/**********************************************************************
enum.c -
$Author$
created at: Fri Oct 1 15:15:19 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/util.h"
#include "node.h"
VALUE rb_mEnumerable;
static ID id_each, id_eqq, id_cmp, id_next, id_size;
static VALUE
enum_values_pack(int argc, VALUE *argv)
{
if (argc == 0) return Qnil;
if (argc == 1) return argv[0];
return rb_ary_new4(argc, argv);
}
#define ENUM_WANT_SVALUE() do { \
i = enum_values_pack(argc, argv); \
} while (0)
#define enum_yield rb_yield_values2
static VALUE
grep_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
VALUE *arg = (VALUE *)args;
ENUM_WANT_SVALUE();
if (RTEST(rb_funcall(arg[0], id_eqq, 1, i))) {
rb_ary_push(arg[1], i);
}
return Qnil;
}
static VALUE
grep_iter_i(VALUE i, VALUE args, int argc, VALUE *argv)
{
VALUE *arg = (VALUE *)args;
ENUM_WANT_SVALUE();
if (RTEST(rb_funcall(arg[0], id_eqq, 1, i))) {
rb_ary_push(arg[1], rb_yield(i));
}
return Qnil;
}
/*
* call-seq:
* enum.grep(pattern) => array
* enum.grep(pattern) {| obj | block } => array
*
* Returns an array of every element in enum for which
* Pattern === element
. If the optional block is
* supplied, each matching element is passed to it, and the block's
* result is stored in the output array.
*
* (1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44]
* c = IO.constants
* c.grep(/SEEK/) #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
* res = c.grep(/SEEK/) {|v| IO.const_get(v) }
* res #=> [0, 1, 2]
*
*/
static VALUE
enum_grep(VALUE obj, VALUE pat)
{
VALUE ary = rb_ary_new();
VALUE arg[2];
arg[0] = pat;
arg[1] = ary;
rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)arg);
return ary;
}
static VALUE
count_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
VALUE *memo = (VALUE*)memop;
ENUM_WANT_SVALUE();
if (rb_equal(i, memo[1])) {
memo[0]++;
}
return Qnil;
}
static VALUE
count_iter_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
VALUE *memo = (VALUE*)memop;
if (RTEST(enum_yield(argc, argv))) {
memo[0]++;
}
return Qnil;
}
static VALUE
count_all_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
VALUE *memo = (VALUE*)memop;
memo[0]++;
return Qnil;
}
/*
* call-seq:
* enum.count => int
* enum.count(item) => int
* enum.count {| obj | block } => int
*
* Returns the number of items in enum, where #size is called
* if it responds to it, otherwise the items are counted through
* enumeration. If an argument is given, counts the number of items
* in enum, for which equals to item. If a block is
* given, counts the number of elements yielding a true value.
*
* ary = [1, 2, 4, 2]
* ary.count # => 4
* ary.count(2) # => 2
* ary.count{|x|x%2==0} # => 3
*
*/
static VALUE
enum_count(int argc, VALUE *argv, VALUE obj)
{
VALUE memo[2]; /* [count, condition value] */
rb_block_call_func *func;
if (argc == 0) {
if (rb_block_given_p()) {
func = count_iter_i;
}
else {
if (rb_respond_to(obj, id_size)) {
return rb_funcall(obj, id_size, 0, 0);
}
func = count_all_i;
}
}
else {
rb_scan_args(argc, argv, "1", &memo[1]);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = count_i;
}
memo[0] = 0;
rb_block_call(obj, id_each, 0, 0, func, (VALUE)&memo);
return INT2NUM(memo[0]);
}
static VALUE
find_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (RTEST(rb_yield(i))) {
*memo = i;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.detect(ifnone = nil) {| obj | block } => obj or nil
* enum.find(ifnone = nil) {| obj | block } => obj or nil
*
* Passes each entry in enum to block. Returns the
* first for which block is not false
. If no
* object matches, calls ifnone and returns its result when it
* is specified, or returns nil
*
* (1..10).detect {|i| i % 5 == 0 and i % 7 == 0 } #=> nil
* (1..100).detect {|i| i % 5 == 0 and i % 7 == 0 } #=> 35
*
*/
static VALUE
enum_find(int argc, VALUE *argv, VALUE obj)
{
VALUE memo = Qundef;
VALUE if_none;
rb_scan_args(argc, argv, "01", &if_none);
RETURN_ENUMERATOR(obj, argc, argv);
rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)&memo);
if (memo != Qundef) {
return memo;
}
if (!NIL_P(if_none)) {
return rb_funcall(if_none, rb_intern("call"), 0, 0);
}
return Qnil;
}
static VALUE
find_index_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
VALUE *memo = (VALUE*)memop;
ENUM_WANT_SVALUE();
if (rb_equal(i, memo[2])) {
memo[0] = UINT2NUM(memo[1]);
rb_iter_break();
}
memo[1]++;
return Qnil;
}
static VALUE
find_index_iter_i(VALUE i, VALUE memop, int argc, VALUE *argv)
{
VALUE *memo = (VALUE*)memop;
if (RTEST(enum_yield(argc, argv))) {
memo[0] = UINT2NUM(memo[1]);
rb_iter_break();
}
memo[1]++;
return Qnil;
}
/*
* call-seq:
* enum.find_index(value) => int or nil
* enum.find_index {| obj | block } => int or nil
*
* Compares each entry in enum with value or passes
* to block. Returns the index for the first for which the
* evaluated value is non-false. If no object matches, returns
* nil
*
* (1..10).find_index {|i| i % 5 == 0 and i % 7 == 0 } #=> nil
* (1..100).find_index {|i| i % 5 == 0 and i % 7 == 0 } #=> 34
* (1..100).find_index(50) #=> 49
*
*/
static VALUE
enum_find_index(int argc, VALUE *argv, VALUE obj)
{
VALUE memo[3]; /* [return value, current index, condition value] */
rb_block_call_func *func;
if (argc == 0) {
RETURN_ENUMERATOR(obj, 0, 0);
func = find_index_iter_i;
}
else {
rb_scan_args(argc, argv, "1", &memo[2]);
if (rb_block_given_p()) {
rb_warn("given block not used");
}
func = find_index_i;
}
memo[0] = Qnil;
memo[1] = 0;
rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
return memo[0];
}
static VALUE
find_all_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (RTEST(rb_yield(i))) {
rb_ary_push(ary, i);
}
return Qnil;
}
/*
* call-seq:
* enum.find_all {| obj | block } => array
* enum.select {| obj | block } => array
*
* Returns an array containing all elements of enum for which
* block is not false
(see also
* Enumerable#reject
).
*
* (1..10).find_all {|i| i % 3 == 0 } #=> [3, 6, 9]
*
*/
static VALUE
enum_find_all(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
return ary;
}
static VALUE
reject_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (!RTEST(rb_yield(i))) {
rb_ary_push(ary, i);
}
return Qnil;
}
/*
* call-seq:
* enum.reject {| obj | block } => array
*
* Returns an array for all elements of enum for which
* block is false (see also Enumerable#find_all
).
