mirror of
https://github.com/ruby/ruby.git
synced 2022-11-09 12:17:21 -05:00
81f4262e6b
* gc.c (is_mark_stack_empty): ditto. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@43819 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
6988 lines
177 KiB
C
6988 lines
177 KiB
C
/**********************************************************************
|
|
|
|
gc.c -
|
|
|
|
$Author$
|
|
created at: Tue Oct 5 09:44:46 JST 1993
|
|
|
|
Copyright (C) 1993-2007 Yukihiro Matsumoto
|
|
Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
|
|
Copyright (C) 2000 Information-technology Promotion Agency, Japan
|
|
|
|
**********************************************************************/
|
|
|
|
#include "ruby/ruby.h"
|
|
#include "ruby/st.h"
|
|
#include "ruby/re.h"
|
|
#include "ruby/io.h"
|
|
#include "ruby/thread.h"
|
|
#include "ruby/util.h"
|
|
#include "ruby/debug.h"
|
|
#include "eval_intern.h"
|
|
#include "vm_core.h"
|
|
#include "internal.h"
|
|
#include "gc.h"
|
|
#include "constant.h"
|
|
#include "ruby_atomic.h"
|
|
#include "probes.h"
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <setjmp.h>
|
|
#include <sys/types.h>
|
|
#include <assert.h>
|
|
|
|
#ifndef __has_feature
|
|
# define __has_feature(x) 0
|
|
#endif
|
|
|
|
#ifndef HAVE_MALLOC_USABLE_SIZE
|
|
# ifdef _WIN32
|
|
# define malloc_usable_size(a) _msize(a)
|
|
# endif
|
|
#else
|
|
# ifdef HAVE_MALLOC_H
|
|
# include <malloc.h>
|
|
# elif defined(HAVE_MALLOC_NP_H)
|
|
# include <malloc_np.h>
|
|
# endif
|
|
#endif
|
|
|
|
#if /* is ASAN enabled? */ \
|
|
__has_feature(address_sanitizer) /* Clang */ || \
|
|
defined(__SANITIZE_ADDRESS__) /* GCC 4.8.x */
|
|
#define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS \
|
|
__attribute__((no_address_safety_analysis)) \
|
|
__attribute__((noinline))
|
|
#else
|
|
#define ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_TIME_H
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_SYS_RESOURCE_H
|
|
#include <sys/resource.h>
|
|
#endif
|
|
#if defined(__native_client__) && defined(NACL_NEWLIB)
|
|
# include "nacl/resource.h"
|
|
# undef HAVE_POSIX_MEMALIGN
|
|
# undef HAVE_MEMALIGN
|
|
|
|
#endif
|
|
|
|
#if defined _WIN32 || defined __CYGWIN__
|
|
#include <windows.h>
|
|
#elif defined(HAVE_POSIX_MEMALIGN)
|
|
#elif defined(HAVE_MEMALIGN)
|
|
#include <malloc.h>
|
|
#endif
|
|
|
|
#define rb_setjmp(env) RUBY_SETJMP(env)
|
|
#define rb_jmp_buf rb_jmpbuf_t
|
|
|
|
#if defined(HAVE_RB_GC_GUARDED_PTR) && HAVE_RB_GC_GUARDED_PTR
|
|
volatile VALUE *
|
|
rb_gc_guarded_ptr(volatile VALUE *ptr)
|
|
{
|
|
return ptr;
|
|
}
|
|
#endif
|
|
|
|
#ifndef GC_HEAP_FREE_SLOTS
|
|
#define GC_HEAP_FREE_SLOTS 4096
|
|
#endif
|
|
#ifndef GC_HEAP_INIT_SLOTS
|
|
#define GC_HEAP_INIT_SLOTS 10000
|
|
#endif
|
|
#ifndef GC_HEAP_GROWTH_FACTOR
|
|
#define GC_HEAP_GROWTH_FACTOR 1.8
|
|
#endif
|
|
#ifndef GC_HEAP_GROWTH_MAX_SLOTS
|
|
#define GC_HEAP_GROWTH_MAX_SLOTS 0 /* 0 is disable */
|
|
#endif
|
|
|
|
#ifndef GC_MALLOC_LIMIT_MIN
|
|
#define GC_MALLOC_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
|
|
#endif
|
|
#ifndef GC_MALLOC_LIMIT_MAX
|
|
#define GC_MALLOC_LIMIT_MAX (32 * 1024 * 1024 /* 32MB */)
|
|
#endif
|
|
#ifndef GC_MALLOC_LIMIT_GROWTH_FACTOR
|
|
#define GC_MALLOC_LIMIT_GROWTH_FACTOR 1.4
|
|
#endif
|
|
|
|
#ifndef GC_OLDSPACE_LIMIT_MIN
|
|
#define GC_OLDSPACE_LIMIT_MIN (16 * 1024 * 1024 /* 16MB */)
|
|
#endif
|
|
#ifndef GC_OLDSPACE_LIMIT_GROWTH_FACTOR
|
|
#define GC_OLDSPACE_LIMIT_GROWTH_FACTOR 1.2
|
|
#endif
|
|
#ifndef GC_OLDSPACE_LIMIT_MAX
|
|
#define GC_OLDSPACE_LIMIT_MAX (128 * 1024 * 1024 /* 128MB */)
|
|
#endif
|
|
|
|
typedef struct {
|
|
unsigned int heap_init_slots;
|
|
unsigned int heap_free_slots;
|
|
double growth_factor;
|
|
unsigned int growth_max_slots;
|
|
unsigned int malloc_limit_min;
|
|
unsigned int malloc_limit_max;
|
|
double malloc_limit_growth_factor;
|
|
unsigned int oldspace_limit_min;
|
|
unsigned int oldspace_limit_max;
|
|
double oldspace_limit_growth_factor;
|
|
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
|
|
VALUE gc_stress;
|
|
#endif
|
|
} ruby_gc_params_t;
|
|
|
|
static ruby_gc_params_t gc_params = {
|
|
GC_HEAP_FREE_SLOTS,
|
|
GC_HEAP_INIT_SLOTS,
|
|
GC_HEAP_GROWTH_FACTOR,
|
|
GC_HEAP_GROWTH_MAX_SLOTS,
|
|
GC_MALLOC_LIMIT_MIN,
|
|
GC_MALLOC_LIMIT_MAX,
|
|
GC_MALLOC_LIMIT_GROWTH_FACTOR,
|
|
GC_OLDSPACE_LIMIT_MIN,
|
|
GC_OLDSPACE_LIMIT_MAX,
|
|
GC_OLDSPACE_LIMIT_GROWTH_FACTOR,
|
|
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
|
|
FALSE,
|
|
#endif
|
|
};
|
|
|
|
/* GC_DEBUG:
|
|
* enable to embed GC debugging information.
|
|
*/
|
|
#ifndef GC_DEBUG
|
|
#define GC_DEBUG 0
|
|
#endif
|
|
|
|
#if USE_RGENGC
|
|
/* RGENGC_DEBUG:
|
|
* 1: basic information
|
|
* 2: remember set operation
|
|
* 3: mark
|
|
* 4:
|
|
* 5: sweep
|
|
*/
|
|
#ifndef RGENGC_DEBUG
|
|
#define RGENGC_DEBUG 0
|
|
#endif
|
|
|
|
/* RGENGC_CHECK_MODE
|
|
* 0: disable all assertions
|
|
* 1: enable assertions (to debug RGenGC)
|
|
* 2: enable bits check (for debugging)
|
|
* 3: show all references
|
|
*/
|
|
#ifndef RGENGC_CHECK_MODE
|
|
#define RGENGC_CHECK_MODE 0
|
|
#endif
|
|
|
|
/* RGENGC_PROFILE
|
|
* 0: disable RGenGC profiling
|
|
* 1: enable profiling for basic information
|
|
* 2: enable profiling for each types
|
|
*/
|
|
#ifndef RGENGC_PROFILE
|
|
#define RGENGC_PROFILE 0
|
|
#endif
|
|
|
|
/* RGENGC_THREEGEN
|
|
* Enable/disable three gen GC.
|
|
* 0: Infant gen -> Old gen
|
|
* 1: Infant gen -> Young -> Old gen
|
|
*/
|
|
#ifndef RGENGC_THREEGEN
|
|
#define RGENGC_THREEGEN 0
|
|
#endif
|
|
|
|
/* RGENGC_ESTIMATE_OLDSPACE
|
|
* Enable/disable to estimate increase size of oldspace.
|
|
* If estimation exceeds threashold, then will invoke full GC.
|
|
* 0: disable estimation.
|
|
* 1: enable estimation.
|
|
*/
|
|
#ifndef RGENGC_ESTIMATE_OLDSPACE
|
|
#define RGENGC_ESTIMATE_OLDSPACE 1
|
|
#endif
|
|
|
|
#else /* USE_RGENGC */
|
|
|
|
#define RGENGC_DEBUG 0
|
|
#define RGENGC_CHECK_MODE 0
|
|
#define RGENGC_PROFILE 0
|
|
#define RGENGC_THREEGEN 0
|
|
#define RGENGC_ESTIMATE_OLDSPACE 0
|
|
|
|
#endif /* USE_RGENGC */
|
|
|
|
#ifndef GC_PROFILE_MORE_DETAIL
|
|
#define GC_PROFILE_MORE_DETAIL 0
|
|
#endif
|
|
#ifndef GC_PROFILE_DETAIL_MEMORY
|
|
#define GC_PROFILE_DETAIL_MEMORY 0
|
|
#endif
|
|
#ifndef GC_ENABLE_LAZY_SWEEP
|
|
#define GC_ENABLE_LAZY_SWEEP 1
|
|
#endif
|
|
#ifndef CALC_EXACT_MALLOC_SIZE
|
|
#define CALC_EXACT_MALLOC_SIZE 0
|
|
#endif
|
|
#ifndef CALC_EXACT_MALLOC_SIZE_CHECK_OLD_SIZE
|
|
#define CALC_EXACT_MALLOC_SIZE_CHECK_OLD_SIZE 0
|
|
#endif
|
|
|
|
typedef enum {
|
|
GPR_FLAG_NONE = 0x000,
|
|
/* major reason */
|
|
GPR_FLAG_MAJOR_BY_NOFREE = 0x001,
|
|
GPR_FLAG_MAJOR_BY_OLDGEN = 0x002,
|
|
GPR_FLAG_MAJOR_BY_SHADY = 0x004,
|
|
GPR_FLAG_MAJOR_BY_RESCAN = 0x008,
|
|
GPR_FLAG_MAJOR_BY_STRESS = 0x010,
|
|
GPR_FLAG_MAJOR_MASK = 0x01f,
|
|
|
|
/* gc reason */
|
|
GPR_FLAG_NEWOBJ = 0x020,
|
|
GPR_FLAG_MALLOC = 0x040,
|
|
GPR_FLAG_METHOD = 0x080,
|
|
GPR_FLAG_CAPI = 0x100,
|
|
GPR_FLAG_STRESS = 0x200,
|
|
|
|
/* others */
|
|
GPR_FLAG_IMMEDIATE_SWEEP = 0x400,
|
|
GPR_FLAG_HAVE_FINALIZE = 0x800
|
|
|
|
} gc_profile_record_flag;
|
|
|
|
typedef struct gc_profile_record {
|
|
int flags;
|
|
|
|
double gc_time;
|
|
double gc_invoke_time;
|
|
|
|
size_t heap_total_objects;
|
|
size_t heap_use_size;
|
|
size_t heap_total_size;
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
double gc_mark_time;
|
|
double gc_sweep_time;
|
|
|
|
size_t heap_use_pages;
|
|
size_t heap_live_objects;
|
|
size_t heap_free_objects;
|
|
|
|
size_t allocate_increase;
|
|
size_t allocate_limit;
|
|
|
|
double prepare_time;
|
|
size_t removing_objects;
|
|
size_t empty_objects;
|
|
#if GC_PROFILE_DETAIL_MEMORY
|
|
long maxrss;
|
|
long minflt;
|
|
long majflt;
|
|
#endif
|
|
#endif
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
size_t allocated_size;
|
|
#endif
|
|
|
|
#if RGENGC_PROFILE > 0
|
|
size_t old_objects;
|
|
size_t remembered_normal_objects;
|
|
size_t remembered_shady_objects;
|
|
#endif
|
|
} gc_profile_record;
|
|
|
|
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
|
|
#pragma pack(push, 1) /* magic for reducing sizeof(RVALUE): 24 -> 20 */
|
|
#endif
|
|
|
|
typedef struct RVALUE {
|
|
union {
|
|
struct {
|
|
VALUE flags; /* always 0 for freed obj */
|
|
struct RVALUE *next;
|
|
} free;
|
|
struct RBasic basic;
|
|
struct RObject object;
|
|
struct RClass klass;
|
|
struct RFloat flonum;
|
|
struct RString string;
|
|
struct RArray array;
|
|
struct RRegexp regexp;
|
|
struct RHash hash;
|
|
struct RData data;
|
|
struct RTypedData typeddata;
|
|
struct RStruct rstruct;
|
|
struct RBignum bignum;
|
|
struct RFile file;
|
|
struct RNode node;
|
|
struct RMatch match;
|
|
struct RRational rational;
|
|
struct RComplex complex;
|
|
struct {
|
|
struct RBasic basic;
|
|
VALUE v1;
|
|
VALUE v2;
|
|
VALUE v3;
|
|
} values;
|
|
} as;
|
|
#if GC_DEBUG
|
|
const char *file;
|
|
VALUE line;
|
|
#endif
|
|
} RVALUE;
|
|
|
|
#if defined(_MSC_VER) || defined(__BORLANDC__) || defined(__CYGWIN__)
|
|
#pragma pack(pop)
|
|
#endif
|
|
|
|
typedef uintptr_t bits_t;
|
|
enum {
|
|
BITS_SIZE = sizeof(bits_t),
|
|
BITS_BITLENGTH = ( BITS_SIZE * CHAR_BIT )
|
|
};
|
|
|
|
struct heap_page_header {
|
|
struct heap_page *page;
|
|
};
|
|
|
|
struct heap_page_body {
|
|
struct heap_page_header header;
|
|
/* char gap[]; */
|
|
/* RVALUE values[]; */
|
|
};
|
|
|
|
struct gc_list {
|
|
VALUE *varptr;
|
|
struct gc_list *next;
|
|
};
|
|
|
|
#define STACK_CHUNK_SIZE 500
|
|
|
|
typedef struct stack_chunk {
|
|
VALUE data[STACK_CHUNK_SIZE];
|
|
struct stack_chunk *next;
|
|
} stack_chunk_t;
|
|
|
|
typedef struct mark_stack {
|
|
stack_chunk_t *chunk;
|
|
stack_chunk_t *cache;
|
|
size_t index;
|
|
size_t limit;
|
|
size_t cache_size;
|
|
size_t unused_cache_size;
|
|
} mark_stack_t;
|
|
|
|
typedef struct rb_heap_struct {
|
|
struct heap_page *pages;
|
|
struct heap_page *free_pages;
|
|
struct heap_page *using_page;
|
|
struct heap_page *sweep_pages;
|
|
RVALUE *freelist;
|
|
size_t used; /* total page count in a heap */
|
|
size_t limit;
|
|
} rb_heap_t;
|
|
|
|
typedef struct rb_objspace {
|
|
struct {
|
|
size_t limit;
|
|
size_t increase;
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
size_t allocated_size;
|
|
size_t allocations;
|
|
#endif
|
|
} malloc_params;
|
|
|
|
rb_heap_t eden_heap;
|
|
rb_heap_t tomb_heap; /* heap for zombies and ghosts */
|
|
|
|
struct {
|
|
struct heap_page **sorted;
|
|
size_t used;
|
|
size_t length;
|
|
RVALUE *range[2];
|
|
|
|
size_t limit;
|
|
size_t increment;
|
|
|
|
size_t swept_slots;
|
|
size_t min_free_slots;
|
|
size_t max_free_slots;
|
|
|
|
/* final */
|
|
size_t final_num;
|
|
RVALUE *deferred_final;
|
|
} heap_pages;
|
|
|
|
struct {
|
|
int dont_gc;
|
|
int dont_lazy_sweep;
|
|
int during_gc;
|
|
rb_atomic_t finalizing;
|
|
} flags;
|
|
st_table *finalizer_table;
|
|
mark_stack_t mark_stack;
|
|
struct {
|
|
int run;
|
|
gc_profile_record *records;
|
|
gc_profile_record *current_record;
|
|
size_t next_index;
|
|
size_t size;
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
double prepare_time;
|
|
#endif
|
|
double invoke_time;
|
|
|
|
#if USE_RGENGC
|
|
size_t minor_gc_count;
|
|
size_t major_gc_count;
|
|
#if RGENGC_PROFILE > 0
|
|
size_t generated_normal_object_count;
|
|
size_t generated_shady_object_count;
|
|
size_t shade_operation_count;
|
|
size_t promote_infant_count;
|
|
#if RGENGC_THREEGEN
|
|
size_t promote_young_count;
|
|
#endif
|
|
size_t remembered_normal_object_count;
|
|
size_t remembered_shady_object_count;
|
|
|
|
#if RGENGC_PROFILE >= 2
|
|
size_t generated_normal_object_count_types[RUBY_T_MASK];
|
|
size_t generated_shady_object_count_types[RUBY_T_MASK];
|
|
size_t shade_operation_count_types[RUBY_T_MASK];
|
|
size_t promote_infant_types[RUBY_T_MASK];
|
|
#if RGENGC_THREEGEN
|
|
size_t promote_young_types[RUBY_T_MASK];
|
|
#endif
|
|
size_t remembered_normal_object_count_types[RUBY_T_MASK];
|
|
size_t remembered_shady_object_count_types[RUBY_T_MASK];
|
|
#endif
|
|
#endif /* RGENGC_PROFILE */
|
|
#endif /* USE_RGENGC */
|
|
|
|
/* temporary profiling space */
|
|
double gc_sweep_start_time;
|
|
size_t total_allocated_object_num_at_gc_start;
|
|
size_t heap_used_at_gc_start;
|
|
|
|
/* basic statistics */
|
|
size_t count;
|
|
size_t total_allocated_object_num;
|
|
size_t total_freed_object_num;
|
|
} profile;
|
|
struct gc_list *global_list;
|
|
rb_event_flag_t hook_events; /* this place may be affinity with memory cache */
|
|
VALUE gc_stress;
|
|
|
|
struct mark_func_data_struct {
|
|
void *data;
|
|
void (*mark_func)(VALUE v, void *data);
|
|
} *mark_func_data;
|
|
|
|
#if USE_RGENGC
|
|
struct {
|
|
int during_minor_gc;
|
|
int parent_object_is_old;
|
|
|
|
int need_major_gc;
|
|
size_t remembered_shady_object_count;
|
|
size_t remembered_shady_object_limit;
|
|
size_t old_object_count;
|
|
size_t old_object_limit;
|
|
#if RGENGC_THREEGEN
|
|
size_t young_object_count;
|
|
#endif
|
|
|
|
#if RGENGC_ESTIMATE_OLDSPACE
|
|
size_t oldspace_increase;
|
|
size_t oldspace_increase_limit;
|
|
#endif
|
|
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
struct st_table *allrefs_table;
|
|
size_t error_count;
|
|
#endif
|
|
} rgengc;
|
|
#endif /* USE_RGENGC */
|
|
} rb_objspace_t;
|
|
|
|
|
|
#ifndef HEAP_ALIGN_LOG
|
|
/* default tiny heap size: 16KB */
|
|
#define HEAP_ALIGN_LOG 14
|
|
#endif
|
|
#define CEILDIV(i, mod) (((i) + (mod) - 1)/(mod))
|
|
enum {
|
|
HEAP_ALIGN = (1UL << HEAP_ALIGN_LOG),
|
|
HEAP_ALIGN_MASK = (~(~0UL << HEAP_ALIGN_LOG)),
|
|
REQUIRED_SIZE_BY_MALLOC = (sizeof(size_t) * 5),
|
|
HEAP_SIZE = (HEAP_ALIGN - REQUIRED_SIZE_BY_MALLOC),
|
|
HEAP_OBJ_LIMIT = (unsigned int)((HEAP_SIZE - sizeof(struct heap_page_header))/sizeof(struct RVALUE)),
|
|
HEAP_BITMAP_LIMIT = CEILDIV(CEILDIV(HEAP_SIZE, sizeof(struct RVALUE)), BITS_BITLENGTH),
|
|
HEAP_BITMAP_SIZE = ( BITS_SIZE * HEAP_BITMAP_LIMIT),
|
|
HEAP_BITMAP_PLANES = USE_RGENGC ? 3 : 1 /* RGENGC: mark bits, rememberset bits and oldgen bits */
|
|
};
|
|
|
|
struct heap_page {
|
|
struct heap_page_body *body;
|
|
RVALUE *freelist;
|
|
RVALUE *start;
|
|
size_t final_num;
|
|
size_t limit;
|
|
struct heap_page *next;
|
|
struct heap_page *prev;
|
|
struct heap_page *free_next;
|
|
rb_heap_t *heap;
|
|
int before_sweep;
|
|
|
|
bits_t mark_bits[HEAP_BITMAP_LIMIT];
|
|
#if USE_RGENGC
|
|
bits_t rememberset_bits[HEAP_BITMAP_LIMIT];
|
|
bits_t oldgen_bits[HEAP_BITMAP_LIMIT];
|
|
#endif
|
|
};
|
|
|
|
#define GET_PAGE_BODY(x) ((struct heap_page_body *)((bits_t)(x) & ~(HEAP_ALIGN_MASK)))
|
|
#define GET_PAGE_HEADER(x) (&GET_PAGE_BODY(x)->header)
|
|
#define GET_HEAP_PAGE(x) (GET_PAGE_HEADER(x)->page)
|
|
#define GET_HEAP_MARK_BITS(x) (&GET_HEAP_PAGE(x)->mark_bits[0])
|
|
#define GET_HEAP_REMEMBERSET_BITS(x) (&GET_HEAP_PAGE(x)->rememberset_bits[0])
|
|
#define GET_HEAP_OLDGEN_BITS(x) (&GET_HEAP_PAGE(x)->oldgen_bits[0])
|
|
#define NUM_IN_PAGE(p) (((bits_t)(p) & HEAP_ALIGN_MASK)/sizeof(RVALUE))
|
|
#define BITMAP_INDEX(p) (NUM_IN_PAGE(p) / BITS_BITLENGTH )
|
|
#define BITMAP_OFFSET(p) (NUM_IN_PAGE(p) & (BITS_BITLENGTH-1))
|
|
#define BITMAP_BIT(p) ((bits_t)1 << BITMAP_OFFSET(p))
|
|
/* Bitmap Operations */
|
|
#define MARKED_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] & BITMAP_BIT(p))
|
|
#define MARK_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] | BITMAP_BIT(p))
|
|
#define CLEAR_IN_BITMAP(bits, p) ((bits)[BITMAP_INDEX(p)] = (bits)[BITMAP_INDEX(p)] & ~BITMAP_BIT(p))
|
|
|
|
/* Aliases */
|
|
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
|
|
#define rb_objspace (*GET_VM()->objspace)
|
|
#define ruby_initial_gc_stress gc_params.gc_stress
|
|
VALUE *ruby_initial_gc_stress_ptr = &ruby_initial_gc_stress;
|
|
#else
|
|
static rb_objspace_t rb_objspace = {{GC_MALLOC_LIMIT_MIN}};
|
|
VALUE *ruby_initial_gc_stress_ptr = &rb_objspace.gc_stress;
|
|
#endif
|
|
|
|
#define malloc_limit objspace->malloc_params.limit
|
|
#define malloc_increase objspace->malloc_params.increase
|
|
#define malloc_allocated_size objspace->malloc_params.allocated_size
|
|
#define heap_pages_sorted objspace->heap_pages.sorted
|
|
#define heap_pages_used objspace->heap_pages.used
|
|
#define heap_pages_length objspace->heap_pages.length
|
|
#define heap_pages_lomem objspace->heap_pages.range[0]
|
|
#define heap_pages_himem objspace->heap_pages.range[1]
|
|
#define heap_pages_swept_slots objspace->heap_pages.swept_slots
|
|
#define heap_pages_increment objspace->heap_pages.increment
|
|
#define heap_pages_min_free_slots objspace->heap_pages.min_free_slots
|
|
#define heap_pages_max_free_slots objspace->heap_pages.max_free_slots
|
|
#define heap_pages_final_num objspace->heap_pages.final_num
|
|
#define heap_pages_deferred_final objspace->heap_pages.deferred_final
|
|
#define heap_eden (&objspace->eden_heap)
|
|
#define heap_tomb (&objspace->tomb_heap)
|
|
#define dont_gc objspace->flags.dont_gc
|
|
#define during_gc objspace->flags.during_gc
|
|
#define finalizing objspace->flags.finalizing
|
|
#define finalizer_table objspace->finalizer_table
|
|
#define global_List objspace->global_list
|
|
#define ruby_gc_stress objspace->gc_stress
|
|
#define monitor_level objspace->rgengc.monitor_level
|
|
#define monitored_object_table objspace->rgengc.monitored_object_table
|
|
|
|
#define is_lazy_sweeping(heap) ((heap)->sweep_pages != 0)
|
|
#if SIZEOF_LONG == SIZEOF_VOIDP
|
|
# define nonspecial_obj_id(obj) (VALUE)((SIGNED_VALUE)(obj)|FIXNUM_FLAG)
|
|
# define obj_id_to_ref(objid) ((objid) ^ FIXNUM_FLAG) /* unset FIXNUM_FLAG */
|
|
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
|
|
# define nonspecial_obj_id(obj) LL2NUM((SIGNED_VALUE)(obj) / 2)
|
|
# define obj_id_to_ref(objid) (FIXNUM_P(objid) ? \
|
|
((objid) ^ FIXNUM_FLAG) : (NUM2PTR(objid) << 1))
|
|
#else
|
|
# error not supported
|
|
#endif
|
|
|
|
#define RANY(o) ((RVALUE*)(o))
|
|
|
|
#define nomem_error GET_VM()->special_exceptions[ruby_error_nomemory]
|
|
|
|
int ruby_gc_debug_indent = 0;
|
|
VALUE rb_mGC;
|
|
int ruby_disable_gc_stress = 0;
|
|
|
|
void rb_gcdebug_print_obj_condition(VALUE obj);
|
|
|
|
static void rb_objspace_call_finalizer(rb_objspace_t *objspace);
|
|
static VALUE define_final0(VALUE obj, VALUE block);
|
|
|
|
static void negative_size_allocation_error(const char *);
|
|
static void *aligned_malloc(size_t, size_t);
|
|
static void aligned_free(void *);
|
|
|
|
static void init_mark_stack(mark_stack_t *stack);
|
|
|
|
static VALUE lazy_sweep_enable(void);
|
|
static int ready_to_gc(rb_objspace_t *objspace);
|
|
static int heap_ready_to_gc(rb_objspace_t *objspace, rb_heap_t *heap);
|
|
static int garbage_collect(rb_objspace_t *, int full_mark, int immediate_sweep, int reason);
|
|
static int garbage_collect_body(rb_objspace_t *, int full_mark, int immediate_sweep, int reason);
|
|
static int gc_heap_lazy_sweep(rb_objspace_t *objspace, rb_heap_t *heap);
|
|
static void gc_rest_sweep(rb_objspace_t *objspace);
|
|
static void gc_heap_rest_sweep(rb_objspace_t *objspace, rb_heap_t *heap);
|
|
|
|
static void gc_mark_stacked_objects(rb_objspace_t *);
|
|
static void gc_mark(rb_objspace_t *objspace, VALUE ptr);
|
|
static void gc_mark_maybe(rb_objspace_t *objspace, VALUE ptr);
|
|
static void gc_mark_children(rb_objspace_t *objspace, VALUE ptr);
|
|
|
|
static size_t obj_memsize_of(VALUE obj, int use_tdata);
|
|
|
|
static double getrusage_time(void);
|
|
static inline void gc_prof_setup_new_record(rb_objspace_t *objspace, int reason);
|
|
static inline void gc_prof_timer_start(rb_objspace_t *);
|
|
static inline void gc_prof_timer_stop(rb_objspace_t *);
|
|
static inline void gc_prof_mark_timer_start(rb_objspace_t *);
|
|
static inline void gc_prof_mark_timer_stop(rb_objspace_t *);
|
|
static inline void gc_prof_sweep_timer_start(rb_objspace_t *);
|
|
static inline void gc_prof_sweep_timer_stop(rb_objspace_t *);
|
|
static inline void gc_prof_set_malloc_info(rb_objspace_t *);
|
|
static inline void gc_prof_set_heap_info(rb_objspace_t *);
|
|
|
|
#define gc_prof_record(objspace) (objspace)->profile.current_record
|
|
|
|
#define rgengc_report if (RGENGC_DEBUG) rgengc_report_body
|
|
static void rgengc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...);
|
|
static const char * type_name(int type, VALUE obj);
|
|
static const char *obj_type_name(VALUE obj);
|
|
|
|
#if USE_RGENGC
|
|
static int rgengc_remembered(rb_objspace_t *objspace, VALUE obj);
|
|
static int rgengc_remember(rb_objspace_t *objspace, VALUE obj);
|
|
static void rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap);
|
|
static void rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap);
|
|
|
|
#define FL_TEST2(x,f) ((RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) ? (rb_bug("FL_TEST2: SPECIAL_CONST"), 0) : FL_TEST_RAW((x),(f)) != 0)
|
|
#define FL_SET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_SET2: SPECIAL_CONST"); RBASIC(x)->flags |= (f);} while (0)
|
|
#define FL_UNSET2(x,f) do {if (RGENGC_CHECK_MODE && SPECIAL_CONST_P(x)) rb_bug("FL_UNSET2: SPECIAL_CONST"); RBASIC(x)->flags &= ~(f);} while (0)
|
|
|
|
#define RVALUE_RAW_SHADY(obj) (!FL_TEST2((obj), FL_WB_PROTECTED))
|
|
#define RVALUE_SHADY(obj) RVALUE_RAW_SHADY(check_gen_consistency((VALUE)obj))
|
|
|
|
#define RVALUE_OLDEGN_BITMAP(obj) MARKED_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), (obj))
|
|
|
|
static inline int is_pointer_to_heap(rb_objspace_t *objspace, void *ptr);
|
|
static inline int gc_marked(rb_objspace_t *objspace, VALUE ptr);
|
|
|
|
static inline VALUE
|
|
check_gen_consistency(VALUE obj)
|
|
{
|
|
if (RGENGC_CHECK_MODE > 0) {
|
|
int old_flag = RVALUE_OLDEGN_BITMAP(obj) != 0;
|
|
int promoted_flag = FL_TEST2(obj, FL_PROMOTED);
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
obj_memsize_of((VALUE)obj, FALSE);
|
|
|
|
if (!is_pointer_to_heap(objspace, (void *)obj)) {
|
|
rb_bug("check_gen_consistency: %p (%s) is not Ruby object.", (void *)obj, obj_type_name(obj));
|
|
}
|
|
|
|
if (promoted_flag) {
|
|
if (RVALUE_RAW_SHADY(obj)) {
|
|
const char *type = old_flag ? "old" : "young";
|
|
rb_bug("check_gen_consistency: %p (%s) is shady, but %s object.", (void *)obj, obj_type_name(obj), type);
|
|
}
|
|
|
|
#if !RGENGC_THREEGEN
|
|
if (!old_flag) {
|
|
rb_bug("check_gen_consistency: %p (%s) is not infant, but is not old (on 2gen).", (void *)obj, obj_type_name(obj));
|
|
}
|
|
#endif
|
|
|
|
if (old_flag && objspace->rgengc.during_minor_gc && !gc_marked(objspace, obj)) {
|
|
rb_bug("check_gen_consistency: %p (%s) is old, but is not marked while minor marking.", (void *)obj, obj_type_name(obj));
|
|
}
|
|
}
|
|
else {
|
|
if (old_flag) {
|
|
rb_bug("check_gen_consistency: %p (%s) is not infant, but is old.", (void *)obj, obj_type_name(obj));
|
|
}
|
|
}
|
|
}
|
|
return obj;
|
|
}
|
|
|
|
static inline VALUE
|
|
RVALUE_INFANT_P(VALUE obj)
|
|
{
|
|
check_gen_consistency(obj);
|
|
return !FL_TEST2(obj, FL_PROMOTED);
|
|
}
|
|
|
|
static inline VALUE
|
|
RVALUE_OLD_BITMAP_P(VALUE obj)
|
|
{
|
|
check_gen_consistency(obj);
|
|
return (RVALUE_OLDEGN_BITMAP(obj) != 0);
|
|
}
|
|
|
|
static inline VALUE
|
|
RVALUE_OLD_P(VALUE obj)
|
|
{
|
|
check_gen_consistency(obj);
|
|
#if RGENGC_THREEGEN
|
|
return FL_TEST2(obj, FL_PROMOTED) && RVALUE_OLD_BITMAP_P(obj);
|
|
#else
|
|
return FL_TEST2(obj, FL_PROMOTED);
|
|
#endif
|
|
}
|
|
|
|
static inline VALUE
|
|
RVALUE_PROMOTED_P(VALUE obj)
|
|
{
|
|
check_gen_consistency(obj);
|
|
return FL_TEST2(obj, FL_PROMOTED);
|
|
}
|
|
|
|
static inline void
|
|
RVALUE_PROMOTE_INFANT(VALUE obj)
|
|
{
|
|
check_gen_consistency(obj);
|
|
if (RGENGC_CHECK_MODE && !RVALUE_INFANT_P(obj)) rb_bug("RVALUE_PROMOTE_INFANT: %p (%s) is not infant object.", (void *)obj, obj_type_name(obj));
|
|
FL_SET2(obj, FL_PROMOTED);
|
|
#if !RGENGC_THREEGEN
|
|
MARK_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj);
|
|
#endif
|
|
check_gen_consistency(obj);
|
|
|
|
#if RGENGC_PROFILE >= 1
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
objspace->profile.promote_infant_count++;
|
|
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.promote_infant_types[BUILTIN_TYPE(obj)]++;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if RGENGC_THREEGEN
|
|
/*
|
|
* Two gen: Infant -> Old.
