANT_BITS 32 #elif DBL_MANT_DIG > 24 #define MANT_BITS 24 #elif DBL_MANT_DIG > 16 #define MANT_BITS 16 #else #define MANT_BITS 8 #endif static int save_mantissa(double d, char *buf) { int e, i = 0; unsigned long m; double n; d = modf(ldexp(frexp(fabs(d), &e), DECIMAL_MANT), &d); if (d > 0) { buf[i++] = 0; do { d = modf(ldexp(d, MANT_BITS), &n); m = (unsigned long)n; #if MANT_BITS > 24 buf[i++] = m >> 24; #endif #if MANT_BITS > 16 buf[i++] = m >> 16; #endif #if MANT_BITS > 8 buf[i++] = m >> 8; #endif buf[i++] = m; } while (d > 0); while (!buf[i - 1]) --i; } return i; } static double load_mantissa(double d, const char *buf, int len) { if (--len > 0 && !*buf++) { /* binary mantissa mark */ int e, s = d < 0, dig = 0; unsigned long m; modf(ldexp(frexp(fabs(d), &e), DECIMAL_MANT), &d); do { m = 0; switch (len) { default: m = *buf++ & 0xff; #if MANT_BITS > 24 case 3: m = (m << 8) | (*buf++ & 0xff); #endif #if MANT_BITS > 16 case 2: m = (m << 8) | (*buf++ & 0xff); #endif #if MANT_BITS > 8 case 1: m = (m << 8) | (*buf++ & 0xff); #endif } dig -= len < MANT_BITS / 8 ? 8 * (unsigned)len : MANT_BITS; d += ldexp((double)m, dig); } while ((len -= MANT_BITS / 8) > 0); d = ldexp(d, e - DECIMAL_MANT); if (s) d = -d; } return d; } #else #define load_mantissa(d, buf, len) (d) #define save_mantissa(d, buf) 0 #endif #ifdef DBL_DIG #define FLOAT_DIG (DBL_DIG+2) #else #define FLOAT_DIG 17 #endif static void w_float(double d, struct dump_arg *arg) { char buf[100]; if (isinf(d)) { if (d < 0) strcpy(buf, "-inf"); else strcpy(buf, "inf"); } else if (isnan(d)) { strcpy(buf, "nan"); } else if (d == 0.0) { if (1.0/d < 0) strcpy(buf, "-0"); else strcpy(buf, "0"); } else { int len; /* xxx: should not use system's sprintf(3) */ sprintf(buf, "%.*g", FLOAT_DIG, d); len = strlen(buf); w_bytes(buf, len + save_mantissa(d, buf + len), arg); return; } w_bytes(buf, strlen(buf), arg); } static void w_symbol(ID id, struct dump_arg *arg) { const char *sym; st_data_t num; if (st_lookup(arg->symbols, id, &num)) { w_byte(TYPE_SYMLINK, arg); w_long((long)num, arg); } else { if (rb_is_instance2_id(id)) { VALUE klass; volatile VALUE path; id = rb_decompose_ivar2(id, &klass); path = class2path(klass); w_byte(TYPE_SYMBOL2, arg); sym = rb_id2name(id); w_bytes(sym, strlen(sym), arg); w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg); } else { sym = rb_id2name(id); w_byte(TYPE_SYMBOL, arg); w_bytes(sym, strlen(sym), arg); } st_add_direct(arg->symbols, id, arg->symbols->num_entries); } } static void w_unique(const char *s, struct dump_arg *arg) { if (s[0] == '#') { rb_raise(rb_eTypeError, "can't dump anonymous class %s", s); } w_symbol(rb_intern(s), arg); } static void w_object(VALUE,struct dump_arg*,int); static int hash_each(VALUE key, VALUE value, struct dump_call_arg *arg) { w_object(key, arg->arg, arg->limit); w_object(value, arg->arg, arg->limit); return ST_CONTINUE; } static void w_extended(VALUE klass, struct dump_arg *arg, int check) { char *path; if (FL_TEST(klass, FL_SINGLETON)) { if (check && RCLASS(klass)->m_tbl->num_entries || (RCLASS(klass)->iv_tbl && RCLASS(klass)->iv_tbl->num_entries > 1)) { rb_raise(rb_eTypeError, "singleton can't be dumped"); } klass = RCLASS(klass)->super; } while (BUILTIN_TYPE(klass) == T_ICLASS) { path = rb_class2name(RBASIC(klass)->klass); w_byte(TYPE_EXTENDED, arg); w_unique(path, arg); klass = RCLASS(klass)->super; } } static void w_class(char type, VALUE obj, struct dump_arg *arg, int check) { volatile VALUE p; char *path; VALUE klass = CLASS_OF(obj); w_extended(klass, arg, check); w_byte(type, arg); p = class2path(rb_class_real(klass)); path = RSTRING_PTR(p); w_unique(path, arg); } static void w_uclass(VALUE obj, VALUE base_klass, struct dump_arg *arg) { VALUE klass = CLASS_OF(obj); w_extended(klass, arg, Qtrue); klass = rb_class_real(klass); if (klass != base_klass) { w_byte(TYPE_UCLASS, arg); w_unique(RSTRING_PTR(class2path(klass)), arg); } } static int w_obj_each(ID id, VALUE value, struct dump_call_arg *arg) { w_symbol(id, arg->arg); w_object(value, arg->arg, arg->limit); return ST_CONTINUE; } static void w_ivar(st_table *tbl, struct dump_call_arg *arg) { if (tbl) { w_long(tbl->num_entries, arg->arg); st_foreach_safe(tbl, w_obj_each, (st_data_t)arg); } else { w_long(0, arg->arg); } } static void w_object(VALUE obj, struct dump_arg *arg, int limit) { struct dump_call_arg c_arg; st_table *ivtbl = 0; st_data_t num; if (limit == 0) { rb_raise(rb_eArgError, "exceed depth limit"); } limit--; c_arg.limit = limit; c_arg.arg = arg; if (st_lookup(arg->data, obj, &num)) { w_byte(TYPE_LINK, arg); w_long((long)num, arg); return; } if (ivtbl = rb_generic_ivar_table(obj)) { w_byte(TYPE_IVAR, arg); } if (obj == Qnil) { w_byte(TYPE_NIL, arg); } else if (obj == Qtrue) { w_byte(TYPE_TRUE, arg); } else if (obj == Qfalse) { w_byte(TYPE_FALSE, arg); } else if (FIXNUM_P(obj)) { #if SIZEOF_LONG <= 4 w_byte(TYPE_FIXNUM, arg); w_long(FIX2INT(obj), arg); #else if (RSHIFT((long)obj, 31) == 0 || RSHIFT((long)obj, 31) == -1) { w_byte(TYPE_FIXNUM, arg); w_long(FIX2LONG(obj), arg); } else { w_object(rb_int2big(FIX2LONG(obj)), arg, limit); } #endif } else if (SYMBOL_P(obj)) { w_symbol(SYM2ID(obj), arg); } else { if (OBJ_TAINTED(obj)) arg->taint = Qtrue; st_add_direct(arg->data, obj, arg->data->num_entries); if (rb_respond_to(obj, s_mdump)) { VALUE v; v = rb_funcall(obj, s_mdump, 0, 0); w_class(TYPE_USRMARSHAL, obj, arg, Qfalse); w_object(v, arg, limit); if (ivtbl) w_ivar(0, &c_arg); return; } if (rb_respond_to(obj, s_dump)) { VALUE v; v = rb_funcall(obj, s_dump, 1, INT2NUM(limit)); if (TYPE(v) != T_STRING) { rb_raise(rb_eTypeError, "_dump() must return string"); } if (!ivtbl && (ivtbl = rb_generic_ivar_table(v))) { w_byte(TYPE_IVAR, arg); } w_class(TYPE_USERDEF, obj, arg, Qfalse); w_bytes(RSTRING_PTR(v), RSTRING_LEN(v), arg); if (ivtbl) { w_ivar(ivtbl, &c_arg); } return; } switch (BUILTIN_TYPE(obj)) { case T_CLASS: if (FL_TEST(obj, FL_SINGLETON)) { rb_raise(rb_eTypeError, "singleton class can't be dumped"); } w_byte(TYPE_CLASS, arg); { volatile VALUE path = class2path(obj); w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg); } break; case T_MODULE: w_byte(TYPE_MODULE, arg); { VALUE path = class2path(obj); w_bytes(RSTRING_PTR(path), RSTRING_LEN(path), arg); } break; case T_FLOAT: w_byte(TYPE_FLOAT, arg); w_float(RFLOAT(obj)->value, arg); break; case T_BIGNUM: w_byte(TYPE_BIGNUM, arg); { char sign = RBIGNUM(obj)->sign ? '+' : '-'; long len = RBIGNUM(obj)->len; BDIGIT *d = RBIGNUM(obj)->digits; w_byte(sign, arg); w_long(SHORTLEN(len), arg); /* w_short? */ while (len--) { #if SIZEOF_BDIGITS > SIZEOF_SHORT BDIGIT num = *d; int i; for (i=0; istr, RREGEXP(obj)->len, arg); w_byte(rb_reg_options(obj), arg); break; case T_ARRAY: w_uclass(obj, rb_cArray, arg); w_byte(TYPE_ARRAY, arg); { long len = RARRAY_LEN(obj); VALUE *ptr = RARRAY_PTR(obj); w_long(len, arg); while (len--) { w_object(*ptr, arg, limit); ptr++; } } break; case T_HASH: w_uclass(obj, rb_cHash, arg); if (NIL_P(RHASH(obj)->ifnone)) { w_byte(TYPE_HASH, arg); } else if (FL_TEST(obj, FL_USER2)) { /* FL_USER2 means HASH_PROC_DEFAULT (see hash.c) */ rb_raise(rb_eTypeError, "can't dump hash with default proc"); } else { w_byte(TYPE_HASH_DEF, arg); } w_long(RHASH(obj)->tbl->num_entries, arg); rb_hash_foreach(obj, hash_each, (st_data_t)&c_arg); if (!NIL_P(RHASH(obj)->ifnone)) { w_object(RHASH(obj)->ifnone, arg, limit); } break; case T_STRUCT: w_class(TYPE_STRUCT, obj, arg, Qtrue); { long len = RSTRUCT_LEN(obj); VALUE mem; long i; w_long(len, arg); mem = rb_struct_members(obj); for (i=0; iiv_tbl, &c_arg); break; case T_DATA: { VALUE v; w_class(TYPE_DATA, obj, arg, Qtrue); if (!rb_respond_to(obj, s_dump_data)) { rb_raise(rb_eTypeError, "no marshal_dump is defined for class %s", rb_obj_classname(obj)); } v = rb_funcall(obj, s_dump_data, 0); w_object(v, arg, limit); } break; default: rb_raise(rb_eTypeError, "can't dump %s", rb_obj_classname(obj)); break; } } if (ivtbl) { w_ivar(ivtbl, &c_arg); } } static VALUE dump(struct dump_call_arg *arg) { w_object(arg->obj, arg->arg, arg->limit); if (arg->arg->dest) { rb_io_write(arg->arg->dest, arg->arg->str); rb_str_resize(arg->arg->str, 0); } return 0; } static VALUE dump_ensure(struct dump_arg *arg) { st_free_table(arg->symbols); st_free_table(arg->data); if (arg->taint) { OBJ_TAINT(arg->str); } return 0; } /* * call-seq: * dump( obj [, anIO] , limit=--1 ) => anIO * * Serializes obj and all descendent objects. If anIO is * specified, the serialized data will be written to it, otherwise the * data will be returned as a String. If limit is specified, the * traversal of subobjects will be limited to that depth. If limit is * negative, no checking of depth will be performed. * * class Klass * def initialize(str) * @str = str * end * def sayHello * @str * end * end * * (produces no output) * * o = Klass.new("hello\n") * data = Marshal.dump(o) * obj = Marshal.load(data) * obj.sayHello #=> "hello\n" */ static VALUE marshal_dump(int argc, VALUE *argv) { VALUE obj, port, a1, a2; int limit = -1; struct dump_arg arg; struct dump_call_arg c_arg; port = Qnil; rb_scan_args(argc, argv, "12", &obj, &a1, &a2); if (argc == 3) { if (!NIL_P(a2)) limit = NUM2INT(a2); if (NIL_P(a1)) goto type_error; port = a1; } else if (argc == 2) { if (FIXNUM_P(a1)) limit = FIX2INT(a1); else if (NIL_P(a1)) goto type_error; else port = a1; } arg.dest = 0; if (!NIL_P(port)) { if (!rb_respond_to(port, s_write)) { type_error: rb_raise(rb_eTypeError, "instance of IO needed"); } arg.str = rb_str_buf_new(0); arg.dest = port; if (rb_respond_to(port, s_binmode)) { rb_funcall2(port, s_binmode, 0, 0); } } else { port = rb_str_buf_new(0); arg.str = port; } arg.symbols = st_init_numtable(); arg.data = st_init_numtable(); arg.taint = Qfalse; c_arg.obj = obj; c_arg.arg = &arg; c_arg.limit = limit; w_byte(MARSHAL_MAJOR, &arg); w_byte(MARSHAL_MINOR, &arg); rb_ensure(dump, (VALUE)&c_arg, dump_ensure, (VALUE)&arg); return port; } struct load_arg { VALUE src; long offset; st_table *symbols; VALUE data; VALUE proc; int taint; }; static VALUE r_entry(VALUE v, struct load_arg *arg); static VALUE r_object(struct load_arg *arg); static VALUE path2class(const char *path); static int r_byte(struct load_arg *arg) { int c; if (TYPE(arg->src) == T_STRING) { if (RSTRING_LEN(arg->src) > arg->offset) { c = (unsigned char)RSTRING_PTR(arg->src)[arg->offset++]; } else { rb_raise(rb_eArgError, "marshal data too short"); } } else { VALUE src = arg->src; VALUE v = rb_funcall2(src, s_getc, 0, 0); if (NIL_P(v)) rb_eof_error(); c = (unsigned char)NUM2CHR(v); } return c; } static void long_toobig(int size) { rb_raise(rb_eTypeError, "long too big for this architecture (size %d, given %d)", sizeof(long), size); } #undef SIGN_EXTEND_CHAR #if __STDC__ # define SIGN_EXTEND_CHAR(c) ((signed char)(c)) #else /* not __STDC__ */ /* As in Harbison and Steele. */ # define SIGN_EXTEND_CHAR(c) ((((unsigned char)(c)) ^ 128) - 128) #endif static long r_long(struct load_arg *arg) { register long x; int c = SIGN_EXTEND_CHAR(r_byte(arg)); long i; if (c == 0) return 0; if (c > 0) { if (4 < c && c < 128) { return c - 5; } if (c > sizeof(long)) long_toobig(c); x = 0; for (i=0;i sizeof(long)) long_toobig(c); x = -1; for (i=0;isrc) == T_STRING) { if (RSTRING_LEN(arg->src) > arg->offset) { str = rb_str_new(RSTRING_PTR(arg->src)+arg->offset, len); arg->offset += len; } else { too_short: rb_raise(rb_eArgError, "marshal data too short"); } } else { VALUE src = arg->src; VALUE n = LONG2NUM(len); str = rb_funcall2(src, s_read, 1, &n); if (NIL_P(str)) goto too_short; StringValue(str); if (RSTRING_LEN(str) != len) goto too_short; if (OBJ_TAINTED(str)) arg->taint = Qtrue; } return str; } static ID r_symlink(struct load_arg *arg) { ID id; long num = r_long(arg); if (st_lookup(arg->symbols, num, &id)) { return id; } rb_raise(rb_eArgError, "bad symbol"); } static ID r_symreal(struct load_arg *arg) { volatile VALUE s = r_bytes(arg); ID id = rb_intern(RSTRING_PTR(s)); st_insert(arg->symbols, arg->symbols->num_entries, id); return id; } static ID r_symivar2(struct load_arg *arg) { volatile VALUE s = r_bytes(arg); ID id = rb_intern(RSTRING_PTR(s)); VALUE klass; s = r_bytes(arg); klass = r_entry(path2class(RSTRING_PTR(s)), arg); id = rb_compose_ivar2(id, klass); st_insert(arg->symbols, arg->symbols->num_entries, id); return id; } static ID r_symbol(struct load_arg *arg) { int type; switch ((type = r_byte(arg))) { case TYPE_SYMBOL: return r_symreal(arg); case TYPE_SYMBOL2: return r_symivar2(arg); case TYPE_SYMLINK: return r_symlink(arg); default: rb_raise(rb_eArgError, "dump format error(0x%x)", type); break; } } static const char* r_unique(struct load_arg *arg) { return rb_id2name(r_symbol(arg)); } static VALUE r_string(struct load_arg *arg) { return r_bytes(arg); } static VALUE r_entry(VALUE v, struct load_arg *arg) { rb_hash_aset(arg->data, INT2FIX(RHASH(arg->data)->tbl->num_entries), v); if (arg->taint) OBJ_TAINT(v); if (arg->proc) { v = rb_funcall(arg->proc, rb_intern("call"), 1, v); } return v; } static void r_ivar(VALUE obj, struct load_arg *arg) { long len; len = r_long(arg); if (len > 0) { while (len--) { ID id = r_symbol(arg); VALUE val = r_object(arg); rb_ivar_set(obj, id, val); } } } static VALUE path2class(const char *path) { VALUE v = rb_path2class(path); if (TYPE(v) != T_CLASS) { rb_raise(rb_eArgError, "%s does not refer class", path); } return v; } static VALUE path2module(const char *path) { VALUE v = rb_path2class(path); if (TYPE(v) != T_MODULE) { rb_raise(rb_eArgError, "%s does not refer module", path); } return v; } static VALUE r_object0(struct load_arg *arg, int *ivp, VALUE extmod) { VALUE v = Qnil; int type = r_byte(arg); long id; switch (type) { case TYPE_LINK: id = r_long(arg); v = rb_hash_aref(arg->data, LONG2FIX(id)); if (NIL_P(v)) { rb_raise(rb_eArgError, "dump format error (unlinked)"); } if (arg->proc) { v = rb_funcall(arg->proc, rb_intern("call"), 1, v); } break; case TYPE_IVAR: { int ivar = Qtrue; v = r_object0(arg, &ivar, extmod); if (ivar) r_ivar(v, arg); } break; case TYPE_EXTENDED: { VALUE m = path2module(r_unique(arg)); if (NIL_P(extmod)) extmod = rb_ary_new2(0); rb_ary_push(extmod, m); v = r_object0(arg, 0, extmod); while (RARRAY_LEN(extmod) > 0) { m = rb_ary_pop(extmod); rb_extend_object(v, m); } } break; case TYPE_UCLASS: { VALUE c = path2class(r_unique(arg)); if (FL_TEST(c, FL_SINGLETON)) { rb_raise(rb_eTypeError, "singleton can't be loaded"); } v = r_object0(arg, 0, extmod); if (rb_special_const_p(v) || TYPE(v) == T_OBJECT || TYPE(v) == T_CLASS) { format_error: rb_raise(rb_eArgError, "dump format error (user class)"); } if (TYPE(v) == T_MODULE || !RTEST(rb_class_inherited_p(c, RBASIC(v)->klass))) { VALUE tmp = rb_obj_alloc(c); if (TYPE(v) != TYPE(tmp)) goto format_error; } RBASIC(v)->klass = c; } break; case TYPE_NIL: v = Qnil; break; case TYPE_TRUE: v = Qtrue; break; case TYPE_FALSE: v = Qfalse; break; case TYPE_FIXNUM: { long i = r_long(arg); v = LONG2FIX(i); } break; case TYPE_FLOAT: { double d, t = 0.0; VALUE str = r_bytes(arg); const char *ptr = RSTRING_PTR(str); if (strcmp(ptr, "nan") == 0) { d = t / t; } else if (strcmp(ptr, "inf") == 0) { d = 1.0 / t; } else if (strcmp(ptr, "-inf") == 0) { d = -1.0 / t; } else { char *e; d = strtod(ptr, &e); d = load_mantissa(d, e, RSTRING_LEN(str) - (e - ptr)); } v = rb_float_new(d); v = r_entry(v, arg); } break; case TYPE_BIGNUM: { long len; BDIGIT *digits; volatile VALUE data; NEWOBJ(big, struct RBignum); OBJSETUP(big, rb_cBignum, T_BIGNUM); big->sign = (r_byte(arg) == '+'); len = r_long(arg); data = r_bytes0(len * 2, arg); #if SIZEOF_BDIGITS == SIZEOF_SHORT big->len = len; #else big->len = (len + 1) * 2 / sizeof(BDIGIT); #endif big->digits = digits = ALLOC_N(BDIGIT, big->len); MEMCPY(digits, RSTRING_PTR(data), char, len * 2); #if SIZEOF_BDIGITS > SIZEOF_SHORT MEMZERO((char *)digits + len * 2, char, big->len * sizeof(BDIGIT) - len * 2); #endif len = big->len; while (len > 0) { unsigned char *p = (unsigned char *)digits; BDIGIT num = 0; #if SIZEOF_BDIGITS > SIZEOF_SHORT int shift = 0; int i; for (i=0; iifnone = r_object(arg); } } break; case TYPE_STRUCT: { VALUE klass, mem, values; volatile long i; /* gcc 