require 'test/unit' class ComplexSub < Complex; end class Complex_Test < Test::Unit::TestCase def setup @rational = defined?(Rational) if @rational @keiju = Rational.instance_variables.include?(:@RCS_ID) end seps = [File::SEPARATOR, File::ALT_SEPARATOR].compact.map{|x| Regexp.escape(x)}.join("|") @unify = $".grep(/(?:^|#{seps})mathn(?:\.(?:rb|so))?/).size != 0 end def test_compsub c = ComplexSub.__send__(:convert, 1) assert_kind_of(Numeric, c) if @unify assert_instance_of(Fixnum, c) else assert_instance_of(ComplexSub, c) c2 = c + 1 assert_instance_of(ComplexSub, c2) c2 = c - 1 assert_instance_of(ComplexSub, c2) c3 = c - c2 assert_instance_of(ComplexSub, c3) s = Marshal.dump(c) c5 = Marshal.load(s) assert_equal(c, c5) assert_instance_of(ComplexSub, c5) end c1 = Complex(1) assert_equal(c1.hash, c.hash, '[ruby-dev:38850]') assert_equal([true, true], [c.eql?(c1), c1.eql?(c)]) end def test_eql_p c = Complex(0) c2 = Complex(0) c3 = Complex(1) assert_equal(true, c.eql?(c2)) assert_equal(false, c.eql?(c3)) if @unify assert_equal(true, c.eql?(0)) else assert_equal(false, c.eql?(0)) end end def test_hash assert_instance_of(Fixnum, Complex(1,2).hash) assert_instance_of(Fixnum, Complex(1.0,2.0).hash) h = {} h[Complex(0)] = 0 h[Complex(0,1)] = 1 h[Complex(1,0)] = 2 h[Complex(1,1)] = 3 assert_equal(4, h.size) assert_equal(2, h[Complex(1,0)]) h[Complex(0,0)] = 9 assert_equal(4, h.size) h[Complex(0.0,0.0)] = 9.0 assert_equal(5, h.size) if (0.0/0).nan? && !((0.0/0).eql?(0.0/0)) h = {} 3.times{h[Complex(0.0/0)] = 1} assert_equal(3, h.size) end end def test_freeze c = Complex(1) c.freeze unless @unify assert_equal(true, c.frozen?) end assert_instance_of(String, c.to_s) end def test_conv c = Complex(0,0) assert_equal(Complex(0,0), c) c = Complex(2**32, 2**32) assert_equal(Complex(2**32,2**32), c) assert_equal([2**32,2**32], [c.real,c.imag]) c = Complex(-2**32, 2**32) assert_equal(Complex(-2**32,2**32), c) assert_equal([-2**32,2**32], [c.real,c.imag]) c = Complex(2**32, -2**32) assert_equal(Complex(2**32,-2**32), c) assert_equal([2**32,-2**32], [c.real,c.imag]) c = Complex(-2**32, -2**32) assert_equal(Complex(-2**32,-2**32), c) assert_equal([-2**32,-2**32], [c.real,c.imag]) c = Complex(Complex(1,2),2) assert_equal(Complex(1,4), c) c = Complex(2,Complex(1,2)) assert_equal(Complex(0,1), c) c = Complex(Complex(1,2),Complex(1,2)) assert_equal(Complex(-1,3), c) c = Complex::I assert_equal(Complex(0,1), c) assert_equal(Complex(1),Complex(1)) assert_equal(Complex(1),Complex('1')) assert_equal(Complex(3.0,3.0),Complex('3.0','3.0')) if @rational && !@keiju assert_equal(Complex(1,1),Complex('3/3','3/3')) end assert_raise(TypeError){Complex(nil)} assert_raise(TypeError){Complex(Object.new)} assert_raise(ArgumentError){Complex()} assert_raise(ArgumentError){Complex(1,2,3)} if (0.0/0).nan? assert_nothing_raised{Complex(0.0/0)} end if (1.0/0).infinite? assert_nothing_raised{Complex(1.0/0)} end end def test_attr c = Complex(4) assert_equal(4, c.real) assert_equal(0, c.imag) c = Complex(4,5) assert_equal(4, c.real) assert_equal(5, c.imag) if -0.0.to_s == '-0.0' c = Complex(-0.0,-0.0) assert_equal('-0.0', c.real.to_s) assert_equal('-0.0', c.imag.to_s) end c = Complex(4) assert_equal(4, c.real) assert_equal(0, c.imag) assert_equal(c.imag, c.imaginary) c = Complex(4,5) assert_equal(4, c.real) assert_equal(5, c.imag) assert_equal(c.imag, c.imaginary) if -0.0.to_s == '-0.0' c = Complex(-0.0,-0.0) assert_equal('-0.0', c.real.to_s) assert_equal('-0.0', c.imag.to_s) assert_equal(c.imag.to_s, c.imaginary.to_s) end