ruby--ruby/time.c

5638 lines
145 KiB
C

/**********************************************************************
time.c -
$Author$
created at: Tue Dec 28 14:31:59 JST 1993
Copyright (C) 1993-2007 Yukihiro Matsumoto
**********************************************************************/
#define _DEFAULT_SOURCE
#define _BSD_SOURCE
#include "ruby/internal/config.h"
#include <errno.h>
#include <float.h>
#include <math.h>
#include <time.h>
#include <sys/types.h>
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#if defined(HAVE_SYS_TIME_H)
# include <sys/time.h>
#endif
#include "id.h"
#include "internal.h"
#include "internal/array.h"
#include "internal/compar.h"
#include "internal/numeric.h"
#include "internal/rational.h"
#include "internal/string.h"
#include "internal/time.h"
#include "internal/variable.h"
#include "ruby/encoding.h"
#include "timev.h"
#include "builtin.h"
static ID id_submicro, id_nano_num, id_nano_den, id_offset, id_zone;
static ID id_nanosecond, id_microsecond, id_millisecond, id_nsec, id_usec;
static ID id_local_to_utc, id_utc_to_local, id_find_timezone;
static ID id_year, id_mon, id_mday, id_hour, id_min, id_sec, id_isdst;
static VALUE str_utc, str_empty;
#define id_quo idQuo
#define id_div idDiv
#define id_divmod idDivmod
#define id_name idName
#define UTC_ZONE Qundef
#ifndef TM_IS_TIME
#define TM_IS_TIME 1
#endif
#define NDIV(x,y) (-(-((x)+1)/(y))-1)
#define NMOD(x,y) ((y)-(-((x)+1)%(y))-1)
#define DIV(n,d) ((n)<0 ? NDIV((n),(d)) : (n)/(d))
#define MOD(n,d) ((n)<0 ? NMOD((n),(d)) : (n)%(d))
#define VTM_WDAY_INITVAL (7)
#define VTM_ISDST_INITVAL (3)
static int
eq(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
return x == y;
}
return RTEST(rb_funcall(x, idEq, 1, y));
}
static int
cmp(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
if ((long)x < (long)y)
return -1;
if ((long)x > (long)y)
return 1;
return 0;
}
if (RB_BIGNUM_TYPE_P(x)) return FIX2INT(rb_big_cmp(x, y));
return rb_cmpint(rb_funcall(x, idCmp, 1, y), x, y);
}
#define ne(x,y) (!eq((x),(y)))
#define lt(x,y) (cmp((x),(y)) < 0)
#define gt(x,y) (cmp((x),(y)) > 0)
#define le(x,y) (cmp((x),(y)) <= 0)
#define ge(x,y) (cmp((x),(y)) >= 0)
static VALUE
addv(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
return LONG2NUM(FIX2LONG(x) + FIX2LONG(y));
}
if (RB_BIGNUM_TYPE_P(x)) return rb_big_plus(x, y);
return rb_funcall(x, '+', 1, y);
}
static VALUE
subv(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
return LONG2NUM(FIX2LONG(x) - FIX2LONG(y));
}
if (RB_BIGNUM_TYPE_P(x)) return rb_big_minus(x, y);
return rb_funcall(x, '-', 1, y);
}
static VALUE
mulv(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
return rb_fix_mul_fix(x, y);
}
if (RB_BIGNUM_TYPE_P(x))
return rb_big_mul(x, y);
return rb_funcall(x, '*', 1, y);
}
static VALUE
divv(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
return rb_fix_div_fix(x, y);
}
if (RB_BIGNUM_TYPE_P(x))
return rb_big_div(x, y);
return rb_funcall(x, id_div, 1, y);
}
static VALUE
modv(VALUE x, VALUE y)
{
if (FIXNUM_P(y)) {
if (FIX2LONG(y) == 0) rb_num_zerodiv();
if (FIXNUM_P(x)) return rb_fix_mod_fix(x, y);
}
if (RB_BIGNUM_TYPE_P(x)) return rb_big_modulo(x, y);
return rb_funcall(x, '%', 1, y);
}
#define neg(x) (subv(INT2FIX(0), (x)))
static VALUE
quor(VALUE x, VALUE y)
{
if (FIXNUM_P(x) && FIXNUM_P(y)) {
long a, b, c;
a = FIX2LONG(x);
b = FIX2LONG(y);
if (b == 0) rb_num_zerodiv();
if (a == FIXNUM_MIN && b == -1) return LONG2NUM(-a);
c = a / b;
if (c * b == a) {
return LONG2FIX(c);
}
}
return rb_numeric_quo(x, y);
}
static VALUE
quov(VALUE x, VALUE y)
{
VALUE ret = quor(x, y);
if (RB_TYPE_P(ret, T_RATIONAL) &&
RRATIONAL(ret)->den == INT2FIX(1)) {
ret = RRATIONAL(ret)->num;
}
return ret;
}
#define mulquov(x,y,z) (((y) == (z)) ? (x) : quov(mulv((x),(y)),(z)))
static void
divmodv(VALUE n, VALUE d, VALUE *q, VALUE *r)
{
VALUE tmp, ary;
if (FIXNUM_P(d)) {
if (FIX2LONG(d) == 0) rb_num_zerodiv();
if (FIXNUM_P(n)) {
rb_fix_divmod_fix(n, d, q, r);
return;
}
}
tmp = rb_funcall(n, id_divmod, 1, d);
ary = rb_check_array_type(tmp);
if (NIL_P(ary)) {
rb_raise(rb_eTypeError, "unexpected divmod result: into %"PRIsVALUE,
rb_obj_class(tmp));
}
*q = rb_ary_entry(ary, 0);
*r = rb_ary_entry(ary, 1);
}
#if SIZEOF_LONG == 8
# define INT64toNUM(x) LONG2NUM(x)
#elif defined(HAVE_LONG_LONG) && SIZEOF_LONG_LONG == 8
# define INT64toNUM(x) LL2NUM(x)
#endif
#if defined(HAVE_UINT64_T) && SIZEOF_LONG*2 <= SIZEOF_UINT64_T
typedef uint64_t uwideint_t;
typedef int64_t wideint_t;
typedef uint64_t WIDEVALUE;
typedef int64_t SIGNED_WIDEVALUE;
# define WIDEVALUE_IS_WIDER 1
# define UWIDEINT_MAX UINT64_MAX
# define WIDEINT_MAX INT64_MAX
# define WIDEINT_MIN INT64_MIN
# define FIXWINT_P(tv) ((tv) & 1)
# define FIXWVtoINT64(tv) RSHIFT((SIGNED_WIDEVALUE)(tv), 1)
# define INT64toFIXWV(wi) ((WIDEVALUE)((SIGNED_WIDEVALUE)(wi) << 1 | FIXNUM_FLAG))
# define FIXWV_MAX (((int64_t)1 << 62) - 1)
# define FIXWV_MIN (-((int64_t)1 << 62))
# define FIXWVABLE(wi) (POSFIXWVABLE(wi) && NEGFIXWVABLE(wi))
# define WINT2FIXWV(i) WIDEVAL_WRAP(INT64toFIXWV(i))
# define FIXWV2WINT(w) FIXWVtoINT64(WIDEVAL_GET(w))
#else
typedef unsigned long uwideint_t;
typedef long wideint_t;
typedef VALUE WIDEVALUE;
typedef SIGNED_VALUE SIGNED_WIDEVALUE;
# define WIDEVALUE_IS_WIDER 0
# define UWIDEINT_MAX ULONG_MAX
# define WIDEINT_MAX LONG_MAX
# define WIDEINT_MIN LONG_MIN
# define FIXWINT_P(v) FIXNUM_P(v)
# define FIXWV_MAX FIXNUM_MAX
# define FIXWV_MIN FIXNUM_MIN
# define FIXWVABLE(i) FIXABLE(i)
# define WINT2FIXWV(i) WIDEVAL_WRAP(LONG2FIX(i))
# define FIXWV2WINT(w) FIX2LONG(WIDEVAL_GET(w))
#endif
#define POSFIXWVABLE(wi) ((wi) < FIXWV_MAX+1)
#define NEGFIXWVABLE(wi) ((wi) >= FIXWV_MIN)
#define FIXWV_P(w) FIXWINT_P(WIDEVAL_GET(w))
#define MUL_OVERFLOW_FIXWV_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, FIXWV_MIN, FIXWV_MAX)
/* #define STRUCT_WIDEVAL */
#ifdef STRUCT_WIDEVAL
/* for type checking */
typedef struct {
WIDEVALUE value;
} wideval_t;
static inline wideval_t WIDEVAL_WRAP(WIDEVALUE v) { wideval_t w = { v }; return w; }
# define WIDEVAL_GET(w) ((w).value)
#else
typedef WIDEVALUE wideval_t;
# define WIDEVAL_WRAP(v) (v)
# define WIDEVAL_GET(w) (w)
#endif
#if WIDEVALUE_IS_WIDER
static inline wideval_t
wint2wv(wideint_t wi)
{
if (FIXWVABLE(wi))
return WINT2FIXWV(wi);
else
return WIDEVAL_WRAP(INT64toNUM(wi));
}
# define WINT2WV(wi) wint2wv(wi)
#else
# define WINT2WV(wi) WIDEVAL_WRAP(LONG2NUM(wi))
#endif
static inline VALUE
w2v(wideval_t w)
{
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(w))
return INT64toNUM(FIXWV2WINT(w));
return (VALUE)WIDEVAL_GET(w);
#else
return WIDEVAL_GET(w);
#endif
}
#if WIDEVALUE_IS_WIDER
static wideval_t
v2w_bignum(VALUE v)
{
int sign;
uwideint_t u;
sign = rb_integer_pack(v, &u, 1, sizeof(u), 0,
INTEGER_PACK_NATIVE_BYTE_ORDER);
if (sign == 0)
return WINT2FIXWV(0);
else if (sign == -1) {
if (u <= -FIXWV_MIN)
return WINT2FIXWV(-(wideint_t)u);
}
else if (sign == +1) {
if (u <= FIXWV_MAX)
return WINT2FIXWV((wideint_t)u);
}
return WIDEVAL_WRAP(v);
}
#endif
static inline wideval_t
v2w(VALUE v)
{
if (RB_TYPE_P(v, T_RATIONAL)) {
if (RRATIONAL(v)->den != LONG2FIX(1))
return WIDEVAL_WRAP(v);
v = RRATIONAL(v)->num;
}
#if WIDEVALUE_IS_WIDER
if (FIXNUM_P(v)) {
return WIDEVAL_WRAP((WIDEVALUE)(SIGNED_WIDEVALUE)(long)v);
}
else if (RB_BIGNUM_TYPE_P(v) &&
rb_absint_size(v, NULL) <= sizeof(WIDEVALUE)) {
return v2w_bignum(v);
}
#endif
return WIDEVAL_WRAP(v);
}
static int
weq(wideval_t wx, wideval_t wy)
{
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
return WIDEVAL_GET(wx) == WIDEVAL_GET(wy);
}
return RTEST(rb_funcall(w2v(wx), idEq, 1, w2v(wy)));
#else
return eq(WIDEVAL_GET(wx), WIDEVAL_GET(wy));
#endif
}
static int
wcmp(wideval_t wx, wideval_t wy)
{
VALUE x, y;
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
wideint_t a, b;
a = FIXWV2WINT(wx);
b = FIXWV2WINT(wy);
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
#endif
x = w2v(wx);
y = w2v(wy);
return cmp(x, y);
}
#define wne(x,y) (!weq((x),(y)))
#define wlt(x,y) (wcmp((x),(y)) < 0)
#define wgt(x,y) (wcmp((x),(y)) > 0)
#define wle(x,y) (wcmp((x),(y)) <= 0)
#define wge(x,y) (wcmp((x),(y)) >= 0)
static wideval_t
wadd(wideval_t wx, wideval_t wy)
{
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
wideint_t r = FIXWV2WINT(wx) + FIXWV2WINT(wy);
return WINT2WV(r);
}
#endif
return v2w(addv(w2v(wx), w2v(wy)));
}
static wideval_t
wsub(wideval_t wx, wideval_t wy)
{
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
wideint_t r = FIXWV2WINT(wx) - FIXWV2WINT(wy);
return WINT2WV(r);
}
#endif
return v2w(subv(w2v(wx), w2v(wy)));
}
static wideval_t
wmul(wideval_t wx, wideval_t wy)
{
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
if (!MUL_OVERFLOW_FIXWV_P(FIXWV2WINT(wx), FIXWV2WINT(wy)))
return WINT2WV(FIXWV2WINT(wx) * FIXWV2WINT(wy));
}
#endif
return v2w(mulv(w2v(wx), w2v(wy)));
}
static wideval_t
wquo(wideval_t wx, wideval_t wy)
{
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(wx) && FIXWV_P(wy)) {
wideint_t a, b, c;
a = FIXWV2WINT(wx);
b = FIXWV2WINT(wy);
if (b == 0) rb_num_zerodiv();
c = a / b;
if (c * b == a) {
return WINT2WV(c);
}
}
#endif
return v2w(quov(w2v(wx), w2v(wy)));
}
#define wmulquo(x,y,z) ((WIDEVAL_GET(y) == WIDEVAL_GET(z)) ? (x) : wquo(wmul((x),(y)),(z)))
#define wmulquoll(x,y,z) (((y) == (z)) ? (x) : wquo(wmul((x),WINT2WV(y)),WINT2WV(z)))
#if WIDEVALUE_IS_WIDER
static int
wdivmod0(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr)
{
if (FIXWV_P(wn) && FIXWV_P(wd)) {
wideint_t n, d, q, r;
d = FIXWV2WINT(wd);
if (d == 0) rb_num_zerodiv();
if (d == 1) {
*wq = wn;
*wr = WINT2FIXWV(0);
return 1;
}
if (d == -1) {
wideint_t xneg = -FIXWV2WINT(wn);
*wq = WINT2WV(xneg);
*wr = WINT2FIXWV(0);
return 1;
}
n = FIXWV2WINT(wn);
if (n == 0) {
*wq = WINT2FIXWV(0);
*wr = WINT2FIXWV(0);
return 1;
}
q = n / d;
r = n % d;
if (d > 0 ? r < 0 : r > 0) {
q -= 1;
r += d;
}
*wq = WINT2FIXWV(q);
*wr = WINT2FIXWV(r);
return 1;
}
return 0;
}
#endif
static void
wdivmod(wideval_t wn, wideval_t wd, wideval_t *wq, wideval_t *wr)
{
VALUE vq, vr;
#if WIDEVALUE_IS_WIDER
if (wdivmod0(wn, wd, wq, wr)) return;
#endif
divmodv(w2v(wn), w2v(wd), &vq, &vr);
*wq = v2w(vq);
*wr = v2w(vr);
}
static void
wmuldivmod(wideval_t wx, wideval_t wy, wideval_t wz, wideval_t *wq, wideval_t *wr)
{
if (WIDEVAL_GET(wy) == WIDEVAL_GET(wz)) {
*wq = wx;
*wr = WINT2FIXWV(0);
return;
}
wdivmod(wmul(wx,wy), wz, wq, wr);
}
static wideval_t
wdiv(wideval_t wx, wideval_t wy)
{
#if WIDEVALUE_IS_WIDER
wideval_t q, dmy;
if (wdivmod0(wx, wy, &q, &dmy)) return q;
#endif
return v2w(divv(w2v(wx), w2v(wy)));
}
static wideval_t
wmod(wideval_t wx, wideval_t wy)
{
#if WIDEVALUE_IS_WIDER
wideval_t r, dmy;
if (wdivmod0(wx, wy, &dmy, &r)) return r;
#endif
return v2w(modv(w2v(wx), w2v(wy)));
}
static VALUE
num_exact(VALUE v)
{
VALUE tmp;
switch (TYPE(v)) {
case T_FIXNUM:
case T_BIGNUM:
return v;
case T_RATIONAL:
return rb_rational_canonicalize(v);
default:
if ((tmp = rb_check_funcall(v, idTo_r, 0, NULL)) != Qundef) {
/* test to_int method availability to reject non-Numeric
* objects such as String, Time, etc which have to_r method. */
if (!rb_respond_to(v, idTo_int)) {
/* FALLTHROUGH */
}
else if (RB_INTEGER_TYPE_P(tmp)) {
return tmp;
}
else if (RB_TYPE_P(tmp, T_RATIONAL)) {
return rb_rational_canonicalize(tmp);
}
}
else if (!NIL_P(tmp = rb_check_to_int(v))) {
return tmp;
}
case T_NIL:
case T_STRING:
rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into an exact number",
rb_obj_class(v));
}
}
/* time_t */
static wideval_t
rb_time_magnify(wideval_t w)
{
return wmul(w, WINT2FIXWV(TIME_SCALE));
}
static VALUE
rb_time_unmagnify_to_rational(wideval_t w)
{
return quor(w2v(w), INT2FIX(TIME_SCALE));
}
static wideval_t
rb_time_unmagnify(wideval_t w)
{
return v2w(rb_time_unmagnify_to_rational(w));
}
static VALUE
rb_time_unmagnify_to_float(wideval_t w)
{
VALUE v;
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(w)) {
wideint_t a, b, c;
a = FIXWV2WINT(w);
b = TIME_SCALE;
c = a / b;
if (c * b == a) {
return DBL2NUM((double)c);
}
v = DBL2NUM((double)FIXWV2WINT(w));
return quov(v, DBL2NUM(TIME_SCALE));
}
#endif
v = w2v(w);
if (RB_TYPE_P(v, T_RATIONAL))
return rb_Float(quov(v, INT2FIX(TIME_SCALE)));
else
return quov(v, DBL2NUM(TIME_SCALE));
}
static void
split_second(wideval_t timew, wideval_t *timew_p, VALUE *subsecx_p)
{
wideval_t q, r;
wdivmod(timew, WINT2FIXWV(TIME_SCALE), &q, &r);
*timew_p = q;
*subsecx_p = w2v(r);
}
static wideval_t
timet2wv(time_t t)
{
#if WIDEVALUE_IS_WIDER
if (TIMET_MIN == 0) {
uwideint_t wi = (uwideint_t)t;
if (wi <= FIXWV_MAX) {
return WINT2FIXWV(wi);
}
}
else {
wideint_t wi = (wideint_t)t;
if (FIXWV_MIN <= wi && wi <= FIXWV_MAX) {
return WINT2FIXWV(wi);
}
}
#endif
return v2w(TIMET2NUM(t));
}
#define TIMET2WV(t) timet2wv(t)
static time_t
wv2timet(wideval_t w)
{
#if WIDEVALUE_IS_WIDER
if (FIXWV_P(w)) {
wideint_t wi = FIXWV2WINT(w);
if (TIMET_MIN == 0) {
if (wi < 0)
rb_raise(rb_eRangeError, "negative value to convert into `time_t'");
if (TIMET_MAX < (uwideint_t)wi)
rb_raise(rb_eRangeError, "too big to convert into `time_t'");
}
else {
if (wi < TIMET_MIN || TIMET_MAX < wi)
rb_raise(rb_eRangeError, "too big to convert into `time_t'");
}
return (time_t)wi;
}
#endif
return NUM2TIMET(w2v(w));
}
#define WV2TIMET(t) wv2timet(t)
VALUE rb_cTime;
static VALUE rb_cTimeTM;
static int obj2int(VALUE obj);
static uint32_t obj2ubits(VALUE obj, unsigned int bits);
static VALUE obj2vint(VALUE obj);
static uint32_t month_arg(VALUE arg);
static VALUE validate_utc_offset(VALUE utc_offset);
static VALUE validate_zone_name(VALUE zone_name);
static void validate_vtm(struct vtm *vtm);
static void vtm_add_day(struct vtm *vtm, int day);
static uint32_t obj2subsecx(VALUE obj, VALUE *subsecx);
static VALUE time_gmtime(VALUE);
static VALUE time_localtime(VALUE);
static VALUE time_fixoff(VALUE);
static VALUE time_zonelocal(VALUE time, VALUE off);
static time_t timegm_noleapsecond(struct tm *tm);
static int tmcmp(struct tm *a, struct tm *b);
static int vtmcmp(struct vtm *a, struct vtm *b);
static const char *find_time_t(struct tm *tptr, int utc_p, time_t *tp);
static struct vtm *localtimew(wideval_t timew, struct vtm *result);
static int leap_year_p(long y);
#define leap_year_v_p(y) leap_year_p(NUM2LONG(modv((y), INT2FIX(400))))
static VALUE tm_from_time(VALUE klass, VALUE time);
bool ruby_tz_uptodate_p;
void
ruby_reset_timezone(void)
{
ruby_tz_uptodate_p = false;
ruby_reset_leap_second_info();
}
static void
update_tz(void)
{
if (ruby_tz_uptodate_p) return;
ruby_tz_uptodate_p = true;
tzset();
}
static struct tm *
rb_localtime_r(const time_t *t, struct tm *result)
{
#if defined __APPLE__ && defined __LP64__
if (*t != (time_t)(int)*t) return NULL;
#endif
update_tz();
#ifdef HAVE_GMTIME_R
result = localtime_r(t, result);
#else
{
struct tm *tmp = localtime(t);
if (tmp) *result = *tmp;
}
#endif
#if defined(HAVE_MKTIME) && defined(LOCALTIME_OVERFLOW_PROBLEM)
if (result) {
long gmtoff1 = 0;
long gmtoff2 = 0;
struct tm tmp = *result;
time_t t2;
t2 = mktime(&tmp);
# if defined(HAVE_STRUCT_TM_TM_GMTOFF)
gmtoff1 = result->tm_gmtoff;
gmtoff2 = tmp.tm_gmtoff;
# endif
if (*t + gmtoff1 != t2 + gmtoff2)
result = NULL;
}
#endif
return result;
}
#define LOCALTIME(tm, result) rb_localtime_r((tm), &(result))
#ifndef HAVE_STRUCT_TM_TM_GMTOFF
static struct tm *
rb_gmtime_r(const time_t *t, struct tm *result)
{
#ifdef HAVE_GMTIME_R
result = gmtime_r(t, result);
#else
struct tm *tmp = gmtime(t);