|
|
* Three gen: Infant -> Young -> Old.
|
|
*/
|
|
static inline VALUE
|
|
RVALUE_YOUNG_P(VALUE obj)
|
|
{
|
|
check_gen_consistency(obj);
|
|
return FL_TEST2(obj, FL_PROMOTED) && (RVALUE_OLDEGN_BITMAP(obj) == 0);
|
|
}
|
|
|
|
static inline void
|
|
RVALUE_PROMOTE_YOUNG(VALUE obj)
|
|
{
|
|
check_gen_consistency(obj);
|
|
if (RGENGC_CHECK_MODE && !RVALUE_YOUNG_P(obj)) rb_bug("RVALUE_PROMOTE_YOUNG: %p (%s) is not young object.", (void *)obj, obj_type_name(obj));
|
|
MARK_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj);
|
|
check_gen_consistency(obj);
|
|
|
|
#if RGENGC_PROFILE >= 1
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
objspace->profile.promote_young_count++;
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.promote_young_types[BUILTIN_TYPE(obj)]++;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
RVALUE_DEMOTE_FROM_YOUNG(VALUE obj)
|
|
{
|
|
if (RGENGC_CHECK_MODE && !RVALUE_YOUNG_P(obj))
|
|
rb_bug("RVALUE_DEMOTE_FROM_YOUNG: %p (%s) is not young object.", (void *)obj, obj_type_name(obj));
|
|
|
|
check_gen_consistency(obj);
|
|
FL_UNSET2(obj, FL_PROMOTED);
|
|
check_gen_consistency(obj);
|
|
}
|
|
#endif
|
|
|
|
static inline void
|
|
RVALUE_DEMOTE_FROM_OLD(VALUE obj)
|
|
{
|
|
if (RGENGC_CHECK_MODE && !RVALUE_OLD_P(obj))
|
|
rb_bug("RVALUE_DEMOTE_FROM_OLD: %p (%s) is not old object.", (void *)obj, obj_type_name(obj));
|
|
|
|
check_gen_consistency(obj);
|
|
FL_UNSET2(obj, FL_PROMOTED);
|
|
CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj), obj);
|
|
check_gen_consistency(obj);
|
|
}
|
|
|
|
#endif /* USE_RGENGC */
|
|
|
|
/*
|
|
--------------------------- ObjectSpace -----------------------------
|
|
*/
|
|
|
|
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
|
|
rb_objspace_t *
|
|
rb_objspace_alloc(void)
|
|
{
|
|
rb_objspace_t *objspace = malloc(sizeof(rb_objspace_t));
|
|
memset(objspace, 0, sizeof(*objspace));
|
|
ruby_gc_stress = ruby_initial_gc_stress;
|
|
|
|
malloc_limit = gc_params.malloc_limit_min;
|
|
#if RGENGC_ESTIMATE_OLDSPACE
|
|
objspace->rgengc.oldspace_increase_limit = gc_params.oldspace_limit_min;
|
|
#endif
|
|
|
|
return objspace;
|
|
}
|
|
#endif
|
|
|
|
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
|
|
static void free_stack_chunks(mark_stack_t *);
|
|
static void heap_page_free(rb_objspace_t *objspace, struct heap_page *page);
|
|
|
|
void
|
|
rb_objspace_free(rb_objspace_t *objspace)
|
|
{
|
|
gc_rest_sweep(objspace);
|
|
|
|
if (objspace->profile.records) {
|
|
free(objspace->profile.records);
|
|
objspace->profile.records = 0;
|
|
}
|
|
|
|
if (global_List) {
|
|
struct gc_list *list, *next;
|
|
for (list = global_List; list; list = next) {
|
|
next = list->next;
|
|
xfree(list);
|
|
}
|
|
}
|
|
if (heap_pages_sorted) {
|
|
size_t i;
|
|
for (i = 0; i < heap_pages_used; ++i) {
|
|
heap_page_free(objspace, heap_pages_sorted[i]);
|
|
}
|
|
free(heap_pages_sorted);
|
|
heap_pages_used = 0;
|
|
heap_pages_length = 0;
|
|
heap_pages_lomem = 0;
|
|
heap_pages_himem = 0;
|
|
|
|
objspace->eden_heap.used = 0;
|
|
objspace->eden_heap.limit = 0;
|
|
objspace->eden_heap.pages = NULL;
|
|
}
|
|
free_stack_chunks(&objspace->mark_stack);
|
|
free(objspace);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
heap_pages_expand_sorted(rb_objspace_t *objspace)
|
|
{
|
|
size_t next_length = heap_pages_increment;
|
|
next_length += heap_eden->used;
|
|
next_length += heap_tomb->used;
|
|
|
|
if (next_length > heap_pages_length) {
|
|
struct heap_page **sorted;
|
|
size_t size = next_length * sizeof(struct heap_page *);
|
|
|
|
rgengc_report(3, objspace, "heap_pages_expand_sorted: next_length: %d, size: %d\n", (int)next_length, (int)size);
|
|
|
|
if (heap_pages_length > 0) {
|
|
sorted = (struct heap_page **)realloc(heap_pages_sorted, size);
|
|
if (sorted) heap_pages_sorted = sorted;
|
|
}
|
|
else {
|
|
sorted = heap_pages_sorted = (struct heap_page **)malloc(size);
|
|
}
|
|
|
|
if (sorted == 0) {
|
|
during_gc = 0;
|
|
rb_memerror();
|
|
}
|
|
|
|
heap_pages_length = next_length;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
heap_page_add_freeobj(rb_objspace_t *objspace, struct heap_page *page, VALUE obj)
|
|
{
|
|
RVALUE *p = (RVALUE *)obj;
|
|
p->as.free.flags = 0;
|
|
p->as.free.next = page->freelist;
|
|
page->freelist = p;
|
|
rgengc_report(3, objspace, "heap_page_add_freeobj: %p (%s) is added to freelist\n", p, obj_type_name(obj));
|
|
}
|
|
|
|
static inline void
|
|
heap_add_freepage(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
|
|
{
|
|
if (page->freelist) {
|
|
page->free_next = heap->free_pages;
|
|
heap->free_pages = page;
|
|
}
|
|
}
|
|
|
|
static void
|
|
heap_unlink_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
|
|
{
|
|
if (page->prev) page->prev->next = page->next;
|
|
if (page->next) page->next->prev = page->prev;
|
|
if (heap->pages == page) heap->pages = page->next;
|
|
page->prev = NULL;
|
|
page->next = NULL;
|
|
page->heap = NULL;
|
|
heap->used--;
|
|
heap->limit -= page->limit;
|
|
}
|
|
|
|
static void
|
|
heap_page_free(rb_objspace_t *objspace, struct heap_page *page)
|
|
{
|
|
heap_pages_used--;
|
|
aligned_free(page->body);
|
|
free(page);
|
|
}
|
|
|
|
static void
|
|
heap_pages_free_unused_pages(rb_objspace_t *objspace)
|
|
{
|
|
size_t i, j;
|
|
|
|
for (i = j = 1; j < heap_pages_used; i++) {
|
|
struct heap_page *page = heap_pages_sorted[i];
|
|
|
|
if (page->heap == heap_tomb && page->final_num == 0) {
|
|
if (heap_pages_swept_slots - page->limit > heap_pages_max_free_slots) {
|
|
if (0) fprintf(stderr, "heap_pages_free_unused_pages: %d free page %p, heap_pages_swept_slots: %d, heap_pages_max_free_slots: %d\n",
|
|
(int)i, page, (int)heap_pages_swept_slots, (int)heap_pages_max_free_slots);
|
|
heap_pages_swept_slots -= page->limit;
|
|
heap_unlink_page(objspace, heap_tomb, page);
|
|
heap_page_free(objspace, page);
|
|
continue;
|
|
}
|
|
else {
|
|
/* fprintf(stderr, "heap_pages_free_unused_pages: remain!!\n"); */
|
|
}
|
|
}
|
|
if (i != j) {
|
|
heap_pages_sorted[j] = page;
|
|
}
|
|
j++;
|
|
}
|
|
assert(j == heap_pages_used);
|
|
}
|
|
|
|
static struct heap_page *
|
|
heap_page_allocate(rb_objspace_t *objspace)
|
|
{
|
|
RVALUE *start, *end, *p;
|
|
struct heap_page *page;
|
|
struct heap_page_body *page_body = 0;
|
|
size_t hi, lo, mid;
|
|
size_t limit = HEAP_OBJ_LIMIT;
|
|
|
|
/* assign heap_page body (contains heap_page_header and RVALUEs) */
|
|
page_body = (struct heap_page_body *)aligned_malloc(HEAP_ALIGN, HEAP_SIZE);
|
|
if (page_body == 0) {
|
|
during_gc = 0;
|
|
rb_memerror();
|
|
}
|
|
|
|
/* assign heap_page entry */
|
|
page = (struct heap_page *)malloc(sizeof(struct heap_page));
|
|
if (page == 0) {
|
|
aligned_free(page_body);
|
|
during_gc = 0;
|
|
rb_memerror();
|
|
}
|
|
MEMZERO((void*)page, struct heap_page, 1);
|
|
|
|
page->body = page_body;
|
|
|
|
/* setup heap_pages_sorted */
|
|
lo = 0;
|
|
hi = heap_pages_used;
|
|
while (lo < hi) {
|
|
struct heap_page *mid_page;
|
|
|
|
mid = (lo + hi) / 2;
|
|
mid_page = heap_pages_sorted[mid];
|
|
if (mid_page->body < page_body) {
|
|
lo = mid + 1;
|
|
}
|
|
else if (mid_page->body > page_body) {
|
|
hi = mid;
|
|
}
|
|
else {
|
|
rb_bug("same heap page is allocated: %p at %"PRIuVALUE, (void *)page_body, (VALUE)mid);
|
|
}
|
|
}
|
|
if (hi < heap_pages_used) {
|
|
MEMMOVE(&heap_pages_sorted[hi+1], &heap_pages_sorted[hi], struct heap_page_header*, heap_pages_used - hi);
|
|
}
|
|
|
|
heap_pages_sorted[hi] = page;
|
|
|
|
heap_pages_used++;
|
|
assert(heap_pages_used <= heap_pages_length);
|
|
|
|
/* adjust obj_limit (object number available in this page) */
|
|
start = (RVALUE*)((VALUE)page_body + sizeof(struct heap_page_header));
|
|
if ((VALUE)start % sizeof(RVALUE) != 0) {
|
|
int delta = (int)(sizeof(RVALUE) - ((VALUE)start % sizeof(RVALUE)));
|
|
start = (RVALUE*)((VALUE)start + delta);
|
|
limit = (HEAP_SIZE - (size_t)((VALUE)start - (VALUE)page_body))/sizeof(RVALUE);
|
|
}
|
|
end = start + limit;
|
|
|
|
if (heap_pages_lomem == 0 || heap_pages_lomem > start) heap_pages_lomem = start;
|
|
if (heap_pages_himem < end) heap_pages_himem = end;
|
|
|
|
page->start = start;
|
|
page->limit = limit;
|
|
page_body->header.page = page;
|
|
|
|
for (p = start; p != end; p++) {
|
|
rgengc_report(3, objspace, "assign_heap_page: %p is added to freelist\n");
|
|
heap_page_add_freeobj(objspace, page, (VALUE)p);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
static struct heap_page *
|
|
heap_page_resurrect(rb_objspace_t *objspace)
|
|
{
|
|
struct heap_page *page;
|
|
|
|
if ((page = heap_tomb->pages) != NULL) {
|
|
heap_unlink_page(objspace, heap_tomb, page);
|
|
return page;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct heap_page *
|
|
heap_page_create(rb_objspace_t *objspace)
|
|
{
|
|
struct heap_page *page = heap_page_resurrect(objspace);
|
|
const char *method = "recycle";
|
|
if (page == NULL) {
|
|
page = heap_page_allocate(objspace);
|
|
method = "allocate";
|
|
}
|
|
if (0) fprintf(stderr, "heap_page_create: %s - %p, heap_pages_used: %d, heap_pages_used: %d, tomb->used: %d\n",
|
|
method, page, (int)heap_pages_length, (int)heap_pages_used, (int)heap_tomb->used);
|
|
return page;
|
|
}
|
|
|
|
static void
|
|
heap_add_page(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *page)
|
|
{
|
|
page->heap = heap;
|
|
page->next = heap->pages;
|
|
if (heap->pages) heap->pages->prev = page;
|
|
heap->pages = page;
|
|
heap->used++;
|
|
heap->limit += page->limit;
|
|
}
|
|
|
|
static void
|
|
heap_assign_page(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
struct heap_page *page = heap_page_create(objspace);
|
|
heap_add_page(objspace, heap, page);
|
|
heap_add_freepage(objspace, heap, page);
|
|
}
|
|
|
|
static void
|
|
heap_add_pages(rb_objspace_t *objspace, rb_heap_t *heap, size_t add)
|
|
{
|
|
size_t i;
|
|
|
|
heap_pages_increment = add;
|
|
heap_pages_expand_sorted(objspace);
|
|
for (i = 0; i < add; i++) {
|
|
heap_assign_page(objspace, heap);
|
|
}
|
|
heap_pages_increment = 0;
|
|
}
|
|
|
|
static void
|
|
heap_set_increment(rb_objspace_t *objspace, size_t minimum_limit)
|
|
{
|
|
size_t used = heap_pages_used - heap_tomb->used;
|
|
size_t next_used_limit = (size_t)(used * gc_params.growth_factor);
|
|
if (gc_params.growth_max_slots > 0) {
|
|
size_t max_used_limit = (size_t)(used + gc_params.growth_max_slots/HEAP_OBJ_LIMIT);
|
|
if (next_used_limit > max_used_limit) next_used_limit = max_used_limit;
|
|
}
|
|
if (next_used_limit == heap_pages_used) next_used_limit++;
|
|
|
|
if (next_used_limit < minimum_limit) {
|
|
next_used_limit = minimum_limit;
|
|
}
|
|
|
|
heap_pages_increment = next_used_limit - used;
|
|
heap_pages_expand_sorted(objspace);
|
|
|
|
if (0) fprintf(stderr, "heap_set_increment: heap_pages_length: %d, heap_pages_used: %d, heap_pages_increment: %d, next_used_limit: %d\n",
|
|
(int)heap_pages_length, (int)heap_pages_used, (int)heap_pages_increment, (int)next_used_limit);
|
|
}
|
|
|
|
static int
|
|
heap_increment(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
rgengc_report(5, objspace, "heap_increment: heap_pages_length: %d, heap_pages_inc: %d, heap->used: %d\n",
|
|
(int)heap_pages_length, (int)heap_pages_increment, (int)heap->used);
|
|
|
|
if (heap_pages_increment > 0) {
|
|
heap_pages_increment--;
|
|
heap_assign_page(objspace, heap);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
static struct heap_page *
|
|
heap_prepare_freepage(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
if (!GC_ENABLE_LAZY_SWEEP && objspace->flags.dont_lazy_sweep) {
|
|
if (heap_increment(objspace, heap) == 0 &&
|
|
garbage_collect(objspace, FALSE, TRUE, GPR_FLAG_NEWOBJ) == 0) {
|
|
goto err;
|
|
}
|
|
goto ok;
|
|
}
|
|
|
|
if (!heap_ready_to_gc(objspace, heap)) return heap->free_pages;
|
|
|
|
during_gc++;
|
|
|
|
if ((is_lazy_sweeping(heap) && gc_heap_lazy_sweep(objspace, heap)) || heap_increment(objspace, heap)) {
|
|
goto ok;
|
|
}
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
objspace->profile.prepare_time = 0;
|
|
#endif
|
|
if (garbage_collect_body(objspace, 0, 0, GPR_FLAG_NEWOBJ) == 0) {
|
|
err:
|
|
during_gc = 0;
|
|
rb_memerror();
|
|
}
|
|
ok:
|
|
during_gc = 0;
|
|
return heap->free_pages;
|
|
}
|
|
|
|
static inline struct heap_page *
|
|
heap_get_freepage(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
struct heap_page *page;
|
|
|
|
page = heap->free_pages;
|
|
while (page == NULL) {
|
|
page = heap_prepare_freepage(objspace, heap);
|
|
}
|
|
heap->free_pages = page->free_next;
|
|
|
|
return page;
|
|
}
|
|
|
|
static inline VALUE
|
|
heap_get_freeobj(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
RVALUE *p = heap->freelist;
|
|
|
|
while (UNLIKELY(p == NULL)) {
|
|
struct heap_page *page = heap_get_freepage(objspace, heap);
|
|
heap->using_page = page;
|
|
p = heap->freelist = page->freelist;
|
|
page->freelist = NULL;
|
|
}
|
|
heap->freelist = p->as.free.next;
|
|
|
|
return (VALUE)p;
|
|
}
|
|
|
|
void
|
|
rb_objspace_set_event_hook(const rb_event_flag_t event)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
objspace->hook_events = event & RUBY_INTERNAL_EVENT_OBJSPACE_MASK;
|
|
}
|
|
|
|
static void
|
|
gc_event_hook_body(rb_objspace_t *objspace, const rb_event_flag_t event, VALUE data)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
EXEC_EVENT_HOOK(th, event, th->cfp->self, 0, 0, data);
|
|
}
|
|
|
|
#define gc_event_hook(objspace, event, data) do { \
|
|
if (UNLIKELY((objspace)->hook_events & (event))) { \
|
|
gc_event_hook_body((objspace), (event), (data)); \
|
|
} \
|
|
} while (0)
|
|
|
|
static VALUE
|
|
newobj_of(VALUE klass, VALUE flags, VALUE v1, VALUE v2, VALUE v3)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE obj;
|
|
|
|
if (UNLIKELY(during_gc)) {
|
|
dont_gc = 1;
|
|
during_gc = 0;
|
|
rb_bug("object allocation during garbage collection phase");
|
|
}
|
|
|
|
if (UNLIKELY(ruby_gc_stress && !ruby_disable_gc_stress)) {
|
|
if (!garbage_collect(objspace, FALSE, FALSE, GPR_FLAG_NEWOBJ)) {
|
|
during_gc = 0;
|
|
rb_memerror();
|
|
}
|
|
}
|
|
|
|
obj = heap_get_freeobj(objspace, heap_eden);
|
|
|
|
/* OBJSETUP */
|
|
RBASIC(obj)->flags = flags;
|
|
RBASIC_SET_CLASS(obj, klass);
|
|
if (rb_safe_level() >= 3) FL_SET((obj), FL_TAINT);
|
|
RANY(obj)->as.values.v1 = v1;
|
|
RANY(obj)->as.values.v2 = v2;
|
|
RANY(obj)->as.values.v3 = v3;
|
|
|
|
#if GC_DEBUG
|
|
RANY(obj)->file = rb_sourcefile();
|
|
RANY(obj)->line = rb_sourceline();
|
|
assert(!SPECIAL_CONST_P(obj)); /* check alignment */
|
|
#endif
|
|
|
|
#if RGENGC_PROFILE
|
|
if (flags & FL_WB_PROTECTED) {
|
|
objspace->profile.generated_normal_object_count++;
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.generated_normal_object_count_types[BUILTIN_TYPE(obj)]++;
|
|
#endif
|
|
}
|
|
else {
|
|
objspace->profile.generated_shady_object_count++;
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.generated_shady_object_count_types[BUILTIN_TYPE(obj)]++;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
rgengc_report(5, objspace, "newobj: %p (%s)\n", (void *)obj, obj_type_name(obj));
|
|
|
|
#if USE_RGENGC && RGENGC_CHECK_MODE
|
|
if (RVALUE_PROMOTED_P(obj)) rb_bug("newobj: %p (%s) is promoted.\n", (void *)obj, obj_type_name(obj));
|
|
if (rgengc_remembered(objspace, (VALUE)obj)) rb_bug("newobj: %p (%s) is remembered.\n", (void *)obj, obj_type_name(obj));
|
|
#endif
|
|
|
|
objspace->profile.total_allocated_object_num++;
|
|
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_NEWOBJ, obj);
|
|
|
|
return obj;
|
|
}
|
|
|
|
VALUE
|
|
rb_newobj(void)
|
|
{
|
|
return newobj_of(0, T_NONE, 0, 0, 0);
|
|
}
|
|
|
|
VALUE
|
|
rb_newobj_of(VALUE klass, VALUE flags)
|
|
{
|
|
return newobj_of(klass, flags, 0, 0, 0);
|
|
}
|
|
|
|
NODE*
|
|
rb_node_newnode(enum node_type type, VALUE a0, VALUE a1, VALUE a2)
|
|
{
|
|
NODE *n = (NODE *)newobj_of(0, T_NODE, a0, a1, a2);
|
|
nd_set_type(n, type);
|
|
return n;
|
|
}
|
|
|
|
VALUE
|
|
rb_data_object_alloc(VALUE klass, void *datap, RUBY_DATA_FUNC dmark, RUBY_DATA_FUNC dfree)
|
|
{
|
|
if (klass) Check_Type(klass, T_CLASS);
|
|
return newobj_of(klass, T_DATA, (VALUE)dmark, (VALUE)dfree, (VALUE)datap);
|
|
}
|
|
|
|
VALUE
|
|
rb_data_typed_object_alloc(VALUE klass, void *datap, const rb_data_type_t *type)
|
|
{
|
|
if (klass) Check_Type(klass, T_CLASS);
|
|
return newobj_of(klass, T_DATA | (type->flags & ~T_MASK), (VALUE)type, (VALUE)1, (VALUE)datap);
|
|
}
|
|
|
|
size_t
|
|
rb_objspace_data_type_memsize(VALUE obj)
|
|
{
|
|
if (RTYPEDDATA_P(obj) && RTYPEDDATA_TYPE(obj)->function.dsize) {
|
|
return RTYPEDDATA_TYPE(obj)->function.dsize(RTYPEDDATA_DATA(obj));
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
const char *
|
|
rb_objspace_data_type_name(VALUE obj)
|
|
{
|
|
if (RTYPEDDATA_P(obj)) {
|
|
return RTYPEDDATA_TYPE(obj)->wrap_struct_name;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
is_pointer_to_heap(rb_objspace_t *objspace, void *ptr)
|
|
{
|
|
register RVALUE *p = RANY(ptr);
|
|
register struct heap_page *page;
|
|
register size_t hi, lo, mid;
|
|
|
|
if (p < heap_pages_lomem || p > heap_pages_himem) return FALSE;
|
|
if ((VALUE)p % sizeof(RVALUE) != 0) return FALSE;
|
|
|
|
/* check if p looks like a pointer using bsearch*/
|
|
lo = 0;
|
|
hi = heap_pages_used;
|
|
while (lo < hi) {
|
|
mid = (lo + hi) / 2;
|
|
page = heap_pages_sorted[mid];
|
|
if (page->start <= p) {
|
|
if (p < page->start + page->limit) {
|
|
return TRUE;
|
|
}
|
|
lo = mid + 1;
|
|
}
|
|
else {
|
|
hi = mid;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
static int
|
|
free_method_entry_i(ID key, rb_method_entry_t *me, st_data_t data)
|
|
{
|
|
if (!me->mark) {
|
|
rb_free_method_entry(me);
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
void
|
|
rb_free_m_table(st_table *tbl)
|
|
{
|
|
st_foreach(tbl, free_method_entry_i, 0);
|
|
st_free_table(tbl);
|
|
}
|
|
|
|
static int
|
|
free_const_entry_i(ID key, rb_const_entry_t *ce, st_data_t data)
|
|
{
|
|
xfree(ce);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
void
|
|
rb_free_const_table(st_table *tbl)
|
|
{
|
|
st_foreach(tbl, free_const_entry_i, 0);
|
|
st_free_table(tbl);
|
|
}
|
|
|
|
static inline void
|
|
make_deferred(rb_objspace_t *objspace,RVALUE *p)
|
|
{
|
|
p->as.basic.flags = T_ZOMBIE;
|
|
p->as.free.next = heap_pages_deferred_final;
|
|
heap_pages_deferred_final = p;
|
|
}
|
|
|
|
static inline void
|
|
make_io_deferred(rb_objspace_t *objspace,RVALUE *p)
|
|
{
|
|
rb_io_t *fptr = p->as.file.fptr;
|
|
make_deferred(objspace, p);
|
|
p->as.data.dfree = (void (*)(void*))rb_io_fptr_finalize;
|
|
p->as.data.data = fptr;
|
|
}
|
|
|
|
static int
|
|
obj_free(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_FREEOBJ, obj);
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_NIL:
|
|
case T_FIXNUM:
|
|
case T_TRUE:
|
|
case T_FALSE:
|
|
rb_bug("obj_free() called for broken object");
|
|
break;
|
|
}
|
|
|
|
if (FL_TEST(obj, FL_EXIVAR)) {
|
|
rb_free_generic_ivar((VALUE)obj);
|
|
FL_UNSET(obj, FL_EXIVAR);
|
|
}
|
|
|
|
#if USE_RGENGC
|
|
if (MARKED_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj),obj))
|
|
CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(obj),obj);
|
|
#endif
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_OBJECT:
|
|
if (!(RANY(obj)->as.basic.flags & ROBJECT_EMBED) &&
|
|
RANY(obj)->as.object.as.heap.ivptr) {
|
|
xfree(RANY(obj)->as.object.as.heap.ivptr);
|
|
}
|
|
break;
|
|
case T_MODULE:
|
|
case T_CLASS:
|
|
if (RCLASS_M_TBL(obj)) {
|
|
rb_free_m_table(RCLASS_M_TBL(obj));
|
|
}
|
|
if (RCLASS_IV_TBL(obj)) {
|
|
st_free_table(RCLASS_IV_TBL(obj));
|
|
}
|
|
if (RCLASS_CONST_TBL(obj)) {
|
|
rb_free_const_table(RCLASS_CONST_TBL(obj));
|
|
}
|
|
if (RCLASS_IV_INDEX_TBL(obj)) {
|
|
st_free_table(RCLASS_IV_INDEX_TBL(obj));
|
|
}
|
|
if (RCLASS_EXT(obj)->subclasses) {
|
|
if (BUILTIN_TYPE(obj) == T_MODULE) {
|
|
rb_class_detach_module_subclasses(obj);
|
|
}
|
|
else {
|
|
rb_class_detach_subclasses(obj);
|
|
}
|
|
RCLASS_EXT(obj)->subclasses = NULL;
|
|
}
|
|
rb_class_remove_from_module_subclasses(obj);
|
|
rb_class_remove_from_super_subclasses(obj);
|
|
if (RANY(obj)->as.klass.ptr)
|
|
xfree(RANY(obj)->as.klass.ptr);
|
|
RANY(obj)->as.klass.ptr = NULL;
|
|
break;
|
|
case T_STRING:
|
|
rb_str_free(obj);
|
|
break;
|
|
case T_ARRAY:
|
|
rb_ary_free(obj);
|
|
break;
|
|
case T_HASH:
|
|
if (RANY(obj)->as.hash.ntbl) {
|
|
st_free_table(RANY(obj)->as.hash.ntbl);
|
|
}
|
|
break;
|
|
case T_REGEXP:
|
|
if (RANY(obj)->as.regexp.ptr) {
|
|
onig_free(RANY(obj)->as.regexp.ptr);
|
|
}
|
|
break;
|
|
case T_DATA:
|
|
if (DATA_PTR(obj)) {
|
|
int free_immediately = FALSE;
|
|
|
|
if (RTYPEDDATA_P(obj)) {
|
|
free_immediately = (RANY(obj)->as.typeddata.type->flags & RUBY_TYPED_FREE_IMMEDIATELY) != 0;
|
|
RDATA(obj)->dfree = RANY(obj)->as.typeddata.type->function.dfree;
|
|
if (0 && free_immediately == 0) /* to expose non-free-immediate T_DATA */
|
|
fprintf(stderr, "not immediate -> %s\n", RANY(obj)->as.typeddata.type->wrap_struct_name);
|
|
}
|
|
if (RANY(obj)->as.data.dfree == RUBY_DEFAULT_FREE) {
|
|
xfree(DATA_PTR(obj));
|
|
}
|
|
else if (RANY(obj)->as.data.dfree) {
|
|
if (free_immediately) {
|
|
(RDATA(obj)->dfree)(DATA_PTR(obj));
|
|
}
|
|
else {
|
|
make_deferred(objspace, RANY(obj));
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case T_MATCH:
|
|
if (RANY(obj)->as.match.rmatch) {
|
|
struct rmatch *rm = RANY(obj)->as.match.rmatch;
|
|
onig_region_free(&rm->regs, 0);
|
|
if (rm->char_offset)
|
|
xfree(rm->char_offset);
|
|
xfree(rm);
|
|
}
|
|
break;
|
|
case T_FILE:
|
|
if (RANY(obj)->as.file.fptr) {
|
|
make_io_deferred(objspace, RANY(obj));
|
|
return 1;
|
|
}
|
|
break;
|
|
case T_RATIONAL:
|
|
case T_COMPLEX:
|
|
break;
|
|
case T_ICLASS:
|
|
/* iClass shares table with the module */
|
|
if (RCLASS_EXT(obj)->subclasses) {
|
|
rb_class_detach_subclasses(obj);
|
|
RCLASS_EXT(obj)->subclasses = NULL;
|
|
}
|
|
rb_class_remove_from_module_subclasses(obj);
|
|
rb_class_remove_from_super_subclasses(obj);
|
|
xfree(RANY(obj)->as.klass.ptr);
|
|
RANY(obj)->as.klass.ptr = NULL;
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) {
|
|
xfree(RBIGNUM_DIGITS(obj));
|
|
}
|
|
break;
|
|
case T_NODE:
|
|
switch (nd_type(obj)) {
|
|
case NODE_SCOPE:
|
|
if (RANY(obj)->as.node.u1.tbl) {
|
|
xfree(RANY(obj)->as.node.u1.tbl);
|
|
}
|
|
break;
|
|
case NODE_ARGS:
|
|
if (RANY(obj)->as.node.u3.args) {
|
|
xfree(RANY(obj)->as.node.u3.args);
|
|
}
|
|
break;
|
|
case NODE_ALLOCA:
|
|
xfree(RANY(obj)->as.node.u1.node);
|
|
break;
|
|
}
|
|
break; /* no need to free iv_tbl */
|
|
|
|
case T_STRUCT:
|
|
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
|
|
RANY(obj)->as.rstruct.as.heap.ptr) {
|
|
xfree((void *)RANY(obj)->as.rstruct.as.heap.ptr);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
rb_bug("gc_sweep(): unknown data type 0x%x(%p) 0x%"PRIxVALUE,
|
|
BUILTIN_TYPE(obj), (void*)obj, RBASIC(obj)->flags);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
Init_heap(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
heap_add_pages(objspace, heap_eden, gc_params.heap_init_slots / HEAP_OBJ_LIMIT);
|
|
|
|
init_mark_stack(&objspace->mark_stack);
|
|
|
|
#ifdef USE_SIGALTSTACK
|
|
{
|
|
/* altstack of another threads are allocated in another place */
|
|
rb_thread_t *th = GET_THREAD();
|
|
void *tmp = th->altstack;
|
|
th->altstack = malloc(rb_sigaltstack_size());
|
|
free(tmp); /* free previously allocated area */
|
|
}
|
|
#endif
|
|
|
|
objspace->profile.invoke_time = getrusage_time();
|
|
finalizer_table = st_init_numtable();
|
|
}
|
|
|
|
typedef int each_obj_callback(void *, void *, size_t, void *);
|
|
|
|
struct each_obj_args {
|
|
each_obj_callback *callback;
|
|
void *data;
|
|
};
|
|
|
|
static VALUE
|
|
objspace_each_objects(VALUE arg)
|
|
{
|
|
size_t i;
|
|
struct heap_page_body *last_body = 0;
|
|
struct heap_page *page;
|
|
RVALUE *pstart, *pend;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
struct each_obj_args *args = (struct each_obj_args *)arg;
|
|
|
|
i = 0;
|
|
while (i < heap_pages_used) {
|
|
while (0 < i && last_body < heap_pages_sorted[i-1]->body) i--;
|
|
while (i < heap_pages_used && heap_pages_sorted[i]->body <= last_body) i++;
|
|
if (heap_pages_used <= i) break;
|
|
|
|
page = heap_pages_sorted[i];
|
|
last_body = page->body;
|
|
|
|
pstart = page->start;
|
|
pend = pstart + page->limit;
|
|
|
|
if ((*args->callback)(pstart, pend, sizeof(RVALUE), args->data)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* rb_objspace_each_objects() is special C API to walk through
|
|
* Ruby object space. This C API is too difficult to use it.