c = Complex(4) assert_equal(4, c.real) assert_equal(c.imag, c.imaginary) assert_equal(0, c.imag) c = Complex(4,5) assert_equal(4, c.real) assert_equal(5, c.imag) assert_equal(c.imag, c.imaginary) c = Complex(-0.0,-0.0) assert_equal('-0.0', c.real.to_s) assert_equal('-0.0', c.imag.to_s) assert_equal(c.imag.to_s, c.imaginary.to_s) end def test_attr2 c = Complex(1) if @unify =begin assert_equal(true, c.finite?) assert_equal(false, c.infinite?) assert_equal(false, c.nan?) assert_equal(true, c.integer?) assert_equal(false, c.float?) assert_equal(true, c.rational?) =end assert_equal(true, c.real?) =begin assert_equal(false, c.complex?) assert_equal(true, c.exact?) assert_equal(false, c.inexact?) =end else =begin assert_equal(true, c.finite?) assert_equal(false, c.infinite?) assert_equal(false, c.nan?) assert_equal(false, c.integer?) assert_equal(false, c.float?) assert_equal(false, c.rational?) =end assert_equal(false, c.real?) =begin assert_equal(true, c.complex?) assert_equal(true, c.exact?) assert_equal(false, c.inexact?) =end end =begin assert_equal(0, Complex(0).sign) assert_equal(1, Complex(2).sign) assert_equal(-1, Complex(-2).sign) =end assert_equal(true, Complex(0).zero?) assert_equal(true, Complex(0,0).zero?) assert_equal(false, Complex(1,0).zero?) assert_equal(false, Complex(0,1).zero?) assert_equal(false, Complex(1,1).zero?) assert_equal(nil, Complex(0).nonzero?) assert_equal(nil, Complex(0,0).nonzero?) assert_equal(Complex(1,0), Complex(1,0).nonzero?) assert_equal(Complex(0,1), Complex(0,1).nonzero?) assert_equal(Complex(1,1), Complex(1,1).nonzero?) end def test_rect assert_equal([1,2], Complex.rectangular(1,2).rectangular) assert_equal([1,2], Complex.rect(1,2).rect) end def test_polar assert_equal([1,2], Complex.polar(1,2).polar) end def test_uplus assert_equal(Complex(1), +Complex(1)) assert_equal(Complex(-1), +Complex(-1)) assert_equal(Complex(1,1), +Complex(1,1)) assert_equal(Complex(-1,1), +Complex(-1,1)) assert_equal(Complex(1,-1), +Complex(1,-1)) assert_equal(Complex(-1,-1), +Complex(-1,-1)) if -0.0.to_s == '-0.0' c = +Complex(0.0,0.0) assert_equal('0.0', c.real.to_s) assert_equal('0.0', c.imag.to_s) c = +Complex(-0.0,-0.0) assert_equal('-0.0', c.real.to_s) assert_equal('-0.0', c.imag.to_s) end end def test_negate assert_equal(Complex(-1), -Complex(1)) assert_equal(Complex(1), -Complex(-1)) assert_equal(Complex(-1,-1), -Complex(1,1)) assert_equal(Complex(1,-1), -Complex(-1,1)) assert_equal(Complex(-1,1), -Complex(1,-1)) assert_equal(Complex(1,1), -Complex(-1,-1)) if -0.0.to_s == '-0.0' c = -Complex(0.0,0.0) assert_equal('-0.0', c.real.to_s) assert_equal('-0.0', c.imag.to_s) c = -Complex(-0.0,-0.0) assert_equal('0.0', c.real.to_s) assert_equal('0.0', c.imag.to_s) end =begin assert_equal(0, Complex(0).negate) assert_equal(-2, Complex(2).negate) assert_equal(2, Complex(-2).negate) =end end def test_add c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(3,5), c + c2) assert_equal(Complex(3,2), c + 2) assert_equal(Complex(3.0,2), c + 2.0) if @rational assert_equal(Complex(Rational(3,1),Rational(2)), c + Rational(2)) assert_equal(Complex(Rational(5,3),Rational(2)), c + Rational(2,3)) end end def test_sub c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(-1,-1), c - c2) assert_equal(Complex(-1,2), c - 2) assert_equal(Complex(-1.0,2), c - 2.0) if @rational assert_equal(Complex(Rational(-1,1),Rational(2)), c - Rational(2)) assert_equal(Complex(Rational(1,3),Rational(2)), c - Rational(2,3)) end end def test_mul c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(-4,7), c * c2) assert_equal(Complex(2,4), c * 2) assert_equal(Complex(2.0,4.0), c * 2.0) if @rational assert_equal(Complex(Rational(2,1),Rational(4)), c * Rational(2)) assert_equal(Complex(Rational(2,3),Rational(4,3)), c * Rational(2,3)) end end def test_div c = Complex(1,2) c2 = Complex(2,3) if @rational assert_equal(Complex(Rational(8,13),Rational(1,13)), c / c2) else r = c / c2 assert_in_delta(0.615, r.real, 0.001) assert_in_delta(0.076, r.imag, 0.001) end c = Complex(1.0,2.0) c2 = Complex(2.0,3.0) r = c / c2 assert_in_delta(0.615, r.real, 0.001) assert_in_delta(0.076, r.imag, 0.001) c = Complex(1,2) c2 = Complex(2,3) if @rational assert_equal(Complex(Rational(1,2),1), c / 2) else assert_equal(Complex(0.5,1.0), c / 2) end assert_equal(Complex(0.5,1.0), c / 2.0) if @rational assert_equal(Complex(Rational(1,2),Rational(1)), c / Rational(2)) assert_equal(Complex(Rational(3,2),Rational(3)), c / Rational(2,3)) end end def test_quo c = Complex(1,2) c2 = Complex(2,3) if @rational assert_equal(Complex(Rational(8,13),Rational(1,13)), c.quo(c2)) else r = c.quo(c2) assert_in_delta(0.615, r.real, 0.001) assert_in_delta(0.076, r.imag, 0.001) end c = Complex(1.0,2.0) c2 = Complex(2.0,3.0) r = c.quo(c2) assert_in_delta(0.615, r.real, 0.001) assert_in_delta(0.076, r.imag, 0.001) c = Complex(1,2) c2 = Complex(2,3) if @rational assert_equal(Complex(Rational(1,2),1), c.quo(2)) else assert_equal(Complex(0.5,1.0), c.quo(2)) end assert_equal(Complex(0.5,1.0), c.quo(2.0)) if @rational assert_equal(Complex(Rational(1,2),Rational(1)), c / Rational(2)) assert_equal(Complex(Rational(3,2),Rational(3)), c / Rational(2,3)) end end def test_fdiv c = Complex(1,2) c2 = Complex(2,3) r = c.fdiv(c2) assert_in_delta(0.615, r.real, 0.001) assert_in_delta(0.076, r.imag, 0.001) c = Complex(1.0,2.0) c2 = Complex(2.0,3.0) r = c.fdiv(c2) assert_in_delta(0.615, r.real, 0.001) assert_in_delta(0.076, r.imag, 0.001) c = Complex(1,2) c2 = Complex(2,3) assert_equal(Complex(0.5,1.0), c.fdiv(2)) assert_equal(Complex(0.5,1.0), c.fdiv(2.0)) end def test_expt c = Complex(1,2) c2 = Complex(2,3) r = c ** c2 assert_in_delta(-0.015, r.real, 0.001) assert_in_delta(-0.179, r.imag, 0.001) assert_equal(Complex(-3,4), c ** 2) if @rational && !@keiju assert_equal(Complex(Rational(-3,25),Rational(-4,25)), c ** -2) else r = c ** -2 assert_in_delta(-0.12, r.real, 0.001) assert_in_delta(-0.16, r.imag, 0.001) end r = c ** 2.0 assert_in_delta(-3.0, r.real, 0.001) assert_in_delta(4.0, r.imag, 0.001) r = c ** -2.0 assert_in_delta(-0.12, r.real, 0.001) assert_in_delta(-0.16, r.imag, 0.001) if @rational && !@keiju assert_equal(Complex(-3,4), c ** Rational(2)) #=begin assert_equal(Complex(Rational(-3,25),Rational(-4,25)), c ** Rational(-2)) # why failed? #=end r = c ** Rational(2,3) assert_in_delta(1.264, r.real, 0.001) assert_in_delta(1.150, r.imag, 0.001) r = c ** Rational(-2,3) assert_in_delta(0.432, r.real, 0.001) assert_in_delta(-0.393, r.imag, 0.001) end end def test_cmp assert_raise(NoMethodError){1 <=> Complex(1,1)} assert_raise(NoMethodError){Complex(1,1) <=> 1} assert_raise(NoMethodError){Complex(1,1) <=> Complex(1,1)} end def test_eqeq assert(Complex(1,0) == Complex(1)) assert(Complex(-1,0) == Complex(-1)) assert_equal(false, Complex(2,1) == Complex(1)) assert_equal(true, Complex(2,1) != Complex(1)) assert_equal(false, Complex(1) == nil) assert_equal(false, Complex(1) == '') nan = 