if (tmp) *result = *tmp;
#endif
#if defined(HAVE_TIMEGM) && defined(LOCALTIME_OVERFLOW_PROBLEM)
if (result && *t != timegm(result)) {
return NULL;
}
#endif
return result;
}
# define GMTIME(tm, result) rb_gmtime_r((tm), &(result))
#endif
static const int16_t common_year_yday_offset[] = {
-1,
-1 + 31,
-1 + 31 + 28,
-1 + 31 + 28 + 31,
-1 + 31 + 28 + 31 + 30,
-1 + 31 + 28 + 31 + 30 + 31,
-1 + 31 + 28 + 31 + 30 + 31 + 30,
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31,
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31,
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
-1 + 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
/* 1 2 3 4 5 6 7 8 9 10 11 */
};
static const int16_t leap_year_yday_offset[] = {
-1,
-1 + 31,
-1 + 31 + 29,
-1 + 31 + 29 + 31,
-1 + 31 + 29 + 31 + 30,
-1 + 31 + 29 + 31 + 30 + 31,
-1 + 31 + 29 + 31 + 30 + 31 + 30,
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31,
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31,
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30,
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31,
-1 + 31 + 29 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30
/* 1 2 3 4 5 6 7 8 9 10 11 */
};
static const int8_t common_year_days_in_month[] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
static const int8_t leap_year_days_in_month[] = {
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
#define days_in_month_of(leap) ((leap) ? leap_year_days_in_month : common_year_days_in_month)
#define days_in_month_in(y) days_in_month_of(leap_year_p(y))
#define days_in_month_in_v(y) days_in_month_of(leap_year_v_p(y))
#define M28(m) \
(m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
(m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
(m),(m),(m),(m),(m),(m),(m),(m)
#define M29(m) \
(m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
(m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
(m),(m),(m),(m),(m),(m),(m),(m),(m)
#define M30(m) \
(m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
(m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
(m),(m),(m),(m),(m),(m),(m),(m),(m),(m)
#define M31(m) \
(m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
(m),(m),(m),(m),(m),(m),(m),(m),(m),(m), \
(m),(m),(m),(m),(m),(m),(m),(m),(m),(m), (m)
static const uint8_t common_year_mon_of_yday[] = {
M31(1), M28(2), M31(3), M30(4), M31(5), M30(6),
M31(7), M31(8), M30(9), M31(10), M30(11), M31(12)
};
static const uint8_t leap_year_mon_of_yday[] = {
M31(1), M29(2), M31(3), M30(4), M31(5), M30(6),
M31(7), M31(8), M30(9), M31(10), M30(11), M31(12)
};
#undef M28
#undef M29
#undef M30
#undef M31
#define D28 \
1,2,3,4,5,6,7,8,9, \
10,11,12,13,14,15,16,17,18,19, \
20,21,22,23,24,25,26,27,28
#define D29 \
1,2,3,4,5,6,7,8,9, \
10,11,12,13,14,15,16,17,18,19, \
20,21,22,23,24,25,26,27,28,29
#define D30 \
1,2,3,4,5,6,7,8,9, \
10,11,12,13,14,15,16,17,18,19, \
20,21,22,23,24,25,26,27,28,29,30
#define D31 \
1,2,3,4,5,6,7,8,9, \
10,11,12,13,14,15,16,17,18,19, \
20,21,22,23,24,25,26,27,28,29,30,31
static const uint8_t common_year_mday_of_yday[] = {
/* 1 2 3 4 5 6 7 8 9 10 11 12 */
D31, D28, D31, D30, D31, D30, D31, D31, D30, D31, D30, D31
};
static const uint8_t leap_year_mday_of_yday[] = {
D31, D29, D31, D30, D31, D30, D31, D31, D30, D31, D30, D31
};
#undef D28
#undef D29
#undef D30
#undef D31
static int
calc_tm_yday(long tm_year, int tm_mon, int tm_mday)
{
int tm_year_mod400 = (int)MOD(tm_year, 400);
int tm_yday = tm_mday;
if (leap_year_p(tm_year_mod400 + 1900))
tm_yday += leap_year_yday_offset[tm_mon];
else
tm_yday += common_year_yday_offset[tm_mon];
return tm_yday;
}
static wideval_t
timegmw_noleapsecond(struct vtm *vtm)
{
VALUE year1900;
VALUE q400, r400;
int year_mod400;
int yday;
long days_in400;
VALUE vdays, ret;
wideval_t wret;
year1900 = subv(vtm->year, INT2FIX(1900));
divmodv(year1900, INT2FIX(400), &q400, &r400);
year_mod400 = NUM2INT(r400);
yday = calc_tm_yday(year_mod400, vtm->mon-1, vtm->mday);
/*
* `Seconds Since the Epoch' in SUSv3:
* tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
* (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
* ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
*/
ret = LONG2NUM(vtm->sec
+ vtm->min*60
+ vtm->hour*3600);
days_in400 = yday
- 70*365
+ DIV(year_mod400 - 69, 4)
- DIV(year_mod400 - 1, 100)
+ (year_mod400 + 299) / 400;
vdays = LONG2NUM(days_in400);
vdays = addv(vdays, mulv(q400, INT2FIX(97)));
vdays = addv(vdays, mulv(year1900, INT2FIX(365)));
wret = wadd(rb_time_magnify(v2w(ret)), wmul(rb_time_magnify(v2w(vdays)), WINT2FIXWV(86400)));
wret = wadd(wret, v2w(vtm->subsecx));
return wret;
}
static VALUE
zone_str(const char *zone)
{
const char *p;
int ascii_only = 1;
VALUE str;
size_t len;
if (zone == NULL) {
return rb_fstring_lit("(NO-TIMEZONE-ABBREVIATION)");
}
for (p = zone; *p; p++)
if (!ISASCII(*p)) {
ascii_only = 0;
break;
}
len = p - zone + strlen(p);
if (ascii_only) {
str = rb_usascii_str_new(zone, len);
}
else {
str = rb_enc_str_new(zone, len, rb_locale_encoding());
}
return rb_fstring(str);
}
static void
gmtimew_noleapsecond(wideval_t timew, struct vtm *vtm)
{
VALUE v;
int n, x, y;
int wday;
VALUE timev;
wideval_t timew2, w, w2;
VALUE subsecx;
vtm->isdst = 0;
split_second(timew, &timew2, &subsecx);
vtm->subsecx = subsecx;
wdivmod(timew2, WINT2FIXWV(86400), &w2, &w);
timev = w2v(w2);
v = w2v(w);
wday = NUM2INT(modv(timev, INT2FIX(7)));
vtm->wday = (wday + 4) % 7;
n = NUM2INT(v);
vtm->sec = n % 60; n = n / 60;
vtm->min = n % 60; n = n / 60;
vtm->hour = n;
/* 97 leap days in the 400 year cycle */
divmodv(timev, INT2FIX(400*365 + 97), &timev, &v);
vtm->year = mulv(timev, INT2FIX(400));
/* n is the days in the 400 year cycle.
* the start of the cycle is 1970-01-01. */
n = NUM2INT(v);
y = 1970;
/* 30 years including 7 leap days (1972, 1976, ... 1996),
* 31 days in January 2000 and
* 29 days in February 2000
* from 1970-01-01 to 2000-02-29 */
if (30*365+7+31+29-1 <= n) {
/* 2000-02-29 or after */
if (n < 31*365+8) {
/* 2000-02-29 to 2000-12-31 */
y += 30;
n -= 30*365+7;
goto found;
}
else {
/* 2001-01-01 or after */
n -= 1;
}
}
x = n / (365*100 + 24);
n = n % (365*100 + 24);
y += x * 100;
if (30*365+7+31+29-1 <= n) {
if (n < 31*365+7) {
y += 30;
n -= 30*365+7;
goto found;
}
else
n += 1;
}
x = n / (365*4 + 1);
n = n % (365*4 + 1);
y += x * 4;
if (365*2+31+29-1 <= n) {
if (n < 365*2+366) {
y += 2;
n -= 365*2;
goto found;
}
else
n -= 1;
}
x = n / 365;
n = n % 365;
y += x;
found:
vtm->yday = n+1;
vtm->year = addv(vtm->year, INT2NUM(y));
if (leap_year_p(y)) {
vtm->mon = leap_year_mon_of_yday[n];
vtm->mday = leap_year_mday_of_yday[n];
}
else {
vtm->mon = common_year_mon_of_yday[n];
vtm->mday = common_year_mday_of_yday[n];
}
vtm->utc_offset = INT2FIX(0);
vtm->zone = str_utc;
}
static struct tm *
gmtime_with_leapsecond(const time_t *timep, struct tm *result)
{
#if defined(HAVE_STRUCT_TM_TM_GMTOFF)
/* 4.4BSD counts leap seconds only with localtime, not with gmtime. */
struct tm *t;
int sign;
int gmtoff_sec, gmtoff_min, gmtoff_hour, gmtoff_day;
long gmtoff;
t = LOCALTIME(timep, *result);
if (t == NULL)
return NULL;
/* subtract gmtoff */
if (t->tm_gmtoff < 0) {
sign = 1;
gmtoff = -t->tm_gmtoff;
}
else {
sign = -1;
gmtoff = t->tm_gmtoff;
}
gmtoff_sec = (int)(gmtoff % 60);
gmtoff = gmtoff / 60;
gmtoff_min = (int)(gmtoff % 60);
gmtoff = gmtoff / 60;
gmtoff_hour = (int)gmtoff; /* <= 12 */
gmtoff_sec *= sign;
gmtoff_min *= sign;
gmtoff_hour *= sign;
gmtoff_day = 0;
if (gmtoff_sec) {
/* If gmtoff_sec == 0, don't change result->tm_sec.
* It may be 60 which is a leap second. */
result->tm_sec += gmtoff_sec;
if (result->tm_sec < 0) {
result->tm_sec += 60;
gmtoff_min -= 1;
}
if (60 <= result->tm_sec) {
result->tm_sec -= 60;
gmtoff_min += 1;
}
}
if (gmtoff_min) {
result->tm_min += gmtoff_min;
if (result->tm_min < 0) {
result->tm_min += 60;
gmtoff_hour -= 1;
}
if (60 <= result->tm_min) {
result->tm_min -= 60;
gmtoff_hour += 1;
}
}
if (gmtoff_hour) {
result->tm_hour += gmtoff_hour;
if (result->tm_hour < 0) {
result->tm_hour += 24;
gmtoff_day = -1;
}
if (24 <= result->tm_hour) {
result->tm_hour -= 24;
gmtoff_day = 1;
}
}
if (gmtoff_day) {
if (gmtoff_day < 0) {
if (result->tm_yday == 0) {
result->tm_mday = 31;
result->tm_mon = 11; /* December */
result->tm_year--;
result->tm_yday = leap_year_p(result->tm_year + 1900) ? 365 : 364;
}
else if (result->tm_mday == 1) {
const int8_t *days_in_month = days_in_month_in(result->tm_year + 1900);
result->tm_mon--;
result->tm_mday = days_in_month[result->tm_mon];
result->tm_yday--;
}
else {
result->tm_mday--;
result->tm_yday--;
}
result->tm_wday = (result->tm_wday + 6) % 7;
}
else {
int leap = leap_year_p(result->tm_year + 1900);
if (result->tm_yday == (leap ? 365 : 364)) {
result->tm_year++;
result->tm_mon = 0; /* January */
result->tm_mday = 1;
result->tm_yday = 0;
}
else if (result->tm_mday == days_in_month_of(leap)[result->tm_mon]) {
result->tm_mon++;
result->tm_mday = 1;
result->tm_yday++;
}
else {
result->tm_mday++;
result->tm_yday++;
}
result->tm_wday = (result->tm_wday + 1) % 7;
}
}
result->tm_isdst = 0;
result->tm_gmtoff = 0;
#if defined(HAVE_TM_ZONE)
result->tm_zone = (char *)"UTC";
#endif
return result;
#else
return GMTIME(timep, *result);
#endif
}
static long this_year = 0;
static time_t known_leap_seconds_limit;
static int number_of_leap_seconds_known;
static void
init_leap_second_info(void)
{
/*
* leap seconds are determined by IERS.
* It is announced 6 months before the leap second.
* So no one knows leap seconds in the future after the next year.
*/
if (this_year == 0) {
time_t now;
struct tm *tm, result;
struct vtm vtm;
wideval_t timew;
now = time(NULL);
#ifdef HAVE_GMTIME_R
gmtime_r(&now, &result);
#else
gmtime(&now);
#endif
tm = gmtime_with_leapsecond(&now, &result);
if (!tm) return;
this_year = tm->tm_year;
if (TIMET_MAX - now < (time_t)(366*86400))
known_leap_seconds_limit = TIMET_MAX;
else
known_leap_seconds_limit = now + (time_t)(366*86400);
if (!gmtime_with_leapsecond(&known_leap_seconds_limit, &result))
return;
vtm.year = LONG2NUM(result.tm_year + 1900);
vtm.mon = result.tm_mon + 1;
vtm.mday = result.tm_mday;
vtm.hour = result.tm_hour;
vtm.min = result.tm_min;
vtm.sec = result.tm_sec;
vtm.subsecx = INT2FIX(0);
vtm.utc_offset = INT2FIX(0);
timew = timegmw_noleapsecond(&vtm);
number_of_leap_seconds_known = NUM2INT(w2v(wsub(TIMET2WV(known_leap_seconds_limit), rb_time_unmagnify(timew))));
}
}
/* Use this if you want to re-run init_leap_second_info() */
void
ruby_reset_leap_second_info(void)
{
this_year = 0;
}
static wideval_t
timegmw(struct vtm *vtm)
{
wideval_t timew;
struct tm tm;
time_t t;
const char *errmsg;
/* The first leap second is 1972-06-30 23:59:60 UTC.
* No leap seconds before. */
if (gt(INT2FIX(1972), vtm->year))
return timegmw_noleapsecond(vtm);
init_leap_second_info();
timew = timegmw_noleapsecond(vtm);
if (number_of_leap_seconds_known == 0) {
/* When init_leap_second_info() is executed, the timezone doesn't have
* leap second information. Disable leap second for calculating gmtime.
*/
return timew;
}
else if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
return wadd(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
}
tm.tm_year = rb_long2int(NUM2LONG(vtm->year) - 1900);
tm.tm_mon = vtm->mon - 1;
tm.tm_mday = vtm->mday;
tm.tm_hour = vtm->hour;
tm.tm_min = vtm->min;
tm.tm_sec = vtm->sec;
tm.tm_isdst = 0;
errmsg = find_time_t(&tm, 1, &t);
if (errmsg)
rb_raise(rb_eArgError, "%s", errmsg);
return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
}
static struct vtm *
gmtimew(wideval_t timew, struct vtm *result)
{
time_t t;
struct tm tm;
VALUE subsecx;
wideval_t timew2;
if (wlt(timew, WINT2FIXWV(0))) {
gmtimew_noleapsecond(timew, result);
return result;
}
init_leap_second_info();
if (number_of_leap_seconds_known == 0) {
/* When init_leap_second_info() is executed, the timezone doesn't have
* leap second information. Disable leap second for calculating gmtime.
*/
gmtimew_noleapsecond(timew, result);
return result;
}
else if (wlt(rb_time_magnify(TIMET2WV(known_leap_seconds_limit)), timew)) {
timew = wsub(timew, rb_time_magnify(WINT2WV(number_of_leap_seconds_known)));
gmtimew_noleapsecond(timew, result);
return result;
}
split_second(timew, &timew2, &subsecx);
t = WV2TIMET(timew2);
if (!gmtime_with_leapsecond(&t, &tm))
return NULL;
result->year = LONG2NUM((long)tm.tm_year + 1900);
result->mon = tm.tm_mon + 1;
result->mday = tm.tm_mday;
result->hour = tm.tm_hour;
result->min = tm.tm_min;
result->sec = tm.tm_sec;
result->subsecx = subsecx;
result->utc_offset = INT2FIX(0);
result->wday = tm.tm_wday;
result->yday = tm.tm_yday+1;
result->isdst = tm.tm_isdst;
#if 0
result->zone = rb_fstring_lit("UTC");
#endif
return result;
}
#define GMTIMEW(w, v) \
(gmtimew(w, v) ? (void)0 : rb_raise(rb_eArgError, "gmtime error"))
static struct tm *localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, VALUE *zone);
/*
* The idea, extrapolate localtime() function, is borrowed from Perl:
* http://web.archive.org/web/20080211114141/http://use.perl.org/articles/08/02/07/197204.shtml
*
* compat_common_month_table is generated by the following program.
* This table finds the last month which starts at the same day of a week.
* The year 2037 is not used because:
* https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=522949
*
* #!/usr/bin/ruby
*
* require 'date'
*
* h = {}
* 2036.downto(2010) {|y|
* 1.upto(12) {|m|
* next if m == 2 && y % 4 == 0
* d = Date.new(y,m,1)
* h[m] ||= {}
* h[m][d.wday] ||= y
* }
* }
*
* 1.upto(12) {|m|
* print "{"
* 0.upto(6) {|w|
* y = h[m][w]
* print " #{y},"
* }
* puts "},"
* }
*
*/
static const int compat_common_month_table[12][7] = {
/* Sun Mon Tue Wed Thu Fri Sat */
{ 2034, 2035, 2036, 2031, 2032, 2027, 2033 }, /* January */
{ 2026, 2027, 2033, 2034, 2035, 2030, 2031 }, /* February */
{ 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* March */
{ 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* April */
{ 2033, 2034, 2035, 2030, 2036, 2026, 2032 }, /* May */
{ 2036, 2026, 2032, 2033, 2034, 2035, 2030 }, /* June */
{ 2035, 2030, 2036, 2026, 2032, 2033, 2034 }, /* July */
{ 2032, 2033, 2034, 2035, 2030, 2036, 2026 }, /* August */
{ 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* September */
{ 2034, 2035, 2030, 2036, 2026, 2032, 2033 }, /* October */
{ 2026, 2032, 2033, 2034, 2035, 2030, 2036 }, /* November */
{ 2030, 2036, 2026, 2032, 2033, 2034, 2035 }, /* December */
};
/*
* compat_leap_month_table is generated by following program.
*
* #!/usr/bin/ruby
*
* require 'date'
*
* h = {}
* 2037.downto(2010) {|y|
* 1.upto(12) {|m|
* next unless m == 2 && y % 4 == 0
* d = Date.new(y,m,1)
* h[m] ||= {}
* h[m][d.wday] ||= y
* }
* }
*
* 2.upto(2) {|m|
* 0.upto(6) {|w|
* y = h[m][w]
* print " #{y},"
* }
* puts
* }
*/
static const int compat_leap_month_table[7] = {
/* Sun Mon Tue Wed Thu Fri Sat */
2032, 2016, 2028, 2012, 2024, 2036, 2020, /* February */
};
static int
calc_wday(int year_mod400, int month, int day)
{
int a, y, m;
int wday;
a = (14 - month) / 12;
y = year_mod400 + 4800 - a;
m = month + 12 * a - 3;
wday = day + (153*m+2)/5 + 365*y + y/4 - y/100 + y/400 + 2;
wday = wday % 7;
return wday;
}
static VALUE
guess_local_offset(struct vtm *vtm_utc, int *isdst_ret, VALUE *zone_ret)
{
struct tm tm;
long gmtoff;
VALUE zone;
time_t t;
struct vtm vtm2;
VALUE timev;
int year_mod400, wday;
/* Daylight Saving Time was introduced in 1916.