*
* (1..10).reject {|i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10]
*
*/
static VALUE
enum_reject(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, reject_i, ary);
return ary;
}
static VALUE
collect_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
rb_ary_push(ary, enum_yield(argc, argv));
return Qnil;
}
static VALUE
collect_all(VALUE i, VALUE ary, int argc, VALUE *argv)
{
rb_thread_check_ints();
rb_ary_push(ary, enum_values_pack(argc, argv));
return Qnil;
}
/*
* call-seq:
* enum.collect {| obj | block } => array
* enum.map {| obj | block } => array
*
* Returns a new array with the results of running block once
* for every element in enum.
*
* (1..4).collect {|i| i*i } #=> [1, 4, 9, 16]
* (1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"]
*
*/
static VALUE
enum_collect(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, collect_i, ary);
return ary;
}
/*
* call-seq:
* enum.to_a => array
* enum.entries => array
*
* Returns an array containing the items in enum.
*
* (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
* { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]]
*/
static VALUE
enum_to_a(int argc, VALUE *argv, VALUE obj)
{
VALUE ary = rb_ary_new();
rb_block_call(obj, id_each, argc, argv, collect_all, ary);
OBJ_INFECT(ary, obj);
return ary;
}
static VALUE
inject_i(VALUE i, VALUE p, int argc, VALUE *argv)
{
VALUE *memo = (VALUE *)p;
ENUM_WANT_SVALUE();
if (memo[0] == Qundef) {
memo[0] = i;
}
else {
memo[0] = rb_yield_values(2, memo[0], i);
}
return Qnil;
}
static VALUE
inject_op_i(VALUE i, VALUE p, int argc, VALUE *argv)
{
VALUE *memo = (VALUE *)p;
ENUM_WANT_SVALUE();
if (memo[0] == Qundef) {
memo[0] = i;
}
else {
memo[0] = rb_funcall(memo[0], (ID)memo[1], 1, i);
}
return Qnil;
}
/*
* call-seq:
* enum.inject(initial, sym) => obj
* enum.inject(sym) => obj
* enum.inject(initial) {| memo, obj | block } => obj
* enum.inject {| memo, obj | block } => obj
*
* enum.reduce(initial, sym) => obj
* enum.reduce(sym) => obj
* enum.reduce(initial) {| memo, obj | block } => obj
* enum.reduce {| memo, obj | block } => obj
*
* Combines all elements of enum by applying a binary
* operation, specified by a block or a symbol that names a
* method or operator.
*
* If you specify a block, then for each element in enum
* the block is passed an accumulator value (memo) and the element.
* If you specify a symbol instead, then each element in the collection
* will be passed to the named method of memo.
* In either case, the result becomes the new value for memo.
* At the end of the iteration, the final value of memo is the
* return value fo the method.
*
* If you do not explicitly specify an initial value for memo,
* then uses the first element of collection is used as the initial value
* of memo.
*
* Examples:
*
* # Sum some numbers
* (5..10).reduce(:+) #=> 45
* # Same using a block and inject
* (5..10).inject {|sum, n| sum + n } #=> 45
* # Multiply some numbers
* (5..10).reduce(1, :*) #=> 151200
* # Same using a block
* (5..10).inject(1) {|product, n| product * n } #=> 151200
* # find the longest word
* longest = %w{ cat sheep bear }.inject do |memo,word|
* memo.length > word.length ? memo : word
* end
* longest #=> "sheep"
*
*/
static VALUE
enum_inject(int argc, VALUE *argv, VALUE obj)
{
VALUE memo[2];
VALUE (*iter)(VALUE, VALUE, int, VALUE*) = inject_i;
switch (rb_scan_args(argc, argv, "02", &memo[0], &memo[1])) {
case 0:
memo[0] = Qundef;
break;
case 1:
if (rb_block_given_p()) {
break;
}
memo[1] = (VALUE)rb_to_id(memo[0]);
memo[0] = Qundef;
iter = inject_op_i;
break;
case 2:
if (rb_block_given_p()) {
rb_warning("given block not used");
}
memo[1] = (VALUE)rb_to_id(memo[1]);
iter = inject_op_i;
break;
}
rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
if (memo[0] == Qundef) return Qnil;
return memo[0];
}
static VALUE
partition_i(VALUE i, VALUE *ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (RTEST(rb_yield(i))) {
rb_ary_push(ary[0], i);
}
else {
rb_ary_push(ary[1], i);
}
return Qnil;
}
/*
* call-seq:
* enum.partition {| obj | block } => [ true_array, false_array ]
*
* Returns two arrays, the first containing the elements of
* enum for which the block evaluates to true, the second
* containing the rest.
*
* (1..6).partition {|i| (i&1).zero?} #=> [[2, 4, 6], [1, 3, 5]]
*
*/
static VALUE
enum_partition(VALUE obj)
{
VALUE ary[2];
RETURN_ENUMERATOR(obj, 0, 0);
ary[0] = rb_ary_new();
ary[1] = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)ary);
return rb_assoc_new(ary[0], ary[1]);
}
static VALUE
group_by_i(VALUE i, VALUE hash, int argc, VALUE *argv)
{
VALUE group;
VALUE values;
ENUM_WANT_SVALUE();
group = rb_yield(i);
values = rb_hash_aref(hash, group);
if (NIL_P(values)) {
values = rb_ary_new3(1, i);
rb_hash_aset(hash, group, values);
}
else {
rb_ary_push(values, i);
}
return Qnil;
}
/*
* call-seq:
* enum.group_by {| obj | block } => a_hash
*
* Returns a hash, which keys are evaluated result from the
* block, and values are arrays of elements in enum
* corresponding to the key.
*
* (1..6).group_by {|i| i%3} #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}
*
*/
static VALUE
enum_group_by(VALUE obj)
{
VALUE hash;
RETURN_ENUMERATOR(obj, 0, 0);
hash = rb_hash_new();
rb_block_call(obj, id_each, 0, 0, group_by_i, hash);
OBJ_INFECT(hash, obj);
return hash;
}
static VALUE
first_i(VALUE i, VALUE *params, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (NIL_P(params[1])) {
params[1] = i;
rb_iter_break();
}
else {
long n = params[0];
rb_ary_push(params[1], i);
n--;
if (n <= 0) {
rb_iter_break();
}
params[0] = n;
}
return Qnil;
}
/*
* call-seq:
* enum.first -> obj or nil
* enum.first(n) -> an_array
*
* Returns the first element, or the first +n+ elements, of the enumerable.
* If the enumerable is empty, the first form returns nil
, and the
* second form returns an empty array.