0.0 / 0 if nan.nan? && nan != nan assert_equal(false, Complex(nan, 0) == Complex(nan, 0)) assert_equal(false, Complex(0, nan) == Complex(0, nan)) assert_equal(false, Complex(nan, nan) == Complex(nan, nan)) end end def test_coerce assert_equal([Complex(2),Complex(1)], Complex(1).coerce(2)) assert_equal([Complex(2.2),Complex(1)], Complex(1).coerce(2.2)) assert_equal([Complex(Rational(2)),Complex(1)], Complex(1).coerce(Rational(2))) assert_equal([Complex(2),Complex(1)], Complex(1).coerce(Complex(2))) end def test_unify if @unify assert_instance_of(Fixnum, Complex(1,2) + Complex(-1,-2)) assert_instance_of(Fixnum, Complex(1,2) - Complex(1,2)) assert_instance_of(Fixnum, Complex(1,2) * 0) assert_instance_of(Fixnum, Complex(1,2) / Complex(1,2)) # assert_instance_of(Fixnum, Complex(1,2).div(Complex(1,2))) assert_instance_of(Fixnum, Complex(1,2).quo(Complex(1,2))) # assert_instance_of(Fixnum, Complex(1,2) ** 0) # mathn's bug end end def test_math c = Complex(1,2) assert_in_delta(2.236, c.abs, 0.001) assert_in_delta(2.236, c.magnitude, 0.001) assert_equal(5, c.abs2) assert_equal(c.abs, Math.sqrt(c * c.conj)) assert_equal(c.abs, Math.sqrt(c.real**2 + c.imag**2)) assert_equal(c.abs2, c * c.conj) assert_equal(c.abs2, c.real**2 + c.imag**2) assert_in_delta(1.107, c.arg, 0.001) assert_in_delta(1.107, c.angle, 0.001) assert_in_delta(1.107, c.phase, 0.001) r = c.polar assert_in_delta(2.236, r[0], 0.001) assert_in_delta(1.107, r[1], 0.001) assert_equal(Complex(1,-2), c.conjugate) assert_equal(Complex(1,-2), c.conj) # assert_equal(Complex(1,-2), ~c) # assert_equal(5, c * ~c) assert_equal(Complex(1,2), c.numerator) assert_equal(1, c.denominator) end def test_to_s c = Complex(1,2) assert_instance_of(String, c.to_s) assert_equal('1+2i', c.to_s) assert_equal('0+2i', Complex(0,2).to_s) assert_equal('0-2i', Complex(0,-2).to_s) assert_equal('1+2i', Complex(1,2).to_s) assert_equal('-1+2i', Complex(-1,2).to_s) assert_equal('-1-2i', Complex(-1,-2).to_s) assert_equal('1-2i', Complex(1,-2).to_s) assert_equal('-1-2i', Complex(-1,-2).to_s) assert_equal('0+2.0i', Complex(0,2.0).to_s) assert_equal('0-2.0i', Complex(0,-2.0).to_s) assert_equal('1.0+2.0i', Complex(1.0,2.0).to_s) assert_equal('-1.0+2.0i', Complex(-1.0,2.0).to_s) assert_equal('-1.0-2.0i', Complex(-1.0,-2.0).to_s) assert_equal('1.0-2.0i', Complex(1.0,-2.0).to_s) assert_equal('-1.0-2.0i', Complex(-1.0,-2.0).to_s) if @rational && !@unify && !@keiju assert_equal('0+2/1i', Complex(0,Rational(2)).to_s) assert_equal('0-2/1i', Complex(0,Rational(-2)).to_s) assert_equal('1+2/1i', Complex(1,Rational(2)).to_s) assert_equal('-1+2/1i', Complex(-1,Rational(2)).to_s) assert_equal('-1-2/1i', Complex(-1,Rational(-2)).to_s) assert_equal('1-2/1i', Complex(1,Rational(-2)).to_s) assert_equal('-1-2/1i', Complex(-1,Rational(-2)).to_s) assert_equal('0+2/3i', Complex(0,Rational(2,3)).to_s) assert_equal('0-2/3i', Complex(0,Rational(-2,3)).to_s) assert_equal('1+2/3i', Complex(1,Rational(2,3)).to_s) assert_equal('-1+2/3i', Complex(-1,Rational(2,3)).to_s) assert_equal('-1-2/3i', Complex(-1,Rational(-2,3)).to_s) assert_equal('1-2/3i', Complex(1,Rational(-2,3)).to_s) assert_equal('-1-2/3i', Complex(-1,Rational(-2,3)).to_s) end nan = 0.0 / 0 inf = 1.0 / 0 if nan.nan? assert_equal('NaN+NaN*i', Complex(nan,nan).to_s) end if inf.infinite? assert_equal('Infinity+Infinity*i', Complex(inf,inf).to_s) assert_equal('Infinity-Infinity*i', Complex(inf,-inf).to_s) end end def test_inspect c = Complex(1,2) assert_instance_of(String, c.inspect) assert_equal('(1+2i)', c.inspect) end