|
|
* To be frank, you should not use it. Or you need to read the
|
|
* source code of this function and understand what this function does.
|
|
*
|
|
* 'callback' will be called several times (the number of heap page,
|
|
* at current implementation) with:
|
|
* vstart: a pointer to the first living object of the heap_page.
|
|
* vend: a pointer to next to the valid heap_page area.
|
|
* stride: a distance to next VALUE.
|
|
*
|
|
* If callback() returns non-zero, the iteration will be stopped.
|
|
*
|
|
* This is a sample callback code to iterate liveness objects:
|
|
*
|
|
* int
|
|
* sample_callback(void *vstart, void *vend, int stride, void *data) {
|
|
* VALUE v = (VALUE)vstart;
|
|
* for (; v != (VALUE)vend; v += stride) {
|
|
* if (RBASIC(v)->flags) { // liveness check
|
|
* // do something with live object 'v'
|
|
* }
|
|
* return 0; // continue to iteration
|
|
* }
|
|
*
|
|
* Note: 'vstart' is not a top of heap_page. This point the first
|
|
* living object to grasp at least one object to avoid GC issue.
|
|
* This means that you can not walk through all Ruby object page
|
|
* including freed object page.
|
|
*
|
|
* Note: On this implementation, 'stride' is same as sizeof(RVALUE).
|
|
* However, there are possibilities to pass variable values with
|
|
* 'stride' with some reasons. You must use stride instead of
|
|
* use some constant value in the iteration.
|
|
*/
|
|
void
|
|
rb_objspace_each_objects(each_obj_callback *callback, void *data)
|
|
{
|
|
struct each_obj_args args;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
gc_rest_sweep(objspace);
|
|
objspace->flags.dont_lazy_sweep = TRUE;
|
|
|
|
args.callback = callback;
|
|
args.data = data;
|
|
rb_ensure(objspace_each_objects, (VALUE)&args, lazy_sweep_enable, Qnil);
|
|
}
|
|
|
|
struct os_each_struct {
|
|
size_t num;
|
|
VALUE of;
|
|
};
|
|
|
|
static int
|
|
internal_object_p(VALUE obj)
|
|
{
|
|
RVALUE *p = (RVALUE *)obj;
|
|
|
|
if (p->as.basic.flags) {
|
|
switch (BUILTIN_TYPE(p)) {
|
|
case T_NONE:
|
|
case T_ICLASS:
|
|
case T_NODE:
|
|
case T_ZOMBIE:
|
|
break;
|
|
case T_CLASS:
|
|
if (FL_TEST(p, FL_SINGLETON))
|
|
break;
|
|
default:
|
|
if (!p->as.basic.klass) break;
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
rb_objspace_internal_object_p(VALUE obj)
|
|
{
|
|
return internal_object_p(obj);
|
|
}
|
|
|
|
static int
|
|
os_obj_of_i(void *vstart, void *vend, size_t stride, void *data)
|
|
{
|
|
struct os_each_struct *oes = (struct os_each_struct *)data;
|
|
RVALUE *p = (RVALUE *)vstart, *pend = (RVALUE *)vend;
|
|
|
|
for (; p != pend; p++) {
|
|
volatile VALUE v = (VALUE)p;
|
|
if (!internal_object_p(v)) {
|
|
if (!oes->of || rb_obj_is_kind_of(v, oes->of)) {
|
|
rb_yield(v);
|
|
oes->num++;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static VALUE
|
|
os_obj_of(VALUE of)
|
|
{
|
|
struct os_each_struct oes;
|
|
|
|
oes.num = 0;
|
|
oes.of = of;
|
|
rb_objspace_each_objects(os_obj_of_i, &oes);
|
|
return SIZET2NUM(oes.num);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.each_object([module]) {|obj| ... } -> fixnum
|
|
* ObjectSpace.each_object([module]) -> an_enumerator
|
|
*
|
|
* Calls the block once for each living, nonimmediate object in this
|
|
* Ruby process. If <i>module</i> is specified, calls the block
|
|
* for only those classes or modules that match (or are a subclass of)
|
|
* <i>module</i>. Returns the number of objects found. Immediate
|
|
* objects (<code>Fixnum</code>s, <code>Symbol</code>s
|
|
* <code>true</code>, <code>false</code>, and <code>nil</code>) are
|
|
* never returned. In the example below, <code>each_object</code>
|
|
* returns both the numbers we defined and several constants defined in
|
|
* the <code>Math</code> module.
|
|
*
|
|
* If no block is given, an enumerator is returned instead.
|
|
*
|
|
* a = 102.7
|
|
* b = 95 # Won't be returned
|
|
* c = 12345678987654321
|
|
* count = ObjectSpace.each_object(Numeric) {|x| p x }
|
|
* puts "Total count: #{count}"
|
|
*
|
|
* <em>produces:</em>
|
|
*
|
|
* 12345678987654321
|
|
* 102.7
|
|
* 2.71828182845905
|
|
* 3.14159265358979
|
|
* 2.22044604925031e-16
|
|
* 1.7976931348623157e+308
|
|
* 2.2250738585072e-308
|
|
* Total count: 7
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
os_each_obj(int argc, VALUE *argv, VALUE os)
|
|
{
|
|
VALUE of;
|
|
|
|
if (argc == 0) {
|
|
of = 0;
|
|
}
|
|
else {
|
|
rb_scan_args(argc, argv, "01", &of);
|
|
}
|
|
RETURN_ENUMERATOR(os, 1, &of);
|
|
return os_obj_of(of);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.undefine_finalizer(obj)
|
|
*
|
|
* Removes all finalizers for <i>obj</i>.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
undefine_final(VALUE os, VALUE obj)
|
|
{
|
|
return rb_undefine_finalizer(obj);
|
|
}
|
|
|
|
VALUE
|
|
rb_undefine_finalizer(VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
st_data_t data = obj;
|
|
rb_check_frozen(obj);
|
|
st_delete(finalizer_table, &data, 0);
|
|
FL_UNSET(obj, FL_FINALIZE);
|
|
return obj;
|
|
}
|
|
|
|
static void
|
|
should_be_callable(VALUE block)
|
|
{
|
|
if (!rb_obj_respond_to(block, rb_intern("call"), TRUE)) {
|
|
rb_raise(rb_eArgError, "wrong type argument %s (should be callable)",
|
|
rb_obj_classname(block));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.define_finalizer(obj, aProc=proc())
|
|
*
|
|
* Adds <i>aProc</i> as a finalizer, to be called after <i>obj</i>
|
|
* was destroyed.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
define_final(int argc, VALUE *argv, VALUE os)
|
|
{
|
|
VALUE obj, block;
|
|
|
|
rb_scan_args(argc, argv, "11", &obj, &block);
|
|
rb_check_frozen(obj);
|
|
if (argc == 1) {
|
|
block = rb_block_proc();
|
|
}
|
|
else {
|
|
should_be_callable(block);
|
|
}
|
|
|
|
return define_final0(obj, block);
|
|
}
|
|
|
|
static VALUE
|
|
define_final0(VALUE obj, VALUE block)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE table;
|
|
st_data_t data;
|
|
|
|
if (!FL_ABLE(obj)) {
|
|
rb_raise(rb_eArgError, "cannot define finalizer for %s",
|
|
rb_obj_classname(obj));
|
|
}
|
|
RBASIC(obj)->flags |= FL_FINALIZE;
|
|
|
|
block = rb_ary_new3(2, INT2FIX(rb_safe_level()), block);
|
|
OBJ_FREEZE(block);
|
|
|
|
if (st_lookup(finalizer_table, obj, &data)) {
|
|
table = (VALUE)data;
|
|
rb_ary_push(table, block);
|
|
}
|
|
else {
|
|
table = rb_ary_new3(1, block);
|
|
RBASIC_CLEAR_CLASS(table);
|
|
st_add_direct(finalizer_table, obj, table);
|
|
}
|
|
return block;
|
|
}
|
|
|
|
VALUE
|
|
rb_define_finalizer(VALUE obj, VALUE block)
|
|
{
|
|
rb_check_frozen(obj);
|
|
should_be_callable(block);
|
|
return define_final0(obj, block);
|
|
}
|
|
|
|
void
|
|
rb_gc_copy_finalizer(VALUE dest, VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE table;
|
|
st_data_t data;
|
|
|
|
if (!FL_TEST(obj, FL_FINALIZE)) return;
|
|
if (st_lookup(finalizer_table, obj, &data)) {
|
|
table = (VALUE)data;
|
|
st_insert(finalizer_table, dest, table);
|
|
}
|
|
FL_SET(dest, FL_FINALIZE);
|
|
}
|
|
|
|
static VALUE
|
|
run_single_final(VALUE arg)
|
|
{
|
|
VALUE *args = (VALUE *)arg;
|
|
rb_eval_cmd(args[0], args[1], (int)args[2]);
|
|
return Qnil;
|
|
}
|
|
|
|
static void
|
|
run_finalizer(rb_objspace_t *objspace, VALUE obj, VALUE table)
|
|
{
|
|
long i;
|
|
int status;
|
|
VALUE args[3];
|
|
VALUE objid = nonspecial_obj_id(obj);
|
|
|
|
if (RARRAY_LEN(table) > 0) {
|
|
args[1] = rb_obj_freeze(rb_ary_new3(1, objid));
|
|
}
|
|
else {
|
|
args[1] = 0;
|
|
}
|
|
|
|
args[2] = (VALUE)rb_safe_level();
|
|
for (i=0; i<RARRAY_LEN(table); i++) {
|
|
VALUE final = RARRAY_AREF(table, i);
|
|
args[0] = RARRAY_AREF(final, 1);
|
|
args[2] = FIX2INT(RARRAY_AREF(final, 0));
|
|
status = 0;
|
|
rb_protect(run_single_final, (VALUE)args, &status);
|
|
if (status)
|
|
rb_set_errinfo(Qnil);
|
|
}
|
|
}
|
|
|
|
static void
|
|
run_final(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
RUBY_DATA_FUNC free_func = 0;
|
|
st_data_t key, table;
|
|
|
|
heap_pages_final_num--;
|
|
|
|
RBASIC_CLEAR_CLASS(obj);
|
|
|
|
if (RTYPEDDATA_P(obj)) {
|
|
free_func = RTYPEDDATA_TYPE(obj)->function.dfree;
|
|
}
|
|
else {
|
|
free_func = RDATA(obj)->dfree;
|
|
}
|
|
if (free_func) {
|
|
(*free_func)(DATA_PTR(obj));
|
|
}
|
|
|
|
key = (st_data_t)obj;
|
|
if (st_delete(finalizer_table, &key, &table)) {
|
|
run_finalizer(objspace, obj, (VALUE)table);
|
|
}
|
|
}
|
|
|
|
static void
|
|
finalize_list(rb_objspace_t *objspace, RVALUE *p)
|
|
{
|
|
while (p) {
|
|
RVALUE *tmp = p->as.free.next;
|
|
struct heap_page *page = GET_HEAP_PAGE(p);
|
|
|
|
run_final(objspace, (VALUE)p);
|
|
objspace->profile.total_freed_object_num++;
|
|
|
|
page->final_num--;
|
|
heap_page_add_freeobj(objspace, GET_HEAP_PAGE(p), (VALUE)p);
|
|
heap_pages_swept_slots++;
|
|
|
|
p = tmp;
|
|
}
|
|
}
|
|
|
|
static void
|
|
finalize_deferred(rb_objspace_t *objspace)
|
|
{
|
|
RVALUE *p = heap_pages_deferred_final;
|
|
heap_pages_deferred_final = 0;
|
|
|
|
if (p) {
|
|
finalize_list(objspace, p);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_finalize_deferred(void *dmy)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
|
|
finalize_deferred(objspace);
|
|
ATOMIC_SET(finalizing, 0);
|
|
}
|
|
|
|
/* TODO: to keep compatibility, maybe unused. */
|
|
void
|
|
rb_gc_finalize_deferred(void)
|
|
{
|
|
gc_finalize_deferred(0);
|
|
}
|
|
|
|
static void
|
|
gc_finalize_deferred_register()
|
|
{
|
|
if (rb_postponed_job_register_one(0, gc_finalize_deferred, 0) == 0) {
|
|
rb_bug("gc_finalize_deferred_register: can't register finalizer.");
|
|
}
|
|
}
|
|
|
|
struct force_finalize_list {
|
|
VALUE obj;
|
|
VALUE table;
|
|
struct force_finalize_list *next;
|
|
};
|
|
|
|
static int
|
|
force_chain_object(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
struct force_finalize_list **prev = (struct force_finalize_list **)arg;
|
|
struct force_finalize_list *curr = ALLOC(struct force_finalize_list);
|
|
curr->obj = key;
|
|
curr->table = val;
|
|
curr->next = *prev;
|
|
*prev = curr;
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
void
|
|
rb_gc_call_finalizer_at_exit(void)
|
|
{
|
|
rb_objspace_call_finalizer(&rb_objspace);
|
|
}
|
|
|
|
static void
|
|
rb_objspace_call_finalizer(rb_objspace_t *objspace)
|
|
{
|
|
RVALUE *p, *pend;
|
|
size_t i;
|
|
|
|
gc_rest_sweep(objspace);
|
|
|
|
if (ATOMIC_EXCHANGE(finalizing, 1)) return;
|
|
|
|
/* run finalizers */
|
|
finalize_deferred(objspace);
|
|
assert(heap_pages_deferred_final == 0);
|
|
|
|
/* force to run finalizer */
|
|
while (finalizer_table->num_entries) {
|
|
struct force_finalize_list *list = 0;
|
|
st_foreach(finalizer_table, force_chain_object, (st_data_t)&list);
|
|
while (list) {
|
|
struct force_finalize_list *curr = list;
|
|
st_data_t obj = (st_data_t)curr->obj;
|
|
run_finalizer(objspace, curr->obj, curr->table);
|
|
st_delete(finalizer_table, &obj, 0);
|
|
list = curr->next;
|
|
xfree(curr);
|
|
}
|
|
}
|
|
|
|
/* finalizers are part of garbage collection */
|
|
during_gc++;
|
|
|
|
/* run data object's finalizers */
|
|
for (i = 0; i < heap_pages_used; i++) {
|
|
p = heap_pages_sorted[i]->start; pend = p + heap_pages_sorted[i]->limit;
|
|
while (p < pend) {
|
|
switch (BUILTIN_TYPE(p)) {
|
|
case T_DATA:
|
|
if (!DATA_PTR(p) || !RANY(p)->as.data.dfree) break;
|
|
if (rb_obj_is_thread((VALUE)p)) break;
|
|
if (rb_obj_is_mutex((VALUE)p)) break;
|
|
if (rb_obj_is_fiber((VALUE)p)) break;
|
|
p->as.free.flags = 0;
|
|
if (RTYPEDDATA_P(p)) {
|
|
RDATA(p)->dfree = RANY(p)->as.typeddata.type->function.dfree;
|
|
}
|
|
if (RANY(p)->as.data.dfree == (RUBY_DATA_FUNC)-1) {
|
|
xfree(DATA_PTR(p));
|
|
}
|
|
else if (RANY(p)->as.data.dfree) {
|
|
make_deferred(objspace, RANY(p));
|
|
}
|
|
break;
|
|
case T_FILE:
|
|
if (RANY(p)->as.file.fptr) {
|
|
make_io_deferred(objspace, RANY(p));
|
|
}
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
}
|
|
during_gc = 0;
|
|
if (heap_pages_deferred_final) {
|
|
finalize_list(objspace, heap_pages_deferred_final);
|
|
}
|
|
|
|
st_free_table(finalizer_table);
|
|
finalizer_table = 0;
|
|
ATOMIC_SET(finalizing, 0);
|
|
}
|
|
|
|
static inline int
|
|
is_id_value(rb_objspace_t *objspace, VALUE ptr)
|
|
{
|
|
if (!is_pointer_to_heap(objspace, (void *)ptr)) return FALSE;
|
|
if (BUILTIN_TYPE(ptr) > T_FIXNUM) return FALSE;
|
|
if (BUILTIN_TYPE(ptr) == T_ICLASS) return FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
static inline int
|
|
heap_is_swept_object(rb_objspace_t *objspace, rb_heap_t *heap, VALUE ptr)
|
|
{
|
|
struct heap_page *page = GET_HEAP_PAGE(ptr);
|
|
return page->before_sweep ? FALSE : TRUE;
|
|
}
|
|
|
|
static inline int
|
|
is_swept_object(rb_objspace_t *objspace, VALUE ptr)
|
|
{
|
|
if (heap_is_swept_object(objspace, heap_eden, ptr)) {
|
|
return TRUE;
|
|
}
|
|
else {
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
is_dead_object(rb_objspace_t *objspace, VALUE ptr)
|
|
{
|
|
if (!is_lazy_sweeping(heap_eden) || MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(ptr), ptr)) return FALSE;
|
|
if (!is_swept_object(objspace, ptr)) return TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
static inline int
|
|
is_live_object(rb_objspace_t *objspace, VALUE ptr)
|
|
{
|
|
switch (BUILTIN_TYPE(ptr)) {
|
|
case 0: case T_ZOMBIE:
|
|
return FALSE;
|
|
}
|
|
if (is_dead_object(objspace, ptr)) return FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
static inline int
|
|
is_markable_object(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
if (rb_special_const_p(obj)) return 0; /* special const is not markable */
|
|
|
|
if (RGENGC_CHECK_MODE) {
|
|
if (!is_pointer_to_heap(objspace, (void *)obj)) rb_bug("is_markable_object: %p is not pointer to heap", (void *)obj);
|
|
if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("is_markable_object: %p is T_NONE", (void *)obj);
|
|
if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("is_markable_object: %p is T_ZOMBIE", (void *)obj);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
rb_objspace_markable_object_p(VALUE obj)
|
|
{
|
|
return is_markable_object(&rb_objspace, obj);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace._id2ref(object_id) -> an_object
|
|
*
|
|
* Converts an object id to a reference to the object. May not be
|
|
* called on an object id passed as a parameter to a finalizer.
|
|
*
|
|
* s = "I am a string" #=> "I am a string"
|
|
* r = ObjectSpace._id2ref(s.object_id) #=> "I am a string"
|
|
* r == s #=> true
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
id2ref(VALUE obj, VALUE objid)
|
|
{
|
|
#if SIZEOF_LONG == SIZEOF_VOIDP
|
|
#define NUM2PTR(x) NUM2ULONG(x)
|
|
#elif SIZEOF_LONG_LONG == SIZEOF_VOIDP
|
|
#define NUM2PTR(x) NUM2ULL(x)
|
|
#endif
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE ptr;
|
|
void *p0;
|
|
|
|
ptr = NUM2PTR(objid);
|
|
p0 = (void *)ptr;
|
|
|
|
if (ptr == Qtrue) return Qtrue;
|
|
if (ptr == Qfalse) return Qfalse;
|
|
if (ptr == Qnil) return Qnil;
|
|
if (FIXNUM_P(ptr)) return (VALUE)ptr;
|
|
if (FLONUM_P(ptr)) return (VALUE)ptr;
|
|
ptr = obj_id_to_ref(objid);
|
|
|
|
if ((ptr % sizeof(RVALUE)) == (4 << 2)) {
|
|
ID symid = ptr / sizeof(RVALUE);
|
|
if (rb_id2name(symid) == 0)
|
|
rb_raise(rb_eRangeError, "%p is not symbol id value", p0);
|
|
return ID2SYM(symid);
|
|
}
|
|
|
|
if (!is_id_value(objspace, ptr)) {
|
|
rb_raise(rb_eRangeError, "%p is not id value", p0);
|
|
}
|
|
if (!is_live_object(objspace, ptr)) {
|
|
rb_raise(rb_eRangeError, "%p is recycled object", p0);
|
|
}
|
|
return (VALUE)ptr;
|
|
}
|
|
|
|
/*
|
|
* Document-method: __id__
|
|
* Document-method: object_id
|
|
*
|
|
* call-seq:
|
|
* obj.__id__ -> integer
|
|
* obj.object_id -> integer
|
|
*
|
|
* Returns an integer identifier for +obj+.
|
|
*
|
|
* The same number will be returned on all calls to +id+ for a given object,
|
|
* and no two active objects will share an id.
|
|
*
|
|
* Object#object_id is a different concept from the +:name+ notation, which
|
|
* returns the symbol id of +name+.
|
|
*
|
|
* Replaces the deprecated Object#id.
|
|
*/
|
|
|
|
/*
|
|
* call-seq:
|
|
* obj.hash -> fixnum
|
|
*
|
|
* Generates a Fixnum hash value for this object.
|
|
*
|
|
* This function must have the property that <code>a.eql?(b)</code> implies
|
|
* <code>a.hash == b.hash</code>.
|
|
*
|
|
* The hash value is used by Hash class.
|
|
*
|
|
* Any hash value that exceeds the capacity of a Fixnum will be truncated
|
|
* before being used.