*
*/
static VALUE
enum_first(int argc, VALUE *argv, VALUE obj)
{
VALUE n, params[2];
if (argc == 0) {
params[0] = params[1] = Qnil;
}
else {
long len;
rb_scan_args(argc, argv, "01", &n);
len = NUM2LONG(n);
if (len == 0) return rb_ary_new2(0);
if (len < 0) {
rb_raise(rb_eArgError, "negative length");
}
params[0] = len;
params[1] = rb_ary_new2(len);
}
rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)params);
return params[1];
}
/*
* call-seq:
* enum.sort => array
* enum.sort {| a, b | block } => array
*
* Returns an array containing the items in enum sorted,
* either according to their own <=>
method, or by using
* the results of the supplied block. The block should return -1, 0, or
* +1 depending on the comparison between a and b. As of
* Ruby 1.8, the method Enumerable#sort_by
implements a
* built-in Schwartzian Transform, useful when key computation or
* comparison is expensive..
*
* %w(rhea kea flea).sort #=> ["flea", "kea", "rhea"]
* (1..10).sort {|a,b| b <=> a} #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
*/
static VALUE
enum_sort(VALUE obj)
{
return rb_ary_sort(enum_to_a(0, 0, obj));
}
static VALUE
sort_by_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
NODE *memo;
ENUM_WANT_SVALUE();
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
/* use NODE_DOT2 as memo(v, v, -) */
memo = rb_node_newnode(NODE_DOT2, rb_yield(i), i, 0);
rb_ary_push(ary, (VALUE)memo);
return Qnil;
}
static int
sort_by_cmp(const void *ap, const void *bp, void *data)
{
VALUE a = (*(NODE *const *)ap)->u1.value;
VALUE b = (*(NODE *const *)bp)->u1.value;
VALUE ary = (VALUE)data;
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
return rb_cmpint(rb_funcall(a, id_cmp, 1, b), a, b);
}
/*
* call-seq:
* enum.sort_by {| obj | block } => array
*
* Sorts enum using a set of keys generated by mapping the
* values in enum through the given block.
*
* %w{ apple pear fig }.sort_by {|word| word.length}
* #=> ["fig", "pear", "apple"]
*
* The current implementation of sort_by
generates an
* array of tuples containing the original collection element and the
* mapped value. This makes sort_by
fairly expensive when
* the keysets are simple
*
* require 'benchmark'
* include Benchmark
*
* a = (1..100000).map {rand(100000)}
*
* bm(10) do |b|
* b.report("Sort") { a.sort }
* b.report("Sort by") { a.sort_by {|a| a} }
* end
*
* produces:
*
* user system total real
* Sort 0.180000 0.000000 0.180000 ( 0.175469)
* Sort by 1.980000 0.040000 2.020000 ( 2.013586)
*
* However, consider the case where comparing the keys is a non-trivial
* operation. The following code sorts some files on modification time
* using the basic sort
method.
*
* files = Dir["*"]
* sorted = files.sort {|a,b| File.new(a).mtime <=> File.new(b).mtime}
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This sort is inefficient: it generates two new File
* objects during every comparison. A slightly better technique is to
* use the Kernel#test
method to generate the modification
* times directly.
*
* files = Dir["*"]
* sorted = files.sort { |a,b|
* test(?M, a) <=> test(?M, b)
* }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This still generates many unnecessary Time
objects. A
* more efficient technique is to cache the sort keys (modification
* times in this case) before the sort. Perl users often call this
* approach a Schwartzian Transform, after Randal Schwartz. We
* construct a temporary array, where each element is an array
* containing our sort key along with the filename. We sort this array,
* and then extract the filename from the result.
*
* sorted = Dir["*"].collect { |f|
* [test(?M, f), f]
* }.sort.collect { |f| f[1] }
* sorted #=> ["mon", "tues", "wed", "thurs"]
*
* This is exactly what sort_by
does internally.
*
* sorted = Dir["*"].sort_by {|f| test(?M, f)}
* sorted #=> ["mon", "tues", "wed", "thurs"]
*/
static VALUE
enum_sort_by(VALUE obj)
{
VALUE ary;
long i;
RETURN_ENUMERATOR(obj, 0, 0);
if (TYPE(obj) == T_ARRAY) {
ary = rb_ary_new2(RARRAY_LEN(obj));
}
else {
ary = rb_ary_new();
}
RBASIC(ary)->klass = 0;
rb_block_call(obj, id_each, 0, 0, sort_by_i, ary);
if (RARRAY_LEN(ary) > 1) {
ruby_qsort(RARRAY_PTR(ary), RARRAY_LEN(ary), sizeof(VALUE),
sort_by_cmp, (void *)ary);
}
if (RBASIC(ary)->klass) {
rb_raise(rb_eRuntimeError, "sort_by reentered");
}
for (i=0; iu2.value;
}
RBASIC(ary)->klass = rb_cArray;
OBJ_INFECT(ary, obj);
return ary;
}
#define ENUMFUNC(name) rb_block_given_p() ? name##_iter_i : name##_i
#define DEFINE_ENUMFUNCS(name) \
static VALUE enum_##name##_func(VALUE result, VALUE *memo); \
\
static VALUE \
name##_i(VALUE i, VALUE *memo, int argc, VALUE *argv) \
{ \
return enum_##name##_func(enum_values_pack(argc, argv), memo); \
} \
\
static VALUE \
name##_iter_i(VALUE i, VALUE *memo, int argc, VALUE *argv) \
{ \
return enum_##name##_func(enum_yield(argc, argv), memo); \
} \
\
static VALUE \
enum_##name##_func(VALUE result, VALUE *memo)
DEFINE_ENUMFUNCS(all)
{
if (!RTEST(result)) {
*memo = Qfalse;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.all? [{|obj| block } ] => true or false
*
* Passes each element of the collection to the given block. The method
* returns true
if the block never returns
* false
or nil
. If the block is not given,
* Ruby adds an implicit block of {|obj| obj}
(that is
* all?
will return true
only if none of the
* collection members are false
or nil
.)
*
* %w{ant bear cat}.all? {|word| word.length >= 3} #=> true
* %w{ant bear cat}.all? {|word| word.length >= 4} #=> false
* [ nil, true, 99 ].all? #=> false
*
*/
static VALUE
enum_all(VALUE obj)
{
VALUE result = Qtrue;
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)&result);
return result;
}
DEFINE_ENUMFUNCS(any)
{
if (RTEST(result)) {
*memo = Qtrue;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.any? [{|obj| block } ] => true or false
*
* Passes each element of the collection to the given block. The method
* returns true
if the block ever returns a value other
* than false
or nil
. If the block is not
* given, Ruby adds an implicit block of {|obj| obj}
(that
* is any?
will return true
if at least one
* of the collection members is not false
or
* nil
.