def test_marshal c = Complex(1,2) c.instance_eval{@ivar = 9} s = Marshal.dump(c) c2 = Marshal.load(s) assert_equal(c, c2) assert_equal(9, c2.instance_variable_get(:@ivar)) assert_instance_of(Complex, c2) if @rational c = Complex(Rational(1,2),Rational(2,3)) s = Marshal.dump(c) c2 = Marshal.load(s) assert_equal(c, c2) assert_instance_of(Complex, c2) end end def test_parse assert_equal(Complex(5), '5'.to_c) assert_equal(Complex(-5), '-5'.to_c) assert_equal(Complex(5,3), '5+3i'.to_c) assert_equal(Complex(-5,3), '-5+3i'.to_c) assert_equal(Complex(5,-3), '5-3i'.to_c) assert_equal(Complex(-5,-3), '-5-3i'.to_c) assert_equal(Complex(0,3), '3i'.to_c) assert_equal(Complex(0,-3), '-3i'.to_c) assert_equal(Complex(5,1), '5+i'.to_c) assert_equal(Complex(0,1), 'i'.to_c) assert_equal(Complex(0,1), '+i'.to_c) assert_equal(Complex(0,-1), '-i'.to_c) assert_equal(Complex(5,3), '5+3I'.to_c) assert_equal(Complex(5,3), '5+3j'.to_c) assert_equal(Complex(5,3), '5+3J'.to_c) assert_equal(Complex(0,3), '3I'.to_c) assert_equal(Complex(0,3), '3j'.to_c) assert_equal(Complex(0,3), '3J'.to_c) assert_equal(Complex(0,1), 'I'.to_c) assert_equal(Complex(0,1), 'J'.to_c) assert_equal(Complex(5.0), '5.0'.to_c) assert_equal(Complex(-5.0), '-5.0'.to_c) assert_equal(Complex(5.0,3.0), '5.0+3.0i'.to_c) assert_equal(Complex(-5.0,3.0), '-5.0+3.0i'.to_c) assert_equal(Complex(5.0,-3.0), '5.0-3.0i'.to_c) assert_equal(Complex(-5.0,-3.0), '-5.0-3.0i'.to_c) assert_equal(Complex(0.0,3.0), '3.0i'.to_c) assert_equal(Complex(0.0,-3.0), '-3.0i'.to_c) assert_equal(Complex(5.0), '5e0'.to_c) assert_equal(Complex(-5.0), '-5e0'.to_c) assert_equal(Complex(5.0,3.0), '5e0+3e0i'.to_c) assert_equal(Complex(-5.0,3.0), '-5e0+3e0i'.to_c) assert_equal(Complex(5.0,-3.0), '5e0-3e0i'.to_c) assert_equal(Complex(-5.0,-3.0), '-5e0-3e0i'.to_c) assert_equal(Complex(0.0,3.0), '3e0i'.to_c) assert_equal(Complex(0.0,-3.0), '-3e0i'.to_c) assert_equal(Complex(0.33), '.33'.to_c) assert_equal(Complex(0.33), '0.33'.to_c) assert_equal(Complex(-0.33), '-.33'.to_c) assert_equal(Complex(-0.33), '-0.33'.to_c) assert_equal(Complex(-0.33), '-0.3_3'.to_c) assert_equal(Complex.polar(10,10), '10@10'.to_c) assert_equal(Complex.polar(-10,-10), '-10@-10'.to_c) assert_equal(Complex.polar(10.5,10.5), '10.5@10.5'.to_c) assert_equal(Complex.polar(-10.5,-10.5), '-10.5@-10.5'.to_c) assert_equal(Complex(5), Complex('5')) assert_equal(Complex(-5), Complex('-5')) assert_equal(Complex(5,3), Complex('5+3i')) assert_equal(Complex(-5,3), Complex('-5+3i')) assert_equal(Complex(5,-3), Complex('5-3i')) assert_equal(Complex(-5,-3), Complex('-5-3i')) assert_equal(Complex(0,3), Complex('3i')) assert_equal(Complex(0,-3), Complex('-3i')) assert_equal(Complex(5,1), Complex('5+i')) assert_equal(Complex(0,1), Complex('i')) assert_equal(Complex(0,1), Complex('+i')) assert_equal(Complex(0,-1), Complex('-i')) assert_equal(Complex(5,3), Complex('5+3I')) assert_equal(Complex(5,3), Complex('5+3j')) assert_equal(Complex(5,3), Complex('5+3J')) assert_equal(Complex(0,3), Complex('3I')) assert_equal(Complex(0,3), Complex('3j')) assert_equal(Complex(0,3), Complex('3J')) assert_equal(Complex(0,1), Complex('I')) assert_equal(Complex(0,1), Complex('J')) assert_equal(Complex(5.0), Complex('5.0')) assert_equal(Complex(-5.0), Complex('-5.0')) assert_equal(Complex(5.0,3.0), Complex('5.0+3.0i')) assert_equal(Complex(-5.0,3.0), Complex('-5.0+3.0i')) assert_equal(Complex(5.0,-3.0), Complex('5.0-3.0i')) assert_equal(Complex(-5.0,