|
|
*/
|
|
|
|
VALUE
|
|
rb_obj_id(VALUE obj)
|
|
{
|
|
/*
|
|
* 32-bit VALUE space
|
|
* MSB ------------------------ LSB
|
|
* false 00000000000000000000000000000000
|
|
* true 00000000000000000000000000000010
|
|
* nil 00000000000000000000000000000100
|
|
* undef 00000000000000000000000000000110
|
|
* symbol ssssssssssssssssssssssss00001110
|
|
* object oooooooooooooooooooooooooooooo00 = 0 (mod sizeof(RVALUE))
|
|
* fixnum fffffffffffffffffffffffffffffff1
|
|
*
|
|
* object_id space
|
|
* LSB
|
|
* false 00000000000000000000000000000000
|
|
* true 00000000000000000000000000000010
|
|
* nil 00000000000000000000000000000100
|
|
* undef 00000000000000000000000000000110
|
|
* symbol 000SSSSSSSSSSSSSSSSSSSSSSSSSSS0 S...S % A = 4 (S...S = s...s * A + 4)
|
|
* object oooooooooooooooooooooooooooooo0 o...o % A = 0
|
|
* fixnum fffffffffffffffffffffffffffffff1 bignum if required
|
|
*
|
|
* where A = sizeof(RVALUE)/4
|
|
*
|
|
* sizeof(RVALUE) is
|
|
* 20 if 32-bit, double is 4-byte aligned
|
|
* 24 if 32-bit, double is 8-byte aligned
|
|
* 40 if 64-bit
|
|
*/
|
|
if (SYMBOL_P(obj)) {
|
|
return (SYM2ID(obj) * sizeof(RVALUE) + (4 << 2)) | FIXNUM_FLAG;
|
|
}
|
|
else if (FLONUM_P(obj)) {
|
|
#if SIZEOF_LONG == SIZEOF_VOIDP
|
|
return LONG2NUM((SIGNED_VALUE)obj);
|
|
#else
|
|
return LL2NUM((SIGNED_VALUE)obj);
|
|
#endif
|
|
}
|
|
else if (SPECIAL_CONST_P(obj)) {
|
|
return LONG2NUM((SIGNED_VALUE)obj);
|
|
}
|
|
return nonspecial_obj_id(obj);
|
|
}
|
|
|
|
size_t rb_str_memsize(VALUE);
|
|
size_t rb_ary_memsize(VALUE);
|
|
size_t rb_io_memsize(const rb_io_t *);
|
|
size_t rb_generic_ivar_memsize(VALUE);
|
|
#include "regint.h"
|
|
|
|
static size_t
|
|
obj_memsize_of(VALUE obj, int use_tdata)
|
|
{
|
|
size_t size = 0;
|
|
|
|
if (SPECIAL_CONST_P(obj)) {
|
|
return 0;
|
|
}
|
|
|
|
if (FL_TEST(obj, FL_EXIVAR)) {
|
|
size += rb_generic_ivar_memsize(obj);
|
|
}
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_OBJECT:
|
|
if (!(RBASIC(obj)->flags & ROBJECT_EMBED) &&
|
|
ROBJECT(obj)->as.heap.ivptr) {
|
|
size += ROBJECT(obj)->as.heap.numiv * sizeof(VALUE);
|
|
}
|
|
break;
|
|
case T_MODULE:
|
|
case T_CLASS:
|
|
if (RCLASS_M_TBL(obj)) {
|
|
size += st_memsize(RCLASS_M_TBL(obj));
|
|
}
|
|
if (RCLASS_EXT(obj)) {
|
|
if (RCLASS_IV_TBL(obj)) {
|
|
size += st_memsize(RCLASS_IV_TBL(obj));
|
|
}
|
|
if (RCLASS_IV_INDEX_TBL(obj)) {
|
|
size += st_memsize(RCLASS_IV_INDEX_TBL(obj));
|
|
}
|
|
if (RCLASS(obj)->ptr->iv_tbl) {
|
|
size += st_memsize(RCLASS(obj)->ptr->iv_tbl);
|
|
}
|
|
if (RCLASS(obj)->ptr->const_tbl) {
|
|
size += st_memsize(RCLASS(obj)->ptr->const_tbl);
|
|
}
|
|
size += sizeof(rb_classext_t);
|
|
}
|
|
break;
|
|
case T_STRING:
|
|
size += rb_str_memsize(obj);
|
|
break;
|
|
case T_ARRAY:
|
|
size += rb_ary_memsize(obj);
|
|
break;
|
|
case T_HASH:
|
|
if (RHASH(obj)->ntbl) {
|
|
size += st_memsize(RHASH(obj)->ntbl);
|
|
}
|
|
break;
|
|
case T_REGEXP:
|
|
if (RREGEXP(obj)->ptr) {
|
|
size += onig_memsize(RREGEXP(obj)->ptr);
|
|
}
|
|
break;
|
|
case T_DATA:
|
|
if (use_tdata) size += rb_objspace_data_type_memsize(obj);
|
|
break;
|
|
case T_MATCH:
|
|
if (RMATCH(obj)->rmatch) {
|
|
struct rmatch *rm = RMATCH(obj)->rmatch;
|
|
size += onig_region_memsize(&rm->regs);
|
|
size += sizeof(struct rmatch_offset) * rm->char_offset_num_allocated;
|
|
size += sizeof(struct rmatch);
|
|
}
|
|
break;
|
|
case T_FILE:
|
|
if (RFILE(obj)->fptr) {
|
|
size += rb_io_memsize(RFILE(obj)->fptr);
|
|
}
|
|
break;
|
|
case T_RATIONAL:
|
|
case T_COMPLEX:
|
|
break;
|
|
case T_ICLASS:
|
|
/* iClass shares table with the module */
|
|
break;
|
|
|
|
case T_FLOAT:
|
|
break;
|
|
|
|
case T_BIGNUM:
|
|
if (!(RBASIC(obj)->flags & RBIGNUM_EMBED_FLAG) && RBIGNUM_DIGITS(obj)) {
|
|
size += RBIGNUM_LEN(obj) * sizeof(BDIGIT);
|
|
}
|
|
break;
|
|
case T_NODE:
|
|
switch (nd_type(obj)) {
|
|
case NODE_SCOPE:
|
|
if (RNODE(obj)->u1.tbl) {
|
|
/* TODO: xfree(RANY(obj)->as.node.u1.tbl); */
|
|
}
|
|
break;
|
|
case NODE_ALLOCA:
|
|
/* TODO: xfree(RANY(obj)->as.node.u1.node); */
|
|
;
|
|
}
|
|
break; /* no need to free iv_tbl */
|
|
|
|
case T_STRUCT:
|
|
if ((RBASIC(obj)->flags & RSTRUCT_EMBED_LEN_MASK) == 0 &&
|
|
RSTRUCT(obj)->as.heap.ptr) {
|
|
size += sizeof(VALUE) * RSTRUCT_LEN(obj);
|
|
}
|
|
break;
|
|
|
|
case T_ZOMBIE:
|
|
break;
|
|
|
|
default:
|
|
rb_bug("objspace/memsize_of(): unknown data type 0x%x(%p)",
|
|
BUILTIN_TYPE(obj), (void*)obj);
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
size_t
|
|
rb_obj_memsize_of(VALUE obj)
|
|
{
|
|
return obj_memsize_of(obj, TRUE);
|
|
}
|
|
|
|
static int
|
|
set_zero(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
VALUE k = (VALUE)key;
|
|
VALUE hash = (VALUE)arg;
|
|
rb_hash_aset(hash, k, INT2FIX(0));
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* ObjectSpace.count_objects([result_hash]) -> hash
|
|
*
|
|
* Counts objects for each type.
|
|
*
|
|
* It returns a hash, such as:
|
|
* {
|
|
* :TOTAL=>10000,
|
|
* :FREE=>3011,
|
|
* :T_OBJECT=>6,
|
|
* :T_CLASS=>404,
|
|
* # ...
|
|
* }
|
|
*
|
|
* The contents of the returned hash are implementation specific.
|
|
* It may be changed in future.
|
|
*
|
|
* If the optional argument +result_hash+ is given,
|
|
* it is overwritten and returned. This is intended to avoid probe effect.
|
|
*
|
|
* This method is only expected to work on C Ruby.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
count_objects(int argc, VALUE *argv, VALUE os)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
size_t counts[T_MASK+1];
|
|
size_t freed = 0;
|
|
size_t total = 0;
|
|
size_t i;
|
|
VALUE hash;
|
|
|
|
if (rb_scan_args(argc, argv, "01", &hash) == 1) {
|
|
if (!RB_TYPE_P(hash, T_HASH))
|
|
rb_raise(rb_eTypeError, "non-hash given");
|
|
}
|
|
|
|
for (i = 0; i <= T_MASK; i++) {
|
|
counts[i] = 0;
|
|
}
|
|
|
|
for (i = 0; i < heap_pages_used; i++) {
|
|
struct heap_page *page = heap_pages_sorted[i];
|
|
RVALUE *p, *pend;
|
|
|
|
p = page->start; pend = p + page->limit;
|
|
for (;p < pend; p++) {
|
|
if (p->as.basic.flags) {
|
|
counts[BUILTIN_TYPE(p)]++;
|
|
}
|
|
else {
|
|
freed++;
|
|
}
|
|
}
|
|
total += page->limit;
|
|
}
|
|
|
|
if (hash == Qnil) {
|
|
hash = rb_hash_new();
|
|
}
|
|
else if (!RHASH_EMPTY_P(hash)) {
|
|
st_foreach(RHASH_TBL_RAW(hash), set_zero, hash);
|
|
}
|
|
rb_hash_aset(hash, ID2SYM(rb_intern("TOTAL")), SIZET2NUM(total));
|
|
rb_hash_aset(hash, ID2SYM(rb_intern("FREE")), SIZET2NUM(freed));
|
|
|
|
for (i = 0; i <= T_MASK; i++) {
|
|
VALUE type;
|
|
switch (i) {
|
|
#define COUNT_TYPE(t) case (t): type = ID2SYM(rb_intern(#t)); break;
|
|
COUNT_TYPE(T_NONE);
|
|
COUNT_TYPE(T_OBJECT);
|
|
COUNT_TYPE(T_CLASS);
|
|
COUNT_TYPE(T_MODULE);
|
|
COUNT_TYPE(T_FLOAT);
|
|
COUNT_TYPE(T_STRING);
|
|
COUNT_TYPE(T_REGEXP);
|
|
COUNT_TYPE(T_ARRAY);
|
|
COUNT_TYPE(T_HASH);
|
|
COUNT_TYPE(T_STRUCT);
|
|
COUNT_TYPE(T_BIGNUM);
|
|
COUNT_TYPE(T_FILE);
|
|
COUNT_TYPE(T_DATA);
|
|
COUNT_TYPE(T_MATCH);
|
|
COUNT_TYPE(T_COMPLEX);
|
|
COUNT_TYPE(T_RATIONAL);
|
|
COUNT_TYPE(T_NIL);
|
|
COUNT_TYPE(T_TRUE);
|
|
COUNT_TYPE(T_FALSE);
|
|
COUNT_TYPE(T_SYMBOL);
|
|
COUNT_TYPE(T_FIXNUM);
|
|
COUNT_TYPE(T_UNDEF);
|
|
COUNT_TYPE(T_NODE);
|
|
COUNT_TYPE(T_ICLASS);
|
|
COUNT_TYPE(T_ZOMBIE);
|
|
#undef COUNT_TYPE
|
|
default: type = INT2NUM(i); break;
|
|
}
|
|
if (counts[i])
|
|
rb_hash_aset(hash, type, SIZET2NUM(counts[i]));
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
------------------------ Garbage Collection ------------------------
|
|
*/
|
|
|
|
/* Sweeping */
|
|
|
|
static VALUE
|
|
lazy_sweep_enable(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
objspace->flags.dont_lazy_sweep = FALSE;
|
|
return Qnil;
|
|
}
|
|
|
|
static size_t
|
|
objspace_live_num(rb_objspace_t *objspace)
|
|
{
|
|
return objspace->profile.total_allocated_object_num - objspace->profile.total_freed_object_num;
|
|
}
|
|
|
|
static size_t
|
|
objspace_limit_num(rb_objspace_t *objspace)
|
|
{
|
|
return heap_eden->limit + heap_tomb->limit;
|
|
}
|
|
|
|
static size_t
|
|
objspace_free_num(rb_objspace_t *objspace)
|
|
{
|
|
return objspace_limit_num(objspace) - (objspace_live_num(objspace) - heap_pages_final_num);
|
|
}
|
|
|
|
static void
|
|
gc_setup_mark_bits(struct heap_page *page)
|
|
{
|
|
#if USE_RGENGC
|
|
/* copy oldgen bitmap to mark bitmap */
|
|
memcpy(&page->mark_bits[0], &page->oldgen_bits[0], HEAP_BITMAP_SIZE);
|
|
#else
|
|
/* clear mark bitmap */
|
|
memset(&page->mark_bits[0], 0, HEAP_BITMAP_SIZE);
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
gc_page_sweep(rb_objspace_t *objspace, rb_heap_t *heap, struct heap_page *sweep_page)
|
|
{
|
|
int i;
|
|
size_t empty_num = 0, freed_num = 0, final_num = 0;
|
|
RVALUE *p, *pend,*offset;
|
|
bits_t *bits, bitset;
|
|
|
|
rgengc_report(1, objspace, "page_sweep: start.\n");
|
|
|
|
sweep_page->before_sweep = 0;
|
|
|
|
p = sweep_page->start; pend = p + sweep_page->limit;
|
|
offset = p - NUM_IN_PAGE(p);
|
|
bits = sweep_page->mark_bits;
|
|
|
|
/* create guard : fill 1 out-of-range */
|
|
bits[BITMAP_INDEX(p)] |= BITMAP_BIT(p)-1;
|
|
bits[BITMAP_INDEX(pend)] |= ~(BITMAP_BIT(pend) - 1);
|
|
|
|
for (i=0; i < HEAP_BITMAP_LIMIT; i++) {
|
|
bitset = ~bits[i];
|
|
if (bitset) {
|
|
p = offset + i * BITS_BITLENGTH;
|
|
do {
|
|
if ((bitset & 1) && BUILTIN_TYPE(p) != T_ZOMBIE) {
|
|
if (p->as.basic.flags) {
|
|
rgengc_report(3, objspace, "page_sweep: free %p (%s)\n", p, obj_type_name((VALUE)p));
|
|
#if USE_RGENGC && RGENGC_CHECK_MODE
|
|
if (objspace->rgengc.during_minor_gc && RVALUE_OLD_P((VALUE)p)) rb_bug("page_sweep: %p (%s) is old while minor GC.\n", p, obj_type_name((VALUE)p));
|
|
if (rgengc_remembered(objspace, (VALUE)p)) rb_bug("page_sweep: %p (%s) is remembered.\n", p, obj_type_name((VALUE)p));
|
|
#endif
|
|
if (obj_free(objspace, (VALUE)p)) {
|
|
final_num++;
|
|
}
|
|
else if (FL_TEST(p, FL_FINALIZE)) {
|
|
RDATA(p)->dfree = 0;
|
|
make_deferred(objspace,p);
|
|
final_num++;
|
|
}
|
|
else {
|
|
(void)VALGRIND_MAKE_MEM_UNDEFINED((void*)p, sizeof(RVALUE));
|
|
heap_page_add_freeobj(objspace, sweep_page, (VALUE)p);
|
|
rgengc_report(3, objspace, "page_sweep: %p (%s) is added to freelist\n", p, obj_type_name((VALUE)p));
|
|
freed_num++;
|
|
}
|
|
}
|
|
else {
|
|
empty_num++;
|
|
}
|
|
}
|
|
p++;
|
|
bitset >>= 1;
|
|
} while (bitset);
|
|
}
|
|
}
|
|
|
|
gc_setup_mark_bits(sweep_page);
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
if (objspace->profile.run) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->removing_objects += final_num + freed_num;
|
|
record->empty_objects += empty_num;
|
|
}
|
|
#endif
|
|
|
|
if (final_num + freed_num + empty_num == sweep_page->limit) {
|
|
/* there are no living objects -> move this page to tomb heap */
|
|
heap_unlink_page(objspace, heap, sweep_page);
|
|
heap_add_page(objspace, heap_tomb, sweep_page);
|
|
}
|
|
else {
|
|
if (freed_num + empty_num > 0) {
|
|
heap_add_freepage(objspace, heap, sweep_page);
|
|
}
|
|
else {
|
|
sweep_page->free_next = NULL;
|
|
}
|
|
}
|
|
heap_pages_swept_slots += freed_num + empty_num;
|
|
objspace->profile.total_freed_object_num += freed_num;
|
|
heap_pages_final_num += final_num;
|
|
sweep_page->final_num = final_num;
|
|
|
|
if (heap_pages_deferred_final && !finalizing) {
|
|
rb_thread_t *th = GET_THREAD();
|
|
if (th) {
|
|
gc_finalize_deferred_register();
|
|
}
|
|
}
|
|
|
|
rgengc_report(1, objspace, "page_sweep: end.\n");
|
|
}
|
|
|
|
/* allocate additional minimum page to work */
|
|
static void
|
|
gc_heap_prepare_minimum_pages(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
if (!heap->free_pages) {
|
|
/* there is no free after page_sweep() */
|
|
heap_set_increment(objspace, 0);
|
|
if (!heap_increment(objspace, heap)) { /* can't allocate additional free objects */
|
|
during_gc = 0;
|
|
rb_memerror();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_before_heap_sweep(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
heap->sweep_pages = heap->pages;
|
|
heap->free_pages = NULL;
|
|
|
|
if (heap->using_page) {
|
|
RVALUE **p = &heap->using_page->freelist;
|
|
while (*p) {
|
|
p = &(*p)->as.free.next;
|
|
}
|
|
*p = heap->freelist;
|
|
heap->using_page = NULL;
|
|
}
|
|
heap->freelist = NULL;
|
|
}
|
|
|
|
#if defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 4
|
|
__attribute__((noinline))
|
|
#endif
|
|
static void
|
|
gc_before_sweep(rb_objspace_t *objspace)
|
|
{
|
|
rb_heap_t *heap;
|
|
size_t total_limit_num;
|
|
|
|
rgengc_report(1, objspace, "gc_before_sweep\n");
|
|
|
|
/* sweep unlinked method entries */
|
|
if (GET_VM()->unlinked_method_entry_list) {
|
|
rb_sweep_method_entry(GET_VM());
|
|
}
|
|
|
|
heap_pages_swept_slots = 0;
|
|
total_limit_num = objspace_limit_num(objspace);
|
|
|
|
heap_pages_min_free_slots = (size_t)(total_limit_num * 0.30);
|
|
if (heap_pages_min_free_slots < gc_params.heap_free_slots) {
|
|
heap_pages_min_free_slots = gc_params.heap_free_slots;
|
|
}
|
|
heap_pages_max_free_slots = (size_t)(total_limit_num * 0.80);
|
|
if (heap_pages_max_free_slots < gc_params.heap_init_slots) {
|
|
heap_pages_max_free_slots = gc_params.heap_init_slots;
|
|
}
|
|
if (0) fprintf(stderr, "heap_pages_min_free_slots: %d, heap_pages_max_free_slots: %d\n",
|
|
(int)heap_pages_min_free_slots, (int)heap_pages_max_free_slots);
|
|
|
|
heap = heap_eden;
|
|
gc_before_heap_sweep(objspace, heap);
|
|
|
|
gc_prof_set_malloc_info(objspace);
|
|
|
|
/* reset malloc info */
|
|
if (0) fprintf(stderr, "%d\t%d\t%d\n", (int)rb_gc_count(), (int)malloc_increase, (int)malloc_limit);
|
|
|
|
{
|
|
size_t inc = ATOMIC_SIZE_EXCHANGE(malloc_increase, 0);
|
|
size_t old_limit = malloc_limit;
|
|
|
|
if (inc > malloc_limit) {
|
|
malloc_limit = (size_t)(inc * gc_params.malloc_limit_growth_factor);
|
|
if (gc_params.malloc_limit_max > 0 && /* ignore max-check if 0 */
|
|
malloc_limit > gc_params.malloc_limit_max) {
|
|
malloc_limit = inc;
|
|
}
|
|
}
|
|
else {
|
|
malloc_limit = (size_t)(malloc_limit * 0.98); /* magic number */
|
|
if (malloc_limit < gc_params.malloc_limit_min) {
|
|
malloc_limit = gc_params.malloc_limit_min;
|
|
}
|
|
}
|
|
|
|
if (0) {
|
|
if (old_limit != malloc_limit) {
|
|
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: %"PRIuSIZE" -> %"PRIuSIZE"\n",
|
|
rb_gc_count(), old_limit, malloc_limit);
|
|
}
|
|
else {
|
|
fprintf(stderr, "[%"PRIuSIZE"] malloc_limit: not changed (%"PRIuSIZE")\n",
|
|
rb_gc_count(), malloc_limit);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* reset oldspace info */
|
|
#if RGENGC_ESTIMATE_OLDSPACE
|
|
if (objspace->rgengc.during_minor_gc) {
|
|
if (objspace->rgengc.oldspace_increase > objspace->rgengc.oldspace_increase_limit) {
|
|
objspace->rgengc.need_major_gc = TRUE;
|
|
objspace->rgengc.oldspace_increase_limit =
|
|
(size_t)(objspace->rgengc.oldspace_increase_limit * gc_params.oldspace_limit_growth_factor);
|
|
if (objspace->rgengc.oldspace_increase_limit > gc_params.oldspace_limit_max) {
|
|
objspace->rgengc.oldspace_increase_limit = gc_params.oldspace_limit_max;
|
|
}
|
|
}
|
|
else {
|
|
objspace->rgengc.oldspace_increase_limit =
|
|
(size_t)(objspace->rgengc.oldspace_increase_limit / ((gc_params.oldspace_limit_growth_factor - 1)/10 + 1));
|
|
if (objspace->rgengc.oldspace_increase_limit < gc_params.oldspace_limit_min) {
|
|
objspace->rgengc.oldspace_increase_limit = gc_params.oldspace_limit_min;
|
|
}
|
|
}
|
|
|
|
if (0) fprintf(stderr, "%d\t%d\t%u\t%u\t%d\n", (int)rb_gc_count(), objspace->rgengc.need_major_gc,
|
|
(unsigned int)objspace->rgengc.oldspace_increase,
|
|
(unsigned int)objspace->rgengc.oldspace_increase_limit,
|
|
(unsigned int)gc_params.oldspace_limit_max);
|
|
}
|
|
else {
|
|
/* major GC */
|
|
objspace->rgengc.oldspace_increase = 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
static void
|
|
gc_after_sweep(rb_objspace_t *objspace)
|
|
{
|
|
rb_heap_t *heap = heap_eden;
|
|
|
|
rgengc_report(1, objspace, "after_gc_sweep: heap->limit: %d, heap->swept_slots: %d, min_free_slots: %d\n",
|
|
(int)heap->limit, (int)heap_pages_swept_slots, (int)heap_pages_min_free_slots);
|
|
|
|
if (heap_pages_swept_slots < heap_pages_min_free_slots) {
|
|
heap_set_increment(objspace, (heap_pages_min_free_slots - heap_pages_swept_slots) / HEAP_OBJ_LIMIT);
|
|
heap_increment(objspace, heap);
|
|
|
|
#if USE_RGENGC
|
|
if (objspace->rgengc.remembered_shady_object_count + objspace->rgengc.old_object_count > (heap_pages_length * HEAP_OBJ_LIMIT) / 2) {
|
|
/* if [old]+[remembered shady] > [all object count]/2, then do major GC */
|
|
objspace->rgengc.need_major_gc = TRUE;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
gc_prof_set_heap_info(objspace);
|
|
|
|
heap_pages_free_unused_pages(objspace);
|
|
|
|
/* if heap_pages has unused pages, then assign them to increment */
|
|
if (heap_pages_increment < heap_tomb->used) {
|
|
heap_pages_increment = heap_tomb->used;
|
|
heap_pages_expand_sorted(objspace);
|
|
}
|
|
|
|
#if RGENGC_PROFILE > 0
|
|
if (0) {
|
|
fprintf(stderr, "%d\t%d\t%d\t%d\t%d\t%d\t%d\n",
|
|
(int)rb_gc_count(),
|
|
(int)objspace->profile.major_gc_count,
|
|
(int)objspace->profile.minor_gc_count,
|
|
(int)objspace->profile.promote_infant_count,
|
|
#if RGENGC_THREEGEN
|
|
(int)objspace->profile.promote_young_count,
|
|
#else
|
|
0,
|
|
#endif
|
|
(int)objspace->profile.remembered_normal_object_count,
|
|
(int)objspace->rgengc.remembered_shady_object_count);
|
|
}
|
|
#endif
|
|
|
|
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_END, 0 /* TODO: pass minor/immediate flag? */);
|
|
}
|
|
|
|
static int
|
|
gc_heap_lazy_sweep(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
struct heap_page *page = heap->sweep_pages, *next;
|
|
int result = FALSE;
|
|
|
|
if (page == NULL) return FALSE;
|
|
|
|
#if GC_ENABLE_LAZY_SWEEP
|
|
gc_prof_sweep_timer_start(objspace);
|
|
#endif
|
|
|
|
while (page) {
|
|
heap->sweep_pages = next = page->next;
|
|
|
|
gc_page_sweep(objspace, heap, page);
|
|
|
|
if (!next) gc_after_sweep(objspace);
|
|
|
|
if (heap->free_pages) {
|
|
result = TRUE;
|
|
break;
|
|
}
|
|
|
|
page = next;
|
|
}
|
|
|
|
#if GC_ENABLE_LAZY_SWEEP
|
|
gc_prof_sweep_timer_stop(objspace);
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
gc_heap_rest_sweep(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
if (is_lazy_sweeping(heap)) {
|
|
during_gc++;
|
|
while (is_lazy_sweeping(heap)) {
|
|
gc_heap_lazy_sweep(objspace, heap);
|
|
}
|
|
during_gc = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_rest_sweep(rb_objspace_t *objspace)
|
|
{
|
|
rb_heap_t *heap = heap_eden; /* lazy sweep only for eden */
|
|
gc_heap_rest_sweep(objspace, heap);
|
|
}
|
|
|
|
static void
|
|
gc_sweep(rb_objspace_t *objspace, int immediate_sweep)
|
|
{
|
|
if (immediate_sweep) {
|
|
#if !GC_ENABLE_LAZY_SWEEP
|
|
gc_prof_sweep_timer_start(objspace);
|
|
#endif
|
|
gc_before_sweep(objspace);
|
|
gc_heap_rest_sweep(objspace, heap_eden);
|
|
#if !GC_ENABLE_LAZY_SWEEP
|
|
gc_prof_sweep_timer_stop(objspace);
|
|
#endif
|
|
}
|
|
else {
|
|
struct heap_page *page;
|
|
gc_before_sweep(objspace);
|
|
page = heap_eden->sweep_pages;
|
|
while (page) {
|
|
page->before_sweep = 1;
|
|
page = page->next;
|
|
}
|
|
gc_heap_lazy_sweep(objspace, heap_eden);
|
|
}
|
|
|
|
gc_heap_prepare_minimum_pages(objspace, heap_eden);
|
|
}
|
|
|
|
/* Marking - Marking stack */
|
|
|
|
static void push_mark_stack(mark_stack_t *, VALUE);
|
|
static int pop_mark_stack(mark_stack_t *, VALUE *);
|
|
static void shrink_stack_chunk_cache(mark_stack_t *stack);
|
|
|
|
static stack_chunk_t *
|
|
stack_chunk_alloc(void)
|
|
{
|
|
stack_chunk_t *res;
|
|
|
|
res = malloc(sizeof(stack_chunk_t));
|
|
if (!res)
|
|
rb_memerror();
|
|
|
|
return res;
|
|
}
|
|
|
|
static inline int
|
|
is_mark_stack_empty(mark_stack_t *stack)
|
|
{
|
|
return stack->chunk == NULL;
|
|
}
|
|
|
|
static void
|
|
add_stack_chunk_cache(mark_stack_t *stack, stack_chunk_t *chunk)
|
|
{
|
|
chunk->next = stack->cache;
|
|
stack->cache = chunk;
|
|
stack->cache_size++;
|
|
}
|
|
|
|
static void
|
|
shrink_stack_chunk_cache(mark_stack_t *stack)
|
|
{
|
|
stack_chunk_t *chunk;
|
|
|
|
if (stack->unused_cache_size > (stack->cache_size/2)) {
|
|
chunk = stack->cache;
|
|
stack->cache = stack->cache->next;
|
|
stack->cache_size--;
|
|
free(chunk);
|
|
}
|
|
stack->unused_cache_size = stack->cache_size;
|
|
}
|
|
|
|
static void
|
|
push_mark_stack_chunk(mark_stack_t *stack)
|
|
{
|
|
stack_chunk_t *next;
|
|
|
|
assert(stack->index == stack->limit);
|
|
if (stack->cache_size > 0) {
|
|
next = stack->cache;
|
|
stack->cache = stack->cache->next;
|
|
stack->cache_size--;
|
|
if (stack->unused_cache_size > stack->cache_size)
|
|
stack->unused_cache_size = stack->cache_size;
|
|
}
|
|
else {
|
|
next = stack_chunk_alloc();
|
|
}
|
|
next->next = stack->chunk;
|
|
stack->chunk = next;
|
|
stack->index = 0;
|
|
}
|
|
|
|
static void
|
|
pop_mark_stack_chunk(mark_stack_t *stack)
|
|
{
|
|
stack_chunk_t *prev;
|
|
|
|
prev = stack->chunk->next;
|
|
assert(stack->index == 0);
|
|
add_stack_chunk_cache(stack, stack->chunk);
|
|
stack->chunk = prev;
|
|
stack->index = stack->limit;
|
|
}
|
|
|
|
#if defined(ENABLE_VM_OBJSPACE) && ENABLE_VM_OBJSPACE
|
|
static void
|
|
free_stack_chunks(mark_stack_t *stack)
|
|
{
|
|
stack_chunk_t *chunk = stack->chunk;
|
|
stack_chunk_t *next = NULL;
|
|
|
|
while (chunk != NULL) {
|
|
next = chunk->next;
|
|
free(chunk);
|
|
chunk = next;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
push_mark_stack(mark_stack_t *stack, VALUE data)
|
|
{
|
|
if (stack->index == stack->limit) {
|
|