* So we don't need to care about DST before that. */
if (lt(vtm_utc->year, INT2FIX(1916))) {
VALUE off = INT2FIX(0);
int isdst = 0;
zone = rb_fstring_lit("UTC");
# if defined(NEGATIVE_TIME_T)
# if SIZEOF_TIME_T <= 4
/* 1901-12-13 20:45:52 UTC : The oldest time in 32-bit signed time_t. */
# define THE_TIME_OLD_ENOUGH ((time_t)0x80000000)
# else
/* Since the Royal Greenwich Observatory was commissioned in 1675,
no timezone defined using GMT at 1600. */
# define THE_TIME_OLD_ENOUGH ((time_t)(1600-1970)*366*24*60*60)
# endif
if (localtime_with_gmtoff_zone((t = THE_TIME_OLD_ENOUGH, &t), &tm, &gmtoff, &zone)) {
off = LONG2FIX(gmtoff);
isdst = tm.tm_isdst;
}
else
# endif
/* 1970-01-01 00:00:00 UTC : The Unix epoch - the oldest time in portable time_t. */
if (localtime_with_gmtoff_zone((t = 0, &t), &tm, &gmtoff, &zone)) {
off = LONG2FIX(gmtoff);
isdst = tm.tm_isdst;
}
if (isdst_ret)
*isdst_ret = isdst;
if (zone_ret)
*zone_ret = zone;
return off;
}
/* It is difficult to guess the future. */
vtm2 = *vtm_utc;
/* guess using a year before 2038. */
year_mod400 = NUM2INT(modv(vtm_utc->year, INT2FIX(400)));
wday = calc_wday(year_mod400, vtm_utc->mon, 1);
if (vtm_utc->mon == 2 && leap_year_p(year_mod400))
vtm2.year = INT2FIX(compat_leap_month_table[wday]);
else
vtm2.year = INT2FIX(compat_common_month_table[vtm_utc->mon-1][wday]);
timev = w2v(rb_time_unmagnify(timegmw(&vtm2)));
t = NUM2TIMET(timev);
zone = str_utc;
if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
if (isdst_ret)
*isdst_ret = tm.tm_isdst;
if (zone_ret)
*zone_ret = zone;
return LONG2FIX(gmtoff);
}
{
/* Use the current time offset as a last resort. */
static time_t now = 0;
static long now_gmtoff = 0;
static int now_isdst = 0;
static VALUE now_zone;
if (now == 0) {
VALUE zone;
now = time(NULL);
localtime_with_gmtoff_zone(&now, &tm, &now_gmtoff, &zone);
now_isdst = tm.tm_isdst;
zone = rb_fstring(zone);
rb_gc_register_mark_object(zone);
now_zone = zone;
}
if (isdst_ret)
*isdst_ret = now_isdst;
if (zone_ret)
*zone_ret = now_zone;
return LONG2FIX(now_gmtoff);
}
}
static VALUE
small_vtm_sub(struct vtm *vtm1, struct vtm *vtm2)
{
int off;
off = vtm1->sec - vtm2->sec;
off += (vtm1->min - vtm2->min) * 60;
off += (vtm1->hour - vtm2->hour) * 3600;
if (ne(vtm1->year, vtm2->year))
off += lt(vtm1->year, vtm2->year) ? -24*3600 : 24*3600;
else if (vtm1->mon != vtm2->mon)
off += vtm1->mon < vtm2->mon ? -24*3600 : 24*3600;
else if (vtm1->mday != vtm2->mday)
off += vtm1->mday < vtm2->mday ? -24*3600 : 24*3600;
return INT2FIX(off);
}
static wideval_t
timelocalw(struct vtm *vtm)
{
time_t t;
struct tm tm;
VALUE v;
wideval_t timew1, timew2;
struct vtm vtm1, vtm2;
int n;
if (FIXNUM_P(vtm->year)) {
long l = FIX2LONG(vtm->year) - 1900;
if (l < INT_MIN || INT_MAX < l)
goto no_localtime;
tm.tm_year = (int)l;
}
else {
v = subv(vtm->year, INT2FIX(1900));
if (lt(v, INT2NUM(INT_MIN)) || lt(INT2NUM(INT_MAX), v))
goto no_localtime;
tm.tm_year = NUM2INT(v);
}
tm.tm_mon = vtm->mon-1;
tm.tm_mday = vtm->mday;
tm.tm_hour = vtm->hour;
tm.tm_min = vtm->min;
tm.tm_sec = vtm->sec;
tm.tm_isdst = vtm->isdst == VTM_ISDST_INITVAL ? -1 : vtm->isdst;
if (find_time_t(&tm, 0, &t))
goto no_localtime;
return wadd(rb_time_magnify(TIMET2WV(t)), v2w(vtm->subsecx));
no_localtime:
timew1 = timegmw(vtm);
if (!localtimew(timew1, &vtm1))
rb_raise(rb_eArgError, "localtimew error");
n = vtmcmp(vtm, &vtm1);
if (n == 0) {
timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(12*3600)));
if (!localtimew(timew1, &vtm1))
rb_raise(rb_eArgError, "localtimew error");
n = 1;
}
if (n < 0) {
timew2 = timew1;
vtm2 = vtm1;
timew1 = wsub(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
if (!localtimew(timew1, &vtm1))
rb_raise(rb_eArgError, "localtimew error");
}
else {
timew2 = wadd(timew1, rb_time_magnify(WINT2FIXWV(24*3600)));
if (!localtimew(timew2, &vtm2))
rb_raise(rb_eArgError, "localtimew error");
}
timew1 = wadd(timew1, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm1))));
timew2 = wadd(timew2, rb_time_magnify(v2w(small_vtm_sub(vtm, &vtm2))));
if (weq(timew1, timew2))
return timew1;
if (!localtimew(timew1, &vtm1))
rb_raise(rb_eArgError, "localtimew error");
if (vtm->hour != vtm1.hour || vtm->min != vtm1.min || vtm->sec != vtm1.sec)
return timew2;
if (!localtimew(timew2, &vtm2))
rb_raise(rb_eArgError, "localtimew error");
if (vtm->hour != vtm2.hour || vtm->min != vtm2.min || vtm->sec != vtm2.sec)
return timew1;
if (vtm->isdst)
return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew2 : timew1;
else
return lt(vtm1.utc_offset, vtm2.utc_offset) ? timew1 : timew2;
}
static struct tm *
localtime_with_gmtoff_zone(const time_t *t, struct tm *result, long *gmtoff, VALUE *zone)
{
struct tm tm;
if (LOCALTIME(t, tm)) {
#if defined(HAVE_STRUCT_TM_TM_GMTOFF)
*gmtoff = tm.tm_gmtoff;
#else
struct tm *u, *l;
long off;
struct tm tmbuf;
l = &tm;
u = GMTIME(t, tmbuf);
if (!u)
return NULL;
if (l->tm_year != u->tm_year)
off = l->tm_year < u->tm_year ? -1 : 1;
else if (l->tm_mon != u->tm_mon)
off = l->tm_mon < u->tm_mon ? -1 : 1;
else if (l->tm_mday != u->tm_mday)
off = l->tm_mday < u->tm_mday ? -1 : 1;
else
off = 0;
off = off * 24 + l->tm_hour - u->tm_hour;
off = off * 60 + l->tm_min - u->tm_min;
off = off * 60 + l->tm_sec - u->tm_sec;
*gmtoff = off;
#endif
if (zone) {
#if defined(HAVE_TM_ZONE)
*zone = zone_str(tm.tm_zone);
#elif defined(HAVE_TZNAME) && defined(HAVE_DAYLIGHT)
# if defined(RUBY_MSVCRT_VERSION) && RUBY_MSVCRT_VERSION >= 140
# define tzname _tzname
# define daylight _daylight
# endif
/* this needs tzset or localtime, instead of localtime_r */
*zone = zone_str(tzname[daylight && tm.tm_isdst]);
#else
{
char buf[64];
strftime(buf, sizeof(buf), "%Z", &tm);
*zone = zone_str(buf);
}
#endif
}
*result = tm;
return result;
}
return NULL;
}
static int
timew_out_of_timet_range(wideval_t timew)
{
VALUE timexv;
#if WIDEVALUE_IS_WIDER && SIZEOF_TIME_T < SIZEOF_INT64_T
if (FIXWV_P(timew)) {
wideint_t t = FIXWV2WINT(timew);
if (t < TIME_SCALE * (wideint_t)TIMET_MIN ||
TIME_SCALE * (1 + (wideint_t)TIMET_MAX) <= t)
return 1;
return 0;
}
#endif
#if SIZEOF_TIME_T == SIZEOF_INT64_T
if (FIXWV_P(timew)) {
wideint_t t = FIXWV2WINT(timew);
if (~(time_t)0 <= 0) {
return 0;
}
else {
if (t < 0)
return 1;
return 0;
}
}
#endif
timexv = w2v(timew);
if (lt(timexv, mulv(INT2FIX(TIME_SCALE), TIMET2NUM(TIMET_MIN))) ||
le(mulv(INT2FIX(TIME_SCALE), addv(TIMET2NUM(TIMET_MAX), INT2FIX(1))), timexv))
return 1;
return 0;
}
static struct vtm *
localtimew(wideval_t timew, struct vtm *result)
{
VALUE subsecx, offset;
VALUE zone;
int isdst;
if (!timew_out_of_timet_range(timew)) {
time_t t;
struct tm tm;
long gmtoff;
wideval_t timew2;
split_second(timew, &timew2, &subsecx);
t = WV2TIMET(timew2);
if (localtime_with_gmtoff_zone(&t, &tm, &gmtoff, &zone)) {
result->year = LONG2NUM((long)tm.tm_year + 1900);
result->mon = tm.tm_mon + 1;
result->mday = tm.tm_mday;
result->hour = tm.tm_hour;
result->min = tm.tm_min;
result->sec = tm.tm_sec;
result->subsecx = subsecx;
result->wday = tm.tm_wday;
result->yday = tm.tm_yday+1;
result->isdst = tm.tm_isdst;
result->utc_offset = LONG2NUM(gmtoff);
result->zone = zone;
return result;
}
}
if (!gmtimew(timew, result))
return NULL;
offset = guess_local_offset(result, &isdst, &zone);
if (!gmtimew(wadd(timew, rb_time_magnify(v2w(offset))), result))
return NULL;
result->utc_offset = offset;
result->isdst = isdst;
result->zone = zone;
return result;
}
#define TIME_TZMODE_LOCALTIME 0
#define TIME_TZMODE_UTC 1
#define TIME_TZMODE_FIXOFF 2
#define TIME_TZMODE_UNINITIALIZED 3
PACKED_STRUCT_UNALIGNED(struct time_object {
wideval_t timew; /* time_t value * TIME_SCALE. possibly Rational. */
struct vtm vtm;
unsigned int tzmode:3; /* 0:localtime 1:utc 2:fixoff 3:uninitialized */
unsigned int tm_got:1;
});
#define GetTimeval(obj, tobj) ((tobj) = get_timeval(obj))
#define GetNewTimeval(obj, tobj) ((tobj) = get_new_timeval(obj))
#define IsTimeval(obj) rb_typeddata_is_kind_of((obj), &time_data_type)
#define TIME_INIT_P(tobj) ((tobj)->tzmode != TIME_TZMODE_UNINITIALIZED)
#define TZMODE_UTC_P(tobj) ((tobj)->tzmode == TIME_TZMODE_UTC)
#define TZMODE_SET_UTC(tobj) ((tobj)->tzmode = TIME_TZMODE_UTC)
#define TZMODE_LOCALTIME_P(tobj) ((tobj)->tzmode == TIME_TZMODE_LOCALTIME)
#define TZMODE_SET_LOCALTIME(tobj) ((tobj)->tzmode = TIME_TZMODE_LOCALTIME)
#define TZMODE_FIXOFF_P(tobj) ((tobj)->tzmode == TIME_TZMODE_FIXOFF)
#define TZMODE_SET_FIXOFF(tobj, off) \
((tobj)->tzmode = TIME_TZMODE_FIXOFF, \
(tobj)->vtm.utc_offset = (off))
#define TZMODE_COPY(tobj1, tobj2) \
((tobj1)->tzmode = (tobj2)->tzmode, \
(tobj1)->vtm.utc_offset = (tobj2)->vtm.utc_offset, \
(tobj1)->vtm.zone = (tobj2)->vtm.zone)
static VALUE time_get_tm(VALUE, struct time_object *);
#define MAKE_TM(time, tobj) \
do { \
if ((tobj)->tm_got == 0) { \
time_get_tm((time), (tobj)); \
} \
} while (0)
#define MAKE_TM_ENSURE(time, tobj, cond) \
do { \
MAKE_TM(time, tobj); \
if (!(cond)) { \
VALUE zone = (tobj)->vtm.zone; \
if (!NIL_P(zone)) zone_localtime(zone, (time)); \
} \
} while (0)
static void
time_mark(void *ptr)
{
struct time_object *tobj = ptr;
if (!FIXWV_P(tobj->timew))
rb_gc_mark(w2v(tobj->timew));
rb_gc_mark(tobj->vtm.year);
rb_gc_mark(tobj->vtm.subsecx);
rb_gc_mark(tobj->vtm.utc_offset);
rb_gc_mark(tobj->vtm.zone);
}
static size_t
time_memsize(const void *tobj)
{
return sizeof(struct time_object);
}
static const rb_data_type_t time_data_type = {
"time",
{time_mark, RUBY_TYPED_DEFAULT_FREE, time_memsize,},
0, 0,
(RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_FROZEN_SHAREABLE),
};
static VALUE
time_s_alloc(VALUE klass)
{
VALUE obj;
struct time_object *tobj;
obj = TypedData_Make_Struct(klass, struct time_object, &time_data_type, tobj);
tobj->tzmode = TIME_TZMODE_UNINITIALIZED;
tobj->tm_got=0;
tobj->timew = WINT2FIXWV(0);
tobj->vtm.zone = Qnil;
return obj;
}
static struct time_object *
get_timeval(VALUE obj)
{
struct time_object *tobj;
TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj);
if (!TIME_INIT_P(tobj)) {
rb_raise(rb_eTypeError, "uninitialized %"PRIsVALUE, rb_obj_class(obj));
}
return tobj;
}
static struct time_object *
get_new_timeval(VALUE obj)
{
struct time_object *tobj;
TypedData_Get_Struct(obj, struct time_object, &time_data_type, tobj);
if (TIME_INIT_P(tobj)) {
rb_raise(rb_eTypeError, "already initialized %"PRIsVALUE, rb_obj_class(obj));
}
return tobj;
}
static void
time_modify(VALUE time)
{
rb_check_frozen(time);
}
static wideval_t
timenano2timew(time_t sec, long nsec)
{
wideval_t timew;
timew = rb_time_magnify(TIMET2WV(sec));
if (nsec)
timew = wadd(timew, wmulquoll(WINT2WV(nsec), TIME_SCALE, 1000000000));
return timew;
}
static struct timespec
timew2timespec(wideval_t timew)
{
VALUE subsecx;
struct timespec ts;
wideval_t timew2;
if (timew_out_of_timet_range(timew))
rb_raise(rb_eArgError, "time out of system range");
split_second(timew, &timew2, &subsecx);
ts.tv_sec = WV2TIMET(timew2);
ts.tv_nsec = NUM2LONG(mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE)));
return ts;
}
static struct timespec *
timew2timespec_exact(wideval_t timew, struct timespec *ts)
{
VALUE subsecx;
wideval_t timew2;
VALUE nsecv;
if (timew_out_of_timet_range(timew))
return NULL;
split_second(timew, &timew2, &subsecx);
ts->tv_sec = WV2TIMET(timew2);
nsecv = mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
if (!FIXNUM_P(nsecv))
return NULL;
ts->tv_nsec = NUM2LONG(nsecv);
return ts;
}
void
rb_timespec_now(struct timespec *ts)
{
#ifdef HAVE_CLOCK_GETTIME
if (clock_gettime(CLOCK_REALTIME, ts) == -1) {
rb_sys_fail("clock_gettime");
}
#else
{
struct timeval tv;
if (gettimeofday(&tv, 0) < 0) {
rb_sys_fail("gettimeofday");
}
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = tv.tv_usec * 1000;
}
#endif
}
static VALUE
time_init_now(rb_execution_context_t *ec, VALUE time, VALUE zone)
{
struct time_object *tobj;
struct timespec ts;
time_modify(time);
GetNewTimeval(time, tobj);
TZMODE_SET_LOCALTIME(tobj);
tobj->tm_got=0;
tobj->timew = WINT2FIXWV(0);
rb_timespec_now(&ts);
tobj->timew = timenano2timew(ts.tv_sec, ts.tv_nsec);
if (!NIL_P(zone)) {
time_zonelocal(time, zone);
}
return time;
}
static VALUE
time_s_now(rb_execution_context_t *ec, VALUE klass, VALUE zone)
{
VALUE t = time_s_alloc(klass);
return time_init_now(ec, t, zone);
}
static VALUE
time_set_utc_offset(VALUE time, VALUE off)
{
struct time_object *tobj;
off = num_exact(off);
time_modify(time);
GetTimeval(time, tobj);
tobj->tm_got = 0;
tobj->vtm.zone = Qnil;
TZMODE_SET_FIXOFF(tobj, off);
return time;
}
static void
vtm_add_offset(struct vtm *vtm, VALUE off, int sign)
{
VALUE subsec, v;
int sec, min, hour;
int day;
if (lt(off, INT2FIX(0))) {
sign = -sign;
off = neg(off);
}
divmodv(off, INT2FIX(1), &off, &subsec);
divmodv(off, INT2FIX(60), &off, &v);
sec = NUM2INT(v);
divmodv(off, INT2FIX(60), &off, &v);
min = NUM2INT(v);
divmodv(off, INT2FIX(24), &off, &v);
hour = NUM2INT(v);
if (sign < 0) {
subsec = neg(subsec);
sec = -sec;
min = -min;
hour = -hour;
}
day = 0;
if (!rb_equal(subsec, INT2FIX(0))) {
vtm->subsecx = addv(vtm->subsecx, w2v(rb_time_magnify(v2w(subsec))));
if (lt(vtm->subsecx, INT2FIX(0))) {
vtm->subsecx = addv(vtm->subsecx, INT2FIX(TIME_SCALE));
sec -= 1;
}
if (le(INT2FIX(TIME_SCALE), vtm->subsecx)) {
vtm->subsecx = subv(vtm->subsecx, INT2FIX(TIME_SCALE));
sec += 1;
}
}
if (sec) {
/* If sec + subsec == 0, don't change vtm->sec.