-3.0), Complex('-5.0-3.0i')) assert_equal(Complex(0.0,3.0), Complex('3.0i')) assert_equal(Complex(0.0,-3.0), Complex('-3.0i')) assert_equal(Complex(5.0), Complex('5e0')) assert_equal(Complex(-5.0), Complex('-5e0')) assert_equal(Complex(5.0,3.0), Complex('5e0+3e0i')) assert_equal(Complex(-5.0,3.0), Complex('-5e0+3e0i')) assert_equal(Complex(5.0,-3.0), Complex('5e0-3e0i')) assert_equal(Complex(-5.0,-3.0), Complex('-5e0-3e0i')) assert_equal(Complex(0.0,3.0), Complex('3e0i')) assert_equal(Complex(0.0,-3.0), Complex('-3e0i')) assert_equal(Complex(0.33), Complex('.33')) assert_equal(Complex(0.33), Complex('0.33')) assert_equal(Complex(-0.33), Complex('-.33')) assert_equal(Complex(-0.33), Complex('-0.33')) assert_equal(Complex(-0.33), Complex('-0.3_3')) assert_equal(Complex.polar(10,10), Complex('10@10')) assert_equal(Complex.polar(-10,-10), Complex('-10@-10')) assert_equal(Complex.polar(10.5,10.5), Complex('10.5@10.5')) assert_equal(Complex.polar(-10.5,-10.5), Complex('-10.5@-10.5')) assert_equal(Complex(0), ''.to_c) assert_equal(Complex(0), ' '.to_c) assert_equal(Complex(5), "\f\n\r\t\v5\0".to_c) assert_equal(Complex(0), '_'.to_c) assert_equal(Complex(0), '_5'.to_c) assert_equal(Complex(5), '5_'.to_c) assert_equal(Complex(5), '5x'.to_c) assert_equal(Complex(5), '5+_3i'.to_c) assert_equal(Complex(5), '5+3_i'.to_c) assert_equal(Complex(5,3), '5+3i_'.to_c) assert_equal(Complex(5,3), '5+3ix'.to_c) assert_raise(ArgumentError){ Complex('')} assert_raise(ArgumentError){ Complex('_')} assert_raise(ArgumentError){ Complex("\f\n\r\t\v5\0")} assert_raise(ArgumentError){ Complex('_5')} assert_raise(ArgumentError){ Complex('5_')} assert_raise(ArgumentError){ Complex('5x')} assert_raise(ArgumentError){ Complex('5+_3i')} assert_raise(ArgumentError){ Complex('5+3_i')} assert_raise(ArgumentError){ Complex('5+3i_')} assert_raise(ArgumentError){ Complex('5+3ix')} if @rational && defined?(''.to_r) assert_equal(Complex(Rational(1,5)), '1/5'.to_c) assert_equal(Complex(Rational(-1,5)), '-1/5'.to_c) assert_equal(Complex(Rational(1,5),3), '1/5+3i'.to_c) assert_equal(Complex(Rational(1,5),-3), '1/5-3i'.to_c) assert_equal(Complex(Rational(-1,5),3), '-1/5+3i'.to_c) assert_equal(Complex(Rational(-1,5),-3), '-1/5-3i'.to_c) assert_equal(Complex(Rational(1,5),Rational(3,2)), '1/5+3/2i'.to_c) assert_equal(Complex(Rational(1,5),Rational(-3,2)), '1/5-3/2i'.to_c) assert_equal(Complex(Rational(-1,5),Rational(3,2)), '-1/5+3/2i'.to_c) assert_equal(Complex(Rational(-1,5),Rational(-3,2)), '-1/5-3/2i'.to_c) assert_equal(Complex(Rational(1,5),Rational(3,2)), '1/5+3/2i'.to_c) assert_equal(Complex(Rational(1,5),Rational(-3,2)), '1/5-3/2i'.to_c) assert_equal(Complex(Rational(-1,5),Rational(3,2)), '-1/5+3/2i'.to_c) assert_equal(Complex(Rational(-1,5),Rational(-3,2)), '-1/5-3/2i'.to_c) assert_equal(Complex.polar(Rational(1,5),Rational(3,2)), Complex('1/5@3/2')) assert_equal(Complex.polar(Rational(-1,5),Rational(-3,2)), Complex('-1/5@-3/2')) end end def test_respond c = Complex(1,1) assert_equal(false, c.respond_to?(:%)) assert_equal(false, c.respond_to?(:<)) assert_equal(false, c.respond_to?(:<=)) assert_equal(false, c.respond_to?(:<=>)) assert_equal(false, c.respond_to?(:>)) assert_equal(false, c.respond_to?(:>=)) assert_equal(false, c.respond_to?(:between?)) assert_equal(false, c.respond_to?(:div)) assert_equal(false, c.respond_to?(:divmod)) assert_equal(false, c.respond_to?(:floor)) assert_equal(false, c.respond_to?(:ceil)) assert_equal(false, c.respond_to?