*
* %w{ant bear cat}.any? {|word| word.length >= 3} #=> true
* %w{ant bear cat}.any? {|word| word.length >= 4} #=> true
* [ nil, true, 99 ].any? #=> true
*
*/
static VALUE
enum_any(VALUE obj)
{
VALUE result = Qfalse;
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)&result);
return result;
}
DEFINE_ENUMFUNCS(one)
{
if (RTEST(result)) {
if (*memo == Qundef) {
*memo = Qtrue;
}
else if (*memo == Qtrue) {
*memo = Qfalse;
rb_iter_break();
}
}
return Qnil;
}
/*
* call-seq:
* enum.one? [{|obj| block }] => true or false
*
* Passes each element of the collection to the given block. The method
* returns true
if the block returns true
* exactly once. If the block is not given, one?
will return
* true
only if exactly one of the collection members is
* true.
*
* %w{ant bear cat}.one? {|word| word.length == 4} #=> true
* %w{ant bear cat}.one? {|word| word.length > 4} #=> false
* %w{ant bear cat}.one? {|word| word.length < 4} #=> false
* [ nil, true, 99 ].one? #=> false
* [ nil, true, false ].one? #=> true
*
*/
static VALUE
enum_one(VALUE obj)
{
VALUE result = Qundef;
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)&result);
if (result == Qundef) return Qfalse;
return result;
}
DEFINE_ENUMFUNCS(none)
{
if (RTEST(result)) {
*memo = Qfalse;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.none? [{|obj| block }] => true or false
*
* Passes each element of the collection to the given block. The method
* returns true
if the block never returns true
* for all elements. If the block is not given, none?
will return
* true
only if none of the collection members is true.
*
* %w{ant bear cat}.none? {|word| word.length == 5} #=> true
* %w{ant bear cat}.none? {|word| word.length >= 4} #=> false
* [].none? #=> true
* [nil].none? #=> true
* [nil,false].none? #=> true
*/
static VALUE
enum_none(VALUE obj)
{
VALUE result = Qtrue;
rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)&result);
return result;
}
static VALUE
min_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE cmp;
ENUM_WANT_SVALUE();
if (*memo == Qundef) {
*memo = i;
}
else {
cmp = rb_funcall(i, id_cmp, 1, *memo);
if (rb_cmpint(cmp, i, *memo) < 0) {
*memo = i;
}
}
return Qnil;
}
static VALUE
min_ii(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE cmp;
ENUM_WANT_SVALUE();
if (*memo == Qundef) {
*memo = i;
}
else {
VALUE ary = memo[1];
RARRAY_PTR(ary)[0] = i;
RARRAY_PTR(ary)[1] = *memo;
cmp = rb_yield(ary);
if (rb_cmpint(cmp, i, *memo) < 0) {
*memo = i;
}
}
return Qnil;
}
/*
* call-seq:
* enum.min => obj
* enum.min {| a,b | block } => obj
*
* Returns the object in enum with the minimum value. The
* first form assumes all objects implement Comparable
;
* the second uses the block to return a <=> b.
*
* a = %w(albatross dog horse)
* a.min #=> "albatross"
* a.min {|a,b| a.length <=> b.length } #=> "dog"
*/
static VALUE
enum_min(VALUE obj)
{
VALUE result[2];
result[0] = Qundef;
if (rb_block_given_p()) {
result[1] = rb_ary_new3(2, Qnil, Qnil);
rb_block_call(obj, id_each, 0, 0, min_ii, (VALUE)result);
}
else {
rb_block_call(obj, id_each, 0, 0, min_i, (VALUE)result);
}
if (result[0] == Qundef) return Qnil;
return result[0];
}
static VALUE
max_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE cmp;
ENUM_WANT_SVALUE();
if (*memo == Qundef) {
*memo = i;
}
else {
cmp = rb_funcall(i, id_cmp, 1, *memo);
if (rb_cmpint(cmp, i, *memo) > 0) {
*memo = i;
}
}
return Qnil;
}
static VALUE
max_ii(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE cmp;
ENUM_WANT_SVALUE();
if (*memo == Qundef) {
*memo = i;
}
else {
VALUE ary = memo[1];
RARRAY_PTR(ary)[0] = i;
RARRAY_PTR(ary)[1] = *memo;
cmp = rb_yield(ary);
if (rb_cmpint(cmp, i, *memo) > 0) {
*memo = i;
}
}
return Qnil;
}
/*
* call-seq:
* enum.max => obj
* enum.max {|a,b| block } => obj
*
* Returns the object in _enum_ with the maximum value. The
* first form assumes all objects implement Comparable
;
* the second uses the block to return a <=> b.
*
* a = %w(albatross dog horse)
* a.max #=> "horse"
* a.max {|a,b| a.length <=> b.length } #=> "albatross"
*/
static VALUE
enum_max(VALUE obj)
{
VALUE result[2];
result[0] = Qundef;
if (rb_block_given_p()) {
result[1] = rb_ary_new3(2, Qnil, Qnil);
rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)result);
}
else {
rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)result);
}
if (result[0] == Qundef) return Qnil;
return result[0];
}
static void
minmax_i_update(VALUE i, VALUE j, VALUE *memo)
{
int n;
if (memo[0] == Qundef) {
memo[0] = i;
memo[1] = j;
}
else {
n = rb_cmpint(rb_funcall(i, id_cmp, 1, memo[0]), i, memo[0]);
if (n < 0) {
memo[0] = i;
}
n = rb_cmpint(rb_funcall(j, id_cmp, 1, memo[1]), j, memo[1]);
if (n > 0) {
memo[1] = j;
}
}
}
static VALUE
minmax_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
int n;
VALUE j;
ENUM_WANT_SVALUE();
if (memo[3] == Qundef) {
memo[3] = i;
return Qnil;
}
j = memo[3];
memo[3] = Qundef;
n = rb_cmpint(rb_funcall(j, id_cmp, 1, i), j, i);
if (n == 0)
i = j;
else if (n < 0) {
VALUE tmp;
tmp = i;
i = j;
j = tmp;
}
minmax_i_update(i, j, memo);
return Qnil;
}
static void
minmax_ii_update(VALUE i, VALUE j, VALUE *memo)
{
int n;
if (memo[0] == Qundef) {
memo[0] = i;
memo[1] = j;
}
else {
VALUE ary = memo[2];
rb_ary_store(ary, 0, i);
rb_ary_store(ary, 1, memo[0]);
n = rb_cmpint(rb_yield(ary), i, memo[0]);
if (n < 0) {
memo[0] = i;
}
rb_ary_store(ary, 0, j);
rb_ary_store(ary, 1, memo[1]);
n = rb_cmpint(rb_yield(ary), j, memo[1]);
if (n > 0) {
memo[1] = j;
}
}
}
static VALUE
minmax_ii(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
int n;
VALUE ary, j;
ENUM_WANT_SVALUE();
if (memo[3] == Qundef) {
memo[3] = i;
return Qnil;
}
j = memo[3];
memo[3] = Qundef;
ary = memo[2];
rb_ary_store(ary, 0, j);
rb_ary_store(ary, 1, i);
n = rb_cmpint(rb_yield(ary), j, i);
if (n == 0)
i = j;
else if (n < 0) {
VALUE tmp;
tmp = i;
i = j;
j = tmp;
}
minmax_ii_update(i, j, memo);
return Qnil;
}
/*
* call-seq:
* enum.minmax => [min,max]
* enum.minmax {|a,b| block } => [min,max]
*
* Returns two elements array which contains the minimum and the
* maximum value in the enumerable. The first form assumes all
* objects implement Comparable
; the second uses the
* block to return a <=> b.