* It may be 60 which is a leap second. */
sec += vtm->sec;
if (sec < 0) {
sec += 60;
min -= 1;
}
if (60 <= sec) {
sec -= 60;
min += 1;
}
vtm->sec = sec;
}
if (min) {
min += vtm->min;
if (min < 0) {
min += 60;
hour -= 1;
}
if (60 <= min) {
min -= 60;
hour += 1;
}
vtm->min = min;
}
if (hour) {
hour += vtm->hour;
if (hour < 0) {
hour += 24;
day = -1;
}
if (24 <= hour) {
hour -= 24;
day = 1;
}
vtm->hour = hour;
}
vtm_add_day(vtm, day);
}
static void
vtm_add_day(struct vtm *vtm, int day)
{
if (day) {
if (day < 0) {
if (vtm->mon == 1 && vtm->mday == 1) {
vtm->mday = 31;
vtm->mon = 12; /* December */
vtm->year = subv(vtm->year, INT2FIX(1));
vtm->yday = leap_year_v_p(vtm->year) ? 366 : 365;
}
else if (vtm->mday == 1) {
const int8_t *days_in_month = days_in_month_in_v(vtm->year);
vtm->mon--;
vtm->mday = days_in_month[vtm->mon-1];
vtm->yday--;
}
else {
vtm->mday--;
vtm->yday--;
}
vtm->wday = (vtm->wday + 6) % 7;
}
else {
int leap = leap_year_v_p(vtm->year);
if (vtm->mon == 12 && vtm->mday == 31) {
vtm->year = addv(vtm->year, INT2FIX(1));
vtm->mon = 1; /* January */
vtm->mday = 1;
vtm->yday = 1;
}
else if (vtm->mday == days_in_month_of(leap)[vtm->mon-1]) {
vtm->mon++;
vtm->mday = 1;
vtm->yday++;
}
else {
vtm->mday++;
vtm->yday++;
}
vtm->wday = (vtm->wday + 1) % 7;
}
}
}
static int
maybe_tzobj_p(VALUE obj)
{
if (NIL_P(obj)) return FALSE;
if (RB_INTEGER_TYPE_P(obj)) return FALSE;
if (RB_TYPE_P(obj, T_STRING)) return FALSE;
return TRUE;
}
NORETURN(static void invalid_utc_offset(VALUE));
static void
invalid_utc_offset(VALUE zone)
{
rb_raise(rb_eArgError, "\"+HH:MM\", \"-HH:MM\", \"UTC\" or "
"\"A\"..\"I\",\"K\"..\"Z\" expected for utc_offset: %"PRIsVALUE,
zone);
}
static VALUE
utc_offset_arg(VALUE arg)
{
VALUE tmp;
if (!NIL_P(tmp = rb_check_string_type(arg))) {
int n = 0;
const char *s = RSTRING_PTR(tmp), *min = NULL, *sec = NULL;
if (!rb_enc_str_asciicompat_p(tmp)) {
goto invalid_utc_offset;
}
switch (RSTRING_LEN(tmp)) {
case 1:
if (s[0] == 'Z') {
return UTC_ZONE;
}
/* Military Time Zone Names */
if (s[0] >= 'A' && s[0] <= 'I') {
n = (int)s[0] - 'A' + 1;
}
else if (s[0] >= 'K' && s[0] <= 'M') {
n = (int)s[0] - 'A';
}
else if (s[0] >= 'N' && s[0] <= 'Y') {
n = 'M' - (int)s[0];
}
else {
goto invalid_utc_offset;
}
n *= 3600;
return INT2FIX(n);
case 3:
if (STRNCASECMP("UTC", s, 3) == 0) {
return UTC_ZONE;
}
break; /* +HH */
case 5: /* +HHMM */
min = s+3;
break;
case 6: /* +HH:MM */
min = s+4;
break;
case 7: /* +HHMMSS */
sec = s+5;
min = s+3;
break;
case 9: /* +HH:MM:SS */
sec = s+7;
min = s+4;
break;
default:
goto invalid_utc_offset;
}
if (sec) {
if (sec == s+7 && *(sec-1) != ':') goto invalid_utc_offset;
if (!ISDIGIT(sec[0]) || !ISDIGIT(sec[1])) goto invalid_utc_offset;
n += (sec[0] * 10 + sec[1] - '0' * 11);
}
if (min) {
if (min == s+4 && *(min-1) != ':') goto invalid_utc_offset;
if (!ISDIGIT(min[0]) || !ISDIGIT(min[1])) goto invalid_utc_offset;
if (min[0] > '5') goto invalid_utc_offset;
n += (min[0] * 10 + min[1] - '0' * 11) * 60;
}
if (s[0] != '+' && s[0] != '-') goto invalid_utc_offset;
if (!ISDIGIT(s[1]) || !ISDIGIT(s[2])) goto invalid_utc_offset;
n += (s[1] * 10 + s[2] - '0' * 11) * 3600;
if (s[0] == '-') {
if (n == 0) return UTC_ZONE;
n = -n;
}
return INT2FIX(n);
}
else {
return num_exact(arg);
}
invalid_utc_offset:
return Qnil;
}
static void
zone_set_offset(VALUE zone, struct time_object *tobj,
wideval_t tlocal, wideval_t tutc)
{
/* tlocal and tutc must be unmagnified and in seconds */
wideval_t w = wsub(tlocal, tutc);
VALUE off = w2v(w);
validate_utc_offset(off);
tobj->vtm.utc_offset = off;
tobj->vtm.zone = zone;
TZMODE_SET_LOCALTIME(tobj);
}
static wideval_t
extract_time(VALUE time)
{
wideval_t t;
const ID id_to_i = idTo_i;
#define EXTRACT_TIME() do { \
t = v2w(rb_Integer(AREF(to_i))); \
} while (0)
if (rb_typeddata_is_kind_of(time, &time_data_type)) {
struct time_object *tobj = DATA_PTR(time);
time_gmtime(time); /* ensure tm got */
t = rb_time_unmagnify(tobj->timew);
}
else if (RB_TYPE_P(time, T_STRUCT)) {
#define AREF(x) rb_struct_aref(time, ID2SYM(id_##x))
EXTRACT_TIME();
#undef AREF
}
else {
#define AREF(x) rb_funcallv(time, id_##x, 0, 0)
EXTRACT_TIME();
#undef AREF
}
#undef EXTRACT_TIME
return t;
}
static wideval_t
extract_vtm(VALUE time, struct vtm *vtm, VALUE subsecx)
{
wideval_t t;
const ID id_to_i = idTo_i;
#define EXTRACT_VTM() do { \
VALUE subsecx; \
vtm->year = obj2vint(AREF(year)); \
vtm->mon = month_arg(AREF(mon)); \
vtm->mday = obj2ubits(AREF(mday), 5); \
vtm->hour = obj2ubits(AREF(hour), 5); \
vtm->min = obj2ubits(AREF(min), 6); \
vtm->sec = obj2subsecx(AREF(sec), &subsecx); \
vtm->isdst = RTEST(AREF(isdst)); \
vtm->utc_offset = Qnil; \
t = v2w(rb_Integer(AREF(to_i))); \
} while (0)
if (rb_typeddata_is_kind_of(time, &time_data_type)) {
struct time_object *tobj = DATA_PTR(time);
time_get_tm(time, tobj);
*vtm = tobj->vtm;
t = rb_time_unmagnify(tobj->timew);
if (TZMODE_FIXOFF_P(tobj) && vtm->utc_offset != INT2FIX(0))
t = wadd(t, v2w(vtm->utc_offset));
}
else if (RB_TYPE_P(time, T_STRUCT)) {
#define AREF(x) rb_struct_aref(time, ID2SYM(id_##x))
EXTRACT_VTM();
#undef AREF
}
else if (rb_integer_type_p(time)) {
t = v2w(time);
GMTIMEW(rb_time_magnify(t), vtm);
}
else {
#define AREF(x) rb_funcallv(time, id_##x, 0, 0)
EXTRACT_VTM();
#undef AREF
}
#undef EXTRACT_VTM
vtm->subsecx = subsecx;
validate_vtm(vtm);
return t;
}
static void
zone_set_dst(VALUE zone, struct time_object *tobj, VALUE tm)
{
ID id_dst_p;
VALUE dst;
CONST_ID(id_dst_p, "dst?");
dst = rb_check_funcall(zone, id_dst_p, 1, &tm);
tobj->vtm.isdst = (dst != Qundef && RTEST(dst));
}
static int
zone_timelocal(VALUE zone, VALUE time)
{
VALUE utc, tm;
struct time_object *tobj = DATA_PTR(time);
wideval_t t, s;
t = rb_time_unmagnify(tobj->timew);
tm = tm_from_time(rb_cTimeTM, time);
utc = rb_check_funcall(zone, id_local_to_utc, 1, &tm);
if (utc == Qundef) return 0;
s = extract_time(utc);
zone_set_offset(zone, tobj, t, s);
s = rb_time_magnify(s);
if (tobj->vtm.subsecx != INT2FIX(0)) {
s = wadd(s, v2w(tobj->vtm.subsecx));
}
tobj->timew = s;
zone_set_dst(zone, tobj, tm);
return 1;
}
static int
zone_localtime(VALUE zone, VALUE time)
{
VALUE local, tm, subsecx;
struct time_object *tobj = DATA_PTR(time);
wideval_t t, s;
split_second(tobj->timew, &t, &subsecx);
tm = tm_from_time(rb_cTimeTM, time);
local = rb_check_funcall(zone, id_utc_to_local, 1, &tm);
if (local == Qundef) return 0;
s = extract_vtm(local, &tobj->vtm, subsecx);
tobj->tm_got = 1;
zone_set_offset(zone, tobj, s, t);
zone_set_dst(zone, tobj, tm);
return 1;
}
static VALUE
find_timezone(VALUE time, VALUE zone)
{
VALUE klass = CLASS_OF(time);
return rb_check_funcall_default(klass, id_find_timezone, 1, &zone, Qnil);
}
/* Turn the special case 24:00:00 of already validated vtm into
* 00:00:00 the next day */
static void
vtm_day_wraparound(struct vtm *vtm)
{
if (vtm->hour < 24) return;
/* Assuming UTC and no care of DST, just reset hour and advance
* date, not to discard the validated vtm. */
vtm->hour = 0;
vtm_add_day(vtm, 1);
}
static VALUE
time_init_args(rb_execution_context_t *ec, VALUE time, VALUE year, VALUE mon, VALUE mday, VALUE hour, VALUE min, VALUE sec, VALUE zone)
{
struct vtm vtm;
VALUE utc = Qnil;
struct time_object *tobj;
vtm.wday = VTM_WDAY_INITVAL;
vtm.yday = 0;
vtm.zone = str_empty;
vtm.year = obj2vint(year);
vtm.mon = NIL_P(mon) ? 1 : month_arg(mon);
vtm.mday = NIL_P(mday) ? 1 : obj2ubits(mday, 5);
vtm.hour = NIL_P(hour) ? 0 : obj2ubits(hour, 5);
vtm.min = NIL_P(min) ? 0 : obj2ubits(min, 6);
if (NIL_P(sec)) {
vtm.sec = 0;
vtm.subsecx = INT2FIX(0);
}
else {
VALUE subsecx;
vtm.sec = obj2subsecx(sec, &subsecx);
vtm.subsecx = subsecx;
}
vtm.isdst = VTM_ISDST_INITVAL;
vtm.utc_offset = Qnil;
const VALUE arg = zone;
if (!NIL_P(arg)) {
zone = Qnil;
if (arg == ID2SYM(rb_intern("dst")))
vtm.isdst = 1;
else if (arg == ID2SYM(rb_intern("std")))
vtm.isdst = 0;
else if (maybe_tzobj_p(arg))
zone = arg;
else if (!NIL_P(utc = utc_offset_arg(arg)))
vtm.utc_offset = utc == UTC_ZONE ? INT2FIX(0) : utc;
else if (NIL_P(zone = find_timezone(time, arg)))
invalid_utc_offset(arg);
}
validate_vtm(&vtm);
time_modify(time);
GetNewTimeval(time, tobj);
if (!NIL_P(zone)) {
tobj->timew = timegmw(&vtm);
vtm_day_wraparound(&vtm);
tobj->vtm = vtm;
tobj->tm_got = 1;
TZMODE_SET_LOCALTIME(tobj);
if (zone_timelocal(zone, time)) {
return time;
}
else if (NIL_P(vtm.utc_offset = utc_offset_arg(zone))) {
if (NIL_P(zone = find_timezone(time, zone)) || !zone_timelocal(zone, time))
invalid_utc_offset(arg);
}
}
if (utc == UTC_ZONE) {
tobj->timew = timegmw(&vtm);
vtm_day_wraparound(&vtm);
tobj->vtm = vtm;
tobj->tm_got = 1;
TZMODE_SET_UTC(tobj);
return time;
}
TZMODE_SET_LOCALTIME(tobj);
tobj->tm_got=0;
tobj->timew = WINT2FIXWV(0);
if (!NIL_P(vtm.utc_offset)) {
VALUE off = vtm.utc_offset;
vtm_add_offset(&vtm, off, -1);
vtm.utc_offset = Qnil;
tobj->timew = timegmw(&vtm);
return time_set_utc_offset(time, off);
}
else {
tobj->timew = timelocalw(&vtm);
return time_localtime(time);
}
}
static void
subsec_normalize(time_t *secp, long *subsecp, const long maxsubsec)
{
time_t sec = *secp;
long subsec = *subsecp;
long sec2;
if (UNLIKELY(subsec >= maxsubsec)) { /* subsec positive overflow */
sec2 = subsec / maxsubsec;
if (TIMET_MAX - sec2 < sec) {
rb_raise(rb_eRangeError, "out of Time range");
}
subsec -= sec2 * maxsubsec;
sec += sec2;
}
else if (UNLIKELY(subsec < 0)) { /* subsec negative overflow */
sec2 = NDIV(subsec, maxsubsec); /* negative div */
if (sec < TIMET_MIN - sec2) {
rb_raise(rb_eRangeError, "out of Time range");
}
subsec -= sec2 * maxsubsec;
sec += sec2;
}
#ifndef NEGATIVE_TIME_T
if (sec < 0)
rb_raise(rb_eArgError, "time must be positive");
#endif
*secp = sec;
*subsecp = subsec;
}
#define time_usec_normalize(secp, usecp) subsec_normalize(secp, usecp, 1000000)
#define time_nsec_normalize(secp, nsecp) subsec_normalize(secp, nsecp, 1000000000)
static wideval_t
nsec2timew(time_t sec, long nsec)
{
time_nsec_normalize(&sec, &nsec);
return timenano2timew(sec, nsec);
}
static VALUE
time_new_timew(VALUE klass, wideval_t timew)
{
VALUE time = time_s_alloc(klass);
struct time_object *tobj;
tobj = DATA_PTR(time); /* skip type check */
TZMODE_SET_LOCALTIME(tobj);
tobj->timew = timew;
return time;
}
VALUE
rb_time_new(time_t sec, long usec)
{
time_usec_normalize(&sec, &usec);
return time_new_timew(rb_cTime, timenano2timew(sec, usec * 1000));
}
/* returns localtime time object */
VALUE
rb_time_nano_new(time_t sec, long nsec)
{
return time_new_timew(rb_cTime, nsec2timew(sec, nsec));
}
VALUE
rb_time_timespec_new(const struct timespec *ts, int offset)
{
struct time_object *tobj;
VALUE time = time_new_timew(rb_cTime, nsec2timew(ts->tv_sec, ts->tv_nsec));
if (-86400 < offset && offset < 86400) { /* fixoff */
GetTimeval(time, tobj);
TZMODE_SET_FIXOFF(tobj, INT2FIX(offset));
}
else if (offset == INT_MAX) { /* localtime */
}
else if (offset == INT_MAX-1) { /* UTC */
GetTimeval(time, tobj);
TZMODE_SET_UTC(tobj);
}
else {
rb_raise(rb_eArgError, "utc_offset out of range");
}
return time;
}
VALUE
rb_time_num_new(VALUE timev, VALUE off)
{
VALUE time = time_new_timew(rb_cTime, rb_time_magnify(v2w(timev)));
if (!NIL_P(off)) {
VALUE zone = off;
if (maybe_tzobj_p(zone)) {
time_gmtime(time);
if (zone_timelocal(zone, time)) return time;
}
if (NIL_P(off = utc_offset_arg(off))) {
off = zone;
if (NIL_P(zone = find_timezone(time, off))) invalid_utc_offset(off);
time_gmtime(time);
if (!zone_timelocal(zone, time)) invalid_utc_offset(off);
return time;
}
else if (off == UTC_ZONE) {
return time_gmtime(time);
}
validate_utc_offset(off);
time_set_utc_offset(time, off);
return time;
}
return time;
}
static struct timespec
time_timespec(VALUE num, int interval)
{
struct timespec t;
const char *const tstr = interval ? "time interval" : "time";
VALUE i, f, ary;
#ifndef NEGATIVE_TIME_T
# define arg_range_check(v) \
(((v) < 0) ? \
rb_raise(rb_eArgError, "%s must not be negative", tstr) : \
(void)0)
#else
# define arg_range_check(v) \
((interval && (v) < 0) ? \
rb_raise(rb_eArgError, "time interval must not be negative") : \
(void)0)
#endif
if (FIXNUM_P(num)) {
t.tv_sec = NUM2TIMET(num);
arg_range_check(t.tv_sec);
t.tv_nsec = 0;
}
else if (RB_FLOAT_TYPE_P(num)) {
double x = RFLOAT_VALUE(num);
arg_range_check(x);
{
double f, d;
d = modf(x, &f);
if (d >= 0) {
t.tv_nsec = (int)(d*1e9+0.5);
if (t.tv_nsec >= 1000000000) {
t.tv_nsec -= 1000000000;
f += 1;
}
}
else if ((t.tv_nsec = (int)(-d*1e9+0.5)) > 0) {
t.tv_nsec = 1000000000 - t.tv_nsec;
f -= 1;
}
t.tv_sec = (time_t)f;
if (f != t.tv_sec) {
rb_raise(rb_eRangeError, "%f out of Time range", x);
}
}
}
else if (RB_BIGNUM_TYPE_P(num)) {
t.tv_sec = NUM2TIMET(num);
arg_range_check(t.tv_sec);
t.tv_nsec = 0;
}
else {
i = INT2FIX(1);
ary = rb_check_funcall(num, id_divmod, 1, &i);
if (ary != Qundef && !NIL_P(ary = rb_check_array_type(ary))) {
i = rb_ary_entry(ary, 0);
f = rb_ary_entry(ary, 1);
t.tv_sec = NUM2TIMET(i);
arg_range_check(t.tv_sec);
f = rb_funcall(f, '*', 1, INT2FIX(1000000000));
t.tv_nsec = NUM2LONG(f);
}
else {
rb_raise(rb_eTypeError, "can't convert %"PRIsVALUE" into %s",
rb_obj_class(num), tstr);
}
}
return t;
#undef arg_range_check
}
static struct timeval
time_timeval(VALUE num, int interval)
{
struct timespec ts;
struct timeval tv;
ts = time_timespec(num, interval);
tv.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
tv.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
return tv;
}
struct timeval
rb_time_interval(VALUE num)
{
return time_timeval(num, TRUE);
}
struct timeval
rb_time_timeval(VALUE time)
{
struct time_object *tobj;
struct timeval t;
struct timespec ts;
if (IsTimeval(time)) {
GetTimeval(time, tobj);
ts = timew2timespec(tobj->timew);
t.tv_sec = (TYPEOF_TIMEVAL_TV_SEC)ts.tv_sec;
t.tv_usec = (TYPEOF_TIMEVAL_TV_USEC)(ts.tv_nsec / 1000);
return t;
}
return time_timeval(time, FALSE);
}
struct timespec
rb_time_timespec(VALUE time)
{
struct time_object *tobj;
struct timespec t;
if (IsTimeval(time)) {
GetTimeval(time, tobj);
t = timew2timespec(tobj->timew);
return t;
}
return time_timespec(time, FALSE);
}
struct timespec
rb_time_timespec_interval(VALUE num)
{
return time_timespec(num, TRUE);
}
static int
get_scale(VALUE unit)
{
if (unit == ID2SYM(id_nanosecond) || unit == ID2SYM(id_nsec)) {
return 1000000000;
}
else if (unit == ID2SYM(id_microsecond) || unit == ID2SYM(id_usec)) {
return 1000000;
}
else if (unit == ID2SYM(id_millisecond)) {
return 1000;
}
else {
rb_raise(rb_eArgError, "unexpected unit: %"PRIsVALUE, unit);
}
}
static VALUE
time_s_at(rb_execution_context_t *ec, VALUE klass, VALUE time, VALUE subsec, VALUE unit, VALUE zone)
{
VALUE t;
wideval_t timew;
if (subsec) {
int scale = get_scale(unit);
time = num_exact(time);
t = num_exact(subsec);
timew = wadd(rb_time_magnify(v2w(time)), wmulquoll(v2w(t), TIME_SCALE, scale));
t = time_new_timew(klass, timew);
}
else if (IsTimeval(time)) {
struct time_object *tobj, *tobj2;
GetTimeval(time, tobj);
t = time_new_timew(klass, tobj->timew);
GetTimeval(t, tobj2);
TZMODE_COPY(tobj2, tobj);
}
else {
timew = rb_time_magnify(v2w(num_exact(time)));
t = time_new_timew(klass, timew);
}
if (!NIL_P(zone)) {
time_zonelocal(t, zone);
}
return t;
}
static VALUE
time_s_at1(rb_execution_context_t *ec, VALUE klass, VALUE time)
{
return time_s_at(ec, klass, time, Qfalse, ID2SYM(id_microsecond), Qnil);
}
static const char months[][4] = {
"jan", "feb", "mar", "apr", "may", "jun",
"jul", "aug", "sep", "oct", "nov", "dec",
};
static int
obj2int(VALUE obj)
{
if (RB_TYPE_P(obj, T_STRING)) {
obj = rb_str_to_inum(obj, 10, TRUE);
}
return NUM2INT(obj);
}
/* bits should be 0 <= x <= 31 */
static uint32_t
obj2ubits(VALUE obj, unsigned int bits)
{
const unsigned int usable_mask = (1U << bits) - 1;
unsigned int rv = (unsigned int)obj2int(obj);
if ((rv & usable_mask) != rv)
rb_raise(rb_eArgError, "argument out of range");
return (uint32_t)rv;
}
static VALUE
obj2vint(VALUE obj)
{
if (RB_TYPE_P(obj, T_STRING)) {
obj = rb_str_to_inum(obj, 10, TRUE);
}
else {
obj = rb_to_int(obj);
}
return obj;
}
static uint32_t
obj2subsecx(VALUE obj, VALUE *subsecx)
{
VALUE subsec;
if (RB_TYPE_P(obj, T_STRING)) {
obj = rb_str_to_inum(obj, 10, TRUE);
*subsecx = INT2FIX(0);
}
else {
divmodv(num_exact(obj), INT2FIX(1), &obj, &subsec);
*subsecx = w2v(rb_time_magnify(v2w(subsec)));
}
return obj2ubits(obj, 6); /* vtm->sec */
}
static VALUE
usec2subsecx(VALUE obj)
{
if (RB_TYPE_P(obj, T_STRING)) {
obj = rb_str_to_inum(obj, 10, TRUE);
}
return mulquov(num_exact(obj), INT2FIX(TIME_SCALE), INT2FIX(1000000));
}
static uint32_t
month_arg(VALUE arg)
{
int i, mon;
if (FIXNUM_P(arg)) {
return obj2ubits(arg, 4);
}
mon = 0;
VALUE s = rb_check_string_type(arg);
if (!NIL_P(s) && RSTRING_LEN(s) > 0) {
arg = s;
for (i=0; i<12; i++) {
if (RSTRING_LEN(s) == 3 &&
STRNCASECMP(months[i], RSTRING_PTR(s), 3) == 0) {
mon = i+1;
break;
}
}
}
if (mon == 0) {
mon = obj2ubits(arg, 4);
}
return mon;
}
static VALUE
validate_utc_offset(VALUE utc_offset)
{
if (le(utc_offset, INT2FIX(-86400)) || ge(utc_offset, INT2FIX(86400)))
rb_raise(rb_eArgError, "utc_offset out of range");
return utc_offset;
}
static VALUE
validate_zone_name(VALUE zone_name)
{
StringValueCStr(zone_name);
return zone_name;
}
static void
validate_vtm(struct vtm *vtm)
{
#define validate_vtm_range(mem, b, e) \
((vtm->mem < b || vtm->mem > e) ? \
rb_raise(rb_eArgError, #mem" out of range") : (void)0)
validate_vtm_range(mon, 1, 12);
validate_vtm_range(mday, 1, 31);
validate_vtm_range(hour, 0, 24);
validate_vtm_range(min, 0, (vtm->hour == 24 ? 0 : 59));
validate_vtm_range(sec, 0, (vtm->hour == 24 ? 0 : 60));
if (lt(vtm->subsecx, INT2FIX(0)) || ge(vtm->subsecx, INT2FIX(TIME_SCALE)))
rb_raise(rb_eArgError, "subsecx out of range");
if (!NIL_P(vtm->utc_offset)) validate_utc_offset(vtm->utc_offset);
#undef validate_vtm_range
}
static void
time_arg(int argc, const VALUE *argv, struct vtm *vtm)
{
VALUE v[8];
VALUE subsecx = INT2FIX(0);
vtm->year = INT2FIX(0);
vtm->mon = 0;
vtm->mday = 0;
vtm->hour = 0;
vtm->min = 0;
vtm->sec = 0;
vtm->subsecx = INT2FIX(0);
vtm->utc_offset = Qnil;
vtm->wday = 0;
vtm->yday = 0;
vtm->isdst = 0;
vtm->zone = str_empty;
if (argc == 10) {
v[0] = argv[5];
v[1] = argv[4];
v[2] = argv[3];
v[3] = argv[2];
v[4] = argv[1];
v[5] = argv[0];
v[6] = Qnil;
vtm->isdst = RTEST(argv[8]) ? 1 : 0;
}
else {
rb_scan_args(argc, argv, "17", &v[0],&v[1],&v[2],&v[3],&v[4],&v[5],&v[6],&v[7]);
/* v[6] may be usec or zone (parsedate) */
/* v[7] is wday (parsedate; ignored) */
vtm->wday = VTM_WDAY_INITVAL;
vtm->isdst = VTM_ISDST_INITVAL;
}
vtm->year = obj2vint(v[0]);
if (NIL_P(v[1])) {
vtm->mon = 1;
}
else {
vtm->mon = month_arg(v[1]);
}
if (NIL_P(v[2])) {
vtm->mday = 1;
}
else {
vtm->mday = obj2ubits(v[2], 5);
}
/* normalize month-mday */
switch (vtm->mon) {
case 2:
{
/* this drops higher bits but it's not a problem to calc leap year */
unsigned int mday2 = leap_year_v_p(vtm->year) ? 29 : 28;
if (vtm->mday > mday2) {
vtm->mday -= mday2;
vtm->mon++;
}
}
break;
case 4:
case 6:
case 9:
case 11:
if (vtm->mday == 31) {
vtm->mon++;
vtm->mday = 1;
}
break;
}
vtm->hour = NIL_P(v[3])?0:obj2ubits(v[3], 5);
vtm->min = NIL_P(v[4])?0:obj2ubits(v[4], 6);
if (!NIL_P(v[6]) && argc == 7) {
vtm->sec = NIL_P(v[5])?0:obj2ubits(v[5],6);
subsecx = usec2subsecx(v[6]);
}
else {
/* when argc == 8, v[6] is timezone, but ignored */
if (NIL_P(v[5])) {
vtm->sec = 0;
}
else {
vtm->sec = obj2subsecx(v[5], &subsecx);
}
}
vtm->subsecx = subsecx;
validate_vtm(vtm);
RB_GC_GUARD(subsecx);
}
static int
leap_year_p(long y)
{
/* TODO:
* ensure about negative years in proleptic Gregorian calendar.