(:modulo)) assert_equal(false, c.respond_to?(:remainder)) assert_equal(false, c.respond_to?(:round)) assert_equal(false, c.respond_to?(:step)) assert_equal(false, c.respond_to?(:tunrcate)) assert_equal(false, c.respond_to?(:positive?)) assert_equal(false, c.respond_to?(:negative?)) # assert_equal(false, c.respond_to?(:sign)) assert_equal(false, c.respond_to?(:quotient)) assert_equal(false, c.respond_to?(:quot)) assert_equal(false, c.respond_to?(:quotrem)) assert_equal(false, c.respond_to?(:gcd)) assert_equal(false, c.respond_to?(:lcm)) assert_equal(false, c.respond_to?(:gcdlcm)) end def test_to_i assert_equal(3, Complex(3).to_i) assert_equal(3, Integer(Complex(3))) assert_raise(RangeError){Complex(3,2).to_i} assert_raise(RangeError){Integer(Complex(3,2))} end def test_to_f assert_equal(3.0, Complex(3).to_f) assert_equal(3.0, Float(Complex(3))) assert_raise(RangeError){Complex(3,2).to_f} assert_raise(RangeError){Float(Complex(3,2))} end def test_to_r if @rational && !@keiju assert_equal(Rational(3), Complex(3).to_r) assert_equal(Rational(3), Rational(Complex(3))) assert_raise(RangeError){Complex(3,2).to_r} # assert_raise(RangeError){Rational(Complex(3,2))} end end def test_to_c c = nil.to_c assert_equal([0,0], [c.real, c.imag]) c = 0.to_c assert_equal([0,0], [c.real, c.imag]) c = 1.to_c assert_equal([1,0], [c.real, c.imag]) c = 1.1.to_c assert_equal([1.1, 0], [c.real, c.imag]) if @rational c = Rational(1,2).to_c assert_equal([Rational(1,2), 0], [c.real, c.imag]) end c = Complex(1,2).to_c assert_equal([1, 2], [c.real, c.imag]) if (0.0/0).nan? assert_nothing_raised{(0.0/0).to_c} end if (1.0/0).infinite? assert_nothing_raised{(1.0/0).to_c} end end def test_supp assert_equal(true, 1.real?) assert_equal(true, 1.1.real?) assert_equal(1, 1.real) assert_equal(0, 1.imag) assert_equal(0, 1.imaginary) assert_equal(1.1, 1.1.real) assert_equal(0, 1.1.imag) assert_equal(0, 1.1.imaginary) assert_equal(1, 1.magnitude) assert_equal(1, -1.magnitude) assert_equal(1, 1.0.magnitude) assert_equal(1, -1.0.magnitude) assert_equal(4, 2.abs2) assert_equal(4, -2.abs2) assert_equal(4.0, 2.0.abs2) assert_equal(4.0, -2.0.abs2) assert_equal(0, 1.arg) assert_equal(0, 1.angle) assert_equal(0, 1.phase) assert_equal(0, 1.0.arg) assert_equal(0, 1.0.angle) assert_equal(0, 1.0.phase) if (0.0/0).nan? nan = 0.0/0 assert(nan.arg.equal?(nan)) assert(nan.angle.equal?(nan)) assert(nan.phase.equal?(nan)) end assert_equal(Math::PI, -1.arg) assert_equal(Math::PI, -1.angle) assert_equal(Math::PI, -1.phase) assert_equal(Math::PI, -1.0.arg) assert_equal(Math::PI, -1.0.angle) assert_equal(Math::PI, -1.0.phase) assert_equal([1,0], 1.rect) assert_equal([-1,0], -1.rect) assert_equal([1,0], 1.rectangular) assert_equal([-1,0], -1.rectangular) assert_equal([1.0,0], 1.0.rect) assert_equal([-1.0,0], -1.0.rect) assert_equal([1.0,0], 1.0.rectangular) assert_equal([-1.0,0], -1.0.rectangular) assert_equal([1,0], 1.polar) assert_equal([1, Math::PI], -1.polar) assert_equal([1.0,0], 1.0.polar) assert_equal([1.0, Math::PI], -1.0.polar) assert_equal(1, 1.conjugate) assert_equal(-1, -1.conjugate) assert_equal(1, 1.conj) assert_equal(-1, -1.conj) assert_equal(1.1, 1.1.conjugate) assert_equal(-1.1, -1.1.conjugate) assert_equal(1.1, 1.1.conj) assert_equal(-1.1, -1.1.conj) if @rational assert_equal(Complex(Rational(1,2),Rational(1)), Complex(1,2).quo(2)) else assert_equal(Complex(0.5,1.0), Complex(1,2).quo(2)) end =begin if @rational && !