push_mark_stack_chunk(stack);
|
|
}
|
|
stack->chunk->data[stack->index++] = data;
|
|
}
|
|
|
|
static int
|
|
pop_mark_stack(mark_stack_t *stack, VALUE *data)
|
|
{
|
|
if (is_mark_stack_empty(stack)) {
|
|
return FALSE;
|
|
}
|
|
if (stack->index == 1) {
|
|
*data = stack->chunk->data[--stack->index];
|
|
pop_mark_stack_chunk(stack);
|
|
}
|
|
else {
|
|
*data = stack->chunk->data[--stack->index];
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
init_mark_stack(mark_stack_t *stack)
|
|
{
|
|
int i;
|
|
|
|
if (0) push_mark_stack_chunk(stack);
|
|
stack->index = stack->limit = STACK_CHUNK_SIZE;
|
|
|
|
for (i=0; i < 4; i++) {
|
|
add_stack_chunk_cache(stack, stack_chunk_alloc());
|
|
}
|
|
stack->unused_cache_size = stack->cache_size;
|
|
}
|
|
|
|
/* Marking */
|
|
|
|
#ifdef __ia64
|
|
#define SET_STACK_END (SET_MACHINE_STACK_END(&th->machine_stack_end), th->machine_register_stack_end = rb_ia64_bsp())
|
|
#else
|
|
#define SET_STACK_END SET_MACHINE_STACK_END(&th->machine_stack_end)
|
|
#endif
|
|
|
|
#define STACK_START (th->machine_stack_start)
|
|
#define STACK_END (th->machine_stack_end)
|
|
#define STACK_LEVEL_MAX (th->machine_stack_maxsize/sizeof(VALUE))
|
|
|
|
#if STACK_GROW_DIRECTION < 0
|
|
# define STACK_LENGTH (size_t)(STACK_START - STACK_END)
|
|
#elif STACK_GROW_DIRECTION > 0
|
|
# define STACK_LENGTH (size_t)(STACK_END - STACK_START + 1)
|
|
#else
|
|
# define STACK_LENGTH ((STACK_END < STACK_START) ? (size_t)(STACK_START - STACK_END) \
|
|
: (size_t)(STACK_END - STACK_START + 1))
|
|
#endif
|
|
#if !STACK_GROW_DIRECTION
|
|
int ruby_stack_grow_direction;
|
|
int
|
|
ruby_get_stack_grow_direction(volatile VALUE *addr)
|
|
{
|
|
VALUE *end;
|
|
SET_MACHINE_STACK_END(&end);
|
|
|
|
if (end > addr) return ruby_stack_grow_direction = 1;
|
|
return ruby_stack_grow_direction = -1;
|
|
}
|
|
#endif
|
|
|
|
size_t
|
|
ruby_stack_length(VALUE **p)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
SET_STACK_END;
|
|
if (p) *p = STACK_UPPER(STACK_END, STACK_START, STACK_END);
|
|
return STACK_LENGTH;
|
|
}
|
|
|
|
#if !(defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK))
|
|
static int
|
|
stack_check(int water_mark)
|
|
{
|
|
int ret;
|
|
rb_thread_t *th = GET_THREAD();
|
|
SET_STACK_END;
|
|
ret = STACK_LENGTH > STACK_LEVEL_MAX - water_mark;
|
|
#ifdef __ia64
|
|
if (!ret) {
|
|
ret = (VALUE*)rb_ia64_bsp() - th->machine_register_stack_start >
|
|
th->machine_register_stack_maxsize/sizeof(VALUE) - water_mark;
|
|
}
|
|
#endif
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#define STACKFRAME_FOR_CALL_CFUNC 512
|
|
|
|
int
|
|
ruby_stack_check(void)
|
|
{
|
|
#if defined(POSIX_SIGNAL) && defined(SIGSEGV) && defined(HAVE_SIGALTSTACK)
|
|
return 0;
|
|
#else
|
|
return stack_check(STACKFRAME_FOR_CALL_CFUNC);
|
|
#endif
|
|
}
|
|
|
|
ATTRIBUTE_NO_ADDRESS_SAFETY_ANALYSIS
|
|
static void
|
|
mark_locations_array(rb_objspace_t *objspace, register VALUE *x, register long n)
|
|
{
|
|
VALUE v;
|
|
while (n--) {
|
|
v = *x;
|
|
gc_mark_maybe(objspace, v);
|
|
x++;
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_mark_locations(rb_objspace_t *objspace, VALUE *start, VALUE *end)
|
|
{
|
|
long n;
|
|
|
|
if (end <= start) return;
|
|
n = end - start;
|
|
mark_locations_array(objspace, start, n);
|
|
}
|
|
|
|
void
|
|
rb_gc_mark_locations(VALUE *start, VALUE *end)
|
|
{
|
|
gc_mark_locations(&rb_objspace, start, end);
|
|
}
|
|
|
|
#define rb_gc_mark_locations(start, end) gc_mark_locations(objspace, (start), (end))
|
|
|
|
struct mark_tbl_arg {
|
|
rb_objspace_t *objspace;
|
|
};
|
|
|
|
static int
|
|
mark_entry(st_data_t key, st_data_t value, st_data_t data)
|
|
{
|
|
struct mark_tbl_arg *arg = (void*)data;
|
|
gc_mark(arg->objspace, (VALUE)value);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_tbl(rb_objspace_t *objspace, st_table *tbl)
|
|
{
|
|
struct mark_tbl_arg arg;
|
|
if (!tbl || tbl->num_entries == 0) return;
|
|
arg.objspace = objspace;
|
|
st_foreach(tbl, mark_entry, (st_data_t)&arg);
|
|
}
|
|
|
|
static int
|
|
mark_key(st_data_t key, st_data_t value, st_data_t data)
|
|
{
|
|
struct mark_tbl_arg *arg = (void*)data;
|
|
gc_mark(arg->objspace, (VALUE)key);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_set(rb_objspace_t *objspace, st_table *tbl)
|
|
{
|
|
struct mark_tbl_arg arg;
|
|
if (!tbl) return;
|
|
arg.objspace = objspace;
|
|
st_foreach(tbl, mark_key, (st_data_t)&arg);
|
|
}
|
|
|
|
void
|
|
rb_mark_set(st_table *tbl)
|
|
{
|
|
mark_set(&rb_objspace, tbl);
|
|
}
|
|
|
|
static int
|
|
mark_keyvalue(st_data_t key, st_data_t value, st_data_t data)
|
|
{
|
|
struct mark_tbl_arg *arg = (void*)data;
|
|
gc_mark(arg->objspace, (VALUE)key);
|
|
gc_mark(arg->objspace, (VALUE)value);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_hash(rb_objspace_t *objspace, st_table *tbl)
|
|
{
|
|
struct mark_tbl_arg arg;
|
|
if (!tbl) return;
|
|
arg.objspace = objspace;
|
|
st_foreach(tbl, mark_keyvalue, (st_data_t)&arg);
|
|
}
|
|
|
|
void
|
|
rb_mark_hash(st_table *tbl)
|
|
{
|
|
mark_hash(&rb_objspace, tbl);
|
|
}
|
|
|
|
static void
|
|
mark_method_entry(rb_objspace_t *objspace, const rb_method_entry_t *me)
|
|
{
|
|
const rb_method_definition_t *def = me->def;
|
|
|
|
gc_mark(objspace, me->klass);
|
|
again:
|
|
if (!def) return;
|
|
switch (def->type) {
|
|
case VM_METHOD_TYPE_ISEQ:
|
|
gc_mark(objspace, def->body.iseq->self);
|
|
break;
|
|
case VM_METHOD_TYPE_BMETHOD:
|
|
gc_mark(objspace, def->body.proc);
|
|
break;
|
|
case VM_METHOD_TYPE_ATTRSET:
|
|
case VM_METHOD_TYPE_IVAR:
|
|
gc_mark(objspace, def->body.attr.location);
|
|
break;
|
|
case VM_METHOD_TYPE_REFINED:
|
|
if (def->body.orig_me) {
|
|
def = def->body.orig_me->def;
|
|
goto again;
|
|
}
|
|
break;
|
|
default:
|
|
break; /* ignore */
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_mark_method_entry(const rb_method_entry_t *me)
|
|
{
|
|
mark_method_entry(&rb_objspace, me);
|
|
}
|
|
|
|
static int
|
|
mark_method_entry_i(ID key, const rb_method_entry_t *me, st_data_t data)
|
|
{
|
|
struct mark_tbl_arg *arg = (void*)data;
|
|
mark_method_entry(arg->objspace, me);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_m_tbl(rb_objspace_t *objspace, st_table *tbl)
|
|
{
|
|
struct mark_tbl_arg arg;
|
|
if (!tbl) return;
|
|
arg.objspace = objspace;
|
|
st_foreach(tbl, mark_method_entry_i, (st_data_t)&arg);
|
|
}
|
|
|
|
static int
|
|
mark_const_entry_i(ID key, const rb_const_entry_t *ce, st_data_t data)
|
|
{
|
|
struct mark_tbl_arg *arg = (void*)data;
|
|
gc_mark(arg->objspace, ce->value);
|
|
gc_mark(arg->objspace, ce->file);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
mark_const_tbl(rb_objspace_t *objspace, st_table *tbl)
|
|
{
|
|
struct mark_tbl_arg arg;
|
|
if (!tbl) return;
|
|
arg.objspace = objspace;
|
|
st_foreach(tbl, mark_const_entry_i, (st_data_t)&arg);
|
|
}
|
|
|
|
#if STACK_GROW_DIRECTION < 0
|
|
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_END, (end) = STACK_START)
|
|
#elif STACK_GROW_DIRECTION > 0
|
|
#define GET_STACK_BOUNDS(start, end, appendix) ((start) = STACK_START, (end) = STACK_END+(appendix))
|
|
#else
|
|
#define GET_STACK_BOUNDS(start, end, appendix) \
|
|
((STACK_END < STACK_START) ? \
|
|
((start) = STACK_END, (end) = STACK_START) : ((start) = STACK_START, (end) = STACK_END+(appendix)))
|
|
#endif
|
|
|
|
static void
|
|
mark_current_machine_context(rb_objspace_t *objspace, rb_thread_t *th)
|
|
{
|
|
union {
|
|
rb_jmp_buf j;
|
|
VALUE v[sizeof(rb_jmp_buf) / sizeof(VALUE)];
|
|
} save_regs_gc_mark;
|
|
VALUE *stack_start, *stack_end;
|
|
|
|
FLUSH_REGISTER_WINDOWS;
|
|
/* This assumes that all registers are saved into the jmp_buf (and stack) */
|
|
rb_setjmp(save_regs_gc_mark.j);
|
|
|
|
GET_STACK_BOUNDS(stack_start, stack_end, 1);
|
|
|
|
mark_locations_array(objspace, save_regs_gc_mark.v, numberof(save_regs_gc_mark.v));
|
|
|
|
rb_gc_mark_locations(stack_start, stack_end);
|
|
#ifdef __ia64
|
|
rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
|
|
#endif
|
|
#if defined(__mc68000__)
|
|
mark_locations_array(objspace, (VALUE*)((char*)STACK_END + 2),
|
|
(STACK_START - STACK_END));
|
|
#endif
|
|
}
|
|
|
|
void
|
|
rb_gc_mark_machine_stack(rb_thread_t *th)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE *stack_start, *stack_end;
|
|
|
|
GET_STACK_BOUNDS(stack_start, stack_end, 0);
|
|
rb_gc_mark_locations(stack_start, stack_end);
|
|
#ifdef __ia64
|
|
rb_gc_mark_locations(th->machine_register_stack_start, th->machine_register_stack_end);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
rb_mark_tbl(st_table *tbl)
|
|
{
|
|
mark_tbl(&rb_objspace, tbl);
|
|
}
|
|
|
|
static void
|
|
gc_mark_maybe(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
(void)VALGRIND_MAKE_MEM_DEFINED(&obj, sizeof(obj));
|
|
if (is_pointer_to_heap(objspace, (void *)obj)) {
|
|
int type = BUILTIN_TYPE(obj);
|
|
if (type != T_ZOMBIE && type != T_NONE) {
|
|
gc_mark(objspace, obj);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_mark_maybe(VALUE obj)
|
|
{
|
|
gc_mark_maybe(&rb_objspace, obj);
|
|
}
|
|
|
|
static inline int
|
|
gc_marked(rb_objspace_t *objspace, VALUE ptr)
|
|
{
|
|
register bits_t *bits = GET_HEAP_MARK_BITS(ptr);
|
|
if (MARKED_IN_BITMAP(bits, ptr)) return 1;
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
gc_mark_ptr(rb_objspace_t *objspace, VALUE ptr)
|
|
{
|
|
register bits_t *bits = GET_HEAP_MARK_BITS(ptr);
|
|
if (gc_marked(objspace, ptr)) return 0;
|
|
MARK_IN_BITMAP(bits, ptr);
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
rgengc_check_shady(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
#if USE_RGENGC
|
|
if (objspace->rgengc.parent_object_is_old) {
|
|
if (RVALUE_SHADY(obj)) {
|
|
if (rgengc_remember(objspace, obj)) {
|
|
objspace->rgengc.remembered_shady_object_count++;
|
|
}
|
|
}
|
|
#if RGENGC_THREEGEN
|
|
else {
|
|
if (gc_marked(objspace, obj)) {
|
|
if (!RVALUE_OLD_P(obj)) {
|
|
/* An object pointed from an OLD object should be OLD. */
|
|
rgengc_remember(objspace, obj);
|
|
}
|
|
}
|
|
else {
|
|
if (RVALUE_INFANT_P(obj)) {
|
|
RVALUE_PROMOTE_INFANT(obj);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
gc_mark(rb_objspace_t *objspace, VALUE ptr)
|
|
{
|
|
if (!is_markable_object(objspace, ptr)) return;
|
|
|
|
if (LIKELY(objspace->mark_func_data == 0)) {
|
|
rgengc_check_shady(objspace, ptr);
|
|
if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */
|
|
push_mark_stack(&objspace->mark_stack, ptr);
|
|
}
|
|
else {
|
|
objspace->mark_func_data->mark_func(ptr, objspace->mark_func_data->data);
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_mark(VALUE ptr)
|
|
{
|
|
gc_mark(&rb_objspace, ptr);
|
|
}
|
|
|
|
/* resurrect non-marked `obj' if obj is before swept */
|
|
|
|
void
|
|
rb_gc_resurrect(VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
if (is_lazy_sweeping(heap_eden) &&
|
|
!gc_marked(objspace, obj) &&
|
|
!is_swept_object(objspace, obj)) {
|
|
gc_mark_ptr(objspace, obj);
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_mark_children(rb_objspace_t *objspace, VALUE ptr)
|
|
{
|
|
register RVALUE *obj = RANY(ptr);
|
|
|
|
goto marking; /* skip */
|
|
|
|
again:
|
|
if (LIKELY(objspace->mark_func_data == 0)) {
|
|
obj = RANY(ptr);
|
|
if (!is_markable_object(objspace, ptr)) return;
|
|
rgengc_check_shady(objspace, ptr);
|
|
if (!gc_mark_ptr(objspace, ptr)) return; /* already marked */
|
|
}
|
|
else {
|
|
gc_mark(objspace, ptr);
|
|
return;
|
|
}
|
|
|
|
marking:
|
|
|
|
#if USE_RGENGC
|
|
check_gen_consistency((VALUE)obj);
|
|
|
|
if (LIKELY(objspace->mark_func_data == 0)) {
|
|
/* minor/major common */
|
|
if (!RVALUE_SHADY(obj)) {
|
|
if (RVALUE_INFANT_P((VALUE)obj)) {
|
|
/* infant -> young */
|
|
RVALUE_PROMOTE_INFANT((VALUE)obj);
|
|
#if RGENGC_THREEGEN
|
|
/* infant -> young */
|
|
objspace->rgengc.young_object_count++;
|
|
objspace->rgengc.parent_object_is_old = FALSE;
|
|
#else
|
|
/* infant -> old */
|
|
objspace->rgengc.old_object_count++;
|
|
objspace->rgengc.parent_object_is_old = TRUE;
|
|
|
|
#if RGENGC_ESTIMATE_OLDSPACE
|
|
objspace->rgengc.oldspace_increase += obj_memsize_of((VALUE)obj, FALSE);
|
|
#endif
|
|
|
|
#endif
|
|
rgengc_report(3, objspace, "gc_mark_children: promote infant -> young %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj));
|
|
}
|
|
else {
|
|
objspace->rgengc.parent_object_is_old = TRUE;
|
|
|
|
#if RGENGC_THREEGEN
|
|
if (RVALUE_YOUNG_P((VALUE)obj)) {
|
|
/* young -> old */
|
|
RVALUE_PROMOTE_YOUNG((VALUE)obj);
|
|
objspace->rgengc.old_object_count++;
|
|
#if RGENGC_ESTIMATE_OLDSPACE
|
|
objspace->rgengc.oldspace_increase += obj_memsize_of((VALUE)obj, FALSE);
|
|
#endif
|
|
rgengc_report(3, objspace, "gc_mark_children: promote young -> old %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj));
|
|
}
|
|
else {
|
|
#endif
|
|
if (!objspace->rgengc.during_minor_gc) {
|
|
/* major/full GC */
|
|
objspace->rgengc.old_object_count++;
|
|
}
|
|
#if RGENGC_THREEGEN
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
else {
|
|
rgengc_report(3, objspace, "gc_mark_children: do not promote shady %p (%s).\n", (void *)obj, obj_type_name((VALUE)obj));
|
|
objspace->rgengc.parent_object_is_old = FALSE;
|
|
}
|
|
}
|
|
|
|
check_gen_consistency((VALUE)obj);
|
|
#endif /* USE_RGENGC */
|
|
|
|
if (FL_TEST(obj, FL_EXIVAR)) {
|
|
rb_mark_generic_ivar(ptr);
|
|
}
|
|
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_NIL:
|
|
case T_FIXNUM:
|
|
rb_bug("rb_gc_mark() called for broken object");
|
|
break;
|
|
|
|
case T_NODE:
|
|
switch (nd_type(obj)) {
|
|
case NODE_IF: /* 1,2,3 */
|
|
case NODE_FOR:
|
|
case NODE_ITER:
|
|
case NODE_WHEN:
|
|
case NODE_MASGN:
|
|
case NODE_RESCUE:
|
|
case NODE_RESBODY:
|
|
case NODE_CLASS:
|
|
case NODE_BLOCK_PASS:
|
|
gc_mark(objspace, (VALUE)obj->as.node.u2.node);
|
|
/* fall through */
|
|
case NODE_BLOCK: /* 1,3 */
|
|
case NODE_ARRAY:
|
|
case NODE_DSTR:
|
|
case NODE_DXSTR:
|
|
case NODE_DREGX:
|
|
case NODE_DREGX_ONCE:
|
|
case NODE_ENSURE:
|
|
case NODE_CALL:
|
|
case NODE_DEFS:
|
|
case NODE_OP_ASGN1:
|
|
gc_mark(objspace, (VALUE)obj->as.node.u1.node);
|
|
/* fall through */
|
|
case NODE_SUPER: /* 3 */
|
|
case NODE_FCALL:
|
|
case NODE_DEFN:
|
|
case NODE_ARGS_AUX:
|
|
ptr = (VALUE)obj->as.node.u3.node;
|
|
goto again;
|
|
|
|
case NODE_WHILE: /* 1,2 */
|
|
case NODE_UNTIL:
|
|
case NODE_AND:
|
|
case NODE_OR:
|
|
case NODE_CASE:
|
|
case NODE_SCLASS:
|
|
case NODE_DOT2:
|
|
case NODE_DOT3:
|
|
case NODE_FLIP2:
|
|
case NODE_FLIP3:
|
|
case NODE_MATCH2:
|
|
case NODE_MATCH3:
|
|
case NODE_OP_ASGN_OR:
|
|
case NODE_OP_ASGN_AND:
|
|
case NODE_MODULE:
|
|
case NODE_ALIAS:
|
|
case NODE_VALIAS:
|
|
case NODE_ARGSCAT:
|
|
gc_mark(objspace, (VALUE)obj->as.node.u1.node);
|
|
/* fall through */
|
|
case NODE_GASGN: /* 2 */
|
|
case NODE_LASGN:
|
|
case NODE_DASGN:
|
|
case NODE_DASGN_CURR:
|
|
case NODE_IASGN:
|
|
case NODE_IASGN2:
|
|
case NODE_CVASGN:
|
|
case NODE_COLON3:
|
|
case NODE_OPT_N:
|
|
case NODE_EVSTR:
|
|
case NODE_UNDEF:
|
|
case NODE_POSTEXE:
|
|
ptr = (VALUE)obj->as.node.u2.node;
|
|
goto again;
|
|
|
|
case NODE_HASH: /* 1 */
|
|
case NODE_LIT:
|
|
case NODE_STR:
|
|
case NODE_XSTR:
|
|
case NODE_DEFINED:
|
|
case NODE_MATCH:
|
|
case NODE_RETURN:
|
|
case NODE_BREAK:
|
|
case NODE_NEXT:
|
|
case NODE_YIELD:
|
|
case NODE_COLON2:
|
|
case NODE_SPLAT:
|
|
case NODE_TO_ARY:
|
|
ptr = (VALUE)obj->as.node.u1.node;
|
|
goto again;
|
|
|
|
case NODE_SCOPE: /* 2,3 */
|
|
case NODE_CDECL:
|
|
case NODE_OPT_ARG:
|
|
gc_mark(objspace, (VALUE)obj->as.node.u3.node);
|
|
ptr = (VALUE)obj->as.node.u2.node;
|
|
goto again;
|
|
|
|
case NODE_ARGS: /* custom */
|
|
{
|
|
struct rb_args_info *args = obj->as.node.u3.args;
|
|
if (args) {
|
|
if (args->pre_init) gc_mark(objspace, (VALUE)args->pre_init);
|
|
if (args->post_init) gc_mark(objspace, (VALUE)args->post_init);
|
|
if (args->opt_args) gc_mark(objspace, (VALUE)args->opt_args);
|
|
if (args->kw_args) gc_mark(objspace, (VALUE)args->kw_args);
|
|
if (args->kw_rest_arg) gc_mark(objspace, (VALUE)args->kw_rest_arg);
|
|
}
|
|
}
|
|
ptr = (VALUE)obj->as.node.u2.node;
|
|
goto again;
|
|
|
|
case NODE_ZARRAY: /* - */
|
|
case NODE_ZSUPER:
|
|
case NODE_VCALL:
|
|
case NODE_GVAR:
|
|
case NODE_LVAR:
|
|
case NODE_DVAR:
|
|
case NODE_IVAR:
|
|
case NODE_CVAR:
|
|
case NODE_NTH_REF:
|
|
case NODE_BACK_REF:
|
|
case NODE_REDO:
|
|
case NODE_RETRY:
|
|
case NODE_SELF:
|
|
case NODE_NIL:
|
|
case NODE_TRUE:
|
|
case NODE_FALSE:
|
|
case NODE_ERRINFO:
|
|
case NODE_BLOCK_ARG:
|
|
break;
|
|
case NODE_ALLOCA:
|
|
mark_locations_array(objspace,
|
|
(VALUE*)obj->as.node.u1.value,
|
|
obj->as.node.u3.cnt);
|
|
gc_mark(objspace, (VALUE)obj->as.node.u2.node);
|
|
break;
|
|
|
|
case NODE_CREF:
|
|
gc_mark(objspace, obj->as.node.nd_refinements);
|
|
gc_mark(objspace, (VALUE)obj->as.node.u1.node);
|
|
ptr = (VALUE)obj->as.node.u3.node;
|
|
goto again;
|
|
|
|
default: /* unlisted NODE */
|
|
gc_mark_maybe(objspace, (VALUE)obj->as.node.u1.node);
|
|
gc_mark_maybe(objspace, (VALUE)obj->as.node.u2.node);
|
|
gc_mark_maybe(objspace, (VALUE)obj->as.node.u3.node);
|
|
}
|
|
return; /* no need to mark class. */
|
|
}
|
|
|
|
gc_mark(objspace, obj->as.basic.klass);
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_ICLASS:
|
|
case T_CLASS:
|
|
case T_MODULE:
|
|
mark_m_tbl(objspace, RCLASS_M_TBL(obj));
|
|
if (!RCLASS_EXT(obj)) break;
|
|
mark_tbl(objspace, RCLASS_IV_TBL(obj));
|
|
mark_const_tbl(objspace, RCLASS_CONST_TBL(obj));
|
|
ptr = RCLASS_SUPER((VALUE)obj);
|
|
goto again;
|
|
|
|
case T_ARRAY:
|
|
if (FL_TEST(obj, ELTS_SHARED)) {
|
|
ptr = obj->as.array.as.heap.aux.shared;
|
|
goto again;
|
|
}
|
|
else {
|
|
long i, len = RARRAY_LEN(obj);
|
|
const VALUE *ptr = RARRAY_CONST_PTR(obj);
|
|
for (i=0; i < len; i++) {
|
|
gc_mark(objspace, *ptr++);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_HASH:
|
|
mark_hash(objspace, obj->as.hash.ntbl);
|
|
ptr = obj->as.hash.ifnone;
|
|
goto again;
|
|
|
|
case T_STRING:
|
|
#define STR_ASSOC FL_USER3 /* copied from string.c */
|
|
if (FL_TEST(obj, RSTRING_NOEMBED) && FL_ANY(obj, ELTS_SHARED|STR_ASSOC)) {
|
|
ptr = obj->as.string.as.heap.aux.shared;
|
|
goto again;
|
|
}
|
|
break;
|
|
|
|
case T_DATA:
|
|
if (RTYPEDDATA_P(obj)) {
|
|
RUBY_DATA_FUNC mark_func = obj->as.typeddata.type->function.dmark;
|
|
if (mark_func) (*mark_func)(DATA_PTR(obj));
|
|
}
|
|
else {
|
|
if (obj->as.data.dmark) (*obj->as.data.dmark)(DATA_PTR(obj));
|
|
}
|
|
break;
|
|
|
|
case T_OBJECT:
|
|
{
|
|
long i, len = ROBJECT_NUMIV(obj);
|
|
VALUE *ptr = ROBJECT_IVPTR(obj);
|
|
for (i = 0; i < len; i++) {
|
|
gc_mark(objspace, *ptr++);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case T_FILE:
|
|
if (obj->as.file.fptr) {
|
|
gc_mark(objspace, obj->as.file.fptr->pathv);
|
|
gc_mark(objspace, obj->as.file.fptr->tied_io_for_writing);
|
|
gc_mark(objspace, obj->as.file.fptr->writeconv_asciicompat);
|
|
gc_mark(objspace, obj->as.file.fptr->writeconv_pre_ecopts);
|
|
gc_mark(objspace, obj->as.file.fptr->encs.ecopts);
|
|
gc_mark(objspace, obj->as.file.fptr->write_lock);
|
|
}
|
|
break;
|
|
|
|
case T_REGEXP:
|
|
ptr = obj->as.regexp.src;
|
|
goto again;
|
|
|
|
case T_FLOAT:
|
|
case T_BIGNUM:
|
|
break;
|
|
|
|
case T_MATCH:
|
|
gc_mark(objspace, obj->as.match.regexp);
|
|
if (obj->as.match.str) {
|
|
ptr = obj->as.match.str;
|
|
goto again;
|
|
}
|
|
break;
|
|
|
|
case T_RATIONAL:
|
|
gc_mark(objspace, obj->as.rational.num);
|
|
ptr = obj->as.rational.den;
|
|
goto again;
|
|
|
|
case T_COMPLEX:
|
|
gc_mark(objspace, obj->as.complex.real);
|
|
ptr = obj->as.complex.imag;
|
|
goto again;
|
|
|
|
case T_STRUCT:
|
|
{
|
|
long len = RSTRUCT_LEN(obj);
|
|
const VALUE *ptr = RSTRUCT_CONST_PTR(obj);
|
|
|
|
while (len--) {
|
|
gc_mark(objspace, *ptr++);
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
#if GC_DEBUG
|
|
rb_gcdebug_print_obj_condition((VALUE)obj);
|
|
#endif
|
|
if (BUILTIN_TYPE(obj) == T_NONE) rb_bug("rb_gc_mark(): %p is T_NONE", (void *)obj);
|
|
if (BUILTIN_TYPE(obj) == T_ZOMBIE) rb_bug("rb_gc_mark(): %p is T_ZOMBIE", (void *)obj);
|
|
rb_bug("rb_gc_mark(): unknown data type 0x%x(%p) %s",
|
|
BUILTIN_TYPE(obj), (void *)obj,
|
|
is_pointer_to_heap(objspace, obj) ? "corrupted object" : "non object");
|
|
}
|
|
}
|
|
|
|
static void
|
|
gc_mark_stacked_objects(rb_objspace_t *objspace)
|
|
{
|
|
mark_stack_t *mstack = &objspace->mark_stack;
|
|
VALUE obj = 0;
|
|
|
|
if (!mstack->index) return;
|
|
while (pop_mark_stack(mstack, &obj)) {
|
|
if (!gc_marked(objspace, obj)) {
|
|
rb_bug("gc_mark_stacked_objects: %p (%s) is infant, but not marked.", (void *)obj, obj_type_name(obj));
|
|
}
|
|
gc_mark_children(objspace, obj);
|
|
}
|
|
shrink_stack_chunk_cache(mstack);
|
|
}
|
|
|
|
#ifndef RGENGC_PRINT_TICK
|
|
#define RGENGC_PRINT_TICK 0
|
|
#endif
|
|
/* the following code is only for internal tuning. */
|
|
|
|
/* Source code to use RDTSC is quoted and modified from
|
|
* http://www.mcs.anl.gov/~kazutomo/rdtsc.html
|
|
* written by Kazutomo Yoshii <kazutomo@mcs.anl.gov>
|
|
*/
|
|
|
|
#if RGENGC_PRINT_TICK
|
|
#if defined(__GNUC__) && defined(__i386__)
|
|
typedef unsigned long long tick_t;
|
|
|
|
static inline tick_t
|
|
tick(void)
|
|
{
|
|
unsigned long long int x;
|
|
__asm__ __volatile__ ("rdtsc" : "=A" (x));
|
|
return x;
|
|
}
|
|
|
|
#elif defined(__GNUC__) && defined(__x86_64__)
|
|
typedef unsigned long long tick_t;
|
|
|
|
static __inline__ tick_t
|
|
tick(void)
|
|
{
|
|
unsigned long hi, lo;
|
|
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
|
|