*/
unsigned long uy = (unsigned long)(LIKELY(y >= 0) ? y : -y);
if (LIKELY(uy % 4 != 0)) return 0;
unsigned long century = uy / 100;
if (LIKELY(uy != century * 100)) return 1;
return century % 4 == 0;
}
static time_t
timegm_noleapsecond(struct tm *tm)
{
long tm_year = tm->tm_year;
int tm_yday = calc_tm_yday(tm->tm_year, tm->tm_mon, tm->tm_mday);
/*
* `Seconds Since the Epoch' in SUSv3:
* tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
* (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
* ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
*/
return tm->tm_sec + tm->tm_min*60 + tm->tm_hour*3600 +
(time_t)(tm_yday +
(tm_year-70)*365 +
DIV(tm_year-69,4) -
DIV(tm_year-1,100) +
DIV(tm_year+299,400))*86400;
}
#if 0
#define DEBUG_FIND_TIME_NUMGUESS
#define DEBUG_GUESSRANGE
#endif
static const bool debug_guessrange =
#ifdef DEBUG_GUESSRANGE
true;
#else
false;
#endif
#define DEBUG_REPORT_GUESSRANGE \
(debug_guessrange ? debug_report_guessrange(guess_lo, guess_hi) : (void)0)
static inline void
debug_report_guessrange(time_t guess_lo, time_t guess_hi)
{
unsigned_time_t guess_diff = (unsigned_time_t)(guess_hi-guess_lo);
fprintf(stderr, "find time guess range: %"PRI_TIMET_PREFIX"d - "
"%"PRI_TIMET_PREFIX"d : %"PRI_TIMET_PREFIX"u\n",
guess_lo, guess_hi, guess_diff);
}
static const bool debug_find_time_numguess =
#ifdef DEBUG_FIND_TIME_NUMGUESS
true;
#else
false;
#endif
#define DEBUG_FIND_TIME_NUMGUESS_INC \
(void)(debug_find_time_numguess && find_time_numguess++),
static unsigned long long find_time_numguess;
static VALUE
find_time_numguess_getter(ID name, VALUE *data)
{
unsigned long long *numguess = (void *)data;
return ULL2NUM(*numguess);
}
static const char *
find_time_t(struct tm *tptr, int utc_p, time_t *tp)
{
time_t guess, guess0, guess_lo, guess_hi;
struct tm *tm, tm0, tm_lo, tm_hi;
int d;
int find_dst;
struct tm result;
int status;
int tptr_tm_yday;
#define GUESS(p) (DEBUG_FIND_TIME_NUMGUESS_INC (utc_p ? gmtime_with_leapsecond((p), &result) : LOCALTIME((p), result)))
guess_lo = TIMET_MIN;
guess_hi = TIMET_MAX;
find_dst = 0 < tptr->tm_isdst;
/* /etc/localtime might be changed. reload it. */
update_tz();
tm0 = *tptr;
if (tm0.tm_mon < 0) {
tm0.tm_mon = 0;
tm0.tm_mday = 1;
tm0.tm_hour = 0;
tm0.tm_min = 0;
tm0.tm_sec = 0;
}
else if (11 < tm0.tm_mon) {
tm0.tm_mon = 11;
tm0.tm_mday = 31;
tm0.tm_hour = 23;
tm0.tm_min = 59;
tm0.tm_sec = 60;
}
else if (tm0.tm_mday < 1) {
tm0.tm_mday = 1;
tm0.tm_hour = 0;
tm0.tm_min = 0;
tm0.tm_sec = 0;
}
else if ((d = days_in_month_in(1900 + tm0.tm_year)[tm0.tm_mon]) < tm0.tm_mday) {
tm0.tm_mday = d;
tm0.tm_hour = 23;
tm0.tm_min = 59;
tm0.tm_sec = 60;
}
else if (tm0.tm_hour < 0) {
tm0.tm_hour = 0;
tm0.tm_min = 0;
tm0.tm_sec = 0;
}
else if (23 < tm0.tm_hour) {
tm0.tm_hour = 23;
tm0.tm_min = 59;
tm0.tm_sec = 60;
}
else if (tm0.tm_min < 0) {
tm0.tm_min = 0;
tm0.tm_sec = 0;
}
else if (59 < tm0.tm_min) {
tm0.tm_min = 59;
tm0.tm_sec = 60;
}
else if (tm0.tm_sec < 0) {
tm0.tm_sec = 0;
}
else if (60 < tm0.tm_sec) {
tm0.tm_sec = 60;
}
DEBUG_REPORT_GUESSRANGE;
guess0 = guess = timegm_noleapsecond(&tm0);
tm = GUESS(&guess);
if (tm) {
d = tmcmp(tptr, tm);
if (d == 0) { goto found; }
if (d < 0) {
guess_hi = guess;
guess -= 24 * 60 * 60;
}
else {
guess_lo = guess;
guess += 24 * 60 * 60;
}
DEBUG_REPORT_GUESSRANGE;
if (guess_lo < guess && guess < guess_hi && (tm = GUESS(&guess)) != NULL) {
d = tmcmp(tptr, tm);
if (d == 0) { goto found; }
if (d < 0)
guess_hi = guess;
else
guess_lo = guess;
DEBUG_REPORT_GUESSRANGE;
}
}
tm = GUESS(&guess_lo);
if (!tm) goto error;
d = tmcmp(tptr, tm);
if (d < 0) goto out_of_range;
if (d == 0) { guess = guess_lo; goto found; }
tm_lo = *tm;
tm = GUESS(&guess_hi);
if (!tm) goto error;
d = tmcmp(tptr, tm);
if (d > 0) goto out_of_range;
if (d == 0) { guess = guess_hi; goto found; }
tm_hi = *tm;
DEBUG_REPORT_GUESSRANGE;
status = 1;
while (guess_lo + 1 < guess_hi) {
binsearch:
if (status == 0) {
guess = guess_lo / 2 + guess_hi / 2;
if (guess <= guess_lo)
guess = guess_lo + 1;
else if (guess >= guess_hi)
guess = guess_hi - 1;
status = 1;
}
else {
if (status == 1) {
time_t guess0_hi = timegm_noleapsecond(&tm_hi);
guess = guess_hi - (guess0_hi - guess0);
if (guess == guess_hi) /* hh:mm:60 tends to cause this condition. */
guess--;
status = 2;
}
else if (status == 2) {
time_t guess0_lo = timegm_noleapsecond(&tm_lo);
guess = guess_lo + (guess0 - guess0_lo);
if (guess == guess_lo)
guess++;
status = 0;
}
if (guess <= guess_lo || guess_hi <= guess) {
/* Previous guess is invalid. try binary search. */
if (debug_guessrange) {
if (guess <= guess_lo) {
fprintf(stderr, "too small guess: %"PRI_TIMET_PREFIX"d"\
" <= %"PRI_TIMET_PREFIX"d\n", guess, guess_lo);
}
if (guess_hi <= guess) {
fprintf(stderr, "too big guess: %"PRI_TIMET_PREFIX"d"\
" <= %"PRI_TIMET_PREFIX"d\n", guess_hi, guess);
}
}
status = 0;
goto binsearch;
}
}
tm = GUESS(&guess);
if (!tm) goto error;
d = tmcmp(tptr, tm);
if (d < 0) {
guess_hi = guess;
tm_hi = *tm;
DEBUG_REPORT_GUESSRANGE;
}
else if (d > 0) {
guess_lo = guess;
tm_lo = *tm;
DEBUG_REPORT_GUESSRANGE;
}
else {
goto found;
}
}
/* Given argument has no corresponding time_t. Let's extrapolate. */
/*
* `Seconds Since the Epoch' in SUSv3:
* tm_sec + tm_min*60 + tm_hour*3600 + tm_yday*86400 +
* (tm_year-70)*31536000 + ((tm_year-69)/4)*86400 -
* ((tm_year-1)/100)*86400 + ((tm_year+299)/400)*86400
*/
tptr_tm_yday = calc_tm_yday(tptr->tm_year, tptr->tm_mon, tptr->tm_mday);
*tp = guess_lo +
((tptr->tm_year - tm_lo.tm_year) * 365 +
DIV((tptr->tm_year-69), 4) -
DIV((tptr->tm_year-1), 100) +
DIV((tptr->tm_year+299), 400) -
DIV((tm_lo.tm_year-69), 4) +
DIV((tm_lo.tm_year-1), 100) -
DIV((tm_lo.tm_year+299), 400) +
tptr_tm_yday -
tm_lo.tm_yday) * 86400 +
(tptr->tm_hour - tm_lo.tm_hour) * 3600 +
(tptr->tm_min - tm_lo.tm_min) * 60 +
(tptr->tm_sec - (tm_lo.tm_sec == 60 ? 59 : tm_lo.tm_sec));
return NULL;
found:
if (!utc_p) {
/* If localtime is nonmonotonic, another result may exist. */
time_t guess2;
if (find_dst) {
guess2 = guess - 2 * 60 * 60;
tm = LOCALTIME(&guess2, result);
if (tm) {
if (tptr->tm_hour != (tm->tm_hour + 2) % 24 ||
tptr->tm_min != tm->tm_min ||
tptr->tm_sec != tm->tm_sec) {
guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
(tm->tm_min - tptr->tm_min) * 60 +
(tm->tm_sec - tptr->tm_sec);
if (tptr->tm_mday != tm->tm_mday)
guess2 += 24 * 60 * 60;
if (guess != guess2) {
tm = LOCALTIME(&guess2, result);
if (tm && tmcmp(tptr, tm) == 0) {
if (guess < guess2)
*tp = guess;
else
*tp = guess2;
return NULL;
}
}
}
}
}
else {
guess2 = guess + 2 * 60 * 60;
tm = LOCALTIME(&guess2, result);
if (tm) {
if ((tptr->tm_hour + 2) % 24 != tm->tm_hour ||
tptr->tm_min != tm->tm_min ||
tptr->tm_sec != tm->tm_sec) {
guess2 -= (tm->tm_hour - tptr->tm_hour) * 60 * 60 +
(tm->tm_min - tptr->tm_min) * 60 +
(tm->tm_sec - tptr->tm_sec);
if (tptr->tm_mday != tm->tm_mday)
guess2 -= 24 * 60 * 60;
if (guess != guess2) {
tm = LOCALTIME(&guess2, result);
if (tm && tmcmp(tptr, tm) == 0) {
if (guess < guess2)
*tp = guess2;
else
*tp = guess;
return NULL;
}
}
}
}
}
}
*tp = guess;
return NULL;
out_of_range:
return "time out of range";
error:
return "gmtime/localtime error";
}
static int
vtmcmp(struct vtm *a, struct vtm *b)
{
if (ne(a->year, b->year))
return lt(a->year, b->year) ? -1 : 1;
else if (a->mon != b->mon)
return a->mon < b->mon ? -1 : 1;
else if (a->mday != b->mday)
return a->mday < b->mday ? -1 : 1;
else if (a->hour != b->hour)
return a->hour < b->hour ? -1 : 1;
else if (a->min != b->min)
return a->min < b->min ? -1 : 1;
else if (a->sec != b->sec)
return a->sec < b->sec ? -1 : 1;
else if (ne(a->subsecx, b->subsecx))
return lt(a->subsecx, b->subsecx) ? -1 : 1;
else
return 0;
}
static int
tmcmp(struct tm *a, struct tm *b)
{
if (a->tm_year != b->tm_year)
return a->tm_year < b->tm_year ? -1 : 1;
else if (a->tm_mon != b->tm_mon)
return a->tm_mon < b->tm_mon ? -1 : 1;
else if (a->tm_mday != b->tm_mday)
return a->tm_mday < b->tm_mday ? -1 : 1;
else if (a->tm_hour != b->tm_hour)
return a->tm_hour < b->tm_hour ? -1 : 1;
else if (a->tm_min != b->tm_min)
return a->tm_min < b->tm_min ? -1 : 1;
else if (a->tm_sec != b->tm_sec)
return a->tm_sec < b->tm_sec ? -1 : 1;
else
return 0;
}
/*
* call-seq:
* Time.utc(year, month = 1, mday = 1, hour = 0, min = 0, sec = 0, usec = 0) -> new_time
* Time.utc(sec, min, hour, mday, month, year, dummy, dummy, dummy, dummy) -> new_time
*
* Returns a new \Time object based the on given arguments,
* in the UTC timezone.
*
* With one to seven arguments given,
* the arguments are interpreted as in the first calling sequence above:
*
* Time.utc(year, month = 1, mday = 1, hour = 0, min = 0, sec = 0, usec = 0)
*
* Examples:
*
* Time.utc(2000) # => 2000-01-01 00:00:00 UTC
* Time.utc(-2000) # => -2000-01-01 00:00:00 UTC
*
* There are no minimum and maximum values for the required argument +year+.
*
* For the optional arguments:
*
* - +month+: Month in range (1..12), or case-insensitive
* 3-letter month name:
*
* Time.utc(2000, 1) # => 2000-01-01 00:00:00 UTC
* Time.utc(2000, 12) # => 2000-12-01 00:00:00 UTC
* Time.utc(2000, 'jan') # => 2000-01-01 00:00:00 UTC
* Time.utc(2000, 'JAN') # => 2000-01-01 00:00:00 UTC
*
* - +mday+: Month day in range(1..31):
*
* Time.utc(2000, 1, 1) # => 2000-01-01 00:00:00 UTC
* Time.utc(2000, 1, 31) # => 2000-01-31 00:00:00 UTC
*
* - +hour+: Hour in range (0..23), or 24 if +min+, +sec+, and +usec+
* are zero:
*
* Time.utc(2000, 1, 1, 0) # => 2000-01-01 00:00:00 UTC
* Time.utc(2000, 1, 1, 23) # => 2000-01-01 23:00:00 UTC
* Time.utc(2000, 1, 1, 24) # => 2000-01-02 00:00:00 UTC
*
* - +min+: Minute in range (0..59):
*
* Time.utc(2000, 1, 1, 0, 0) # => 2000-01-01 00:00:00 UTC
* Time.utc(2000, 1, 1, 0, 59) # => 2000-01-01 00:59:00 UTC
*
* - +sec+: Second in range (0..59), or 60 if +usec+ is zero:
*
* Time.utc(2000, 1, 1, 0, 0, 0) # => 2000-01-01 00:00:00 UTC
* Time.utc(2000, 1, 1, 0, 0, 59) # => 2000-01-01 00:00:59 UTC
* Time.utc(2000, 1, 1, 0, 0, 60) # => 2000-01-01 00:01:00 UTC
*
* - +usec+: Microsecond in range (0..999999):
*
* Time.utc(2000, 1, 1, 0, 0, 0, 0) # => 2000-01-01 00:00:00 UTC
* Time.utc(2000, 1, 1, 0, 0, 0, 999999) # => 2000-01-01 00:00:00.999999 UTC
*
* The values may be:
*
* - Integers, as above.
* - Numerics convertible to integers:
*
* Time.utc(Float(0.0), Rational(1, 1), 1.0, 0.0, 0.0, 0.0, 0.0)
* # => 0000-01-01 00:00:00 UTC
*
* - \String integers:
*
* a = %w[0 1 1 0 0 0 0 0]
* # => ["0", "1", "1", "0", "0", "0", "0", "0"]
* Time.utc(*a) # => 0000-01-01 00:00:00 UTC
*
* When exactly ten arguments are given,
* the arguments are interpreted as in the second calling sequence above:
*
* Time.utc(sec, min, hour, mday, month, year, dummy, dummy, dummy, dummy)
*
* where the +dummy+ arguments are ignored:
*
* a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
* # => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
* Time.utc(*a) # => 0005-04-03 02:01:00 UTC
*
* This form is useful for creating a \Time object from a 10-element
* array returned by Time.to_a:
*
* t = Time.new(2000, 1, 2, 3, 4, 5, 6) # => 2000-01-02 03:04:05 +000006
* a = t.to_a # => [5, 4, 3, 2, 1, 2000, 0, 2, false, nil]
* Time.utc(*a) # => 2000-01-02 03:04:05 UTC
*
* The two forms have their first six arguments in common,
* though in different orders;
* the ranges of these common arguments are the same for both forms; see above.
*
* Raises an exception if the number of arguments is eight, nine,
* or greater than ten.
*
* Time.gm is an alias for Time.utc.
*
* Related: Time.local.
*
*/
static VALUE
time_s_mkutc(int argc, VALUE *argv, VALUE klass)
{
struct vtm vtm;
time_arg(argc, argv, &vtm);
return time_gmtime(time_new_timew(klass, timegmw(&vtm)));
}
/*
* call-seq:
* Time.local(year, month = 1, mday = 1, hour = 0, min = 0, sec = 0, usec = 0) -> new_time
* Time.local(sec, min, hour, mday, month, year, dummy, dummy, dummy, dummy) -> new_time
*
* Like Time.utc, except that the returned \Time object
* has the local timezone, not the UTC timezone:
*
* # With seven arguments.
* Time.local(0, 1, 2, 3, 4, 5, 6)
* # => 0000-01-02 03:04:05.000006 -0600
* # With exactly ten arguments.
* Time.local(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
* # => 0005-04-03 02:01:00 -0600
*
*/
static VALUE
time_s_mktime(int argc, VALUE *argv, VALUE klass)
{
struct vtm vtm;
time_arg(argc, argv, &vtm);
return time_localtime(time_new_timew(klass, timelocalw(&vtm)));
}
/*
* call-seq:
* to_i -> integer
*
* Returns the value of +self+ as integer
* {Epoch seconds}[rdoc-ref:Time@Epoch+Seconds];
* subseconds are truncated (not rounded):
*
* Time.utc(1970, 1, 1, 0, 0, 0).to_i # => 0
* Time.utc(1970, 1, 1, 0, 0, 0, 999999).to_i # => 0
* Time.utc(1950, 1, 1, 0, 0, 0).to_i # => -631152000
* Time.utc(1990, 1, 1, 0, 0, 0).to_i # => 631152000
*
* Time#tv_sec is an alias for Time#to_i.