@keiju assert_equal(Complex(Rational(1,2),Rational(1)), Complex(1,2).quo(2)) end =end assert_equal(0.5, 1.fdiv(2)) assert_equal(5000000000.0, 10000000000.fdiv(2)) assert_equal(0.5, 1.0.fdiv(2)) if @rational assert_equal(0.25, Rational(1,2).fdiv(2)) end assert_equal(Complex(0.5,1.0), Complex(1,2).quo(2)) unless $".grep(/(\A|\/)complex/).empty? assert_equal(Complex(0,2), Math.sqrt(-4.0)) # assert_equal(true, Math.sqrt(-4.0).inexact?) assert_equal(Complex(0,2), Math.sqrt(-4)) # assert_equal(true, Math.sqrt(-4).exact?) if @rational assert_equal(Complex(0,2), Math.sqrt(Rational(-4))) # assert_equal(true, Math.sqrt(Rational(-4)).exact?) end assert_equal(Complex(0,3), Math.sqrt(-9.0)) # assert_equal(true, Math.sqrt(-9.0).inexact?) assert_equal(Complex(0,3), Math.sqrt(-9)) # assert_equal(true, Math.sqrt(-9).exact?) if @rational assert_equal(Complex(0,3), Math.sqrt(Rational(-9))) # assert_equal(true, Math.sqrt(Rational(-9)).exact?) end c = Math.sqrt(Complex(1, 2)) assert_in_delta(1.272, c.real, 0.001) assert_in_delta(0.786, c.imag, 0.001) c = Math.sqrt(-9) assert_in_delta(0.0, c.real, 0.001) assert_in_delta(3.0, c.imag, 0.001) c = Math.exp(Complex(1, 2)) assert_in_delta(-1.131, c.real, 0.001) assert_in_delta(2.471, c.imag, 0.001) c = Math.sin(Complex(1, 2)) assert_in_delta(3.165, c.real, 0.001) assert_in_delta(1.959, c.imag, 0.001) c = Math.cos(Complex(1, 2)) assert_in_delta(2.032, c.real, 0.001) assert_in_delta(-3.051, c.imag, 0.001) c = Math.tan(Complex(1, 2)) assert_in_delta(0.033, c.real, 0.001) assert_in_delta(1.014, c.imag, 0.001) c = Math.sinh(Complex(1, 2)) assert_in_delta(-0.489, c.real, 0.001) assert_in_delta(1.403, c.imag, 0.001) c = Math.cosh(Complex(1, 2)) assert_in_delta(-0.642, c.real, 0.001) assert_in_delta(1.068, c.imag, 0.001) c = Math.tanh(Complex(1, 2)) assert_in_delta(1.166, c.real, 0.001) assert_in_delta(-0.243, c.imag, 0.001) c = Math.log(Complex(1, 2)) assert_in_delta(0.804, c.real, 0.001) assert_in_delta(1.107, c.imag, 0.001) c = Math.log(Complex(1, 2), Math::E) assert_in_delta(0.804, c.real, 0.001) assert_in_delta(1.107, c.imag, 0.001) c = Math.log(-1) assert_in_delta(0.0, c.real, 0.001) assert_in_delta(Math::PI, c.imag, 0.001) c = Math.log(8, 2) assert_in_delta(3.0, c.real, 0.001) assert_in_delta(0.0, c.imag, 0.001) c = Math.log(-8, -2) assert_in_delta(1.092, c.real, 0.001) assert_in_delta(-0.420, c.imag, 0.001) c = Math.log10(Complex(1, 2)) assert_in_delta(0.349, c.real, 0.001) assert_in_delta(0.480, c.imag, 0.001) c = Math.asin(Complex(1, 2)) assert_in_delta(0.427, c.real, 0.001) assert_in_delta(1.528, c.imag, 0.001) c = Math.acos(Complex(1, 2)) assert_in_delta(1.143, c.real, 0.001) assert_in_delta(-1.528, c.imag, 0.001) c = Math.atan(Complex(1, 2)) assert_in_delta(1.338, c.real, 0.001) assert_in_delta(0.402, c.imag, 0.001) c = Math.atan2(Complex(1, 2), 1) assert_in_delta(1.338, c.real, 0.001) assert_in_delta(0.402, c.imag, 0.001) c = Math.asinh(Complex(1, 2)) assert_in_delta(1.469, c.real, 0.001) assert_in_delta(1.063, c.imag, 0.001) c = Math.acosh(Complex(1, 2)) assert_in_delta(1.528, c.real, 0.001) assert_in_delta(1.143, c.imag, 0.001) c = Math.atanh(Complex(1, 2)) assert_in_delta(0.173, c.real, 0.001) assert_in_delta(1.178, c.imag, 0.001) end end def test_ruby19 assert_raise(NoMethodError){ Complex.new(1) } assert_raise(NoMethodError){ Complex.new!(1) } assert_raise(NoMethodError){ Complex.reduce(1) } end def test_fixed_bug if @rational && !@keiju assert_equal(Complex(1), 1 ** Complex(1)) end assert_equal('-1.0-0.0i', Complex(-1.0, -0.0).to_s) end def test_known_bug end end