*
* a = %w(albatross dog horse)
* a.minmax #=> ["albatross", "horse"]
* a.minmax {|a,b| a.length <=> b.length } #=> ["dog", "albatross"]
*/
static VALUE
enum_minmax(VALUE obj)
{
VALUE result[4];
VALUE ary = rb_ary_new3(2, Qnil, Qnil);
result[0] = Qundef;
result[3] = Qundef;
if (rb_block_given_p()) {
result[2] = ary;
rb_block_call(obj, id_each, 0, 0, minmax_ii, (VALUE)result);
if (result[3] != Qundef)
minmax_ii_update(result[3], result[3], result);
}
else {
rb_block_call(obj, id_each, 0, 0, minmax_i, (VALUE)result);
if (result[3] != Qundef)
minmax_i_update(result[3], result[3], result);
}
if (result[0] != Qundef) {
rb_ary_store(ary, 0, result[0]);
rb_ary_store(ary, 1, result[1]);
}
return ary;
}
static VALUE
min_by_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE v;
ENUM_WANT_SVALUE();
v = rb_yield(i);
if (memo[0] == Qundef) {
memo[0] = v;
memo[1] = i;
}
else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[0]), v, memo[0]) < 0) {
memo[0] = v;
memo[1] = i;
}
return Qnil;
}
/*
* call-seq:
* enum.min_by {| obj| block } => obj
*
* Returns the object in enum that gives the minimum
* value from the given block.
*
* a = %w(albatross dog horse)
* a.min_by {|x| x.length } #=> "dog"
*/
static VALUE
enum_min_by(VALUE obj)
{
VALUE memo[2];
RETURN_ENUMERATOR(obj, 0, 0);
memo[0] = Qundef;
memo[1] = Qnil;
rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
return memo[1];
}
static VALUE
max_by_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE v;
ENUM_WANT_SVALUE();
v = rb_yield(i);
if (memo[0] == Qundef) {
memo[0] = v;
memo[1] = i;
}
else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo[0]), v, memo[0]) > 0) {
memo[0] = v;
memo[1] = i;
}
return Qnil;
}
/*
* call-seq:
* enum.max_by {| obj| block } => obj
*
* Returns the object in enum that gives the maximum
* value from the given block.
*
* a = %w(albatross dog horse)
* a.max_by {|x| x.length } #=> "albatross"
*/
static VALUE
enum_max_by(VALUE obj)
{
VALUE memo[2];
RETURN_ENUMERATOR(obj, 0, 0);
memo[0] = Qundef;
memo[1] = Qnil;
rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
return memo[1];
}
static void
minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, VALUE *memo)
{
if (memo[0] == Qundef) {
memo[0] = v1;
memo[1] = v2;
memo[2] = i1;
memo[3] = i2;
}
else {
if (rb_cmpint(rb_funcall(v1, id_cmp, 1, memo[0]), v1, memo[0]) < 0) {
memo[0] = v1;
memo[2] = i1;
}
if (rb_cmpint(rb_funcall(v2, id_cmp, 1, memo[1]), v2, memo[1]) > 0) {
memo[1] = v2;
memo[3] = i2;
}
}
}
static VALUE
minmax_by_i(VALUE i, VALUE *memo, int argc, VALUE *argv)
{
VALUE vi, vj, j;
int n;
ENUM_WANT_SVALUE();
vi = rb_yield(i);
if (memo[4] == Qundef) {
memo[4] = vi;
memo[5] = i;
return Qnil;
}
vj = memo[4];
j = memo[5];
memo[4] = Qundef;
n = rb_cmpint(rb_funcall(vj, id_cmp, 1, vi), vj, vi);
if (n == 0) {
i = j;
vi = vj;
}
else if (n < 0) {
VALUE tmp;
tmp = i;
i = j;
j = tmp;
tmp = vi;
vi = vj;
vj = tmp;
}
minmax_by_i_update(vi, vj, i, j, memo);
return Qnil;
}
/*
* call-seq:
* enum.minmax_by {| obj| block } => [min, max]
*
* Returns two elements array array containing the objects in
* enum that gives the minimum and maximum values respectively
* from the given block.
*
* a = %w(albatross dog horse)
* a.minmax_by {|x| x.length } #=> ["dog", "albatross"]
*/
static VALUE
enum_minmax_by(VALUE obj)
{
VALUE memo[6];
RETURN_ENUMERATOR(obj, 0, 0);
memo[0] = Qundef;
memo[1] = Qundef;
memo[2] = Qnil;
memo[3] = Qnil;
memo[4] = Qundef;
memo[5] = Qundef;
rb_block_call(obj, id_each, 0, 0, minmax_by_i, (VALUE)memo);
if (memo[4] != Qundef)
minmax_by_i_update(memo[4], memo[4], memo[5], memo[5], memo);
return rb_assoc_new(memo[2], memo[3]);
}
static VALUE
member_i(VALUE iter, VALUE *memo, int argc, VALUE *argv)
{
if (rb_equal(enum_values_pack(argc, argv), memo[0])) {
memo[1] = Qtrue;
rb_iter_break();
}
return Qnil;
}
/*
* call-seq:
* enum.include?(obj) => true or false
* enum.member?(obj) => true or false
*
* Returns true
if any member of enum equals
* obj. Equality is tested using ==
.
*
* IO.constants.include? :SEEK_SET #=> true
* IO.constants.include? :SEEK_NO_FURTHER #=> false
*
*/
static VALUE
enum_member(VALUE obj, VALUE val)
{
VALUE memo[2];
memo[0] = val;
memo[1] = Qfalse;
rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
return memo[1];
}
static VALUE
each_with_index_i(VALUE i, VALUE memo, int argc, VALUE *argv)
{
long n = (*(VALUE *)memo)++;
return rb_yield_values(2, enum_values_pack(argc, argv), INT2NUM(n));
}
/*
* call-seq:
* enum.each_with_index {|obj, i| block } -> enum
*
* Calls block with two arguments, the item and its index,
* for each item in enum. Given arguments are passed through
* to #each().
*
* hash = Hash.new
* %w(cat dog wombat).each_with_index {|item, index|
* hash[item] = index
* }
* hash #=> {"cat"=>0, "dog"=>1, "wombat"=>2}
*
*/
static VALUE
enum_each_with_index(int argc, VALUE *argv, VALUE obj)
{
long memo;
RETURN_ENUMERATOR(obj, argc, argv);
memo = 0;
rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)&memo);
return obj;
}
/*
* call-seq:
* enum.reverse_each {|item| block }
*
* Traverses enum in reverse order.