return ((unsigned long long)lo)|( ((unsigned long long)hi)<<32);
|
|
}
|
|
|
|
#elif defined(_WIN32) && defined(_MSC_VER)
|
|
#include <intrin.h>
|
|
typedef unsigned __int64 tick_t;
|
|
|
|
static inline tick_t
|
|
tick(void)
|
|
{
|
|
return __rdtsc();
|
|
}
|
|
|
|
#else /* use clock */
|
|
typedef clock_t tick_t;
|
|
static inline tick_t
|
|
tick(void)
|
|
{
|
|
return clock();
|
|
}
|
|
#endif
|
|
|
|
#define MAX_TICKS 0x100
|
|
static tick_t mark_ticks[MAX_TICKS];
|
|
static const char *mark_ticks_categories[MAX_TICKS];
|
|
|
|
static void
|
|
show_mark_ticks(void)
|
|
{
|
|
int i;
|
|
fprintf(stderr, "mark ticks result:\n");
|
|
for (i=0; i<MAX_TICKS; i++) {
|
|
const char *category = mark_ticks_categories[i];
|
|
if (category) {
|
|
fprintf(stderr, "%s\t%8lu\n", category, (unsigned long)mark_ticks[i]);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* RGENGC_PRINT_TICK */
|
|
|
|
static void
|
|
gc_mark_roots(rb_objspace_t *objspace, int full_mark, const char **categoryp)
|
|
{
|
|
struct gc_list *list;
|
|
rb_thread_t *th = GET_THREAD();
|
|
if (categoryp) *categoryp = "xxx";
|
|
|
|
#if RGENGC_PRINT_TICK
|
|
tick_t start_tick = tick();
|
|
int tick_count = 0;
|
|
const char *prev_category = 0;
|
|
|
|
if (mark_ticks_categories[0] == 0) {
|
|
atexit(show_mark_ticks);
|
|
}
|
|
#endif
|
|
|
|
#if RGENGC_PRINT_TICK
|
|
#define MARK_CHECKPOINT_PRINT_TICK(category) do { \
|
|
if (prev_category) { \
|
|
tick_t t = tick(); \
|
|
mark_ticks[tick_count] = t - start_tick; \
|
|
mark_ticks_categories[tick_count] = prev_category; \
|
|
tick_count++; \
|
|
} \
|
|
prev_category = category; \
|
|
start_tick = tick(); \
|
|
} while (0)
|
|
#else /* RGENGC_PRINT_TICK */
|
|
#define MARK_CHECKPOINT_PRINT_TICK(category)
|
|
#endif
|
|
|
|
#define MARK_CHECKPOINT(category) do { \
|
|
if (categoryp) *categoryp = category; \
|
|
MARK_CHECKPOINT_PRINT_TICK(category); \
|
|
} while (0)
|
|
|
|
MARK_CHECKPOINT("vm");
|
|
SET_STACK_END;
|
|
th->vm->self ? rb_gc_mark(th->vm->self) : rb_vm_mark(th->vm);
|
|
|
|
MARK_CHECKPOINT("finalizers");
|
|
mark_tbl(objspace, finalizer_table);
|
|
|
|
MARK_CHECKPOINT("machine_context");
|
|
mark_current_machine_context(objspace, th);
|
|
|
|
MARK_CHECKPOINT("symbols");
|
|
#if USE_RGENGC
|
|
objspace->rgengc.parent_object_is_old = TRUE;
|
|
rb_gc_mark_symbols(full_mark);
|
|
objspace->rgengc.parent_object_is_old = FALSE;
|
|
#else
|
|
rb_gc_mark_symbols(full_mark);
|
|
#endif
|
|
|
|
MARK_CHECKPOINT("encodings");
|
|
rb_gc_mark_encodings();
|
|
|
|
/* mark protected global variables */
|
|
MARK_CHECKPOINT("global_list");
|
|
for (list = global_List; list; list = list->next) {
|
|
rb_gc_mark_maybe(*list->varptr);
|
|
}
|
|
|
|
MARK_CHECKPOINT("end_proc");
|
|
rb_mark_end_proc();
|
|
|
|
MARK_CHECKPOINT("global_tbl");
|
|
rb_gc_mark_global_tbl();
|
|
|
|
/* mark generic instance variables for special constants */
|
|
MARK_CHECKPOINT("generic_ivars");
|
|
rb_mark_generic_ivar_tbl();
|
|
|
|
MARK_CHECKPOINT("parser");
|
|
rb_gc_mark_parser();
|
|
|
|
MARK_CHECKPOINT("live_method_entries");
|
|
rb_gc_mark_unlinked_live_method_entries(th->vm);
|
|
|
|
MARK_CHECKPOINT("finish");
|
|
#undef MARK_CHECKPOINT
|
|
}
|
|
|
|
static void
|
|
gc_marks_body(rb_objspace_t *objspace, int full_mark)
|
|
{
|
|
/* start marking */
|
|
rgengc_report(1, objspace, "gc_marks_body: start (%s)\n", full_mark ? "full" : "minor");
|
|
|
|
#if USE_RGENGC
|
|
objspace->rgengc.parent_object_is_old = FALSE;
|
|
objspace->rgengc.during_minor_gc = full_mark ? FALSE : TRUE;
|
|
|
|
if (objspace->rgengc.during_minor_gc) {
|
|
objspace->profile.minor_gc_count++;
|
|
rgengc_rememberset_mark(objspace, heap_eden);
|
|
}
|
|
else {
|
|
objspace->profile.major_gc_count++;
|
|
rgengc_mark_and_rememberset_clear(objspace, heap_eden);
|
|
}
|
|
#endif
|
|
gc_mark_roots(objspace, full_mark, 0);
|
|
gc_mark_stacked_objects(objspace);
|
|
|
|
/* cleanup */
|
|
rgengc_report(1, objspace, "gc_marks_body: end (%s)\n", full_mark ? "full" : "minor");
|
|
}
|
|
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
|
|
#define MAKE_ROOTSIG(obj) (((VALUE)(obj) << 1) | 0x01)
|
|
#define IS_ROOTSIG(obj) ((VALUE)(obj) & 0x01)
|
|
#define GET_ROOTSIG(obj) ((const char *)((VALUE)(obj) >> 1))
|
|
|
|
struct reflist {
|
|
VALUE *list;
|
|
int pos;
|
|
int size;
|
|
};
|
|
|
|
static struct reflist *
|
|
reflist_create(VALUE obj)
|
|
{
|
|
struct reflist *refs = xmalloc(sizeof(struct reflist));
|
|
refs->size = 1;
|
|
refs->list = ALLOC_N(VALUE, refs->size);
|
|
refs->list[0] = obj;
|
|
refs->pos = 1;
|
|
return refs;
|
|
}
|
|
|
|
static void
|
|
reflist_destruct(struct reflist *refs)
|
|
{
|
|
xfree(refs->list);
|
|
xfree(refs);
|
|
}
|
|
|
|
static void
|
|
reflist_add(struct reflist *refs, VALUE obj)
|
|
{
|
|
if (refs->pos == refs->size) {
|
|
refs->size *= 2;
|
|
SIZED_REALLOC_N(refs->list, VALUE, refs->size, refs->size/2);
|
|
}
|
|
refs->list[refs->pos++] = obj;
|
|
}
|
|
|
|
static void
|
|
reflist_dump(struct reflist *refs)
|
|
{
|
|
int i;
|
|
for (i=0; i<refs->pos; i++) {
|
|
VALUE obj = refs->list[i];
|
|
if (IS_ROOTSIG(obj)) { /* root */
|
|
fprintf(stderr, "<root@%s>", GET_ROOTSIG(obj));
|
|
}
|
|
else {
|
|
fprintf(stderr, "<%p@%s>", (void *)obj, obj_type_name(obj));
|
|
}
|
|
if (i+1 < refs->pos) fprintf(stderr, ", ");
|
|
}
|
|
}
|
|
|
|
static int
|
|
reflist_refered_from_machine_context(struct reflist *refs)
|
|
{
|
|
int i;
|
|
for (i=0; i<refs->pos; i++) {
|
|
VALUE obj = refs->list[i];
|
|
if (IS_ROOTSIG(obj) && strcmp(GET_ROOTSIG(obj), "machine_context") == 0) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct allrefs {
|
|
rb_objspace_t *objspace;
|
|
/* a -> obj1
|
|
* b -> obj1
|
|
* c -> obj1
|
|
* c -> obj2
|
|
* d -> obj3
|
|
* #=> {obj1 => [a, b, c], obj2 => [c, d]}
|
|
*/
|
|
struct st_table *references;
|
|
const char *category;
|
|
VALUE root_obj;
|
|
};
|
|
|
|
static void
|
|
allrefs_add(struct allrefs *data, VALUE obj)
|
|
{
|
|
struct reflist *refs;
|
|
|
|
if (st_lookup(data->references, obj, (st_data_t *)&refs)) {
|
|
reflist_add(refs, data->root_obj);
|
|
}
|
|
else {
|
|
refs = reflist_create(data->root_obj);
|
|
st_insert(data->references, obj, (st_data_t)refs);
|
|
}
|
|
}
|
|
|
|
static void
|
|
allrefs_i(VALUE obj, void *ptr)
|
|
{
|
|
struct allrefs *data = (struct allrefs *)ptr;
|
|
allrefs_add(data, obj);
|
|
}
|
|
|
|
static void
|
|
allrefs_roots_i(VALUE obj, void *ptr)
|
|
{
|
|
struct allrefs *data = (struct allrefs *)ptr;
|
|
if (strlen(data->category) == 0) rb_bug("!!!");
|
|
data->root_obj = MAKE_ROOTSIG(data->category);
|
|
allrefs_add(data, obj);
|
|
push_mark_stack(&data->objspace->mark_stack, obj);
|
|
}
|
|
|
|
static st_table *
|
|
objspace_allrefs(rb_objspace_t *objspace)
|
|
{
|
|
struct allrefs data;
|
|
struct mark_func_data_struct mfd;
|
|
VALUE obj;
|
|
|
|
rb_gc_disable();
|
|
|
|
data.objspace = objspace;
|
|
data.references = st_init_numtable();
|
|
|
|
mfd.mark_func = allrefs_roots_i;
|
|
mfd.data = &data;
|
|
|
|
/* traverse root objects */
|
|
objspace->mark_func_data = &mfd;
|
|
gc_mark_roots(objspace, TRUE, &data.category);
|
|
objspace->mark_func_data = 0;
|
|
|
|
/* traverse rest objects reachable from root objects */
|
|
while (pop_mark_stack(&objspace->mark_stack, &obj)) {
|
|
rb_objspace_reachable_objects_from(data.root_obj = obj, allrefs_i, &data);
|
|
}
|
|
shrink_stack_chunk_cache(&objspace->mark_stack);
|
|
|
|
rb_gc_enable();
|
|
return data.references;
|
|
}
|
|
|
|
static int
|
|
objspaec_allrefs_destruct_i(st_data_t key, st_data_t value, void *ptr)
|
|
{
|
|
struct reflist *refs = (struct reflist *)value;
|
|
reflist_destruct(refs);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
objspaec_allrefs_destruct(struct st_table *refs)
|
|
{
|
|
st_foreach(refs, objspaec_allrefs_destruct_i, 0);
|
|
st_free_table(refs);
|
|
}
|
|
|
|
#if RGENGC_CHECK_MODE >= 3
|
|
static int
|
|
allrefs_dump_i(st_data_t k, st_data_t v, st_data_t ptr)
|
|
{
|
|
VALUE obj = (VALUE)k;
|
|
struct reflist *refs = (struct reflist *)v;
|
|
fprintf(stderr, "[allrefs_dump_i] %p (%s%s%s%s) <- ",
|
|
(void *)obj, obj_type_name(obj),
|
|
RVALUE_OLD_P(obj) ? "[O]" : "[Y]",
|
|
RVALUE_SHADY(obj) ? "[S]" : "",
|
|
MARKED_IN_BITMAP(GET_HEAP_REMEMBERSET_BITS(obj), obj) ? "[R]" : "");
|
|
reflist_dump(refs);
|
|
fprintf(stderr, "\n");
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
allrefs_dump(rb_objspace_t *objspace)
|
|
{
|
|
fprintf(stderr, "[all refs] (size: %d)\n", (int)objspace->rgengc.allrefs_table->num_entries);
|
|
st_foreach(objspace->rgengc.allrefs_table, allrefs_dump_i, 0);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
gc_check_before_marks_i(st_data_t k, st_data_t v, void *ptr)
|
|
{
|
|
VALUE obj = k;
|
|
struct reflist *refs = (struct reflist *)v;
|
|
rb_objspace_t *objspace = (rb_objspace_t *)ptr;
|
|
|
|
/* check WB sanity */
|
|
if (!RVALUE_OLD_P(obj)) {
|
|
int i;
|
|
for (i=0; i<refs->pos; i++) {
|
|
VALUE parent = refs->list[i];
|
|
if (!IS_ROOTSIG(parent) && RVALUE_OLD_P(parent)) {
|
|
/* parent is old */
|
|
if (!MARKED_IN_BITMAP(GET_HEAP_PAGE(parent)->rememberset_bits, parent) &&
|
|
!MARKED_IN_BITMAP(GET_HEAP_PAGE(obj)->rememberset_bits, obj)) {
|
|
fprintf(stderr, "gc_marks_check_i: WB miss %p (%s) -> %p (%s)\n",
|
|
(void *)parent, obj_type_name(parent),
|
|
(void *)obj, obj_type_name(obj));
|
|
objspace->rgengc.error_count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static int
|
|
gc_check_after_marks_i(st_data_t k, st_data_t v, void *ptr)
|
|
{
|
|
VALUE obj = k;
|
|
struct reflist *refs = (struct reflist *)v;
|
|
rb_objspace_t *objspace = (rb_objspace_t *)ptr;
|
|
|
|
/* object should be marked or oldgen */
|
|
if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj)) {
|
|
fprintf(stderr, "gc_check_after_marks_i: %p (%s) is not marked and not oldgen.\n", (void *)obj, obj_type_name(obj));
|
|
fprintf(stderr, "gc_check_after_marks_i: %p is referred from ", (void *)obj);
|
|
reflist_dump(refs);
|
|
|
|
if (reflist_refered_from_machine_context(refs)) {
|
|
fprintf(stderr, " (marked from machine stack).\n");
|
|
/* marked from machine context can be false positive */
|
|
}
|
|
else {
|
|
objspace->rgengc.error_count++;
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
gc_marks_check(rb_objspace_t *objspace, int (*checker_func)(ANYARGS), const char *checker_name)
|
|
{
|
|
objspace->rgengc.allrefs_table = objspace_allrefs(objspace);
|
|
|
|
st_foreach(objspace->rgengc.allrefs_table, checker_func, (st_data_t)objspace);
|
|
|
|
if (objspace->rgengc.error_count > 0) {
|
|
#if RGENGC_CHECK_MODE >= 3
|
|
allrefs_dump(objspace);
|
|
#endif
|
|
rb_bug("%s: GC has problem.", checker_name);
|
|
}
|
|
|
|
objspaec_allrefs_destruct(objspace->rgengc.allrefs_table);
|
|
objspace->rgengc.allrefs_table = 0;
|
|
}
|
|
|
|
#endif /* RGENGC_CHECK_MODE >= 2 */
|
|
|
|
static void
|
|
gc_marks(rb_objspace_t *objspace, int full_mark)
|
|
{
|
|
struct mark_func_data_struct *prev_mark_func_data;
|
|
|
|
gc_prof_mark_timer_start(objspace);
|
|
{
|
|
/* setup marking */
|
|
prev_mark_func_data = objspace->mark_func_data;
|
|
objspace->mark_func_data = 0;
|
|
|
|
#if USE_RGENGC
|
|
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
gc_marks_check(objspace, gc_check_before_marks_i, "before_marks");
|
|
#endif
|
|
if (full_mark == TRUE) { /* major/full GC */
|
|
objspace->rgengc.remembered_shady_object_count = 0;
|
|
objspace->rgengc.old_object_count = 0;
|
|
#if RGENGC_THREEGEN
|
|
objspace->rgengc.young_object_count = 0;
|
|
#endif
|
|
|
|
gc_marks_body(objspace, TRUE);
|
|
|
|
/* Do full GC if old/remembered_shady object counts is greater than counts two times at last full GC counts */
|
|
objspace->rgengc.remembered_shady_object_limit = objspace->rgengc.remembered_shady_object_count * 2;
|
|
objspace->rgengc.old_object_limit = objspace->rgengc.old_object_count * 2;
|
|
}
|
|
else { /* minor GC */
|
|
gc_marks_body(objspace, FALSE);
|
|
}
|
|
|
|
#if RGENGC_PROFILE > 0
|
|
if (gc_prof_record(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->old_objects = objspace->rgengc.old_object_count;
|
|
}
|
|
#endif
|
|
|
|
#if RGENGC_CHECK_MODE >= 2
|
|
gc_marks_check(objspace, gc_check_after_marks_i, "after_marks");
|
|
#endif
|
|
|
|
#else /* USE_RGENGC */
|
|
gc_marks_body(objspace, TRUE);
|
|
#endif
|
|
|
|
objspace->mark_func_data = prev_mark_func_data;
|
|
}
|
|
gc_prof_mark_timer_stop(objspace);
|
|
}
|
|
|
|
/* RGENGC */
|
|
|
|
static void
|
|
rgengc_report_body(int level, rb_objspace_t *objspace, const char *fmt, ...)
|
|
{
|
|
if (level <= RGENGC_DEBUG) {
|
|
char buf[1024];
|
|
FILE *out = stderr;
|
|
va_list args;
|
|
const char *status = " ";
|
|
|
|
#if USE_RGENGC
|
|
if (during_gc) {
|
|
status = objspace->rgengc.during_minor_gc ? "-" : "+";
|
|
}
|
|
#endif
|
|
|
|
va_start(args, fmt);
|
|
vsnprintf(buf, 1024, fmt, args);
|
|
va_end(args);
|
|
|
|
fprintf(out, "%s|", status);
|
|
fputs(buf, out);
|
|
}
|
|
}
|
|
|
|
#if USE_RGENGC
|
|
|
|
/* bit operations */
|
|
|
|
static int
|
|
rgengc_remembersetbits_get(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
bits_t *bits = GET_HEAP_REMEMBERSET_BITS(obj);
|
|
return MARKED_IN_BITMAP(bits, obj) ? 1 : 0;
|
|
}
|
|
|
|
static int
|
|
rgengc_remembersetbits_set(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
bits_t *bits = GET_HEAP_REMEMBERSET_BITS(obj);
|
|
if (MARKED_IN_BITMAP(bits, obj)) {
|
|
return FALSE;
|
|
}
|
|
else {
|
|
MARK_IN_BITMAP(bits, obj);
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
/* wb, etc */
|
|
|
|
/* return FALSE if already remembered */
|
|
static int
|
|
rgengc_remember(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
rgengc_report(2, objspace, "rgengc_remember: %p (%s, %s) %s\n", (void *)obj, obj_type_name(obj),
|
|
RVALUE_SHADY(obj) ? "shady" : "non-shady",
|
|
rgengc_remembersetbits_get(objspace, obj) ? "was already remembered" : "is remembered now");
|
|
|
|
#if RGENGC_CHECK_MODE > 0
|
|
{
|
|
switch (BUILTIN_TYPE(obj)) {
|
|
case T_NONE:
|
|
case T_ZOMBIE:
|
|
rb_bug("rgengc_remember: should not remember %p (%s)\n",
|
|
(void *)obj, obj_type_name(obj));
|
|
default:
|
|
;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (RGENGC_PROFILE) {
|
|
if (!rgengc_remembered(objspace, obj)) {
|
|
if (!RVALUE_SHADY(obj)) {
|
|
#if RGENGC_PROFILE > 0
|
|
objspace->profile.remembered_normal_object_count++;
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.remembered_normal_object_count_types[BUILTIN_TYPE(obj)]++;
|
|
#endif
|
|
#endif
|
|
}
|
|
else {
|
|
#if RGENGC_PROFILE > 0
|
|
objspace->profile.remembered_shady_object_count++;
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.remembered_shady_object_count_types[BUILTIN_TYPE(obj)]++;
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
return rgengc_remembersetbits_set(objspace, obj);
|
|
}
|
|
|
|
static int
|
|
rgengc_remembered(rb_objspace_t *objspace, VALUE obj)
|
|
{
|
|
int result = rgengc_remembersetbits_get(objspace, obj);
|
|
check_gen_consistency(obj);
|
|
rgengc_report(6, objspace, "gc_remembered: %p (%s) => %d\n", (void *)obj, obj_type_name(obj), result);
|
|
return result;
|
|
}
|
|
|
|
static void
|
|
rgengc_rememberset_mark(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
size_t j;
|
|
RVALUE *p, *offset;
|
|
bits_t *bits, bitset;
|
|
struct heap_page *page = heap->pages;
|
|
|
|
#if RGENGC_PROFILE > 0
|
|
size_t shady_object_count = 0, clear_count = 0;
|
|
#endif
|
|
|
|
while (page) {
|
|
p = page->start;
|
|
bits = page->rememberset_bits;
|
|
offset = p - NUM_IN_PAGE(p);
|
|
|
|
for (j=0; j < HEAP_BITMAP_LIMIT; j++) {
|
|
if (bits[j]) {
|
|
p = offset + j * BITS_BITLENGTH;
|
|
bitset = bits[j];
|
|
do {
|
|
if (bitset & 1) {
|
|
/* mark before RVALUE_PROMOTE_... */
|
|
gc_mark_ptr(objspace, (VALUE)p);
|
|
|
|
if (!RVALUE_SHADY(p)) {
|
|
rgengc_report(2, objspace, "rgengc_rememberset_mark: clear %p (%s)\n", p, obj_type_name((VALUE)p));
|
|
#if RGENGC_THREEGEN
|
|
if (RVALUE_INFANT_P((VALUE)p)) RVALUE_PROMOTE_INFANT((VALUE)p);
|
|
if (RVALUE_YOUNG_P((VALUE)p)) RVALUE_PROMOTE_YOUNG((VALUE)p);
|
|
#endif
|
|
CLEAR_IN_BITMAP(bits, p);
|
|
#if RGENGC_PROFILE > 0
|
|
clear_count++;
|
|
#endif
|
|
}
|
|
else {
|
|
#if RGENGC_PROFILE > 0
|
|
shady_object_count++;
|
|
#endif
|
|
}
|
|
|
|
rgengc_report(2, objspace, "rgengc_rememberset_mark: mark %p (%s)\n", p, obj_type_name((VALUE)p));
|
|
gc_mark_children(objspace, (VALUE) p);
|
|
}
|
|
p++;
|
|
bitset >>= 1;
|
|
} while (bitset);
|
|
}
|
|
}
|
|
page = page->next;
|
|
}
|
|
|
|
rgengc_report(2, objspace, "rgengc_rememberset_mark: finished\n");
|
|
|
|
#if RGENGC_PROFILE > 0
|
|
rgengc_report(2, objspace, "rgengc_rememberset_mark: clear_count: %"PRIdSIZE", shady_object_count: %"PRIdSIZE"\n", clear_count, shady_object_count);
|
|
if (gc_prof_record(objspace)) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->remembered_normal_objects = clear_count;
|
|
record->remembered_shady_objects = shady_object_count;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
rgengc_mark_and_rememberset_clear(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
struct heap_page *page = heap->pages;
|
|
|
|
while (page) {
|
|
memset(&page->mark_bits[0], 0, HEAP_BITMAP_SIZE);
|
|
memset(&page->rememberset_bits[0], 0, HEAP_BITMAP_SIZE);
|
|
page = page->next;
|
|
}
|
|
}
|
|
|
|
/* RGENGC: APIs */
|
|
|
|
void
|
|
rb_gc_writebarrier(VALUE a, VALUE b)
|
|
{
|
|
if (RGENGC_CHECK_MODE) {
|
|
if (!RVALUE_PROMOTED_P(a)) rb_bug("rb_gc_writebarrier: referer object %p (%s) is not promoted.\n", (void *)a, obj_type_name(a));
|
|
}
|
|
|
|
if (!RVALUE_OLD_P(b) && RVALUE_OLD_BITMAP_P(a)) {
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
if (!rgengc_remembered(objspace, a)) {
|
|
int type = BUILTIN_TYPE(a);
|
|
/* TODO: 2 << 16 is just a magic number. */
|
|
if ((type == T_ARRAY && RARRAY_LEN(a) >= 2 << 16) ||
|
|
(type == T_HASH && RHASH_SIZE(a) >= 2 << 16)) {
|
|
if (!rgengc_remembered(objspace, b)) {
|
|
rgengc_report(2, objspace, "rb_gc_wb: %p (%s) -> %p (%s)\n", (void *)a, obj_type_name(a), (void *)b, obj_type_name(b));
|
|
rgengc_remember(objspace, b);
|
|
}
|
|
}
|
|
else {
|
|
rgengc_report(2, objspace, "rb_gc_wb: %p (%s) -> %p (%s)\n",
|
|
(void *)a, obj_type_name(a), (void *)b, obj_type_name(b));
|
|
rgengc_remember(objspace, a);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_gc_writebarrier_unprotect_promoted(VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
if (RGENGC_CHECK_MODE) {
|
|
if (!RVALUE_PROMOTED_P(obj)) rb_bug("rb_gc_writebarrier_unprotect_promoted: called on non-promoted object");
|
|
if (RVALUE_SHADY(obj)) rb_bug("rb_gc_writebarrier_unprotect_promoted: called on shady object");
|
|
}
|
|
|
|
rgengc_report(0, objspace, "rb_gc_writebarrier_unprotect_promoted: %p (%s)%s\n", (void *)obj, obj_type_name(obj),
|
|
rgengc_remembered(objspace, obj) ? " (already remembered)" : "");
|
|
|
|
if (RVALUE_OLD_P(obj)) {
|
|
RVALUE_DEMOTE_FROM_OLD(obj);
|
|
|
|
rgengc_remember(objspace, obj);
|
|
objspace->rgengc.remembered_shady_object_count++;
|
|
|
|
#if RGENGC_PROFILE
|
|
objspace->profile.shade_operation_count++;
|
|
#if RGENGC_PROFILE >= 2
|
|
objspace->profile.shade_operation_count_types[BUILTIN_TYPE(obj)]++;
|
|
#endif /* RGENGC_PROFILE >= 2 */
|
|
#endif /* RGENGC_PROFILE */
|
|
}
|
|
#if RGENGC_THREEGEN
|
|
else {
|
|
RVALUE_DEMOTE_FROM_YOUNG(obj);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
rb_gc_writebarrier_remember_promoted(VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
rgengc_remember(objspace, obj);
|
|
}
|
|
|
|
static st_table *rgengc_unprotect_logging_table;
|
|
|
|
static int
|
|
rgengc_unprotect_logging_exit_func_i(st_data_t key, st_data_t val)
|
|
{
|
|
fprintf(stderr, "%s\t%d\n", (char *)key, (int)val);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
rgengc_unprotect_logging_exit_func(void)
|
|
{
|
|
st_foreach(rgengc_unprotect_logging_table, rgengc_unprotect_logging_exit_func_i, 0);
|
|
}
|
|
|
|
void
|
|
rb_gc_unprotect_logging(void *objptr, const char *filename, int line)
|
|
{
|
|
VALUE obj = (VALUE)objptr;
|
|
|
|
if (rgengc_unprotect_logging_table == 0) {
|
|
rgengc_unprotect_logging_table = st_init_strtable();
|
|
atexit(rgengc_unprotect_logging_exit_func);
|
|
}
|
|
|
|
if (OBJ_WB_PROTECTED(obj)) {
|
|
char buff[0x100];
|
|
st_data_t cnt = 1;
|
|
char *ptr = buff;
|
|
|
|
snprintf(ptr, 0x100 - 1, "%s|%s:%d", obj_type_name(obj), filename, line);
|
|
|
|
if (st_lookup(rgengc_unprotect_logging_table, (st_data_t)ptr, &cnt)) {
|
|
cnt++;
|
|
}
|
|
else {
|
|
ptr = (char *)malloc(strlen(buff) + 1);
|
|
strcpy(ptr, buff);
|
|
}
|
|
st_insert(rgengc_unprotect_logging_table, (st_data_t)ptr, cnt);
|
|
}
|
|
}
|
|
|
|
#endif /* USE_RGENGC */
|
|
|
|
/* RGENGC analysis information */
|
|
|
|
VALUE
|
|
rb_obj_rgengc_writebarrier_protected_p(VALUE obj)
|
|
{
|
|
return OBJ_WB_PROTECTED(obj) ? Qtrue : Qfalse;
|
|
}
|
|
|
|
VALUE
|
|
rb_obj_rgengc_promoted_p(VALUE obj)
|
|
{
|
|
return OBJ_PROMOTED(obj) ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/* GC */
|
|
|
|
void
|
|
rb_gc_force_recycle(VALUE p)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
#if USE_RGENGC
|
|
CLEAR_IN_BITMAP(GET_HEAP_REMEMBERSET_BITS(p), p);
|
|
CLEAR_IN_BITMAP(GET_HEAP_OLDGEN_BITS(p), p);
|
|
if (!GET_HEAP_PAGE(p)->before_sweep) {
|
|
CLEAR_IN_BITMAP(GET_HEAP_MARK_BITS(p), p);
|
|
}
|
|
#endif
|
|
|
|
objspace->profile.total_freed_object_num++;
|
|
heap_page_add_freeobj(objspace, GET_HEAP_PAGE(p), p);
|
|
|
|
/* Disable counting swept_slots because there are no meaning.