2.7.2.3 -O2 bug?? */ long len; ID slot; klass = path2class(r_unique(arg)); mem = rb_struct_s_members(klass); if (mem == Qnil) { rb_raise(rb_eTypeError, "uninitialized struct"); } len = r_long(arg); values = rb_ary_new2(len); for (i=0; i 0) { VALUE m = rb_ary_pop(extmod); rb_extend_object(v, m); } } if (!rb_respond_to(v, s_mload)) { rb_raise(rb_eTypeError, "instance of %s needs to have method `marshal_load'", rb_class2name(klass)); } v = r_entry(v, arg); data = r_object(arg); rb_funcall(v, s_mload, 1, data); } break; case TYPE_OBJECT: { VALUE klass = path2class(r_unique(arg)); v = rb_obj_alloc(klass); if (TYPE(v) != T_OBJECT) { rb_raise(rb_eArgError, "dump format error"); } v = r_entry(v, arg); r_ivar(v, arg); } break; case TYPE_DATA: { VALUE klass = path2class(r_unique(arg)); if (rb_respond_to(klass, s_alloc)) { static int warn = Qtrue; if (warn) { rb_warn("define `allocate' instead of `_alloc'"); warn = Qfalse; } v = rb_funcall(klass, s_alloc, 0); } else { v = rb_obj_alloc(klass); } if (TYPE(v) != T_DATA) { rb_raise(rb_eArgError, "dump format error"); } v = r_entry(v, arg); if (!rb_respond_to(v, s_load_data)) { rb_raise(rb_eTypeError, "class %s needs to have instance method `_load_data'", rb_class2name(klass)); } rb_funcall(v, s_load_data, 1, r_object0(arg, 0, extmod)); } break; case TYPE_MODULE_OLD: { volatile VALUE str = r_bytes(arg); v = rb_path2class(RSTRING_PTR(str)); v = r_entry(v, arg); } break; case TYPE_CLASS: { volatile VALUE str = r_bytes(arg); v = path2class(RSTRING_PTR(str)); v = r_entry(v, arg); } break; case TYPE_MODULE: { volatile VALUE str = r_bytes(arg); v = path2module(RSTRING_PTR(str)); v = r_entry(v, arg); } break; case TYPE_SYMBOL: v = ID2SYM(r_symreal(arg)); break; case TYPE_SYMBOL2: v = ID2SYM(r_symivar2(arg)); break; case TYPE_SYMLINK: v = ID2SYM(r_symlink(arg)); break; default: rb_raise(rb_eArgError, "dump format error(0x%x)", type); break; } return v; } static VALUE r_object(struct load_arg *arg) { return r_object0(arg, 0, Qnil); } static VALUE load(struct load_arg *arg) { return r_object(arg); } static VALUE load_ensure(struct load_arg *arg) { st_free_table(arg->symbols); return 0; } /* * call-seq: * load( source [, proc] ) => obj * restore( source [, proc] ) => obj * * Returns the result of converting the serialized data in source into a * Ruby object (possibly with associated subordinate objects). source * may be either an instance of IO or an object that responds to * to_str. If proc is specified, it will be passed each object as it * is deserialized. */ static VALUE marshal_load(int argc, VALUE *argv) { VALUE port, proc; int major, minor; VALUE v; struct load_arg arg; rb_scan_args(argc, argv, "11", &port, &proc); if (rb_respond_to(port, rb_intern("to_str"))) { arg.taint = OBJ_TAINTED(port); /* original taintedness */ StringValue(port); /* possible conversion */ } else if (rb_respond_to(port, s_getc) && rb_respond_to(port, s_read)) { if (rb_respond_to(port, s_binmode)) { rb_funcall2(port, s_binmode, 0, 0); } arg.taint = Qtrue; } else { rb_raise(rb_eTypeError, "instance of IO needed"); } arg.src = port; arg.offset = 0; major = r_byte(&arg); minor = r_byte(&arg); if (major != MARSHAL_MAJOR || minor > MARSHAL_MINOR) { rb_raise(rb_eTypeError, "incompatible marshal file format (can't be read)\n\ \tformat version %d.