*/
static VALUE
enum_reverse_each(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
long i;
RETURN_ENUMERATOR(obj, argc, argv);
ary = enum_to_a(argc, argv, obj);
for (i = RARRAY_LEN(ary); --i >= 0; ) {
rb_yield(RARRAY_PTR(ary)[i]);
}
return obj;
}
static VALUE
zip_ary(VALUE val, NODE *memo, int argc, VALUE *argv)
{
volatile VALUE result = memo->u1.value;
volatile VALUE args = memo->u2.value;
long n = memo->u3.cnt++;
volatile VALUE tmp;
int i;
tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
rb_ary_store(tmp, 0, enum_values_pack(argc, argv));
for (i=0; iu1.value;
volatile VALUE args = memo->u2.value;
volatile VALUE tmp;
int i;
tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
rb_ary_store(tmp, 0, enum_values_pack(argc, argv));
for (i=0; i enumerator
* enum.zip(arg, ...) {|arr| block } => nil
*
* Takes one element from enum and merges corresponding
* elements from each args. This generates a sequence of
* n-element arrays, where n is one more than the
* count of arguments. The length of the resulting sequence will be
* enum#sizeenum#size
, nil
values are supplied. If
* a block is given, it is invoked for each output array, otherwise
* an array of arrays is returned.
*
* a = [ 4, 5, 6 ]
* b = [ 7, 8, 9 ]
*
* [1,2,3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
* [1,2].zip(a,b) #=> [[1, 4, 7], [2, 5, 8]]
* a.zip([1,2],[8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]
*
*/
static VALUE
enum_zip(int argc, VALUE *argv, VALUE obj)
{
int i;
ID conv;
NODE *memo;
VALUE result = Qnil;
VALUE args = rb_ary_new4(argc, argv);
int allary = TRUE;
argv = RARRAY_PTR(args);
for (i=0; i array
*
* Returns first n elements from enum.
*
* a = [1, 2, 3, 4, 5, 0]
* a.take(3) # => [1, 2, 3]
*
*/
static VALUE
enum_take(VALUE obj, VALUE n)
{
VALUE args[2];
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to take negative size");
}
if (len == 0) return rb_ary_new2(0);
args[0] = rb_ary_new();
args[1] = len;
rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)args);
return args[0];
}
static VALUE
take_while_i(VALUE i, VALUE *ary, int argc, VALUE *argv)
{
if (!RTEST(enum_yield(argc, argv))) rb_iter_break();
rb_ary_push(*ary, enum_values_pack(argc, argv));
return Qnil;
}
/*
* call-seq:
* enum.take_while {|arr| block } => array
*
* Passes elements to the block until the block returns nil or false,
* then stops iterating and returns an array of all prior elements.
*
* a = [1, 2, 3, 4, 5, 0]
* a.take_while {|i| i < 3 } # => [1, 2]
*
*/
static VALUE
enum_take_while(VALUE obj)
{
VALUE ary;
RETURN_ENUMERATOR(obj, 0, 0);
ary = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, take_while_i, (VALUE)&ary);
return ary;
}
static VALUE
drop_i(VALUE i, VALUE *arg, int argc, VALUE *argv)
{
if (arg[1] == 0) {
rb_ary_push(arg[0], enum_values_pack(argc, argv));
}
else {
arg[1]--;
}
return Qnil;
}
/*
* call-seq:
* enum.drop(n) => array
*
* Drops first n elements from enum, and returns rest elements
* in an array.
*
* a = [1, 2, 3, 4, 5, 0]
* a.drop(3) # => [4, 5, 0]
*
*/
static VALUE
enum_drop(VALUE obj, VALUE n)
{
VALUE args[2];
long len = NUM2LONG(n);
if (len < 0) {
rb_raise(rb_eArgError, "attempt to drop negative size");
}
args[1] = len;
args[0] = rb_ary_new();
rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)args);
return args[0];
}
static VALUE
drop_while_i(VALUE i, VALUE *args, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
if (!args[1] && !RTEST(rb_yield(i))) {
args[1] = Qtrue;
}
if (args[1]) {
rb_ary_push(args[0], i);
}
return Qnil;
}
/*
* call-seq:
* enum.drop_while {|arr| block } => array
*
* Drops elements up to, but not including, the first element for
* which the block returns nil or false and returns an array
* containing the remaining elements.
*
* a = [1, 2, 3, 4, 5, 0]
* a.drop_while {|i| i < 3 } # => [3, 4, 5, 0]
*
*/
static VALUE
enum_drop_while(VALUE obj)
{
VALUE args[2];
RETURN_ENUMERATOR(obj, 0, 0);
args[0] = rb_ary_new();
args[1] = Qfalse;
rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)args);
return args[0];
}
static VALUE
cycle_i(VALUE i, VALUE ary, int argc, VALUE *argv)
{
ENUM_WANT_SVALUE();
rb_ary_push(ary, i);
rb_yield(i);
return Qnil;
}
/*
* call-seq:
* enum.cycle {|obj| block }
* enum.cycle(n) {|obj| block }
*
* Calls block for each element of enum repeatedly _n_
* times or forever if none or nil is given. If a non-positive
* number is given or the collection is empty, does nothing. Returns
* nil if the loop has finished without getting interrupted.
*
* Enumerable#cycle saves elements in an internal array so changes
* to enum after the first pass have no effect.
*
* a = ["a", "b", "c"]
* a.cycle {|x| puts x } # print, a, b, c, a, b, c,.. forever.
* a.cycle(2) {|x| puts x } # print, a, b, c, a, b, c.