*
* Related: Time#to_f Time#to_r.
*/
static VALUE
time_to_i(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
return w2v(wdiv(tobj->timew, WINT2FIXWV(TIME_SCALE)));
}
/*
* call-seq:
* to_f -> float
*
* Returns the value of +self+ as a Float number
* {Epoch seconds}[rdoc-ref:Time@Epoch+Seconds];
* subseconds are included.
*
* The stored value of +self+ is a
* {Rational}[rdoc-ref:Rational@#method-i-to_f],
* which means that the returned value may be approximate:
*
* Time.utc(1970, 1, 1, 0, 0, 0).to_f # => 0.0
* Time.utc(1970, 1, 1, 0, 0, 0, 999999).to_f # => 0.999999
* Time.utc(1950, 1, 1, 0, 0, 0).to_f # => -631152000.0
* Time.utc(1990, 1, 1, 0, 0, 0).to_f # => 631152000.0
*
* Related: Time#to_i, Time#to_r.
*/
static VALUE
time_to_f(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
return rb_Float(rb_time_unmagnify_to_float(tobj->timew));
}
/*
* call-seq:
* to_r -> rational
*
* Returns the value of +self+ as a Rational exact number of
* {Epoch seconds}[rdoc-ref:Time@Epoch+Seconds];
*
* Time.now.to_r # => (16571402750320203/10000000)
*
* Related: Time#to_f, Time#to_i.
*/
static VALUE
time_to_r(VALUE time)
{
struct time_object *tobj;
VALUE v;
GetTimeval(time, tobj);
v = rb_time_unmagnify_to_rational(tobj->timew);
if (!RB_TYPE_P(v, T_RATIONAL)) {
v = rb_Rational1(v);
}
return v;
}
/*
* call-seq:
* usec -> integer
*
* Returns the number of microseconds in the subseconds part of +self+
* in the range (0..999_999);
* lower-order digits are truncated, not rounded:
*
* t = Time.now # => 2022-07-11 14:59:47.5484697 -0500
* t.usec # => 548469
*
* Related: Time#subsec (returns exact subseconds).
*
* Time#tv_usec is an alias for Time#usec.
*/
static VALUE
time_usec(VALUE time)
{
struct time_object *tobj;
wideval_t w, q, r;
GetTimeval(time, tobj);
w = wmod(tobj->timew, WINT2WV(TIME_SCALE));
wmuldivmod(w, WINT2FIXWV(1000000), WINT2FIXWV(TIME_SCALE), &q, &r);
return rb_to_int(w2v(q));
}
/*
* call-seq:
* nsec -> integer
*
* Returns the number of nanoseconds in the subseconds part of +self+
* in the range (0..999_999_999);
* lower-order digits are truncated, not rounded:
*
* t = Time.now # => 2022-07-11 15:04:53.3219637 -0500
* t.nsec # => 321963700
*
* Related: Time#subsec (returns exact subseconds).
*
* Time#tv_nsec is an alias for Time#usec.
*/
static VALUE
time_nsec(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
return rb_to_int(w2v(wmulquoll(wmod(tobj->timew, WINT2WV(TIME_SCALE)), 1000000000, TIME_SCALE)));
}
/*
* call-seq:
* subsec -> numeric
*
* Returns the exact subseconds for +self+ as a Numeric
* (Integer or Rational):
*
* t = Time.now # => 2022-07-11 15:11:36.8490302 -0500
* t.subsec # => (4245151/5000000)
*
* If the subseconds is zero, returns integer zero:
*
* t = Time.new(2000, 1, 1, 2, 3, 4) # => 2000-01-01 02:03:04 -0600
* t.subsec # => 0
*
*/
static VALUE
time_subsec(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
return quov(w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE))), INT2FIX(TIME_SCALE));
}
/*
* call-seq:
* self <=> other_time -> -1, 0, +1, or nil
*
* Compares +self+ with +other_time+; returns:
*
* - +-1+, if +self+ is less than +other_time+.
* - +0+, if +self+ is equal to +other_time+.
* - +1+, if +self+ is greater then +other_time+.
* - +nil+, if +self+ and +other_time+ are incomparable.
*
* Examples:
*
* t = Time.now # => 2007-11-19 08:12:12 -0600
* t2 = t + 2592000 # => 2007-12-19 08:12:12 -0600
* t <=> t2 # => -1
* t2 <=> t # => 1
*
* t = Time.now # => 2007-11-19 08:13:38 -0600
* t2 = t + 0.1 # => 2007-11-19 08:13:38 -0600
* t.nsec # => 98222999
* t2.nsec # => 198222999
* t <=> t2 # => -1
* t2 <=> t # => 1
* t <=> t # => 0
*
*/
static VALUE
time_cmp(VALUE time1, VALUE time2)
{
struct time_object *tobj1, *tobj2;
int n;
GetTimeval(time1, tobj1);
if (IsTimeval(time2)) {
GetTimeval(time2, tobj2);
n = wcmp(tobj1->timew, tobj2->timew);
}
else {
return rb_invcmp(time1, time2);
}
if (n == 0) return INT2FIX(0);
if (n > 0) return INT2FIX(1);
return INT2FIX(-1);
}
/*
* call-seq:
* eql?(other_time)
*
* Returns +true+ if +self+ and +other_time+ are
* both \Time objects with the exact same time value.
*/
static VALUE
time_eql(VALUE time1, VALUE time2)
{
struct time_object *tobj1, *tobj2;
GetTimeval(time1, tobj1);
if (IsTimeval(time2)) {
GetTimeval(time2, tobj2);
return rb_equal(w2v(tobj1->timew), w2v(tobj2->timew));
}
return Qfalse;
}
/*
* call-seq:
* utc? -> true or false
*
* Returns +true+ if +self+ represents a time in UTC (GMT):
*
* now = Time.now
* # => 2022-08-18 10:24:13.5398485 -0500
* now.utc? # => false
* utc = Time.utc(2000, 1, 1, 20, 15, 1)
* # => 2000-01-01 20:15:01 UTC
* utc.utc? # => true
*
* Time#gmt? is an alias for Time#utc?.
*
* Related: Time.utc.
*/
static VALUE
time_utc_p(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
return RBOOL(TZMODE_UTC_P(tobj));
}
/*
* call-seq:
* hash -> integer
*
* Returns the integer hash code for +self+.
*
* Related: Object#hash.
*/
static VALUE
time_hash(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
return rb_hash(w2v(tobj->timew));
}
/* :nodoc: */
static VALUE
time_init_copy(VALUE copy, VALUE time)
{
struct time_object *tobj, *tcopy;
if (!OBJ_INIT_COPY(copy, time)) return copy;
GetTimeval(time, tobj);
GetNewTimeval(copy, tcopy);
MEMCPY(tcopy, tobj, struct time_object, 1);
return copy;
}
static VALUE
time_dup(VALUE time)
{
VALUE dup = time_s_alloc(rb_obj_class(time));
time_init_copy(dup, time);
return dup;
}
static VALUE
time_localtime(VALUE time)
{
struct time_object *tobj;
struct vtm vtm;
VALUE zone;
GetTimeval(time, tobj);
if (TZMODE_LOCALTIME_P(tobj)) {
if (tobj->tm_got)
return time;
}
else {
time_modify(time);
}
zone = tobj->vtm.zone;
if (maybe_tzobj_p(zone) && zone_localtime(zone, time)) {
return time;
}
if (!localtimew(tobj->timew, &vtm))
rb_raise(rb_eArgError, "localtime error");
tobj->vtm = vtm;
tobj->tm_got = 1;
TZMODE_SET_LOCALTIME(tobj);
return time;
}
static VALUE
time_zonelocal(VALUE time, VALUE off)
{
VALUE zone = off;
if (zone_localtime(zone, time)) return time;
if (NIL_P(off = utc_offset_arg(off))) {
off = zone;
if (NIL_P(zone = find_timezone(time, off))) invalid_utc_offset(off);
if (!zone_localtime(zone, time)) invalid_utc_offset(off);
return time;
}
else if (off == UTC_ZONE) {
return time_gmtime(time);
}
validate_utc_offset(off);
time_set_utc_offset(time, off);
return time_fixoff(time);
}
/*
* call-seq:
* localtime -> self or new_time
* localtime(zone) -> new_time
*
* With no argument given:
*
* - Returns +self+ if +self+ is a local time.
* - Otherwise returns a new \Time in the user's local timezone:
*
* t = Time.utc(2000, 1, 1, 20, 15, 1) # => 2000-01-01 20:15:01 UTC
* t.localtime # => 2000-01-01 14:15:01 -0600
*
* With argument +zone+ given,
* returns the new \Time object created by converting
* +self+ to the given time zone:
*
* t = Time.utc(2000, 1, 1, 20, 15, 1) # => 2000-01-01 20:15:01 UTC
* t.localtime("-09:00") # => 2000-01-01 11:15:01 -0900
*
* For forms of argument +zone+, see
* {Timezone Specifiers}[rdoc-ref:timezones.rdoc].
*
*/
static VALUE
time_localtime_m(int argc, VALUE *argv, VALUE time)
{
VALUE off;
if (rb_check_arity(argc, 0, 1) && !NIL_P(off = argv[0])) {
return time_zonelocal(time, off);
}
return time_localtime(time);
}
/*
* call-seq:
* utc -> self
*
* Returns +self+, converted to the UTC timezone:
*
* t = Time.new(2000) # => 2000-01-01 00:00:00 -0600
* t.utc? # => false
* t.utc # => 2000-01-01 06:00:00 UTC
* t.utc? # => true
*
* Time#gmtime is an alias for Time#utc.
*
* Related: Time#getutc (returns a new converted \Time object).
*/
static VALUE
time_gmtime(VALUE time)
{
struct time_object *tobj;
struct vtm vtm;
GetTimeval(time, tobj);
if (TZMODE_UTC_P(tobj)) {
if (tobj->tm_got)
return time;
}
else {
time_modify(time);
}
vtm.zone = str_utc;
GMTIMEW(tobj->timew, &vtm);
tobj->vtm = vtm;
tobj->tm_got = 1;
TZMODE_SET_UTC(tobj);
return time;
}
static VALUE
time_fixoff(VALUE time)
{
struct time_object *tobj;
struct vtm vtm;
VALUE off, zone;
GetTimeval(time, tobj);
if (TZMODE_FIXOFF_P(tobj)) {
if (tobj->tm_got)
return time;
}
else {
time_modify(time);
}
if (TZMODE_FIXOFF_P(tobj))
off = tobj->vtm.utc_offset;
else
off = INT2FIX(0);
GMTIMEW(tobj->timew, &vtm);
zone = tobj->vtm.zone;
tobj->vtm = vtm;
tobj->vtm.zone = zone;
vtm_add_offset(&tobj->vtm, off, +1);
tobj->tm_got = 1;
TZMODE_SET_FIXOFF(tobj, off);
return time;
}
/*
* call-seq:
* getlocal(zone = nil) -> new_time
*
* Returns a new \Time object representing the value of +self+
* converted to a given timezone;
* if +zone+ is +nil+, the local timezone is used:
*
* t = Time.utc(2000) # => 2000-01-01 00:00:00 UTC
* t.getlocal # => 1999-12-31 18:00:00 -0600
* t.getlocal('+12:00') # => 2000-01-01 12:00:00 +1200
*
* For forms of argument +zone+, see
* {Timezone Specifiers}[rdoc-ref:timezones.rdoc].
*
*/
static VALUE
time_getlocaltime(int argc, VALUE *argv, VALUE time)
{
VALUE off;
if (rb_check_arity(argc, 0, 1) && !NIL_P(off = argv[0])) {
VALUE zone = off;
if (maybe_tzobj_p(zone)) {
VALUE t = time_dup(time);
if (zone_localtime(off, t)) return t;
}
if (NIL_P(off = utc_offset_arg(off))) {
off = zone;
if (NIL_P(zone = find_timezone(time, off))) invalid_utc_offset(off);
time = time_dup(time);
if (!zone_localtime(zone, time)) invalid_utc_offset(off);
return time;
}
else if (off == UTC_ZONE) {
return time_gmtime(time_dup(time));
}
validate_utc_offset(off);
time = time_dup(time);
time_set_utc_offset(time, off);
return time_fixoff(time);
}
return time_localtime(time_dup(time));
}
/*
* call-seq:
* getutc -> new_time
*
* Returns a new \Time object representing the value of +self+
* converted to the UTC timezone:
*
* local = Time.local(2000) # => 2000-01-01 00:00:00 -0600
* local.utc? # => false
* utc = local.getutc # => 2000-01-01 06:00:00 UTC
* utc.utc? # => true
* utc == local # => true
*
* Time#getgm is an alias for Time#getutc.
*/
static VALUE
time_getgmtime(VALUE time)
{
return time_gmtime(time_dup(time));
}
static VALUE
time_get_tm(VALUE time, struct time_object *tobj)
{
if (TZMODE_UTC_P(tobj)) return time_gmtime(time);
if (TZMODE_FIXOFF_P(tobj)) return time_fixoff(time);
return time_localtime(time);
}
static VALUE strftime_cstr(const char *fmt, size_t len, VALUE time, rb_encoding *enc);
#define strftimev(fmt, time, enc) strftime_cstr((fmt), rb_strlen_lit(fmt), (time), (enc))
/*
* call-seq:
* ctime -> string
*
* Returns a string representation of +self+,
* formatted by <tt>strftime('%a %b %e %T %Y')</tt>
* or its shorthand version <tt>strftime('%c')</tt>;
* see {Formats for Dates and Times}[rdoc-ref:strftime_formatting.rdoc]:
*
* t = Time.new(2000, 12, 31, 23, 59, 59, 0.5)
* t.ctime # => "Sun Dec 31 23:59:59 2000"
* t.strftime('%a %b %e %T %Y') # => "Sun Dec 31 23:59:59 2000"
* t.strftime('%c') # => "Sun Dec 31 23:59:59 2000"
*
* Time#asctime is an alias for Time#ctime.
*
* Related: Time#to_s, Time#inspect:
*
* t.inspect # => "2000-12-31 23:59:59.5 +000001"
* t.to_s # => "2000-12-31 23:59:59 +0000"
*
*/
static VALUE
time_asctime(VALUE time)
{
return strftimev("%a %b %e %T %Y", time, rb_usascii_encoding());
}
/*
* call-seq:
* to_s -> string
*
* Returns a string representation of +self+, without subseconds:
*
* t = Time.new(2000, 12, 31, 23, 59, 59, 0.5)
* t.to_s # => "2000-12-31 23:59:59 +0000"
*
* Related: Time#ctime, Time#inspect:
*
* t.ctime # => "Sun Dec 31 23:59:59 2000"
* t.inspect # => "2000-12-31 23:59:59.5 +000001"
*
*/
static VALUE
time_to_s(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
if (TZMODE_UTC_P(tobj))
return strftimev("%Y-%m-%d %H:%M:%S UTC", time, rb_usascii_encoding());
else
return strftimev("%Y-%m-%d %H:%M:%S %z", time, rb_usascii_encoding());
}
/*
* call-seq:
* inspect -> string
*
* Returns a string representation of +self+ with subseconds:
*
* t = Time.new(2000, 12, 31, 23, 59, 59, 0.5)
* t.inspect # => "2000-12-31 23:59:59.5 +000001"
*
* Related: Time#ctime, Time#to_s:
*
* t.ctime # => "Sun Dec 31 23:59:59 2000"
* t.to_s # => "2000-12-31 23:59:59 +0000"
*
*/
static VALUE
time_inspect(VALUE time)
{
struct time_object *tobj;
VALUE str, subsec;
GetTimeval(time, tobj);
str = strftimev("%Y-%m-%d %H:%M:%S", time, rb_usascii_encoding());
subsec = w2v(wmod(tobj->timew, WINT2FIXWV(TIME_SCALE)));
if (subsec == INT2FIX(0)) {
}
else if (FIXNUM_P(subsec) && FIX2LONG(subsec) < TIME_SCALE) {
long len;
rb_str_catf(str, ".%09ld", FIX2LONG(subsec));
for (len=RSTRING_LEN(str); RSTRING_PTR(str)[len-1] == '0' && len > 0; len--)
;
rb_str_resize(str, len);
}
else {
rb_str_cat_cstr(str, " ");
subsec = quov(subsec, INT2FIX(TIME_SCALE));
rb_str_concat(str, rb_obj_as_string(subsec));
}
if (TZMODE_UTC_P(tobj)) {
rb_str_cat_cstr(str, " UTC");
}
else {
/* ?TODO: subsecond offset */
long off = NUM2LONG(rb_funcall(tobj->vtm.utc_offset, rb_intern("round"), 0));
char sign = (off < 0) ? (off = -off, '-') : '+';
int sec = off % 60;
int min = (off /= 60) % 60;
off /= 60;
rb_str_catf(str, " %c%.2d%.2d", sign, (int)off, min);
if (sec) rb_str_catf(str, "%.2d", sec);
}
return str;
}
static VALUE
time_add0(VALUE klass, const struct time_object *tobj, VALUE torig, VALUE offset, int sign)
{
VALUE result;
struct time_object *result_tobj;
offset = num_exact(offset);
if (sign < 0)
result = time_new_timew(klass, wsub(tobj->timew, rb_time_magnify(v2w(offset))));
else
result = time_new_timew(klass, wadd(tobj->timew, rb_time_magnify(v2w(offset))));
GetTimeval(result, result_tobj);
TZMODE_COPY(result_tobj, tobj);
return result;
}
static VALUE
time_add(const struct time_object *tobj, VALUE torig, VALUE offset, int sign)
{
return time_add0(rb_cTime, tobj, torig, offset, sign);
}
/*
* call-seq:
* self + numeric -> new_time
*
* Returns a new \Time object whose value is the sum of the numeric value
* of +self+ and the given +numeric+:
*
* t = Time.new(2000) # => 2000-01-01 00:00:00 -0600
* t + (60 * 60 * 24) # => 2000-01-02 00:00:00 -0600
* t + 0.5 # => 2000-01-01 00:00:00.5 -0600
*
* Related: Time#-.
*/
static VALUE
time_plus(VALUE time1, VALUE time2)
{
struct time_object *tobj;
GetTimeval(time1, tobj);
if (IsTimeval(time2)) {
rb_raise(rb_eTypeError, "time + time?");
}
return time_add(tobj, time1, time2, 1);
}
/*
* call-seq:
* self - numeric -> new_time
* self - other_time -> float
*
* When +numeric+ is given,
* returns a new \Time object whose value is the difference
* of the numeric value of +self+ and +numeric+:
*
* t = Time.new(2000) # => 2000-01-01 00:00:00 -0600
* t - (60 * 60 * 24) # => 1999-12-31 00:00:00 -0600
* t - 0.5 # => 1999-12-31 23:59:59.5 -0600
*
* When +other_time+ is given,
* returns a Float whose value is the difference
* of the numeric values of +self+ and +other_time+:
*
* t - t # => 0.0
*
* Related: Time#+.
*/
static VALUE
time_minus(VALUE time1, VALUE time2)
{
struct time_object *tobj;
GetTimeval(time1, tobj);
if (IsTimeval(time2)) {
struct time_object *tobj2;
GetTimeval(time2, tobj2);
return rb_Float(rb_time_unmagnify_to_float(wsub(tobj->timew, tobj2->timew)));
}
return time_add(tobj, time1, time2, -1);
}
static VALUE
ndigits_denominator(VALUE ndigits)
{
long nd = NUM2LONG(ndigits);
if (nd < 0) {
rb_raise(rb_eArgError, "negative ndigits given");
}
if (nd == 0) {
return INT2FIX(1);
}
return rb_rational_new(INT2FIX(1),
rb_int_positive_pow(10, (unsigned long)nd));
}
/*
* call-seq:
* round(ndigits = 0) -> new_time
*
* Returns a new \Time object whose numeric value is that of +self+,
* with its seconds value rounded to precision +ndigits+:
*
* t = Time.utc(2010, 3, 30, 5, 43, 25.123456789r)
* t # => 2010-03-30 05:43:25.123456789 UTC
* t.round # => 2010-03-30 05:43:25 UTC
* t.round(0) # => 2010-03-30 05:43:25 UTC
* t.round(1) # => 2010-03-30 05:43:25.1 UTC
* t.round(2) # => 2010-03-30 05:43:25.12 UTC
* t.round(3) # => 2010-03-30 05:43:25.123 UTC
* t.round(4) # => 2010-03-30 05:43:25.1235 UTC
*
* t = Time.utc(1999, 12,31, 23, 59, 59)
* t # => 1999-12-31 23:59:59 UTC
* (t + 0.4).round # => 1999-12-31 23:59:59 UTC
* (t + 0.49).round # => 1999-12-31 23:59:59 UTC
* (t + 0.5).round # => 2000-01-01 00:00:00 UTC
* (t + 1.4).round # => 2000-01-01 00:00:00 UTC
* (t + 1.49).round # => 2000-01-01 00:00:00 UTC
* (t + 1.5).round # => 2000-01-01 00:00:01 UTC
*
* Related: Time#ceil, Time#floor.