%d required; %d.%d given", MARSHAL_MAJOR, MARSHAL_MINOR, major, minor); } if (RTEST(ruby_verbose) && minor != MARSHAL_MINOR) { rb_warn("incompatible marshal file format (can be read)\n\ \tformat version %d.%d required; %d.%d given", MARSHAL_MAJOR, MARSHAL_MINOR, major, minor); } arg.symbols = st_init_numtable(); arg.data = rb_hash_new(); if (NIL_P(proc)) arg.proc = 0; else arg.proc = proc; v = rb_ensure(load, (VALUE)&arg, load_ensure, (VALUE)&arg); return v; } /* * The marshaling library converts collections of Ruby objects into a * byte stream, allowing them to be stored outside the currently * active script. This data may subsequently be read and the original * objects reconstituted. * Marshaled data has major and minor version numbers stored along * with the object information. In normal use, marshaling can only * load data written with the same major version number and an equal * or lower minor version number. If Ruby's ``verbose'' flag is set * (normally using -d, -v, -w, or --verbose) the major and minor * numbers must match exactly. Marshal versioning is independent of * Ruby's version numbers. You can extract the version by reading the * first two bytes of marshaled data. * * str = Marshal.dump("thing") * RUBY_VERSION #=> "1.8.0" * str[0] #=> 4 * str[1] #=> 8 * * Some objects cannot be dumped: if the objects to be dumped include * bindings, procedure or method objects, instances of class IO, or * singleton objects, a TypeError will be raised. * If your class has special serialization needs (for example, if you * want to serialize in some specific format), or if it contains * objects that would otherwise not be serializable, you can implement * your own serialization strategy by defining two methods, _dump and * _load: * The instance method _dump should return a String object containing * all the information necessary to reconstitute objects of this class * and all referenced objects up to a maximum depth given as an integer * parameter (a value of -1 implies that you should disable depth checking). * The class method _load should take a String and return an object of this class. */ void Init_marshal(void) { VALUE rb_mMarshal = rb_define_module("Marshal"); s_dump = rb_intern("_dump"); s_load = rb_intern("_load"); s_mdump = rb_intern("marshal_dump"); s_mload = rb_intern("marshal_load"); s_dump_data = rb_intern("_dump_data"); s_load_data = rb_intern("_load_data"); s_alloc = rb_intern("_alloc"); s_getc = rb_intern("getc"); s_read = rb_intern("read"); s_write = rb_intern("write"); s_binmode = rb_intern("binmode"); rb_define_module_function(rb_mMarshal, "dump", marshal_dump, -1); rb_define_module_function(rb_mMarshal, "load", marshal_load, -1); rb_define_module_function(rb_mMarshal, "restore", marshal_load, -1); rb_define_const(rb_mMarshal, "MAJOR_VERSION", INT2FIX(MARSHAL_MAJOR)); rb_define_const(rb_mMarshal, "MINOR_VERSION", INT2FIX(MARSHAL_MINOR)); } VALUE rb_marshal_dump(VALUE obj, VALUE port) { int argc = 1; VALUE argv[2]; argv[0] = obj; argv[1] = port; if (!NIL_P(port)) argc = 2; return marshal_dump(argc, argv); } VALUE rb_marshal_load(VALUE port) { return marshal_load(1, &port); }