|
|
* if (!MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(p), p)) {
|
|
* objspace->heap.swept_slots++;
|
|
* }
|
|
*/
|
|
}
|
|
|
|
void
|
|
rb_gc_register_mark_object(VALUE obj)
|
|
{
|
|
VALUE ary = GET_THREAD()->vm->mark_object_ary;
|
|
rb_ary_push(ary, obj);
|
|
}
|
|
|
|
void
|
|
rb_gc_register_address(VALUE *addr)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
struct gc_list *tmp;
|
|
|
|
tmp = ALLOC(struct gc_list);
|
|
tmp->next = global_List;
|
|
tmp->varptr = addr;
|
|
global_List = tmp;
|
|
}
|
|
|
|
void
|
|
rb_gc_unregister_address(VALUE *addr)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
struct gc_list *tmp = global_List;
|
|
|
|
if (tmp->varptr == addr) {
|
|
global_List = tmp->next;
|
|
xfree(tmp);
|
|
return;
|
|
}
|
|
while (tmp->next) {
|
|
if (tmp->next->varptr == addr) {
|
|
struct gc_list *t = tmp->next;
|
|
|
|
tmp->next = tmp->next->next;
|
|
xfree(t);
|
|
break;
|
|
}
|
|
tmp = tmp->next;
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_global_variable(VALUE *var)
|
|
{
|
|
rb_gc_register_address(var);
|
|
}
|
|
|
|
#define GC_NOTIFY 0
|
|
|
|
static int
|
|
garbage_collect_body(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason)
|
|
{
|
|
if (ruby_gc_stress && !ruby_disable_gc_stress) {
|
|
int flag = FIXNUM_P(ruby_gc_stress) ? FIX2INT(ruby_gc_stress) : 0;
|
|
|
|
if (flag & 0x01)
|
|
reason &= ~GPR_FLAG_MAJOR_MASK;
|
|
else
|
|
reason |= GPR_FLAG_MAJOR_BY_STRESS;
|
|
immediate_sweep = !(flag & 0x02);
|
|
}
|
|
|
|
#if USE_RGENGC
|
|
else {
|
|
if (full_mark) {
|
|
reason |= GPR_FLAG_MAJOR_BY_NOFREE;
|
|
}
|
|
if (objspace->rgengc.need_major_gc) {
|
|
objspace->rgengc.need_major_gc = FALSE;
|
|
reason |= GPR_FLAG_MAJOR_BY_RESCAN;
|
|
}
|
|
if (objspace->rgengc.remembered_shady_object_count > objspace->rgengc.remembered_shady_object_limit) {
|
|
reason |= GPR_FLAG_MAJOR_BY_SHADY;
|
|
}
|
|
if (objspace->rgengc.old_object_count > objspace->rgengc.old_object_limit) {
|
|
reason |= GPR_FLAG_MAJOR_BY_OLDGEN;
|
|
}
|
|
|
|
if (!GC_ENABLE_LAZY_SWEEP || objspace->flags.dont_lazy_sweep) {
|
|
immediate_sweep = TRUE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (immediate_sweep) reason |= GPR_FLAG_IMMEDIATE_SWEEP;
|
|
full_mark = (reason & GPR_FLAG_MAJOR_MASK) ? TRUE : FALSE;
|
|
|
|
if (GC_NOTIFY) fprintf(stderr, "start garbage_collect(%d, %d, %d)\n", full_mark, immediate_sweep, reason);
|
|
|
|
objspace->profile.count++;
|
|
gc_event_hook(objspace, RUBY_INTERNAL_EVENT_GC_START, 0 /* TODO: pass minor/immediate flag? */);
|
|
|
|
objspace->profile.total_allocated_object_num_at_gc_start = objspace->profile.total_allocated_object_num;
|
|
objspace->profile.heap_used_at_gc_start = heap_pages_used;
|
|
|
|
gc_prof_setup_new_record(objspace, reason);
|
|
gc_prof_timer_start(objspace);
|
|
{
|
|
assert(during_gc > 0);
|
|
gc_marks(objspace, full_mark);
|
|
gc_sweep(objspace, immediate_sweep);
|
|
during_gc = 0;
|
|
}
|
|
gc_prof_timer_stop(objspace);
|
|
|
|
if (GC_NOTIFY) fprintf(stderr, "end garbage_collect()\n");
|
|
return TRUE;
|
|
}
|
|
|
|
static int
|
|
heap_ready_to_gc(rb_objspace_t *objspace, rb_heap_t *heap)
|
|
{
|
|
if (dont_gc || during_gc) {
|
|
if (!heap->freelist && !heap->free_pages) {
|
|
if (!heap_increment(objspace, heap)) {
|
|
heap_set_increment(objspace, 0);
|
|
heap_increment(objspace, heap);
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
static int
|
|
ready_to_gc(rb_objspace_t *objspace)
|
|
{
|
|
return heap_ready_to_gc(objspace, heap_eden);
|
|
}
|
|
|
|
static int
|
|
garbage_collect(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason)
|
|
{
|
|
if (!heap_pages_used) {
|
|
during_gc = 0;
|
|
return FALSE;
|
|
}
|
|
if (!ready_to_gc(objspace)) {
|
|
during_gc = 0;
|
|
return TRUE;
|
|
}
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
objspace->profile.prepare_time = getrusage_time();
|
|
#endif
|
|
gc_rest_sweep(objspace);
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
objspace->profile.prepare_time = getrusage_time() - objspace->profile.prepare_time;
|
|
#endif
|
|
|
|
during_gc++;
|
|
|
|
return garbage_collect_body(objspace, full_mark, immediate_sweep, reason);
|
|
}
|
|
|
|
struct objspace_and_reason {
|
|
rb_objspace_t *objspace;
|
|
int reason;
|
|
int full_mark;
|
|
int immediate_sweep;
|
|
};
|
|
|
|
static void *
|
|
gc_with_gvl(void *ptr)
|
|
{
|
|
struct objspace_and_reason *oar = (struct objspace_and_reason *)ptr;
|
|
return (void *)(VALUE)garbage_collect(oar->objspace, oar->full_mark, oar->immediate_sweep, oar->reason);
|
|
}
|
|
|
|
static int
|
|
garbage_collect_with_gvl(rb_objspace_t *objspace, int full_mark, int immediate_sweep, int reason)
|
|
{
|
|
if (dont_gc) return TRUE;
|
|
if (ruby_thread_has_gvl_p()) {
|
|
return garbage_collect(objspace, full_mark, immediate_sweep, reason);
|
|
}
|
|
else {
|
|
if (ruby_native_thread_p()) {
|
|
struct objspace_and_reason oar;
|
|
oar.objspace = objspace;
|
|
oar.reason = reason;
|
|
oar.full_mark = full_mark;
|
|
oar.immediate_sweep = immediate_sweep;
|
|
return (int)(VALUE)rb_thread_call_with_gvl(gc_with_gvl, (void *)&oar);
|
|
}
|
|
else {
|
|
/* no ruby thread */
|
|
fprintf(stderr, "[FATAL] failed to allocate memory\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
rb_garbage_collect(void)
|
|
{
|
|
return garbage_collect(&rb_objspace, TRUE, TRUE, GPR_FLAG_CAPI);
|
|
}
|
|
|
|
#undef Init_stack
|
|
|
|
void
|
|
Init_stack(volatile VALUE *addr)
|
|
{
|
|
ruby_init_stack(addr);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC.start -> nil
|
|
* gc.garbage_collect -> nil
|
|
* ObjectSpace.garbage_collect -> nil
|
|
*
|
|
* Initiates garbage collection, unless manually disabled.
|
|
*
|
|
*/
|
|
|
|
VALUE
|
|
rb_gc_start(void)
|
|
{
|
|
rb_gc();
|
|
return Qnil;
|
|
}
|
|
|
|
void
|
|
rb_gc(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
garbage_collect(objspace, TRUE, TRUE, GPR_FLAG_METHOD);
|
|
if (!finalizing) finalize_deferred(objspace);
|
|
heap_pages_free_unused_pages(objspace);
|
|
}
|
|
|
|
int
|
|
rb_during_gc(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return during_gc;
|
|
}
|
|
|
|
#if RGENGC_PROFILE >= 2
|
|
static void
|
|
gc_count_add_each_types(VALUE hash, const char *name, const size_t *types)
|
|
{
|
|
VALUE result = rb_hash_new();
|
|
int i;
|
|
for (i=0; i<T_MASK; i++) {
|
|
const char *type = type_name(i, 0);
|
|
rb_hash_aset(result, ID2SYM(rb_intern(type)), SIZET2NUM(types[i]));
|
|
}
|
|
rb_hash_aset(hash, ID2SYM(rb_intern(name)), result);
|
|
}
|
|
#endif
|
|
|
|
size_t
|
|
rb_gc_count(void)
|
|
{
|
|
return rb_objspace.profile.count;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC.count -> Integer
|
|
*
|
|
* The number of times GC occurred.
|
|
*
|
|
* It returns the number of times GC occurred since the process started.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_count(VALUE self)
|
|
{
|
|
return SIZET2NUM(rb_gc_count());
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC.stat -> Hash
|
|
*
|
|
* Returns a Hash containing information about the GC.
|
|
*
|
|
* The hash includes information about internal statistics about GC such as:
|
|
*
|
|
* {
|
|
* :count=>0,
|
|
* :heap_used=>12,
|
|
* :heap_length=>12,
|
|
* :heap_increment=>0,
|
|
* :heap_live_num=>7539,
|
|
* :heap_free_num=>88,
|
|
* :heap_final_num=>0,
|
|
* :total_allocated_object=>7630,
|
|
* :total_freed_object=>88
|
|
* }
|
|
*
|
|
* The contents of the hash are implementation specific and may be changed in
|
|
* the future.
|
|
*
|
|
* This method is only expected to work on C Ruby.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_stat(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
VALUE hash;
|
|
static VALUE sym_count;
|
|
static VALUE sym_heap_used, sym_heap_length, sym_heap_increment;
|
|
static VALUE sym_heap_live_num, sym_heap_free_num, sym_heap_final_num;
|
|
static VALUE sym_total_allocated_object, sym_total_freed_object;
|
|
#if USE_RGENGC
|
|
static VALUE sym_minor_gc_count, sym_major_gc_count;
|
|
#if RGENGC_PROFILE
|
|
static VALUE sym_generated_normal_object_count, sym_generated_shady_object_count;
|
|
static VALUE sym_shade_operation_count, sym_promote_infant_count, sym_promote_young_count;
|
|
static VALUE sym_remembered_normal_object_count, sym_remembered_shady_object_count;
|
|
#endif /* RGENGC_PROFILE */
|
|
#endif /* USE_RGENGC */
|
|
|
|
if (sym_count == 0) {
|
|
#define S(s) sym_##s = ID2SYM(rb_intern_const(#s))
|
|
S(count);
|
|
S(heap_used);
|
|
S(heap_length);
|
|
S(heap_increment);
|
|
S(heap_live_num);
|
|
S(heap_free_num);
|
|
S(heap_final_num);
|
|
S(total_allocated_object);
|
|
S(total_freed_object);
|
|
#if USE_RGENGC
|
|
S(minor_gc_count);
|
|
S(major_gc_count);
|
|
#if RGENGC_PROFILE
|
|
S(generated_normal_object_count);
|
|
S(generated_shady_object_count);
|
|
S(shade_operation_count);
|
|
S(promote_infant_count);
|
|
S(promote_young_count);
|
|
S(remembered_normal_object_count);
|
|
S(remembered_shady_object_count);
|
|
#endif /* USE_RGENGC */
|
|
#endif /* RGENGC_PROFILE */
|
|
#undef S
|
|
}
|
|
|
|
if (rb_scan_args(argc, argv, "01", &hash) == 1) {
|
|
if (!RB_TYPE_P(hash, T_HASH)) {
|
|
rb_raise(rb_eTypeError, "non-hash given");
|
|
}
|
|
}
|
|
|
|
if (hash == Qnil) {
|
|
hash = rb_hash_new();
|
|
}
|
|
|
|
rb_hash_aset(hash, sym_count, SIZET2NUM(objspace->profile.count));
|
|
/* implementation dependent counters */
|
|
rb_hash_aset(hash, sym_heap_used, SIZET2NUM(heap_pages_used));
|
|
rb_hash_aset(hash, sym_heap_final_num, SIZET2NUM(heap_pages_final_num));
|
|
|
|
rb_hash_aset(hash, sym_heap_length, SIZET2NUM(heap_pages_length));
|
|
rb_hash_aset(hash, sym_heap_increment, SIZET2NUM(heap_pages_increment));
|
|
|
|
rb_hash_aset(hash, sym_heap_live_num, SIZET2NUM(objspace_live_num(objspace)));
|
|
rb_hash_aset(hash, sym_heap_free_num, SIZET2NUM(objspace_free_num(objspace)));
|
|
|
|
rb_hash_aset(hash, sym_total_allocated_object, SIZET2NUM(objspace->profile.total_allocated_object_num));
|
|
rb_hash_aset(hash, sym_total_freed_object, SIZET2NUM(objspace->profile.total_freed_object_num));
|
|
#if USE_RGENGC
|
|
rb_hash_aset(hash, sym_minor_gc_count, SIZET2NUM(objspace->profile.minor_gc_count));
|
|
rb_hash_aset(hash, sym_major_gc_count, SIZET2NUM(objspace->profile.major_gc_count));
|
|
#if RGENGC_PROFILE
|
|
rb_hash_aset(hash, sym_generated_normal_object_count, SIZET2NUM(objspace->profile.generated_normal_object_count));
|
|
rb_hash_aset(hash, sym_generated_shady_object_count, SIZET2NUM(objspace->profile.generated_shady_object_count));
|
|
rb_hash_aset(hash, sym_shade_operation_count, SIZET2NUM(objspace->profile.shade_operation_count));
|
|
rb_hash_aset(hash, sym_promote_infant_count, SIZET2NUM(objspace->profile.promote_infant_count));
|
|
#if RGENGC_THREEGEN
|
|
rb_hash_aset(hash, sym_promote_young_count, SIZET2NUM(objspace->profile.promote_young_count));
|
|
#endif
|
|
rb_hash_aset(hash, sym_remembered_normal_object_count, SIZET2NUM(objspace->profile.remembered_normal_object_count));
|
|
rb_hash_aset(hash, sym_remembered_shady_object_count, SIZET2NUM(objspace->profile.remembered_shady_object_count));
|
|
#if RGENGC_PROFILE >= 2
|
|
{
|
|
gc_count_add_each_types(hash, "generated_normal_object_count_types", objspace->profile.generated_normal_object_count_types);
|
|
gc_count_add_each_types(hash, "generated_shady_object_count_types", objspace->profile.generated_shady_object_count_types);
|
|
gc_count_add_each_types(hash, "shade_operation_count_types", objspace->profile.shade_operation_count_types);
|
|
gc_count_add_each_types(hash, "promote_infant_types", objspace->profile.promote_infant_types);
|
|
#if RGENGC_THREEGEN
|
|
gc_count_add_each_types(hash, "promote_young_types", objspace->profile.promote_young_types);
|
|
#endif
|
|
gc_count_add_each_types(hash, "remembered_normal_object_count_types", objspace->profile.remembered_normal_object_count_types);
|
|
gc_count_add_each_types(hash, "remembered_shady_object_count_types", objspace->profile.remembered_shady_object_count_types);
|
|
}
|
|
#endif
|
|
#endif /* RGENGC_PROFILE */
|
|
#endif /* USE_RGENGC */
|
|
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC.stress -> fixnum, true or false
|
|
*
|
|
* Returns current status of GC stress mode.
|
|
*/
|
|
|
|
static VALUE
|
|
gc_stress_get(VALUE self)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return ruby_gc_stress;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC.stress = bool -> bool
|
|
*
|
|
* Updates the GC stress mode.
|
|
*
|
|
* When stress mode is enabled, the GC is invoked at every GC opportunity:
|
|
* all memory and object allocations.
|
|
*
|
|
* Enabling stress mode will degrade performance, it is only for debugging.
|
|
*/
|
|
|
|
static VALUE
|
|
gc_stress_set(VALUE self, VALUE flag)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
rb_secure(2);
|
|
ruby_gc_stress = FIXNUM_P(flag) ? flag : (RTEST(flag) ? Qtrue : Qfalse);
|
|
return flag;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC.enable -> true or false
|
|
*
|
|
* Enables garbage collection, returning +true+ if garbage
|
|
* collection was previously disabled.
|
|
*
|
|
* GC.disable #=> false
|
|
* GC.enable #=> true
|
|
* GC.enable #=> false
|
|
*
|
|
*/
|
|
|
|
VALUE
|
|
rb_gc_enable(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
int old = dont_gc;
|
|
|
|
dont_gc = FALSE;
|
|
return old ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC.disable -> true or false
|
|
*
|
|
* Disables garbage collection, returning +true+ if garbage
|
|
* collection was already disabled.
|
|
*
|
|
* GC.disable #=> false
|
|
* GC.disable #=> true
|
|
*
|
|
*/
|
|
|
|
VALUE
|
|
rb_gc_disable(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
int old = dont_gc;
|
|
|
|
gc_rest_sweep(objspace);
|
|
|
|
dont_gc = TRUE;
|
|
return old ? Qtrue : Qfalse;
|
|
}
|
|
|
|
static int
|
|
get_envparam_int(const char *name, unsigned int *default_value, int lower_bound)
|
|
{
|
|
char *ptr = getenv(name);
|
|
int val;
|
|
|
|
if (ptr != NULL) {
|
|
val = atoi(ptr);
|
|
if (val > lower_bound) {
|
|
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%d (%d)\n", name, val, *default_value);
|
|
*default_value = val;
|
|
return 1;
|
|
}
|
|
else {
|
|
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%d (%d), but ignored because lower than %d\n", name, val, *default_value, lower_bound);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
get_envparam_double(const char *name, double *default_value, double lower_bound)
|
|
{
|
|
char *ptr = getenv(name);
|
|
double val;
|
|
|
|
if (ptr != NULL) {
|
|
val = strtod(ptr, NULL);
|
|
if (val > lower_bound) {
|
|
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (%f)\n", name, val, *default_value);
|
|
*default_value = val;
|
|
return 1;
|
|
}
|
|
else {
|
|
if (RTEST(ruby_verbose)) fprintf(stderr, "%s=%f (%f), but ignored because lower than %f\n", name, val, *default_value, lower_bound);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gc_set_initial_pages(void)
|
|
{
|
|
size_t min_pages;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
min_pages = gc_params.heap_init_slots / HEAP_OBJ_LIMIT;
|
|
if (min_pages > heap_eden->used) {
|
|
heap_add_pages(objspace, heap_eden, min_pages - heap_eden->used);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* GC tuning environment variables
|
|
*
|
|
* * RUBY_GC_HEAP_INIT_SLOTS
|
|
* - Initial allocation slots.
|
|
* * RUBY_GC_HEAP_FREE_SLOTS
|
|
* - Prepare at least this ammount of slots after GC.
|
|
* - Allocate slots if there are not enough slots.
|
|
* * RUBY_GC_HEAP_GROWTH_FACTOR (new from 2.1)
|
|
* - Allocate slots by this factor.
|
|
* - (next slots number) = (current slots number) * (this factor)
|
|
* * RUBY_GC_HEAP_GROWTH_MAX_SLOTS (new from 2.1)
|
|
* - Allocation rate is limited to this factor.
|
|
*
|
|
* * obsolete
|
|
* * RUBY_FREE_MIN -> RUBY_GC_HEAP_FREE_SLOTS (from 2.1)
|
|
* * RUBY_HEAP_MIN_SLOTS -> RUBY_GC_HEAP_INIT_SLOTS (from 2.1)
|
|
*
|
|
* * RUBY_GC_MALLOC_LIMIT
|
|
* * RUBY_GC_MALLOC_LIMIT_MAX (new from 2.1)
|
|
* * RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR (new from 2.1)
|
|
*
|
|
* * RUBY_GC_OLDSPACE_LIMIT (new from 2.1)
|
|
* * RUBY_GC_OLDSPACE_LIMIT_MAX (new from 2.1)
|
|
* * RUBY_GC_OLDSPACE_LIMIT_GROWTH_FACTOR (new from 2.1)
|
|
*/
|
|
|
|
void
|
|
ruby_gc_set_params(void)
|
|
{
|
|
if (rb_safe_level() > 0) return;
|
|
|
|
/* RUBY_GC_HEAP_FREE_SLOTS */
|
|
if (get_envparam_int ("RUBY_FREE_MIN", &gc_params.heap_free_slots, 0)) {
|
|
rb_warn("RUBY_FREE_MIN is obsolete. Use RUBY_GC_HEAP_FREE_SLOTS instead.");
|
|
}
|
|
get_envparam_int ("RUBY_GC_HEAP_FREE_SLOTS", &gc_params.heap_free_slots, 0);
|
|
|
|
/* RUBY_GC_HEAP_INIT_SLOTS */
|
|
if (get_envparam_int("RUBY_HEAP_MIN_SLOTS", &gc_params.heap_init_slots, 0)) {
|
|
rb_warn("RUBY_HEAP_MIN_SLOTS is obsolete. Use RUBY_GC_HEAP_INIT_SLOTS instead.");
|
|
gc_set_initial_pages();
|
|
}
|
|
if (get_envparam_int("RUBY_GC_HEAP_INIT_SLOTS", &gc_params.heap_init_slots, 0)) {
|
|
gc_set_initial_pages();
|
|
}
|
|
|
|
get_envparam_double("RUBY_GC_HEAP_GROWTH_FACTOR", &gc_params.growth_factor, 1.0);
|
|
get_envparam_int ("RUBY_GC_HEAP_GROWTH_MAX_SLOTS", &gc_params.growth_max_slots, 0);
|
|
|
|
get_envparam_int("RUBY_GC_MALLOC_LIMIT", &gc_params.malloc_limit_min, 0);
|
|
get_envparam_int("RUBY_GC_MALLOC_LIMIT_MAX", &gc_params.malloc_limit_max, 0);
|
|
get_envparam_double("RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR", &gc_params.malloc_limit_growth_factor, 1.0);
|
|
|
|
get_envparam_int("RUBY_GC_OLDSPACE_LIMIT", &gc_params.oldspace_limit_min, 0);
|
|
get_envparam_int("RUBY_GC_OLDSPACE_LIMIT_MAX", &gc_params.oldspace_limit_max, 0);
|
|
get_envparam_double("RUBY_GC_OLDSPACE_LIMIT_GROWTH_FACTOR", &gc_params.oldspace_limit_growth_factor, 1.0);
|
|
}
|
|
|
|
RUBY_ALIAS_FUNCTION_VOID(rb_gc_set_params(void), ruby_gc_set_params, ())
|
|
|
|
void
|
|
rb_objspace_reachable_objects_from(VALUE obj, void (func)(VALUE, void *), void *data)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
if (is_markable_object(objspace, obj)) {
|
|
struct mark_func_data_struct mfd;
|
|
mfd.mark_func = func;
|
|
mfd.data = data;
|
|
objspace->mark_func_data = &mfd;
|
|
gc_mark_children(objspace, obj);
|
|
objspace->mark_func_data = 0;
|
|
}
|
|
}
|
|
|
|
struct root_objects_data {
|
|
const char *category;
|
|
void (*func)(const char *category, VALUE, void *);
|
|
void *data;
|
|
};
|
|
|
|
static void
|
|
root_objects_from(VALUE obj, void *ptr)
|
|
{
|
|
const struct root_objects_data *data = (struct root_objects_data *)ptr;
|
|
(*data->func)(data->category, obj, data->data);
|
|
}
|
|
|
|
void
|
|
rb_objspace_reachable_objects_from_root(void (func)(const char *category, VALUE, void *), void *passing_data)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
struct root_objects_data data;
|
|
struct mark_func_data_struct mfd;
|
|
|
|
data.func = func;
|
|
data.data = passing_data;
|
|
|
|
mfd.mark_func = root_objects_from;
|
|
mfd.data = &data;
|
|
|
|
objspace->mark_func_data = &mfd;
|
|
{
|
|
gc_mark_roots(objspace, TRUE, &data.category);
|
|
}
|
|
objspace->mark_func_data = 0;
|
|
}
|
|
|
|
/*
|
|
------------------------ Extended allocator ------------------------
|
|
*/
|
|
|
|
static void vm_xfree(rb_objspace_t *objspace, void *ptr, size_t size);
|
|
|
|
static void *
|
|
negative_size_allocation_error_with_gvl(void *ptr)
|
|
{
|
|
rb_raise(rb_eNoMemError, "%s", (const char *)ptr);
|
|
return 0; /* should not be reached */
|
|
}
|
|
|
|
static void
|
|
negative_size_allocation_error(const char *msg)
|
|
{
|
|
if (ruby_thread_has_gvl_p()) {
|
|
rb_raise(rb_eNoMemError, "%s", msg);
|
|
}
|
|
else {
|
|
if (ruby_native_thread_p()) {
|
|
rb_thread_call_with_gvl(negative_size_allocation_error_with_gvl, (void *)msg);
|
|
}
|
|
else {
|
|
fprintf(stderr, "[FATAL] %s\n", msg);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void *
|
|
ruby_memerror_body(void *dummy)
|
|
{
|
|
rb_memerror();
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ruby_memerror(void)
|
|
{
|
|
if (ruby_thread_has_gvl_p()) {
|
|
rb_memerror();
|
|
}
|
|
else {
|
|
if (ruby_native_thread_p()) {
|
|
rb_thread_call_with_gvl(ruby_memerror_body, 0);
|
|
}
|
|
else {
|
|
/* no ruby thread */
|
|
fprintf(stderr, "[FATAL] failed to allocate memory\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
rb_memerror(void)
|
|
{
|
|
rb_thread_t *th = GET_THREAD();
|
|
if (!nomem_error ||
|
|
rb_thread_raised_p(th, RAISED_NOMEMORY)) {
|
|
fprintf(stderr, "[FATAL] failed to allocate memory\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (rb_thread_raised_p(th, RAISED_NOMEMORY)) {
|
|
rb_thread_raised_clear(th);
|
|
GET_THREAD()->errinfo = nomem_error;
|
|
JUMP_TAG(TAG_RAISE);
|
|
}
|
|
rb_thread_raised_set(th, RAISED_NOMEMORY);
|
|
rb_exc_raise(nomem_error);
|
|
}
|
|
|
|
static void *
|
|
aligned_malloc(size_t alignment, size_t size)
|
|
{
|
|
void *res;
|
|
|
|
#if defined __MINGW32__
|
|
res = __mingw_aligned_malloc(size, alignment);
|
|
#elif defined _WIN32 && !defined __CYGWIN__
|
|
void *_aligned_malloc(size_t, size_t);
|
|
res = _aligned_malloc(size, alignment);
|
|
#elif defined(HAVE_POSIX_MEMALIGN)
|
|
if (posix_memalign(&res, alignment, size) == 0) {
|
|
return res;
|
|
}
|
|
else {
|
|
return NULL;
|
|
}
|
|
#elif defined(HAVE_MEMALIGN)
|
|
res = memalign(alignment, size);
|
|
#else
|
|
char* aligned;
|
|
res = malloc(alignment + size + sizeof(void*));
|
|
aligned = (char*)res + alignment + sizeof(void*);
|
|
aligned -= ((VALUE)aligned & (alignment - 1));
|
|
((void**)aligned)[-1] = res;
|
|
res = (void*)aligned;
|
|
#endif
|
|
|
|
#if defined(_DEBUG) || GC_DEBUG
|
|
/* alignment must be a power of 2 */
|
|
assert(((alignment - 1) & alignment) == 0);
|
|
assert(alignment % sizeof(void*) == 0);
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
static void
|
|
aligned_free(void *ptr)
|
|
{
|
|
#if defined __MINGW32__
|
|
__mingw_aligned_free(ptr);
|
|
#elif defined _WIN32 && !defined __CYGWIN__
|
|
_aligned_free(ptr);
|
|
#elif defined(HAVE_MEMALIGN) || defined(HAVE_POSIX_MEMALIGN)
|
|
free(ptr);
|
|
#else
|
|
free(((void**)ptr)[-1]);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
vm_malloc_increase(rb_objspace_t *objspace, size_t new_size, size_t old_size, int do_gc)
|
|
{
|
|
if (new_size > old_size) {
|
|
ATOMIC_SIZE_ADD(malloc_increase, new_size - old_size);
|
|
}
|
|
else {
|
|
size_t sub = old_size - new_size;
|
|
if (sub != 0) {
|
|
retry_sub:;
|
|
{
|
|
size_t old_increase = malloc_increase;
|
|
size_t new_increase = old_increase > sub ? old_increase - sub : 0;
|
|
if (ATOMIC_SIZE_CAS(malloc_increase, old_increase, new_increase) != old_increase) goto retry_sub;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (do_gc) {
|
|
if (ruby_gc_stress && !ruby_disable_gc_stress) {
|
|
garbage_collect_with_gvl(objspace, FALSE, TRUE, GPR_FLAG_MALLOC);
|
|
}
|
|
else {
|
|
retry:
|
|
if (malloc_increase > malloc_limit) {
|
|
if (ruby_thread_has_gvl_p() && is_lazy_sweeping(heap_eden)) {
|
|
gc_rest_sweep(objspace); /* rest_sweep can reduce malloc_increase */
|
|
goto retry;
|
|
}
|
|
garbage_collect_with_gvl(objspace, FALSE, TRUE, GPR_FLAG_MALLOC);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline size_t
|
|
vm_malloc_prepare(rb_objspace_t *objspace, size_t size)
|
|
{
|
|
if ((ssize_t)size < 0) {
|
|
negative_size_allocation_error("negative allocation size (or too big)");
|
|
}
|
|
if (size == 0) size = 1;
|
|
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
size += sizeof(size_t);
|
|
#endif
|
|
|
|
vm_malloc_increase(objspace, size, 0, TRUE);
|
|
|
|
return size;
|
|
}
|
|
|
|
static inline void *
|
|
vm_malloc_fixup(rb_objspace_t *objspace, void *mem, size_t size)
|
|
{
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, size);
|
|
ATOMIC_SIZE_INC(objspace->malloc_params.allocations);
|
|
((size_t *)mem)[0] = size;
|
|
mem = (size_t *)mem + 1;
|
|
#endif
|
|
|
|
return mem;
|
|
}
|
|
|
|
#define TRY_WITH_GC(alloc) do { \
|
|
if (!(alloc) && \
|
|
(!garbage_collect_with_gvl(objspace, 1, 1, GPR_FLAG_MALLOC) || /* full mark && immediate sweep */ \
|
|
!(alloc))) { \
|
|
ruby_memerror(); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void *
|
|
vm_xmalloc(rb_objspace_t *objspace, size_t size)
|
|
{
|
|
void *mem;
|
|
|
|
size = vm_malloc_prepare(objspace, size);
|
|
TRY_WITH_GC(mem = malloc(size));
|
|
return vm_malloc_fixup(objspace, mem, size);
|
|
}
|
|
|
|
static void *
|
|
vm_xrealloc(rb_objspace_t *objspace, void *ptr, size_t new_size, size_t old_size)
|
|
{
|
|
void *mem;
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
size_t cem_oldsize;
|
|
#endif
|
|
|
|
if ((ssize_t)new_size < 0) {
|
|
negative_size_allocation_error("negative re-allocation size");
|
|
}
|
|
|
|
if (!ptr) return vm_xmalloc(objspace, new_size);
|
|
|
|
/*
|
|
* The behavior of realloc(ptr, 0) is implementation defined.