*/
static VALUE
time_round(int argc, VALUE *argv, VALUE time)
{
VALUE ndigits, v, den;
struct time_object *tobj;
if (!rb_check_arity(argc, 0, 1) || NIL_P(ndigits = argv[0]))
den = INT2FIX(1);
else
den = ndigits_denominator(ndigits);
GetTimeval(time, tobj);
v = w2v(rb_time_unmagnify(tobj->timew));
v = modv(v, den);
if (lt(v, quov(den, INT2FIX(2))))
return time_add(tobj, time, v, -1);
else
return time_add(tobj, time, subv(den, v), 1);
}
/*
* call-seq:
* floor(ndigits = 0) -> new_time
*
* Returns a new \Time object whose numerical value
* is less than or equal to +self+ with its seconds
* truncated to precision +ndigits+:
*
* t = Time.utc(2010, 3, 30, 5, 43, 25.123456789r)
* t # => 2010-03-30 05:43:25.123456789 UTC
* t.floor # => 2010-03-30 05:43:25 UTC
* t.floor(2) # => 2010-03-30 05:43:25.12 UTC
* t.floor(4) # => 2010-03-30 05:43:25.1234 UTC
* t.floor(6) # => 2010-03-30 05:43:25.123456 UTC
* t.floor(8) # => 2010-03-30 05:43:25.12345678 UTC
* t.floor(10) # => 2010-03-30 05:43:25.123456789 UTC
*
* t = Time.utc(1999, 12, 31, 23, 59, 59)
* t # => 1999-12-31 23:59:59 UTC
* (t + 0.4).floor # => 1999-12-31 23:59:59 UTC
* (t + 0.9).floor # => 1999-12-31 23:59:59 UTC
* (t + 1.4).floor # => 2000-01-01 00:00:00 UTC
* (t + 1.9).floor # => 2000-01-01 00:00:00 UTC
*
* Related: Time#ceil, Time#round.
*/
static VALUE
time_floor(int argc, VALUE *argv, VALUE time)
{
VALUE ndigits, v, den;
struct time_object *tobj;
if (!rb_check_arity(argc, 0, 1) || NIL_P(ndigits = argv[0]))
den = INT2FIX(1);
else
den = ndigits_denominator(ndigits);
GetTimeval(time, tobj);
v = w2v(rb_time_unmagnify(tobj->timew));
v = modv(v, den);
return time_add(tobj, time, v, -1);
}
/*
* call-seq:
* ceil(ndigits = 0) -> new_time
*
* Returns a new \Time object whose numerical value
* is greater than or equal to +self+ with its seconds
* truncated to precision +ndigits+:
*
* t = Time.utc(2010, 3, 30, 5, 43, 25.123456789r)
* t # => 2010-03-30 05:43:25.123456789 UTC
* t.ceil # => 2010-03-30 05:43:26 UTC
* t.ceil(2) # => 2010-03-30 05:43:25.13 UTC
* t.ceil(4) # => 2010-03-30 05:43:25.1235 UTC
* t.ceil(6) # => 2010-03-30 05:43:25.123457 UTC
* t.ceil(8) # => 2010-03-30 05:43:25.12345679 UTC
* t.ceil(10) # => 2010-03-30 05:43:25.123456789 UTC
*
* t = Time.utc(1999, 12, 31, 23, 59, 59)
* t # => 1999-12-31 23:59:59 UTC
* (t + 0.4).ceil # => 2000-01-01 00:00:00 UTC
* (t + 0.9).ceil # => 2000-01-01 00:00:00 UTC
* (t + 1.4).ceil # => 2000-01-01 00:00:01 UTC
* (t + 1.9).ceil # => 2000-01-01 00:00:01 UTC
*
* Related: Time#floor, Time#round.
*/
static VALUE
time_ceil(int argc, VALUE *argv, VALUE time)
{
VALUE ndigits, v, den;
struct time_object *tobj;
if (!rb_check_arity(argc, 0, 1) || NIL_P(ndigits = argv[0]))
den = INT2FIX(1);
else
den = ndigits_denominator(ndigits);
GetTimeval(time, tobj);
v = w2v(rb_time_unmagnify(tobj->timew));
v = modv(v, den);
if (!rb_equal(v, INT2FIX(0))) {
v = subv(den, v);
}
return time_add(tobj, time, v, 1);
}
/*
* call-seq:
* sec -> integer
*
* Returns the integer second of the minute for +self+,
* in range (0..60):
*
* t = Time.new(2000, 1, 2, 3, 4, 5, 6)
* # => 2000-01-02 03:04:05 +000006
* t.sec # => 5
*
* Note: the second value may be 60 when there is a
* {leap second}[https://en.wikipedia.org/wiki/Leap_second].
*
* Related: Time#year, Time#mon, Time#min.
*/
static VALUE
time_sec(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX(tobj->vtm.sec);
}
/*
* call-seq:
* min -> integer
*
* Returns the integer minute of the hour for +self+,
* in range (0..59):
*
* t = Time.new(2000, 1, 2, 3, 4, 5, 6)
* # => 2000-01-02 03:04:05 +000006
* t.min # => 4
*
* Related: Time#year, Time#mon, Time#sec.
*/
static VALUE
time_min(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX(tobj->vtm.min);
}
/*
* call-seq:
* hour -> integer
*
* Returns the integer hour of the day for +self+,
* in range (0..23):
*
* t = Time.new(2000, 1, 2, 3, 4, 5, 6)
* # => 2000-01-02 03:04:05 +000006
* t.hour # => 3
*
* Related: Time#year, Time#mon, Time#min.
*/
static VALUE
time_hour(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX(tobj->vtm.hour);
}
/*
* call-seq:
* mday -> integer
*
* Returns the integer day of the month for +self+,
* in range (1..31):
*
* t = Time.new(2000, 1, 2, 3, 4, 5, 6)
* # => 2000-01-02 03:04:05 +000006
* t.mday # => 2
*
* Time#day is an alias for Time#mday.
*
* Related: Time#year, Time#hour, Time#min.
*/
static VALUE
time_mday(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX(tobj->vtm.mday);
}
/*
* call-seq:
* mon -> integer
*
* Returns the integer month of the year for +self+,
* in range (1..12):
*
* t = Time.new(2000, 1, 2, 3, 4, 5, 6)
* # => 2000-01-02 03:04:05 +000006
* t.mon # => 1
*
* Time#month is an alias for Time#mday.
*
* Related: Time#year, Time#hour, Time#min.
*/
static VALUE
time_mon(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return INT2FIX(tobj->vtm.mon);
}
/*
* call-seq:
* year -> integer
*
* Returns the integer year for +self+:
*
* t = Time.new(2000, 1, 2, 3, 4, 5, 6)
* # => 2000-01-02 03:04:05 +000006
* t.year # => 2000
*
* Related: Time#mon, Time#hour, Time#min.
*/
static VALUE
time_year(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
return tobj->vtm.year;
}
/*
* call-seq:
* wday -> integer
*
* Returns the integer day of the week for +self+,
* in range (0..6), with Sunday as zero.
*
* t = Time.new(2000, 1, 2, 3, 4, 5, 6)
* # => 2000-01-02 03:04:05 +000006
* t.wday # => 0
* t.sunday? # => true
*
* Related: Time#year, Time#hour, Time#min.
*/
static VALUE
time_wday(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM_ENSURE(time, tobj, tobj->vtm.wday != VTM_WDAY_INITVAL);
return INT2FIX((int)tobj->vtm.wday);
}
#define wday_p(n) {\
return RBOOL(time_wday(time) == INT2FIX(n)); \
}
/*
* call-seq:
* sunday? -> true or false
*
* Returns +true+ if +self+ represents a Sunday, +false+ otherwise:
*
* t = Time.utc(2000, 1, 2) # => 2000-01-02 00:00:00 UTC
* t.sunday? # => true
*
* Related: Time#monday?, Time#tuesday?, Time#wednesday?.
*/
static VALUE
time_sunday(VALUE time)
{
wday_p(0);
}
/*
* call-seq:
* monday? -> true or false
*
* Returns +true+ if +self+ represents a Monday, +false+ otherwise:
*
* t = Time.utc(2000, 1, 3) # => 2000-01-03 00:00:00 UTC
* t.monday? # => true
*
* Related: Time#tuesday?, Time#wednesday?, Time#thursday?.
*/
static VALUE
time_monday(VALUE time)
{
wday_p(1);
}
/*
* call-seq:
* tuesday? -> true or false
*
* Returns +true+ if +self+ represents a Tuesday, +false+ otherwise:
*
* t = Time.utc(2000, 1, 4) # => 2000-01-04 00:00:00 UTC
* t.tuesday? # => true
*
* Related: Time#wednesday?, Time#thursday?, Time#friday?.
*/
static VALUE
time_tuesday(VALUE time)
{
wday_p(2);
}
/*
* call-seq:
* wednesday? -> true or false
*
* Returns +true+ if +self+ represents a Wednesday, +false+ otherwise:
*
* t = Time.utc(2000, 1, 5) # => 2000-01-05 00:00:00 UTC
* t.wednesday? # => true
*
* Related: Time#thursday?, Time#friday?, Time#saturday?.
*/
static VALUE
time_wednesday(VALUE time)
{
wday_p(3);
}
/*
* call-seq:
* thursday? -> true or false
*
* Returns +true+ if +self+ represents a Thursday, +false+ otherwise:
*
* t = Time.utc(2000, 1, 6) # => 2000-01-06 00:00:00 UTC
* t.thursday? # => true
*
* Related: Time#friday?, Time#saturday?, Time#sunday?.
*/
static VALUE
time_thursday(VALUE time)
{
wday_p(4);
}
/*
* call-seq:
* friday? -> true or false
*
* Returns +true+ if +self+ represents a Friday, +false+ otherwise:
*
* t = Time.utc(2000, 1, 7) # => 2000-01-07 00:00:00 UTC
* t.friday? # => true
*
* Related: Time#saturday?, Time#sunday?, Time#monday?.
*/
static VALUE
time_friday(VALUE time)
{
wday_p(5);
}
/*
* call-seq:
* saturday? -> true or false
*
* Returns +true+ if +self+ represents a Saturday, +false+ otherwise:
*
* t = Time.utc(2000, 1, 1) # => 2000-01-01 00:00:00 UTC
* t.saturday? # => true
*
* Related: Time#sunday?, Time#monday?, Time#tuesday?.
*/
static VALUE
time_saturday(VALUE time)
{
wday_p(6);
}
/*
* call-seq:
* yday -> integer
*
* Returns the integer day of the year of +self+, in range (1..366).
*
* Time.new(2000, 1, 1).yday # => 1
* Time.new(2000, 12, 31).yday # => 366
*/
static VALUE
time_yday(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM_ENSURE(time, tobj, tobj->vtm.yday != 0);
return INT2FIX(tobj->vtm.yday);
}
/*
* call-seq:
* dst? -> true or false
*
* Returns +true+ if +self+ is in daylight saving time, +false+ otherwise:
*
* t = Time.local(2000, 1, 1) # => 2000-01-01 00:00:00 -0600
* t.zone # => "Central Standard Time"
* t.dst? # => false
* t = Time.local(2000, 7, 1) # => 2000-07-01 00:00:00 -0500
* t.zone # => "Central Daylight Time"
* t.dst? # => true
*
* Time#isdst is an alias for Time#dst?.
*/
static VALUE
time_isdst(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
if (tobj->vtm.isdst == VTM_ISDST_INITVAL) {
rb_raise(rb_eRuntimeError, "isdst is not set yet");
}
return RBOOL(tobj->vtm.isdst);
}
/*
* call-seq:
* time.zone -> string or timezone
*
* Returns the string name of the time zone for +self+:
*
* Time.utc(2000, 1, 1).zone # => "UTC"
* Time.new(2000, 1, 1).zone # => "Central Standard Time"
*/
static VALUE
time_zone(VALUE time)
{
struct time_object *tobj;
VALUE zone;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
if (TZMODE_UTC_P(tobj)) {
return rb_usascii_str_new_cstr("UTC");
}
zone = tobj->vtm.zone;
if (NIL_P(zone))
return Qnil;
if (RB_TYPE_P(zone, T_STRING))
zone = rb_str_dup(zone);
return zone;
}
/*
* call-seq:
* utc_offset -> integer
*
* Returns the offset in seconds between the timezones of UTC and +self+:
*
* Time.utc(2000, 1, 1).utc_offset # => 0
* Time.local(2000, 1, 1).utc_offset # => -21600 # -6*3600, or minus six hours.
*
* Time#gmt_offset and Time#gmtoff are aliases for Time#utc_offset.
*/
VALUE
rb_time_utc_offset(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
if (TZMODE_UTC_P(tobj)) {
return INT2FIX(0);
}
else {
MAKE_TM(time, tobj);
return tobj->vtm.utc_offset;
}
}
/*
* call-seq:
* to_a -> array
*
* Returns a 10-element array of values representing +self+:
*
* Time.utc(2000, 1, 1).to_a
* # => [0, 0, 0, 1, 1, 2000, 6, 1, false, "UTC"]
* # [sec, min, hour, day, mon, year, wday, yday, dst?, zone]
*
* The returned array is suitable for use as an argument to Time.utc or Time.local
* to create a new \Time object.
*
*/
static VALUE
time_to_a(VALUE time)
{
struct time_object *tobj;
GetTimeval(time, tobj);
MAKE_TM_ENSURE(time, tobj, tobj->vtm.yday != 0);
return rb_ary_new3(10,
INT2FIX(tobj->vtm.sec),
INT2FIX(tobj->vtm.min),
INT2FIX(tobj->vtm.hour),
INT2FIX(tobj->vtm.mday),
INT2FIX(tobj->vtm.mon),
tobj->vtm.year,
INT2FIX(tobj->vtm.wday),
INT2FIX(tobj->vtm.yday),
RBOOL(tobj->vtm.isdst),
time_zone(time));
}
static VALUE
rb_strftime_alloc(const char *format, size_t format_len, rb_encoding *enc,
VALUE time, struct vtm *vtm, wideval_t timew, int gmt)
{
VALUE timev = Qnil;
struct timespec ts;
if (!timew2timespec_exact(timew, &ts))
timev = w2v(rb_time_unmagnify(timew));
if (NIL_P(timev)) {
return rb_strftime_timespec(format, format_len, enc, time, vtm, &ts, gmt);
}
else {
return rb_strftime(format, format_len, enc, time, vtm, timev, gmt);
}
}
static VALUE
strftime_cstr(const char *fmt, size_t len, VALUE time, rb_encoding *enc)
{
struct time_object *tobj;
VALUE str;
GetTimeval(time, tobj);
MAKE_TM(time, tobj);
str = rb_strftime_alloc(fmt, len, enc, time, &tobj->vtm, tobj->timew, TZMODE_UTC_P(tobj));
if (!str) rb_raise(rb_eArgError, "invalid format: %s", fmt);
return str;
}
/*
* call-seq:
* strftime(format_string) -> string
*
* Returns a string representation of +self+,
* formatted according to the given string +format+.
* See {Formats for Dates and Times}[rdoc-ref:strftime_formatting.rdoc].
*/
static VALUE
time_strftime(VALUE time, VALUE format)
{
struct time_object *tobj;
const char *fmt;
long len;
rb_encoding *enc;
VALUE tmp;
GetTimeval(time, tobj);
MAKE_TM_ENSURE(time, tobj, tobj->vtm.yday != 0);
StringValue(format);
if (!rb_enc_str_asciicompat_p(format)) {
rb_raise(rb_eArgError, "format should have ASCII compatible encoding");
}
tmp = rb_str_tmp_frozen_acquire(format);
fmt = RSTRING_PTR(tmp);
len = RSTRING_LEN(tmp);
enc = rb_enc_get(format);
if (len == 0) {
rb_warning("strftime called with empty format string");
return rb_enc_str_new(0, 0, enc);
}
else {
VALUE str = rb_strftime_alloc(fmt, len, enc, time, &tobj->vtm, tobj->timew,
TZMODE_UTC_P(tobj));
rb_str_tmp_frozen_release(format, tmp);
if (!str) rb_raise(rb_eArgError, "invalid format: %"PRIsVALUE, format);
return str;
}
}
int ruby_marshal_write_long(long x, char *buf);
enum {base_dump_size = 8};
/* :nodoc: */
static VALUE
time_mdump(VALUE time)
{
struct time_object *tobj;
unsigned long p, s;
char buf[base_dump_size + sizeof(long) + 1];
int i;
VALUE str;
struct vtm vtm;
long year;
long usec, nsec;
VALUE subsecx, nano, subnano, v, zone;
VALUE year_extend = Qnil;
const int max_year = 1900+0xffff;
GetTimeval(time, tobj);
gmtimew(tobj->timew, &vtm);
if (FIXNUM_P(vtm.year)) {
year = FIX2LONG(vtm.year);
if (year > max_year) {
year_extend = INT2FIX(year - max_year);
year = max_year;
}
else if (year < 1900) {
year_extend = LONG2NUM(1900 - year);
year = 1900;
}
}
else {
if (rb_int_positive_p(vtm.year)) {
year_extend = rb_int_minus(vtm.year, INT2FIX(max_year));
year = max_year;
}
else {
year_extend = rb_int_minus(INT2FIX(1900), vtm.year);
year = 1900;
}
}
subsecx = vtm.subsecx;
nano = mulquov(subsecx, INT2FIX(1000000000), INT2FIX(TIME_SCALE));
divmodv(nano, INT2FIX(1), &v, &subnano);
nsec = FIX2LONG(v);
usec = nsec / 1000;
nsec = nsec % 1000;
nano = addv(LONG2FIX(nsec), subnano);
p = 0x1UL << 31 | /* 1 */
TZMODE_UTC_P(tobj) << 30 | /* 1 */
(year-1900) << 14 | /* 16 */
(vtm.mon-1) << 10 | /* 4 */
vtm.mday << 5 | /* 5 */
vtm.hour; /* 5 */
s = (unsigned long)vtm.min << 26 | /* 6 */
vtm.sec << 20 | /* 6 */
usec; /* 20 */
for (i=0; i<4; i++) {
buf[i] = (unsigned char)p;
p = RSHIFT(p, 8);
}
for (i=4; i<8; i++) {
buf[i] = (unsigned char)s;
s = RSHIFT(s, 8);
}
if (!NIL_P(year_extend)) {
/*
* Append extended year distance from 1900..(1900+0xffff). In
* each cases, there is no sign as the value is positive. The
* format is length (marshaled long) + little endian packed
* binary (like as Integer).
*/
size_t ysize = rb_absint_size(year_extend, NULL);
char *p, *const buf_year_extend = buf + base_dump_size;
if (ysize > LONG_MAX ||
(i = ruby_marshal_write_long((long)ysize, buf_year_extend)) < 0) {
rb_raise(rb_eArgError, "year too %s to marshal: %"PRIsVALUE" UTC",
(year == 1900 ? "small" : "big"), vtm.year);
}
i += base_dump_size;
str = rb_str_new(NULL, i + ysize);
p = RSTRING_PTR(str);
memcpy(p, buf, i);
p += i;
rb_integer_pack(year_extend, p, ysize, 1, 0, INTEGER_PACK_LITTLE_ENDIAN);
}
else {
str = rb_str_new(buf, base_dump_size);
}
rb_copy_generic_ivar(str, time);
if (!rb_equal(nano, INT2FIX(0))) {
if (RB_TYPE_P(nano, T_RATIONAL)) {
rb_ivar_set(str, id_nano_num, RRATIONAL(nano)->num);
rb_ivar_set(str, id_nano_den, RRATIONAL(nano)->den);
}
else {
rb_ivar_set(str, id_nano_num, nano);
rb_ivar_set(str, id_nano_den, INT2FIX(1));
}
}
if (nsec) { /* submicro is only for Ruby 1.9.1 compatibility */
/*
* submicro is formatted in fixed-point packed BCD (without sign).
* It represent digits under microsecond.
* For nanosecond resolution, 3 digits (2 bytes) are used.
* However it can be longer.
* Extra digits are ignored for loading.
