1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/ext/openssl/ossl_kdf.c

311 lines
11 KiB
C

/*
* Ruby/OpenSSL Project
* Copyright (C) 2007, 2017 Ruby/OpenSSL Project Authors
*/
#include "ossl.h"
#if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
# include <openssl/kdf.h>
#endif
static VALUE mKDF, eKDF;
/*
* call-seq:
* KDF.pbkdf2_hmac(pass, salt:, iterations:, length:, hash:) -> aString
*
* PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in combination
* with HMAC. Takes _pass_, _salt_ and _iterations_, and then derives a key
* of _length_ bytes.
*
* For more information about PBKDF2, see RFC 2898 Section 5.2
* (https://tools.ietf.org/html/rfc2898#section-5.2).
*
* === Parameters
* pass :: The passphrase.
* salt :: The salt. Salts prevent attacks based on dictionaries of common
* passwords and attacks based on rainbow tables. It is a public
* value that can be safely stored along with the password (e.g.
* if the derived value is used for password storage).
* iterations :: The iteration count. This provides the ability to tune the
* algorithm. It is better to use the highest count possible for
* the maximum resistance to brute-force attacks.
* length :: The desired length of the derived key in octets.
* hash :: The hash algorithm used with HMAC for the PRF. May be a String
* representing the algorithm name, or an instance of
* OpenSSL::Digest.
*/
static VALUE
kdf_pbkdf2_hmac(int argc, VALUE *argv, VALUE self)
{
VALUE pass, salt, opts, kwargs[4], str;
static ID kwargs_ids[4];
int iters, len;
const EVP_MD *md;
if (!kwargs_ids[0]) {
kwargs_ids[0] = rb_intern_const("salt");
kwargs_ids[1] = rb_intern_const("iterations");
kwargs_ids[2] = rb_intern_const("length");
kwargs_ids[3] = rb_intern_const("hash");
}
rb_scan_args(argc, argv, "1:", &pass, &opts);
rb_get_kwargs(opts, kwargs_ids, 4, 0, kwargs);
StringValue(pass);
salt = StringValue(kwargs[0]);
iters = NUM2INT(kwargs[1]);
len = NUM2INT(kwargs[2]);
md = ossl_evp_get_digestbyname(kwargs[3]);
str = rb_str_new(0, len);
if (!PKCS5_PBKDF2_HMAC(RSTRING_PTR(pass), RSTRING_LENINT(pass),
(unsigned char *)RSTRING_PTR(salt),
RSTRING_LENINT(salt), iters, md, len,
(unsigned char *)RSTRING_PTR(str)))
ossl_raise(eKDF, "PKCS5_PBKDF2_HMAC");
return str;
}
#if defined(HAVE_EVP_PBE_SCRYPT)
/*
* call-seq:
* KDF.scrypt(pass, salt:, N:, r:, p:, length:) -> aString
*
* Derives a key from _pass_ using given parameters with the scrypt
* password-based key derivation function. The result can be used for password
* storage.
*
* scrypt is designed to be memory-hard and more secure against brute-force
* attacks using custom hardwares than alternative KDFs such as PBKDF2 or
* bcrypt.
*
* The keyword arguments _N_, _r_ and _p_ can be used to tune scrypt. RFC 7914
* (published on 2016-08, https://tools.ietf.org/html/rfc7914#section-2) states
* that using values r=8 and p=1 appears to yield good results.
*
* See RFC 7914 (https://tools.ietf.org/html/rfc7914) for more information.
*
* === Parameters
* pass :: Passphrase.
* salt :: Salt.
* N :: CPU/memory cost parameter. This must be a power of 2.
* r :: Block size parameter.
* p :: Parallelization parameter.
* length :: Length in octets of the derived key.