*
*/
static VALUE
enum_cycle(int argc, VALUE *argv, VALUE obj)
{
VALUE ary;
VALUE nv = Qnil;
long n, i, len;
rb_scan_args(argc, argv, "01", &nv);
RETURN_ENUMERATOR(obj, argc, argv);
if (NIL_P(nv)) {
n = -1;
}
else {
n = NUM2LONG(nv);
if (n <= 0) return Qnil;
}
ary = rb_ary_new();
RBASIC(ary)->klass = 0;
rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
len = RARRAY_LEN(ary);
if (len == 0) return Qnil;
while (n < 0 || 0 < --n) {
for (i=0; istate))
v = rb_funcall(argp->categorize, rb_intern("call"), 1, i);
else
v = rb_funcall(argp->categorize, rb_intern("call"), 2, i, argp->state);
if (v == alone) {
if (!NIL_P(argp->prev_value)) {
rb_funcall(argp->yielder, rb_intern("<<"), 1, rb_assoc_new(argp->prev_value, argp->prev_elts));
argp->prev_value = argp->prev_elts = Qnil;
}
rb_funcall(argp->yielder, rb_intern("<<"), 1, rb_assoc_new(v, rb_ary_new3(1, i)));
}
else if (NIL_P(v) || v == separator) {
if (!NIL_P(argp->prev_value)) {
rb_funcall(argp->yielder, rb_intern("<<"), 1, rb_assoc_new(argp->prev_value, argp->prev_elts));
argp->prev_value = argp->prev_elts = Qnil;
}
}
else if (SYMBOL_P(v) && rb_id2name(SYM2ID(v))[0] == '_') {
rb_raise(rb_eRuntimeError, "symbol begins with an underscore is reserved");
}
else {
if (NIL_P(argp->prev_value)) {
argp->prev_value = v;
argp->prev_elts = rb_ary_new3(1, i);
}
else {
if (rb_equal(argp->prev_value, v)) {
rb_ary_push(argp->prev_elts, i);
}
else {
rb_funcall(argp->yielder, rb_intern("<<"), 1, rb_assoc_new(argp->prev_value, argp->prev_elts));
argp->prev_value = v;
argp->prev_elts = rb_ary_new3(1, i);
}
}
}
return Qnil;
}
static VALUE
chunk_i(VALUE yielder, VALUE enumerator, int argc, VALUE *argv)
{
VALUE enumerable;
struct chunk_arg arg;
enumerable = rb_ivar_get(enumerator, rb_intern("chunk_enumerable"));
arg.categorize = rb_ivar_get(enumerator, rb_intern("chunk_categorize"));
arg.state = rb_ivar_get(enumerator, rb_intern("chunk_initial_state"));
arg.prev_value = Qnil;
arg.prev_elts = Qnil;
arg.yielder = yielder;
if (!NIL_P(arg.state))
arg.state = rb_obj_dup(arg.state);
rb_block_call(enumerable, id_each, 0, 0, chunk_ii, (VALUE)&arg);
if (!NIL_P(arg.prev_elts))
rb_funcall(arg.yielder, rb_intern("<<"), 1, rb_assoc_new(arg.prev_value, arg.prev_elts));
return Qnil;
}
/*
* call-seq:
* enum.chunk {|elt| ... } => enumerator
* enum.chunk(initial_state) {|elt, state| ... } => enumerator
*
* Creates an enumerator for each chunked elements.
* The consecutive elements which have same block value are chunked.
*
* The result enumerator yields the block value and an array of chunked elements.
* So "each" method can be called as follows.
*
* enum.chunk {|elt| key }.each {|key, ary| ... }
* enum.chunk(initial_state) {|elt, state| key }.each {|key, ary| ... }
*
* For example, consecutive even numbers and odd numbers can be
* splitted as follows.
*
* [3,1,4,1,5,9,2,6,5,3,5].chunk {|n|
* n.even?
* }.each {|even, ary|
* p [even, ary]
* }
* #=> [false, [3, 1]]
* # [true, [4]]
* # [false, [1, 5, 9]]
* # [true, [2, 6]]
* # [false, [5, 3, 5]]
*
* This method is especially useful for sorted series of elements.
* The following example counts words for each initial letter.
*
* open("/usr/share/dict/words", "r:iso-8859-1") {|f|
* f.chunk {|line| line.ord }.each {|ch, lines| p [ch.chr, lines.length] }
* }
* #=> ["\n", 1]
* # ["A", 1327]
* # ["B", 1372]
* # ["C", 1507]
* # ["D", 791]
* # ...
*
* The following key values has special meaning:
* - nil and :_separator specifies that the elements are dropped.
* - :_alone specifies that the element should be chunked as a singleton.
* Other symbols which begins an underscore are reserved.
*
* nil and :_separator can be used to ignore some elements.
* For example, the sequence of hyphens in svn log can be eliminated as follows.
*
* sep = "-"*72 + "\n"
* IO.popen("svn log README") {|f|
* f.chunk {|line|
* line != sep || nil
* }.each {|_, lines|
* pp lines
* }
* }
* #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
* # "\n",
* # "* README, README.ja: Update the portability section.\n",
* # "\n"]
* # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
* # "\n",
* # "* README, README.ja: Add a note about default C flags.\n",
* # "\n"]
* # ...
*
* :_alone can be used to pass through bunch of elements.
* For example, sort consective lines formed as Foo#bar and
* pass other lines, chunk can be used as follows.
*
* pat = /\A[A-Z][A-Za-z0-9_]+\#/
* open(filename) {|f|
* f.chunk {|line| pat =~ line ? $& : :_alone }.each {|key, lines|
* if key != :_alone
* print lines.sort.join('')
* else
* print lines.join('')
* end
* }
* }
*
* If the block needs to maintain state over multiple elements,
* _initial_state_ argument can be used.
* If non-nil value is given,
* it is duplicated for each "each" method invocation of the enumerator.
* The duplicated object is passed to 2nd argument of the block for "chunk" method..
*
*/
static VALUE
enum_chunk(int argc, VALUE *argv, VALUE enumerable)
{
VALUE initial_state;
VALUE enumerator;
rb_scan_args(argc, argv, "01", &initial_state);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable);
rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc());
rb_ivar_set(enumerator, rb_intern("chunk_initial_state"), initial_state);
rb_block_call(enumerator, rb_intern("initialize"), 0, 0, chunk_i, enumerator);
return enumerator;
}
struct slicebefore_arg {
VALUE separator_p;
VALUE state;
VALUE prev_elts;
VALUE yielder;
};
static VALUE
slicebefore_ii(VALUE i, VALUE _argp, int argc, VALUE *argv)
{
struct slicebefore_arg *argp = (struct slicebefore_arg *)_argp;
VALUE header_p;
ENUM_WANT_SVALUE();
if (NIL_P(argp->state))
header_p = rb_funcall(argp->separator_p, rb_intern("call"), 1, i);
else
header_p = rb_funcall(argp->separator_p, rb_intern("call"), 2, i, argp->state);
if (RTEST(header_p)) {
if (!NIL_P(argp->prev_elts))
rb_funcall(argp->yielder, rb_intern("<<"), 1, argp->prev_elts);
argp->prev_elts = rb_ary_new3(1, i);
}
else {
if (NIL_P(argp->prev_elts))
argp->prev_elts = rb_ary_new3(1, i);
else
rb_ary_push(argp->prev_elts, i);
}
return Qnil;
}
static VALUE
slicebefore_i(VALUE yielder, VALUE enumerator, int argc, VALUE *argv)
{
VALUE enumerable;
struct slicebefore_arg arg;
enumerable = rb_ivar_get(enumerator, rb_intern("slicebefore_enumerable"));
arg.separator_p = rb_ivar_get(enumerator, rb_intern("slicebefore_separator_p"));
arg.state = rb_ivar_get(enumerator, rb_intern("slicebefore_initial_state"));
arg.prev_elts = Qnil;
arg.yielder = yielder;
if (!NIL_P(arg.state))
arg.state = rb_obj_dup(arg.state);
rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, (VALUE)&arg);
if (!NIL_P(arg.prev_elts))
rb_funcall(arg.yielder, rb_intern("<<"), 1, arg.prev_elts);
return Qnil;
}
/*
* call-seq:
* enum.slice_before {|elt| ... } => enumerator
* enum.slice_before(initial_state) {|elt, state| ... } => enumerator
*
* Creates an enumerator for each chunked elements.