*/
char buf[2];
int len = (int)sizeof(buf);
buf[1] = (char)((nsec % 10) << 4);
nsec /= 10;
buf[0] = (char)(nsec % 10);
nsec /= 10;
buf[0] |= (char)((nsec % 10) << 4);
if (buf[1] == 0)
len = 1;
rb_ivar_set(str, id_submicro, rb_str_new(buf, len));
}
if (!TZMODE_UTC_P(tobj)) {
VALUE off = rb_time_utc_offset(time), div, mod;
divmodv(off, INT2FIX(1), &div, &mod);
if (rb_equal(mod, INT2FIX(0)))
off = rb_Integer(div);
rb_ivar_set(str, id_offset, off);
}
zone = tobj->vtm.zone;
if (maybe_tzobj_p(zone)) {
zone = rb_funcallv(zone, id_name, 0, 0);
}
rb_ivar_set(str, id_zone, zone);
return str;
}
/* :nodoc: */
static VALUE
time_dump(int argc, VALUE *argv, VALUE time)
{
VALUE str;
rb_check_arity(argc, 0, 1);
str = time_mdump(time);
return str;
}
static VALUE
mload_findzone(VALUE arg)
{
VALUE *argp = (VALUE *)arg;
VALUE time = argp[0], zone = argp[1];
return find_timezone(time, zone);
}
static VALUE
mload_zone(VALUE time, VALUE zone)
{
VALUE z, args[2];
args[0] = time;
args[1] = zone;
z = rb_rescue(mload_findzone, (VALUE)args, 0, Qnil);
if (NIL_P(z)) return rb_fstring(zone);
if (RB_TYPE_P(z, T_STRING)) return rb_fstring(z);
return z;
}
long ruby_marshal_read_long(const char **buf, long len);
/* :nodoc: */
static VALUE
time_mload(VALUE time, VALUE str)
{
struct time_object *tobj;
unsigned long p, s;
time_t sec;
long usec;
unsigned char *buf;
struct vtm vtm;
int i, gmt;
long nsec;
VALUE submicro, nano_num, nano_den, offset, zone, year;
wideval_t timew;
time_modify(time);
#define get_attr(attr, iffound) \
attr = rb_attr_delete(str, id_##attr); \
if (!NIL_P(attr)) { \
iffound; \
}
get_attr(nano_num, {});
get_attr(nano_den, {});
get_attr(submicro, {});
get_attr(offset, (offset = rb_rescue(validate_utc_offset, offset, 0, Qnil)));
get_attr(zone, (zone = rb_rescue(validate_zone_name, zone, 0, Qnil)));
get_attr(year, {});
#undef get_attr
rb_copy_generic_ivar(time, str);
StringValue(str);
buf = (unsigned char *)RSTRING_PTR(str);
if (RSTRING_LEN(str) < base_dump_size) {
goto invalid_format;
}
p = s = 0;
for (i=0; i<4; i++) {
p |= (unsigned long)buf[i]<<(8*i);
}
for (i=4; i<8; i++) {
s |= (unsigned long)buf[i]<<(8*(i-4));
}
if ((p & (1UL<<31)) == 0) {
gmt = 0;
offset = Qnil;
sec = p;
usec = s;
nsec = usec * 1000;
timew = wadd(rb_time_magnify(TIMET2WV(sec)), wmulquoll(WINT2FIXWV(usec), TIME_SCALE, 1000000));
}
else {
p &= ~(1UL<<31);
gmt = (int)((p >> 30) & 0x1);
if (NIL_P(year)) {
year = INT2FIX(((int)(p >> 14) & 0xffff) + 1900);
}
if (RSTRING_LEN(str) > base_dump_size) {
long len = RSTRING_LEN(str) - base_dump_size;
long ysize = 0;
VALUE year_extend;
const char *ybuf = (const char *)(buf += base_dump_size);
ysize = ruby_marshal_read_long(&ybuf, len);
len -= ybuf - (const char *)buf;
if (ysize < 0 || ysize > len) goto invalid_format;
year_extend = rb_integer_unpack(ybuf, ysize, 1, 0, INTEGER_PACK_LITTLE_ENDIAN);
if (year == INT2FIX(1900)) {
year = rb_int_minus(year, year_extend);
}
else {
year = rb_int_plus(year, year_extend);
}
}
unsigned int mon = ((int)(p >> 10) & 0xf); /* 0...12 */
if (mon >= 12) {
mon -= 12;
year = addv(year, LONG2FIX(1));
}
vtm.year = year;
vtm.mon = mon + 1;
vtm.mday = (int)(p >> 5) & 0x1f;
vtm.hour = (int) p & 0x1f;
vtm.min = (int)(s >> 26) & 0x3f;
vtm.sec = (int)(s >> 20) & 0x3f;
vtm.utc_offset = INT2FIX(0);
vtm.yday = vtm.wday = 0;
vtm.isdst = 0;
vtm.zone = str_empty;
usec = (long)(s & 0xfffff);
nsec = usec * 1000;
vtm.subsecx = mulquov(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000));
if (nano_num != Qnil) {
VALUE nano = quov(num_exact(nano_num), num_exact(nano_den));
vtm.subsecx = addv(vtm.subsecx, mulquov(nano, INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
}
else if (submicro != Qnil) { /* for Ruby 1.9.1 compatibility */
unsigned char *ptr;
long len;
int digit;
ptr = (unsigned char*)StringValuePtr(submicro);
len = RSTRING_LEN(submicro);
nsec = 0;
if (0 < len) {
if (10 <= (digit = ptr[0] >> 4)) goto end_submicro;
nsec += digit * 100;
if (10 <= (digit = ptr[0] & 0xf)) goto end_submicro;
nsec += digit * 10;
}
if (1 < len) {
if (10 <= (digit = ptr[1] >> 4)) goto end_submicro;
nsec += digit;
}
vtm.subsecx = addv(vtm.subsecx, mulquov(LONG2FIX(nsec), INT2FIX(TIME_SCALE), LONG2FIX(1000000000)));
end_submicro: ;
}
timew = timegmw(&vtm);
}
GetNewTimeval(time, tobj);
TZMODE_SET_LOCALTIME(tobj);
tobj->tm_got = 0;
tobj->timew = timew;
if (gmt) {
TZMODE_SET_UTC(tobj);
}
else if (!NIL_P(offset)) {
time_set_utc_offset(time, offset);
time_fixoff(time);
}
if (!NIL_P(zone)) {
zone = mload_zone(time, zone);
tobj->vtm.zone = zone;
zone_localtime(zone, time);
}
return time;
invalid_format:
rb_raise(rb_eTypeError, "marshaled time format differ");
UNREACHABLE_RETURN(Qundef);
}
/* :nodoc: */
static VALUE
time_load(VALUE klass, VALUE str)
{
VALUE time = time_s_alloc(klass);
time_mload(time, str);
return time;
}
/* :nodoc:*/
/* Document-class: Time::tm
*
* A container class for timezone conversion.
*/
/*
* call-seq:
*
* Time::tm.from_time(t) -> tm
*
* Creates new Time::tm object from a Time object.
*/
static VALUE
tm_from_time(VALUE klass, VALUE time)
{
struct time_object *tobj;
struct vtm vtm, *v;
#if TM_IS_TIME
VALUE tm;
struct time_object *ttm;
GetTimeval(time, tobj);
tm = time_s_alloc(klass);
ttm = DATA_PTR(tm);
v = &vtm;
GMTIMEW(ttm->timew = tobj->timew, v);
ttm->timew = wsub(ttm->timew, v->subsecx);
v->subsecx = INT2FIX(0);
v->zone = Qnil;
ttm->vtm = *v;
ttm->tm_got = 1;
TZMODE_SET_UTC(ttm);
return tm;
#else
VALUE args[8];
int i = 0;
GetTimeval(time, tobj);
if (tobj->tm_got && TZMODE_UTC_P(tobj))
v = &tobj->vtm;
else
GMTIMEW(tobj->timew, v = &vtm);
args[i++] = v->year;
args[i++] = INT2FIX(v->mon);
args[i++] = INT2FIX(v->mday);
args[i++] = INT2FIX(v->hour);
args[i++] = INT2FIX(v->min);
args[i++] = INT2FIX(v->sec);
switch (v->isdst) {
case 0: args[i++] = Qfalse; break;
case 1: args[i++] = Qtrue; break;
default: args[i++] = Qnil; break;
}
args[i++] = w2v(rb_time_unmagnify(tobj->timew));
return rb_class_new_instance(i, args, klass);
#endif
}
/*
* call-seq:
*
* Time::tm.new(year, month=nil, day=nil, hour=nil, min=nil, sec=nil, zone=nil) -> tm
*
* Creates new Time::tm object.
*/
static VALUE
tm_initialize(int argc, VALUE *argv, VALUE tm)
{
struct vtm vtm;
wideval_t t;
if (rb_check_arity(argc, 1, 7) > 6) argc = 6;
time_arg(argc, argv, &vtm);
t = timegmw(&vtm);
{
#if TM_IS_TIME
struct time_object *tobj = DATA_PTR(tm);
TZMODE_SET_UTC(tobj);
tobj->timew = t;
tobj->vtm = vtm;
#else
int i = 0;
RSTRUCT_SET(tm, i++, INT2FIX(vtm.sec));
RSTRUCT_SET(tm, i++, INT2FIX(vtm.min));
RSTRUCT_SET(tm, i++, INT2FIX(vtm.hour));
RSTRUCT_SET(tm, i++, INT2FIX(vtm.mday));
RSTRUCT_SET(tm, i++, INT2FIX(vtm.mon));
RSTRUCT_SET(tm, i++, vtm.year);
RSTRUCT_SET(tm, i++, w2v(rb_time_unmagnify(t)));
#endif
}
return tm;
}
/* call-seq:
*
* tm.to_time -> time
*
* Returns a new Time object.
*/
static VALUE
tm_to_time(VALUE tm)
{
#if TM_IS_TIME
struct time_object *torig = get_timeval(tm);
VALUE dup = time_s_alloc(rb_cTime);
struct time_object *tobj = DATA_PTR(dup);
*tobj = *torig;
return dup;
#else
VALUE t[6];
const VALUE *p = RSTRUCT_CONST_PTR(tm);
int i;
for (i = 0; i < numberof(t); ++i) {
t[i] = p[numberof(t) - 1 - i];
}
return time_s_mkutc(numberof(t), t, rb_cTime);
#endif
}
#if !TM_IS_TIME
static VALUE
tm_zero(VALUE tm)
{
return INT2FIX(0);
}
#define tm_subsec tm_zero
#define tm_utc_offset tm_zero
static VALUE
tm_isdst(VALUE tm)
{
return Qfalse;
}
static VALUE
tm_to_s(VALUE tm)
{
const VALUE *p = RSTRUCT_CONST_PTR(tm);
return rb_sprintf("%.4"PRIsVALUE"-%.2"PRIsVALUE"-%.2"PRIsVALUE" "
"%.2"PRIsVALUE":%.2"PRIsVALUE":%.2"PRIsVALUE" "
"UTC",
p[5], p[4], p[3], p[2], p[1], p[0]);
}
#else
static VALUE
tm_plus(VALUE tm, VALUE offset)
{
return time_add0(rb_obj_class(tm), get_timeval(tm), tm, offset, +1);
}
static VALUE
tm_minus(VALUE tm, VALUE offset)
{
return time_add0(rb_obj_class(tm), get_timeval(tm), tm, offset, -1);
}
#endif
static VALUE
Init_tm(VALUE outer, const char *name)
{
/* :stopdoc:*/
VALUE tm;
#if TM_IS_TIME
tm = rb_define_class_under(outer, name, rb_cObject);
rb_define_alloc_func(tm, time_s_alloc);
rb_define_method(tm, "sec", time_sec, 0);
rb_define_method(tm, "min", time_min, 0);
rb_define_method(tm, "hour", time_hour, 0);
rb_define_method(tm, "mday", time_mday, 0);
rb_define_method(tm, "day", time_mday, 0);
rb_define_method(tm, "mon", time_mon, 0);
rb_define_method(tm, "month", time_mon, 0);
rb_define_method(tm, "year", time_year, 0);
rb_define_method(tm, "isdst", time_isdst, 0);
rb_define_method(tm, "dst?", time_isdst, 0);
rb_define_method(tm, "zone", time_zone, 0);
rb_define_method(tm, "gmtoff", rb_time_utc_offset, 0);
rb_define_method(tm, "gmt_offset", rb_time_utc_offset, 0);
rb_define_method(tm, "utc_offset", rb_time_utc_offset, 0);
rb_define_method(tm, "utc?", time_utc_p, 0);
rb_define_method(tm, "gmt?", time_utc_p, 0);
rb_define_method(tm, "to_s", time_to_s, 0);
rb_define_method(tm, "inspect", time_inspect, 0);
rb_define_method(tm, "to_a", time_to_a, 0);
rb_define_method(tm, "tv_sec", time_to_i, 0);
rb_define_method(tm, "tv_usec", time_usec, 0);
rb_define_method(tm, "usec", time_usec, 0);
rb_define_method(tm, "tv_nsec", time_nsec, 0);
rb_define_method(tm, "nsec", time_nsec, 0);
rb_define_method(tm, "subsec", time_subsec, 0);
rb_define_method(tm, "to_i", time_to_i, 0);
rb_define_method(tm, "to_f", time_to_f, 0);
rb_define_method(tm, "to_r", time_to_r, 0);
rb_define_method(tm, "+", tm_plus, 1);
rb_define_method(tm, "-", tm_minus, 1);
#else
tm = rb_struct_define_under(outer, "tm",
"sec", "min", "hour",
"mday", "mon", "year",
"to_i", NULL);
rb_define_method(tm, "subsec", tm_subsec, 0);
rb_define_method(tm, "utc_offset", tm_utc_offset, 0);
rb_define_method(tm, "to_s", tm_to_s, 0);
rb_define_method(tm, "inspect", tm_to_s, 0);
rb_define_method(tm, "isdst", tm_isdst, 0);
rb_define_method(tm, "dst?", tm_isdst, 0);
#endif
rb_define_method(tm, "initialize", tm_initialize, -1);
rb_define_method(tm, "utc", tm_to_time, 0);
rb_alias(tm, rb_intern_const("to_time"), rb_intern_const("utc"));
rb_define_singleton_method(tm, "from_time", tm_from_time, 1);
/* :startdoc:*/
return tm;
}
VALUE
rb_time_zone_abbreviation(VALUE zone, VALUE time)
{
VALUE tm, abbr, strftime_args[2];
abbr = rb_check_string_type(zone);
if (!NIL_P(abbr)) return abbr;
tm = tm_from_time(rb_cTimeTM, time);
abbr = rb_check_funcall(zone, rb_intern("abbr"), 1, &tm);
if (abbr != Qundef) {
goto found;
}
#ifdef SUPPORT_TZINFO_ZONE_ABBREVIATION
abbr = rb_check_funcall(zone, rb_intern("period_for_utc"), 1, &tm);
if (abbr != Qundef) {
abbr = rb_funcallv(abbr, rb_intern("abbreviation"), 0, 0);
goto found;
}
#endif
strftime_args[0] = rb_fstring_lit("%Z");
strftime_args[1] = tm;
abbr = rb_check_funcall(zone, rb_intern("strftime"), 2, strftime_args);
if (abbr != Qundef) {
goto found;
}
abbr = rb_check_funcall_default(zone, idName, 0, 0, Qnil);
found:
return rb_obj_as_string(abbr);
}
/* Internal Details:
*
* Since Ruby 1.9.2, Time implementation uses a signed 63 bit integer or
* Integer(T_BIGNUM), Rational.
* The integer is a number of nanoseconds since the _Epoch_ which can
* represent 1823-11-12 to 2116-02-20.
* When Integer(T_BIGNUM) or Rational is used (before 1823, after 2116, under
* nanosecond), Time works slower than when integer is used.
*/
//
void
Init_Time(void)
{
id_submicro = rb_intern_const("submicro");
id_nano_num = rb_intern_const("nano_num");
id_nano_den = rb_intern_const("nano_den");
id_offset = rb_intern_const("offset");
id_zone = rb_intern_const("zone");
id_nanosecond = rb_intern_const("nanosecond");
id_microsecond = rb_intern_const("microsecond");
id_millisecond = rb_intern_const("millisecond");
id_nsec = rb_intern_const("nsec");
id_usec = rb_intern_const("usec");
id_local_to_utc = rb_intern_const("local_to_utc");
id_utc_to_local = rb_intern_const("utc_to_local");
id_year = rb_intern_const("year");
id_mon = rb_intern_const("mon");
id_mday = rb_intern_const("mday");
id_hour = rb_intern_const("hour");
id_min = rb_intern_const("min");
id_sec = rb_intern_const("sec");
id_isdst = rb_intern_const("isdst");
id_find_timezone = rb_intern_const("find_timezone");
str_utc = rb_fstring_lit("UTC");
rb_gc_register_mark_object(str_utc);
str_empty = rb_fstring_lit("");
rb_gc_register_mark_object(str_empty);
rb_cTime = rb_define_class("Time", rb_cObject);
VALUE scTime = rb_singleton_class(rb_cTime);
rb_include_module(rb_cTime, rb_mComparable);
rb_define_alloc_func(rb_cTime, time_s_alloc);
rb_define_singleton_method(rb_cTime, "utc", time_s_mkutc, -1);
rb_define_singleton_method(rb_cTime, "local", time_s_mktime, -1);
rb_define_alias(scTime, "gm", "utc");
rb_define_alias(scTime, "mktime", "local");
rb_define_method(rb_cTime, "to_i", time_to_i, 0);
rb_define_method(rb_cTime, "to_f", time_to_f, 0);
rb_define_method(rb_cTime, "to_r", time_to_r, 0);
rb_define_method(rb_cTime, "<=>", time_cmp, 1);
rb_define_method(rb_cTime, "eql?", time_eql, 1);
rb_define_method(rb_cTime, "hash", time_hash, 0);
rb_define_method(rb_cTime, "initialize_copy", time_init_copy, 1);
rb_define_method(rb_cTime, "localtime", time_localtime_m, -1);
rb_define_method(rb_cTime, "gmtime", time_gmtime, 0);
rb_define_method(rb_cTime, "utc", time_gmtime, 0);
rb_define_method(rb_cTime, "getlocal", time_getlocaltime, -1);
rb_define_method(rb_cTime, "getgm", time_getgmtime, 0);
rb_define_method(rb_cTime, "getutc", time_getgmtime, 0);
rb_define_method(rb_cTime, "ctime", time_asctime, 0);
rb_define_method(rb_cTime, "asctime", time_asctime, 0);
rb_define_method(rb_cTime, "to_s", time_to_s, 0);
rb_define_method(rb_cTime, "inspect", time_inspect, 0);
rb_define_method(rb_cTime, "to_a", time_to_a, 0);
rb_define_method(rb_cTime, "+", time_plus, 1);
rb_define_method(rb_cTime, "-", time_minus, 1);
rb_define_method(rb_cTime, "round", time_round, -1);
rb_define_method(rb_cTime, "floor", time_floor, -1);
rb_define_method(rb_cTime, "ceil", time_ceil, -1);
rb_define_method(rb_cTime, "sec", time_sec, 0);
rb_define_method(rb_cTime, "min", time_min, 0);
rb_define_method(rb_cTime, "hour", time_hour, 0);
rb_define_method(rb_cTime, "mday", time_mday, 0);
rb_define_method(rb_cTime, "day", time_mday, 0);
rb_define_method(rb_cTime, "mon", time_mon, 0);
rb_define_method(rb_cTime, "month", time_mon, 0);
rb_define_method(rb_cTime, "year", time_year, 0);
rb_define_method(rb_cTime, "wday", time_wday, 0);
rb_define_method(rb_cTime, "yday", time_yday, 0);
rb_define_method(rb_cTime, "isdst", time_isdst, 0);
rb_define_method(rb_cTime, "dst?", time_isdst, 0);
rb_define_method(rb_cTime, "zone", time_zone, 0);
rb_define_method(rb_cTime, "gmtoff", rb_time_utc_offset, 0);
rb_define_method(rb_cTime, "gmt_offset", rb_time_utc_offset, 0);
rb_define_method(rb_cTime, "utc_offset", rb_time_utc_offset, 0);
rb_define_method(rb_cTime, "utc?", time_utc_p, 0);
rb_define_method(rb_cTime, "gmt?", time_utc_p, 0);
rb_define_method(rb_cTime, "sunday?", time_sunday, 0);
rb_define_method(rb_cTime, "monday?", time_monday, 0);
rb_define_method(rb_cTime, "tuesday?", time_tuesday, 0);
rb_define_method(rb_cTime, "wednesday?", time_wednesday, 0);
rb_define_method(rb_cTime, "thursday?", time_thursday, 0);
rb_define_method(rb_cTime, "friday?", time_friday, 0);
rb_define_method(rb_cTime, "saturday?", time_saturday, 0);
rb_define_method(rb_cTime, "tv_sec", time_to_i, 0);
rb_define_method(rb_cTime, "tv_usec", time_usec, 0);
rb_define_method(rb_cTime, "usec", time_usec, 0);
rb_define_method(rb_cTime, "tv_nsec", time_nsec, 0);
rb_define_method(rb_cTime, "nsec", time_nsec, 0);
rb_define_method(rb_cTime, "subsec", time_subsec, 0);
rb_define_method(rb_cTime, "strftime", time_strftime, 1);
/* methods for marshaling */
rb_define_private_method(rb_cTime, "_dump", time_dump, -1);
rb_define_private_method(scTime, "_load", time_load, 1);
#if 0
/* Time will support marshal_dump and marshal_load in the future (1.9 maybe) */
rb_define_private_method(rb_cTime, "marshal_dump", time_mdump, 0);
rb_define_private_method(rb_cTime, "marshal_load", time_mload, 1);
#endif
if (debug_find_time_numguess) {
rb_define_hooked_variable("$find_time_numguess", (VALUE *)&find_time_numguess,
find_time_numguess_getter, NULL);
}
rb_cTimeTM = Init_tm(rb_cTime, "tm");
}
#include "timev.rbinc"