*
* === Example
* pass = "password"
* salt = SecureRandom.random_bytes(16)
* dk = OpenSSL::KDF.scrypt(pass, salt: salt, N: 2**14, r: 8, p: 1, length: 32)
* p dk #=> "\xDA\xE4\xE2...\x7F\xA1\x01T"
*/
static VALUE
kdf_scrypt(int argc, VALUE *argv, VALUE self)
{
VALUE pass, salt, opts, kwargs[5], str;
static ID kwargs_ids[5];
size_t len;
uint64_t N, r, p, maxmem;
if (!kwargs_ids[0]) {
kwargs_ids[0] = rb_intern_const("salt");
kwargs_ids[1] = rb_intern_const("N");
kwargs_ids[2] = rb_intern_const("r");
kwargs_ids[3] = rb_intern_const("p");
kwargs_ids[4] = rb_intern_const("length");
}
rb_scan_args(argc, argv, "1:", &pass, &opts);
rb_get_kwargs(opts, kwargs_ids, 5, 0, kwargs);
StringValue(pass);
salt = StringValue(kwargs[0]);
N = NUM2UINT64T(kwargs[1]);
r = NUM2UINT64T(kwargs[2]);
p = NUM2UINT64T(kwargs[3]);
len = NUM2LONG(kwargs[4]);
/*
* OpenSSL uses 32MB by default (if zero is specified), which is too small.
* Let's not limit memory consumption but just let malloc() fail inside
* OpenSSL. The amount is controllable by other parameters.
*/
maxmem = SIZE_MAX;
str = rb_str_new(0, len);
if (!EVP_PBE_scrypt(RSTRING_PTR(pass), RSTRING_LEN(pass),
(unsigned char *)RSTRING_PTR(salt), RSTRING_LEN(salt),
N, r, p, maxmem, (unsigned char *)RSTRING_PTR(str), len))
ossl_raise(eKDF, "EVP_PBE_scrypt");
return str;
}
#endif
#if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
/*
* call-seq:
* KDF.hkdf(ikm, salt:, info:, length:, hash:) -> String
*
* HMAC-based Extract-and-Expand Key Derivation Function (HKDF) as specified in
* {RFC 5869}[https://tools.ietf.org/html/rfc5869].
*
* New in OpenSSL 1.1.0.
*
* === Parameters
* _ikm_::
* The input keying material.
* _salt_::
* The salt.
* _info_::
* The context and application specific information.
* _length_::
* The output length in octets. Must be <= <tt>255 * HashLen</tt>, where
* HashLen is the length of the hash function output in octets.
* _hash_::
* The hash function.
*
* === Example
* # The values from https://datatracker.ietf.org/doc/html/rfc5869#appendix-A.1
* ikm = ["0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b"].pack("H*")
* salt = ["000102030405060708090a0b0c"].pack("H*")
* info = ["f0f1f2f3f4f5f6f7f8f9"].pack("H*")
* p OpenSSL::KDF.hkdf(ikm, salt: salt, info: info, length: 42, hash: "SHA256").unpack1("H*")
* # => "3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b887185865"
*/
static VALUE
kdf_hkdf(int argc, VALUE *argv, VALUE self)
{
VALUE ikm, salt, info, opts, kwargs[4], str;
static ID kwargs_ids[4];
int saltlen, ikmlen, infolen;
size_t len;
const EVP_MD *md;
EVP_PKEY_CTX *pctx;
if (!kwargs_ids[0]) {
kwargs_ids[0] = rb_intern_const("salt");
kwargs_ids[1] = rb_intern_const("info");
kwargs_ids[2] = rb_intern_const("length");
kwargs_ids[3] = rb_intern_const("hash");
}
rb_scan_args(argc, argv, "1:", &ikm, &opts);
rb_get_kwargs(opts, kwargs_ids, 4, 0, kwargs);
StringValue(ikm);
ikmlen = RSTRING_LENINT(ikm);
salt = StringValue(kwargs[0]);
saltlen = RSTRING_LENINT(salt);
info = StringValue(kwargs[1]);
infolen = RSTRING_LENINT(info);
len = (size_t)NUM2LONG(kwargs[2]);
if (len > LONG_MAX)
rb_raise(rb_eArgError, "length must be non-negative");
md = ossl_evp_get_digestbyname(kwargs[3]);
str = rb_str_new(NULL, (long)len);
pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
if (!pctx)
ossl_raise(eKDF, "EVP_PKEY_CTX_new_id");
if (EVP_PKEY_derive_init(pctx) <= 0) {