* The chunked elements begins an element which the block returns true value.
*
* The result enumerator yields the chunked elements as an array.
* So "each" method can be called as follows.
*
* enum.slice_before {|elt| bool }.each {|ary| ... }
* enum.slice_before(initial_state) {|elt, state| bool }.each {|ary| ... }
*
* For example, iteration over ChangeLog entries can be implemented as follows.
*
* # iterate over ChangeLog entries.
* open("ChangeLog") {|f|
* f.slice_before {|line| /\A\S/ =~ line }.each {|e| pp e}
* }
*
* If the block needs to maintain state over multiple elements,
* local variables can be used.
* For example, monotonically increasing elements can be chunked as follows.
*
* a = [3,1,4,1,5,9,2,6,5,3,5]
* n = 0
* p a.slice_before {|elt|
* prev, n = n, elt
* prev > elt
* }.to_a
* #=> [[3], [1, 4], [1, 5, 9], [2, 6], [5], [3, 5]]
*
* However local variables are not appropriate to maintain state
* if the result enumerator is used twice or more.
* In such case, the last state of the 1st +each+ is used in 2nd +each+.
* _initial_state_ argument can be used to avoid this problem.
* If non-nil value is given as _initial_state_,
* it is duplicated for each "each" method invocation of the enumerator.
* The duplicated object is passed to 2nd argument of the block for
* +slice_before+ method.
*
* # word wrapping
* def wordwrap(words, width)
* # if cols is a local variable, 2nd "each" may start with non-zero cols.
* words.slice_before(cols: 0) {|w, h|
* h[:cols] += 1 if h[:cols] != 0
* h[:cols] += w.length
* if width < h[:cols]
* h[:cols] = w.length
* true
* else
* false
* end
* }
* end
* text = (1..20).to_a.join(" ")
* enum = wordwrap(text.split(/\s+/), 10)
* puts "-"*10
* enum.each {|ws| puts ws.join(" ") }
* puts "-"*10
* #=> ----------
* # 1 2 3 4 5
* # 6 7 8 9 10
* # 11 12 13
* # 14 15 16
* # 17 18 19
* # 20
* # ----------
*
* mbox contains series of mails which start with Unix From line.
* So each mail can be extracted by slice before Unix From line.
*
* # parse mbox
* open("mbox") {|f|
* f.slice_before {|line|
* line.start_with? "From "
* }.each {|mail|
* unix_from = mail.shift
* i = mail.index("\n")
* header = mail[0...i]
* body = mail[(i+1)..-1]
* fields = header.slice_before {|line| !" \t".include?(line[0]) }.to_a
* p unix_from
* pp fields
* pp body
* }
* }
*
* # split mails in mbox (slice before Unix From line after an empty line)
* open("mbox") {|f|
* f.slice_before(emp: true) {|line,h|
* prevemp = h[:emp]
* h[:emp] = line == "\n"
* prevemp && line.start_with?("From ")
* }.each {|mail|
* pp mail
* }
*
*/
static VALUE
enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
{
VALUE initial_state, enumerator;
rb_scan_args(argc, argv, "01", &initial_state);
enumerator = rb_obj_alloc(rb_cEnumerator);
rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable);
rb_ivar_set(enumerator, rb_intern("slicebefore_separator_p"), rb_block_proc());
rb_ivar_set(enumerator, rb_intern("slicebefore_initial_state"), initial_state);
rb_block_call(enumerator, rb_intern("initialize"), 0, 0, slicebefore_i, enumerator);
return enumerator;
}
/*
* call-seq:
* enum.join(sep=$,) -> str
*
* Returns a string created by converting each element of the
* enum to a string, separated by sep.
*/
static VALUE
enum_join(int argc, VALUE *argv, VALUE obj)
{
VALUE sep;
rb_scan_args(argc, argv, "01", &sep);
if (NIL_P(sep)) sep = rb_output_fs;
return rb_ary_join(enum_to_a(0, 0, obj), sep);
}
/*
* The Enumerable
mixin provides collection classes with
* several traversal and searching methods, and with the ability to
* sort. The class must provide a method each
, which
* yields successive members of the collection. If
* Enumerable#max
, #min
, or
* #sort
is used, the objects in the collection must also
* implement a meaningful <=>
operator, as these methods
* rely on an ordering between members of the collection.
*/
void
Init_Enumerable(void)
{
#undef rb_intern
#define rb_intern(str) rb_intern_const(str)
rb_mEnumerable = rb_define_module("Enumerable");
rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1);
rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1);
rb_define_method(rb_mEnumerable, "sort", enum_sort, 0);
rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0);
rb_define_method(rb_mEnumerable, "grep", enum_grep, 1);
rb_define_method(rb_mEnumerable, "count", enum_count, -1);
rb_define_method(rb_mEnumerable, "find", enum_find, -1);
rb_define_method(rb_mEnumerable, "detect", enum_find, -1);
rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1);
rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0);
rb_define_method(rb_mEnumerable, "select", enum_find_all, 0);
rb_define_method(rb_mEnumerable, "reject", enum_reject, 0);
rb_define_method(rb_mEnumerable, "collect", enum_collect, 0);
rb_define_method(rb_mEnumerable, "map", enum_collect, 0);
rb_define_method(rb_mEnumerable, "inject", enum_inject, -1);
rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1);
rb_define_method(rb_mEnumerable, "partition", enum_partition, 0);
rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0);
rb_define_method(rb_mEnumerable, "first", enum_first, -1);
rb_define_method(rb_mEnumerable, "all?", enum_all, 0);
rb_define_method(rb_mEnumerable, "any?", enum_any, 0);
rb_define_method(rb_mEnumerable, "one?", enum_one, 0);
rb_define_method(rb_mEnumerable, "none?", enum_none, 0);
rb_define_method(rb_mEnumerable, "min", enum_min, 0);
rb_define_method(rb_mEnumerable, "max", enum_max, 0);
rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0);
rb_define_method(rb_mEnumerable, "min_by", enum_min_by, 0);
rb_define_method(rb_mEnumerable, "max_by", enum_max_by, 0);
rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0);
rb_define_method(rb_mEnumerable, "member?", enum_member, 1);
rb_define_method(rb_mEnumerable, "include?", enum_member, 1);
rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1);
rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1);
rb_define_method(rb_mEnumerable, "zip", enum_zip, -1);
rb_define_method(rb_mEnumerable, "take", enum_take, 1);
rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0);
rb_define_method(rb_mEnumerable, "drop", enum_drop, 1);
rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0);
rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1);
rb_define_method(rb_mEnumerable, "join", enum_join, -1);
rb_define_method(rb_mEnumerable, "chunk", enum_chunk, -1);
rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1);
id_eqq = rb_intern("===");
id_each = rb_intern("each");
id_cmp = rb_intern("<=>");
id_next = rb_intern("next");
id_size = rb_intern("size");
}