EVP_PKEY_CTX_free(pctx);
ossl_raise(eKDF, "EVP_PKEY_derive_init");
}
if (EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0) {
EVP_PKEY_CTX_free(pctx);
ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_md");
}
if (EVP_PKEY_CTX_set1_hkdf_salt(pctx, (unsigned char *)RSTRING_PTR(salt),
saltlen) <= 0) {
EVP_PKEY_CTX_free(pctx);
ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_salt");
}
if (EVP_PKEY_CTX_set1_hkdf_key(pctx, (unsigned char *)RSTRING_PTR(ikm),
ikmlen) <= 0) {
EVP_PKEY_CTX_free(pctx);
ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_key");
}
if (EVP_PKEY_CTX_add1_hkdf_info(pctx, (unsigned char *)RSTRING_PTR(info),
infolen) <= 0) {
EVP_PKEY_CTX_free(pctx);
ossl_raise(eKDF, "EVP_PKEY_CTX_set_hkdf_info");
}
if (EVP_PKEY_derive(pctx, (unsigned char *)RSTRING_PTR(str), &len) <= 0) {
EVP_PKEY_CTX_free(pctx);
ossl_raise(eKDF, "EVP_PKEY_derive");
}
rb_str_set_len(str, (long)len);
EVP_PKEY_CTX_free(pctx);
return str;
}
#endif
void
Init_ossl_kdf(void)
{
#if 0
mOSSL = rb_define_module("OpenSSL");
eOSSLError = rb_define_class_under(mOSSL, "OpenSSLError", rb_eStandardError);
#endif
/*
* Document-module: OpenSSL::KDF
*
* Provides functionality of various KDFs (key derivation function).
*
* KDF is typically used for securely deriving arbitrary length symmetric
* keys to be used with an OpenSSL::Cipher from passwords. Another use case
* is for storing passwords: Due to the ability to tweak the effort of
* computation by increasing the iteration count, computation can be slowed
* down artificially in order to render possible attacks infeasible.
*
* Currently, OpenSSL::KDF provides implementations for the following KDF:
*
* * PKCS #5 PBKDF2 (Password-Based Key Derivation Function 2) in
* combination with HMAC
* * scrypt
* * HKDF
*
* == Examples
* === Generating a 128 bit key for a Cipher (e.g. AES)
* pass = "secret"
* salt = OpenSSL::Random.random_bytes(16)
* iter = 20_000
* key_len = 16
* key = OpenSSL::KDF.pbkdf2_hmac(pass, salt: salt, iterations: iter,
* length: key_len, hash: "sha1")
*
* === Storing Passwords
* pass = "secret"
* # store this with the generated value
* salt = OpenSSL::Random.random_bytes(16)
* iter = 20_000
* hash = OpenSSL::Digest.new('SHA256')
* len = hash.digest_length
* # the final value to be stored
* value = OpenSSL::KDF.pbkdf2_hmac(pass, salt: salt, iterations: iter,
* length: len, hash: hash)
*
* == Important Note on Checking Passwords
* When comparing passwords provided by the user with previously stored
* values, a common mistake made is comparing the two values using "==".
* Typically, "==" short-circuits on evaluation, and is therefore
* vulnerable to timing attacks. The proper way is to use a method that
* always takes the same amount of time when comparing two values, thus
* not leaking any information to potential attackers. To do this, use
* +OpenSSL.fixed_length_secure_compare+.
*/
mKDF = rb_define_module_under(mOSSL, "KDF");
/*
* Generic exception class raised if an error occurs in OpenSSL::KDF module.
*/
eKDF = rb_define_class_under(mKDF, "KDFError", eOSSLError);
rb_define_module_function(mKDF, "pbkdf2_hmac", kdf_pbkdf2_hmac, -1);
#if defined(HAVE_EVP_PBE_SCRYPT)
rb_define_module_function(mKDF, "scrypt", kdf_scrypt, -1);
#endif
#if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
rb_define_module_function(mKDF, "hkdf", kdf_hkdf, -1);
#endif
}