|
|
* Therefore we don't use realloc(ptr, 0) for portability reason.
|
|
* see http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_400.htm
|
|
*/
|
|
if (new_size == 0) {
|
|
vm_xfree(objspace, ptr, old_size);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef HAVE_MALLOC_USABLE_SIZE
|
|
old_size = malloc_usable_size(ptr);
|
|
#endif
|
|
|
|
vm_malloc_increase(objspace, new_size, old_size, FALSE);
|
|
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
new_size += sizeof(size_t);
|
|
ptr = (size_t *)ptr - 1;
|
|
cem_oldsize = ((size_t *)ptr)[0];
|
|
|
|
if (CALC_EXACT_MALLOC_SIZE_CHECK_OLD_SIZE && old_size > 0 && cem_oldsize - sizeof(size_t) != old_size) {
|
|
fprintf(stderr, "vm_xrealloc: old_size mismatch: expected %d, but %d\n", (int)(cem_oldsize-sizeof(size_t)), (int)old_size);
|
|
}
|
|
#endif
|
|
|
|
TRY_WITH_GC(mem = realloc(ptr, new_size));
|
|
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
ATOMIC_SIZE_ADD(objspace->malloc_params.allocated_size, new_size - cem_oldsize);
|
|
((size_t *)mem)[0] = new_size;
|
|
mem = (size_t *)mem + 1;
|
|
#endif
|
|
|
|
return mem;
|
|
}
|
|
|
|
static void
|
|
vm_xfree(rb_objspace_t *objspace, void *ptr, size_t old_size)
|
|
{
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
size_t cem_oldsize;
|
|
ptr = ((size_t *)ptr) - 1;
|
|
cem_oldsize = ((size_t*)ptr)[0];
|
|
if (cem_oldsize) {
|
|
ATOMIC_SIZE_SUB(objspace->malloc_params.allocated_size, cem_oldsize);
|
|
ATOMIC_SIZE_DEC(objspace->malloc_params.allocations);
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_MALLOC_USABLE_SIZE
|
|
old_size = malloc_usable_size(ptr);
|
|
#endif
|
|
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
if (CALC_EXACT_MALLOC_SIZE_CHECK_OLD_SIZE && old_size > 0 && cem_oldsize - sizeof(size_t) != old_size) {
|
|
fprintf(stderr, "vm_xfree: old_size mismatch: expected %d, but %d\n", (int)(cem_oldsize-sizeof(size_t)), (int)old_size);
|
|
}
|
|
#endif
|
|
vm_malloc_increase(objspace, 0, old_size, FALSE);
|
|
|
|
free(ptr);
|
|
}
|
|
|
|
void *
|
|
ruby_xmalloc(size_t size)
|
|
{
|
|
return vm_xmalloc(&rb_objspace, size);
|
|
}
|
|
|
|
static inline size_t
|
|
xmalloc2_size(size_t n, size_t size)
|
|
{
|
|
size_t len = size * n;
|
|
if (n != 0 && size != len / n) {
|
|
rb_raise(rb_eArgError, "malloc: possible integer overflow");
|
|
}
|
|
return len;
|
|
}
|
|
|
|
void *
|
|
ruby_xmalloc2(size_t n, size_t size)
|
|
{
|
|
return vm_xmalloc(&rb_objspace, xmalloc2_size(n, size));
|
|
}
|
|
|
|
static void *
|
|
vm_xcalloc(rb_objspace_t *objspace, size_t count, size_t elsize)
|
|
{
|
|
void *mem;
|
|
size_t size;
|
|
|
|
size = xmalloc2_size(count, elsize);
|
|
size = vm_malloc_prepare(objspace, size);
|
|
|
|
TRY_WITH_GC(mem = calloc(1, size));
|
|
return vm_malloc_fixup(objspace, mem, size);
|
|
}
|
|
|
|
void *
|
|
ruby_xcalloc(size_t n, size_t size)
|
|
{
|
|
return vm_xcalloc(&rb_objspace, n, size);
|
|
}
|
|
|
|
void *
|
|
ruby_sized_xrealloc(void *ptr, size_t new_size, size_t old_size)
|
|
{
|
|
return vm_xrealloc(&rb_objspace, ptr, new_size, old_size);
|
|
}
|
|
|
|
void *
|
|
ruby_xrealloc(void *ptr, size_t new_size)
|
|
{
|
|
return ruby_sized_xrealloc(ptr, new_size, 0);
|
|
}
|
|
|
|
void *
|
|
ruby_xrealloc2(void *ptr, size_t n, size_t size)
|
|
{
|
|
size_t len = size * n;
|
|
if (n != 0 && size != len / n) {
|
|
rb_raise(rb_eArgError, "realloc: possible integer overflow");
|
|
}
|
|
return ruby_xrealloc(ptr, len);
|
|
}
|
|
|
|
void
|
|
ruby_sized_xfree(void *x, size_t size)
|
|
{
|
|
if (x) {
|
|
vm_xfree(&rb_objspace, x, size);
|
|
}
|
|
}
|
|
|
|
void
|
|
ruby_xfree(void *x)
|
|
{
|
|
ruby_sized_xfree(x, 0);
|
|
}
|
|
|
|
/* Mimic ruby_xmalloc, but need not rb_objspace.
|
|
* should return pointer suitable for ruby_xfree
|
|
*/
|
|
void *
|
|
ruby_mimmalloc(size_t size)
|
|
{
|
|
void *mem;
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
size += sizeof(size_t);
|
|
#endif
|
|
mem = malloc(size);
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
/* set 0 for consistency of allocated_size/allocations */
|
|
((size_t *)mem)[0] = 0;
|
|
mem = (size_t *)mem + 1;
|
|
#endif
|
|
return mem;
|
|
}
|
|
|
|
void
|
|
ruby_mimfree(void *ptr)
|
|
{
|
|
size_t *mem = (size_t *)ptr;
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
mem = mem - 1;
|
|
#endif
|
|
free(mem);
|
|
}
|
|
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
/*
|
|
* call-seq:
|
|
* GC.malloc_allocated_size -> Integer
|
|
*
|
|
* Returns the size of memory allocated by malloc().
|
|
*
|
|
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
|
|
*/
|
|
|
|
static VALUE
|
|
gc_malloc_allocated_size(VALUE self)
|
|
{
|
|
return UINT2NUM(rb_objspace.malloc_params.allocated_size);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC.malloc_allocations -> Integer
|
|
*
|
|
* Returns the number of malloc() allocations.
|
|
*
|
|
* Only available if ruby was built with +CALC_EXACT_MALLOC_SIZE+.
|
|
*/
|
|
|
|
static VALUE
|
|
gc_malloc_allocations(VALUE self)
|
|
{
|
|
return UINT2NUM(rb_objspace.malloc_params.allocations);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
------------------------------ WeakMap ------------------------------
|
|
*/
|
|
|
|
struct weakmap {
|
|
st_table *obj2wmap; /* obj -> [ref,...] */
|
|
st_table *wmap2obj; /* ref -> obj */
|
|
VALUE final;
|
|
};
|
|
|
|
static int
|
|
wmap_mark_map(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)arg;
|
|
VALUE obj = (VALUE)val;
|
|
if (!is_live_object(objspace, obj)) return ST_DELETE;
|
|
gc_mark_ptr(objspace, obj);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
wmap_mark(void *ptr)
|
|
{
|
|
struct weakmap *w = ptr;
|
|
if (w->obj2wmap) st_foreach(w->obj2wmap, wmap_mark_map, (st_data_t)&rb_objspace);
|
|
rb_gc_mark(w->final);
|
|
}
|
|
|
|
static int
|
|
wmap_free_map(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
rb_ary_resize((VALUE)val, 0);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void
|
|
wmap_free(void *ptr)
|
|
{
|
|
struct weakmap *w = ptr;
|
|
st_foreach(w->obj2wmap, wmap_free_map, 0);
|
|
st_free_table(w->obj2wmap);
|
|
st_free_table(w->wmap2obj);
|
|
}
|
|
|
|
size_t rb_ary_memsize(VALUE ary);
|
|
static int
|
|
wmap_memsize_map(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
*(size_t *)arg += rb_ary_memsize((VALUE)val);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static size_t
|
|
wmap_memsize(const void *ptr)
|
|
{
|
|
size_t size;
|
|
const struct weakmap *w = ptr;
|
|
if (!w) return 0;
|
|
size = sizeof(*w);
|
|
size += st_memsize(w->obj2wmap);
|
|
size += st_memsize(w->wmap2obj);
|
|
st_foreach(w->obj2wmap, wmap_memsize_map, (st_data_t)&size);
|
|
return size;
|
|
}
|
|
|
|
static const rb_data_type_t weakmap_type = {
|
|
"weakmap",
|
|
{
|
|
wmap_mark,
|
|
wmap_free,
|
|
wmap_memsize,
|
|
},
|
|
NULL, NULL, RUBY_TYPED_FREE_IMMEDIATELY
|
|
};
|
|
|
|
static VALUE
|
|
wmap_allocate(VALUE klass)
|
|
{
|
|
struct weakmap *w;
|
|
VALUE obj = TypedData_Make_Struct(klass, struct weakmap, &weakmap_type, w);
|
|
w->obj2wmap = st_init_numtable();
|
|
w->wmap2obj = st_init_numtable();
|
|
w->final = rb_obj_method(obj, ID2SYM(rb_intern("finalize")));
|
|
return obj;
|
|
}
|
|
|
|
static int
|
|
wmap_final_func(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
|
|
{
|
|
VALUE wmap, ary;
|
|
if (!existing) return ST_STOP;
|
|
wmap = (VALUE)arg, ary = (VALUE)*value;
|
|
rb_ary_delete_same(ary, wmap);
|
|
if (!RARRAY_LEN(ary)) return ST_DELETE;
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static VALUE
|
|
wmap_finalize(VALUE self, VALUE objid)
|
|
{
|
|
st_data_t orig, wmap, data;
|
|
VALUE obj, rids;
|
|
long i;
|
|
struct weakmap *w;
|
|
|
|
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
|
|
/* Get reference from object id. */
|
|
obj = obj_id_to_ref(objid);
|
|
|
|
/* obj is original referenced object and/or weak reference. */
|
|
orig = (st_data_t)obj;
|
|
if (st_delete(w->obj2wmap, &orig, &data)) {
|
|
rids = (VALUE)data;
|
|
for (i = 0; i < RARRAY_LEN(rids); ++i) {
|
|
wmap = (st_data_t)RARRAY_AREF(rids, i);
|
|
st_delete(w->wmap2obj, &wmap, NULL);
|
|
}
|
|
}
|
|
|
|
wmap = (st_data_t)obj;
|
|
if (st_delete(w->wmap2obj, &wmap, &orig)) {
|
|
wmap = (st_data_t)obj;
|
|
st_update(w->obj2wmap, orig, wmap_final_func, wmap);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
struct wmap_iter_arg {
|
|
rb_objspace_t *objspace;
|
|
VALUE value;
|
|
};
|
|
|
|
static int
|
|
wmap_inspect_i(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
VALUE str = (VALUE)arg;
|
|
VALUE k = (VALUE)key, v = (VALUE)val;
|
|
|
|
if (RSTRING_PTR(str)[0] == '#') {
|
|
rb_str_cat2(str, ", ");
|
|
}
|
|
else {
|
|
rb_str_cat2(str, ": ");
|
|
RSTRING_PTR(str)[0] = '#';
|
|
}
|
|
k = SPECIAL_CONST_P(k) ? rb_inspect(k) : rb_any_to_s(k);
|
|
rb_str_append(str, k);
|
|
rb_str_cat2(str, " => ");
|
|
v = SPECIAL_CONST_P(v) ? rb_inspect(v) : rb_any_to_s(v);
|
|
rb_str_append(str, v);
|
|
OBJ_INFECT(str, k);
|
|
OBJ_INFECT(str, v);
|
|
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static VALUE
|
|
wmap_inspect(VALUE self)
|
|
{
|
|
VALUE str;
|
|
VALUE c = rb_class_name(CLASS_OF(self));
|
|
struct weakmap *w;
|
|
|
|
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
|
|
str = rb_sprintf("-<%"PRIsVALUE":%p", c, (void *)self);
|
|
if (w->obj2wmap) {
|
|
st_foreach(w->obj2wmap, wmap_inspect_i, str);
|
|
}
|
|
RSTRING_PTR(str)[0] = '#';
|
|
rb_str_cat2(str, ">");
|
|
return str;
|
|
}
|
|
|
|
static int
|
|
wmap_each_i(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)arg;
|
|
VALUE obj = (VALUE)val;
|
|
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
|
|
rb_yield_values(2, (VALUE)key, obj);
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/* Iterates over keys and objects in a weakly referenced object */
|
|
static VALUE
|
|
wmap_each(VALUE self)
|
|
{
|
|
struct weakmap *w;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
|
|
st_foreach(w->wmap2obj, wmap_each_i, (st_data_t)objspace);
|
|
return self;
|
|
}
|
|
|
|
static int
|
|
wmap_each_key_i(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)arg;
|
|
VALUE obj = (VALUE)val;
|
|
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
|
|
rb_yield((VALUE)key);
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/* Iterates over keys and objects in a weakly referenced object */
|
|
static VALUE
|
|
wmap_each_key(VALUE self)
|
|
{
|
|
struct weakmap *w;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
|
|
st_foreach(w->wmap2obj, wmap_each_key_i, (st_data_t)objspace);
|
|
return self;
|
|
}
|
|
|
|
static int
|
|
wmap_each_value_i(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
rb_objspace_t *objspace = (rb_objspace_t *)arg;
|
|
VALUE obj = (VALUE)val;
|
|
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
|
|
rb_yield(obj);
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/* Iterates over keys and objects in a weakly referenced object */
|
|
static VALUE
|
|
wmap_each_value(VALUE self)
|
|
{
|
|
struct weakmap *w;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
|
|
st_foreach(w->wmap2obj, wmap_each_value_i, (st_data_t)objspace);
|
|
return self;
|
|
}
|
|
|
|
static int
|
|
wmap_keys_i(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
rb_ary_push((VALUE)arg, (VALUE)key);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/* Iterates over keys and objects in a weakly referenced object */
|
|
static VALUE
|
|
wmap_keys(VALUE self)
|
|
{
|
|
struct weakmap *w;
|
|
VALUE ary;
|
|
|
|
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
|
|
ary = rb_ary_new();
|
|
st_foreach(w->wmap2obj, wmap_keys_i, (st_data_t)ary);
|
|
return ary;
|
|
}
|
|
|
|
static int
|
|
wmap_values_i(st_data_t key, st_data_t val, st_data_t arg)
|
|
{
|
|
struct wmap_iter_arg *argp = (struct wmap_iter_arg *)arg;
|
|
rb_objspace_t *objspace = argp->objspace;
|
|
VALUE ary = argp->value;
|
|
VALUE obj = (VALUE)val;
|
|
if (is_id_value(objspace, obj) && is_live_object(objspace, obj)) {
|
|
rb_ary_push(ary, obj);
|
|
}
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
/* Iterates over values and objects in a weakly referenced object */
|
|
static VALUE
|
|
wmap_values(VALUE self)
|
|
{
|
|
struct weakmap *w;
|
|
struct wmap_iter_arg args;
|
|
|
|
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
|
|
args.objspace = &rb_objspace;
|
|
args.value = rb_ary_new();
|
|
st_foreach(w->wmap2obj, wmap_values_i, (st_data_t)&args);
|
|
return args.value;
|
|
}
|
|
|
|
/* Creates a weak reference from the given key to the given value */
|
|
static VALUE
|
|
wmap_aset(VALUE self, VALUE wmap, VALUE orig)
|
|
{
|
|
st_data_t data;
|
|
VALUE rids;
|
|
struct weakmap *w;
|
|
|
|
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
|
|
rb_define_finalizer(orig, w->final);
|
|
rb_define_finalizer(wmap, w->final);
|
|
if (st_lookup(w->obj2wmap, (st_data_t)orig, &data)) {
|
|
rids = (VALUE)data;
|
|
}
|
|
else {
|
|
rids = rb_ary_tmp_new(1);
|
|
st_insert(w->obj2wmap, (st_data_t)orig, (st_data_t)rids);
|
|
}
|
|
rb_ary_push(rids, wmap);
|
|
st_insert(w->wmap2obj, (st_data_t)wmap, (st_data_t)orig);
|
|
return nonspecial_obj_id(orig);
|
|
}
|
|
|
|
/* Retrieves a weakly referenced object with the given key */
|
|
static VALUE
|
|
wmap_aref(VALUE self, VALUE wmap)
|
|
{
|
|
st_data_t data;
|
|
VALUE obj;
|
|
struct weakmap *w;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
TypedData_Get_Struct(self, struct weakmap, &weakmap_type, w);
|
|
if (!st_lookup(w->wmap2obj, (st_data_t)wmap, &data)) return Qnil;
|
|
obj = (VALUE)data;
|
|
if (!is_id_value(objspace, obj)) return Qnil;
|
|
if (!is_live_object(objspace, obj)) return Qnil;
|
|
return obj;
|
|
}
|
|
|
|
/* Returns +true+ if +key+ is registered */
|
|
static VALUE
|
|
wmap_has_key(VALUE self, VALUE key)
|
|
{
|
|
return NIL_P(wmap_aref(self, key)) ? Qfalse : Qtrue;
|
|
}
|
|
|
|
|
|
/*
|
|
------------------------------ GC profiler ------------------------------
|
|
*/
|
|
|
|
#define GC_PROFILE_RECORD_DEFAULT_SIZE 100
|
|
|
|
static double
|
|
getrusage_time(void)
|
|
{
|
|
#if defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_PROCESS_CPUTIME_ID)
|
|
{
|
|
static int try_clock_gettime = 1;
|
|
struct timespec ts;
|
|
if (try_clock_gettime && clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts) == 0) {
|
|
return ts.tv_sec + ts.tv_nsec * 1e-9;
|
|
}
|
|
else {
|
|
try_clock_gettime = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RUSAGE_SELF
|
|
{
|
|
struct rusage usage;
|
|
struct timeval time;
|
|
if (getrusage(RUSAGE_SELF, &usage) == 0) {
|
|
time = usage.ru_utime;
|
|
return time.tv_sec + time.tv_usec * 1e-6;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
{
|
|
FILETIME creation_time, exit_time, kernel_time, user_time;
|
|
ULARGE_INTEGER ui;
|
|
LONG_LONG q;
|
|
double t;
|
|
|
|
if (GetProcessTimes(GetCurrentProcess(),
|
|
&creation_time, &exit_time, &kernel_time, &user_time) != 0) {
|
|
memcpy(&ui, &user_time, sizeof(FILETIME));
|
|
q = ui.QuadPart / 10L;
|
|
t = (DWORD)(q % 1000000L) * 1e-6;
|
|
q /= 1000000L;
|
|
#ifdef __GNUC__
|
|
t += q;
|
|
#else
|
|
t += (double)(DWORD)(q >> 16) * (1 << 16);
|
|
t += (DWORD)q & ~(~0 << 16);
|
|
#endif
|
|
return t;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_setup_new_record(rb_objspace_t *objspace, int reason)
|
|
{
|
|
if (objspace->profile.run) {
|
|
size_t index = objspace->profile.next_index;
|
|
gc_profile_record *record;
|
|
|
|
/* create new record */
|
|
objspace->profile.next_index++;
|
|
|
|
if (!objspace->profile.records) {
|
|
objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE;
|
|
objspace->profile.records = malloc(sizeof(gc_profile_record) * objspace->profile.size);
|
|
}
|
|
if (index >= objspace->profile.size) {
|
|
objspace->profile.size += 1000;
|
|
objspace->profile.records = realloc(objspace->profile.records, sizeof(gc_profile_record) * objspace->profile.size);
|
|
}
|
|
if (!objspace->profile.records) {
|
|
rb_bug("gc_profile malloc or realloc miss");
|
|
}
|
|
record = objspace->profile.current_record = &objspace->profile.records[objspace->profile.next_index - 1];
|
|
MEMZERO(record, gc_profile_record, 1);
|
|
|
|
/* setup before-GC parameter */
|
|
record->flags = reason | ((ruby_gc_stress && !ruby_disable_gc_stress) ? GPR_FLAG_STRESS : 0);
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
record->allocated_size = malloc_allocated_size;
|
|
#endif
|
|
#if GC_PROFILE_DETAIL_MEMORY
|
|
#ifdef RUSAGE_SELF
|
|
{
|
|
struct rusage usage;
|
|
if (getrusage(RUSAGE_SELF, &usage) == 0) {
|
|
record->maxrss = usage.ru_maxrss;
|
|
record->minflt = usage.ru_minflt;
|
|
record->majflt = usage.ru_majflt;
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_timer_start(rb_objspace_t *objspace)
|
|
{
|
|
if (objspace->profile.run) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
record->prepare_time = objspace->profile.prepare_time;
|
|
#endif
|
|
record->gc_time = 0;
|
|
record->gc_invoke_time = getrusage_time();
|
|
}
|
|
}
|
|
|
|
static double
|
|
elapsed_time_from(double time)
|
|
{
|
|
double now = getrusage_time();
|
|
if (now > time) {
|
|
return now - time;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_timer_stop(rb_objspace_t *objspace)
|
|
{
|
|
if (objspace->profile.run) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->gc_time = elapsed_time_from(record->gc_invoke_time);
|
|
record->gc_invoke_time -= objspace->profile.invoke_time;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_mark_timer_start(rb_objspace_t *objspace)
|
|
{
|
|
if (RUBY_DTRACE_GC_MARK_BEGIN_ENABLED()) {
|
|
RUBY_DTRACE_GC_MARK_BEGIN();
|
|
}
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
if (objspace->profile.run) {
|
|
gc_prof_record(objspace)->gc_mark_time = getrusage_time();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_mark_timer_stop(rb_objspace_t *objspace)
|
|
{
|
|
if (RUBY_DTRACE_GC_MARK_END_ENABLED()) {
|
|
RUBY_DTRACE_GC_MARK_END();
|
|
}
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
if (objspace->profile.run) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->gc_mark_time = elapsed_time_from(record->gc_mark_time);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_sweep_timer_start(rb_objspace_t *objspace)
|
|
{
|
|
if (RUBY_DTRACE_GC_SWEEP_BEGIN_ENABLED()) {
|
|
RUBY_DTRACE_GC_SWEEP_BEGIN();
|
|
}
|
|
if (objspace->profile.run) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
|
|
if (record->gc_time > 0 || GC_PROFILE_MORE_DETAIL) {
|
|
objspace->profile.gc_sweep_start_time = getrusage_time();
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_sweep_timer_stop(rb_objspace_t *objspace)
|
|
{
|
|
if (RUBY_DTRACE_GC_SWEEP_END_ENABLED()) {
|
|
RUBY_DTRACE_GC_SWEEP_END();
|
|
}
|
|
|
|
if (objspace->profile.run) {
|
|
double sweep_time;
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
|
|
if (record->gc_time > 0) {
|
|
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
|
|
/* need to accumulate GC time for lazy sweep after gc() */
|
|
record->gc_time += sweep_time;
|
|
}
|
|
else if (GC_PROFILE_MORE_DETAIL) {
|
|
sweep_time = elapsed_time_from(objspace->profile.gc_sweep_start_time);
|
|
}
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
record->gc_sweep_time += sweep_time;
|
|
if (heap_pages_deferred_final) record->flags |= GPR_FLAG_HAVE_FINALIZE;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_set_malloc_info(rb_objspace_t *objspace)
|
|
{
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
if (objspace->profile.run) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
record->allocate_increase = malloc_increase;
|
|
record->allocate_limit = malloc_limit;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
gc_prof_set_heap_info(rb_objspace_t *objspace)
|
|
{
|
|
if (objspace->profile.run) {
|
|
gc_profile_record *record = gc_prof_record(objspace);
|
|
size_t live = objspace->profile.total_allocated_object_num_at_gc_start - objspace->profile.total_freed_object_num;
|
|
size_t total = objspace->profile.heap_used_at_gc_start * HEAP_OBJ_LIMIT;
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
record->heap_use_pages = objspace->profile.heap_used_at_gc_start;
|
|
record->heap_live_objects = live;
|
|
record->heap_free_objects = total - live;
|
|
#endif
|
|
|
|
record->heap_total_objects = total;
|
|
record->heap_use_size = live * sizeof(RVALUE);
|
|
record->heap_total_size = total * sizeof(RVALUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.clear -> nil
|
|
*
|
|
* Clears the GC profiler data.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_clear(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
/* This method doesn't change profile.run status.
|
|
* While lazy sweeping, it is possible to touch zero-cleared profile.current_record.
|
|
*/
|
|
gc_rest_sweep(objspace);
|
|
|
|
if (GC_PROFILE_RECORD_DEFAULT_SIZE * 2 < objspace->profile.size) {
|
|
objspace->profile.size = GC_PROFILE_RECORD_DEFAULT_SIZE * 2;
|
|
objspace->profile.records = realloc(objspace->profile.records, sizeof(gc_profile_record) * objspace->profile.size);
|
|
if (!objspace->profile.records) {
|
|
rb_memerror();
|
|
}
|
|
}
|
|
MEMZERO(objspace->profile.records, gc_profile_record, objspace->profile.size);
|
|
objspace->profile.next_index = 0;
|
|
objspace->profile.current_record = 0;
|
|
return Qnil;
|
|
}
|
|
|
|
static VALUE
|
|
gc_profile_flags(int flags)
|
|
{
|
|
VALUE result = rb_ary_new();
|
|
rb_ary_push(result, ID2SYM(rb_intern(flags & GPR_FLAG_MAJOR_MASK ? "major_gc" : "minor_gc")));
|
|
if (flags & GPR_FLAG_HAVE_FINALIZE) rb_ary_push(result, ID2SYM(rb_intern("HAVE_FINALIZE")));
|
|
if (flags & GPR_FLAG_NEWOBJ) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_NEWOBJ")));
|
|
if (flags & GPR_FLAG_MALLOC) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_MALLOC")));
|
|
if (flags & GPR_FLAG_METHOD) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_METHOD")));
|
|
if (flags & GPR_FLAG_STRESS) rb_ary_push(result, ID2SYM(rb_intern("CAUSED_BY_STRESS")));
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.raw_data -> [Hash, ...]
|
|
*
|
|
* Returns an Array of individual raw profile data Hashes ordered
|
|
* from earliest to latest by +:GC_INVOKE_TIME+.
|
|
*
|
|
* For example:
|
|
*
|
|
* [
|
|
* {
|
|
* :GC_TIME=>1.3000000000000858e-05,
|
|
* :GC_INVOKE_TIME=>0.010634999999999999,
|
|
* :HEAP_USE_SIZE=>289640,
|
|
* :HEAP_TOTAL_SIZE=>588960,
|
|
* :HEAP_TOTAL_OBJECTS=>14724,
|
|
* :GC_IS_MARKED=>false
|
|
* },
|
|
* # ...
|
|
* ]
|
|
*
|
|
* The keys mean:
|
|
*
|
|
* +:GC_TIME+::
|
|
* Time elapsed in seconds for this GC run
|
|
* +:GC_INVOKE_TIME+::
|
|
* Time elapsed in seconds from startup to when the GC was invoked
|
|
* +:HEAP_USE_SIZE+::
|
|
* Total bytes of heap used
|
|
* +:HEAP_TOTAL_SIZE+::
|
|
* Total size of heap in bytes
|
|
* +:HEAP_TOTAL_OBJECTS+::
|
|
* Total number of objects
|
|
* +:GC_IS_MARKED+::
|
|
* Returns +true+ if the GC is in mark phase
|
|
*
|
|
* If ruby was built with +GC_PROFILE_MORE_DETAIL+, you will also have access
|
|
* to the following hash keys:
|
|
*
|
|
* +:GC_MARK_TIME+::
|
|
* +:GC_SWEEP_TIME+::
|
|
* +:ALLOCATE_INCREASE+::
|
|
* +:ALLOCATE_LIMIT+::
|
|
* +:HEAP_USE_PAGES+::
|
|
* +:HEAP_LIVE_OBJECTS+::
|
|
* +:HEAP_FREE_OBJECTS+::
|
|
* +:HAVE_FINALIZE+::
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_record_get(void)
|
|
{
|
|
VALUE prof;
|
|
VALUE gc_profile = rb_ary_new();
|
|
size_t i;
|
|
rb_objspace_t *objspace = (&rb_objspace);
|
|
|
|
if (!objspace->profile.run) {
|
|
return Qnil;
|
|
}
|
|
|
|
for (i =0; i < objspace->profile.next_index; i++) {
|
|
gc_profile_record *record = &objspace->profile.records[i];
|
|
|
|
prof = rb_hash_new();
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_FLAGS")), gc_profile_flags(record->flags));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_TIME")), DBL2NUM(record->gc_time));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_INVOKE_TIME")), DBL2NUM(record->gc_invoke_time));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_SIZE")), SIZET2NUM(record->heap_use_size));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_SIZE")), SIZET2NUM(record->heap_total_size));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_TOTAL_OBJECTS")), SIZET2NUM(record->heap_total_objects));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_IS_MARKED")), Qtrue);
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_MARK_TIME")), DBL2NUM(record->gc_mark_time));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("GC_SWEEP_TIME")), DBL2NUM(record->gc_sweep_time));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_INCREASE")), SIZET2NUM(record->allocate_increase));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("ALLOCATE_LIMIT")), SIZET2NUM(record->allocate_limit));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_USE_PAGES")), SIZET2NUM(record->heap_use_pages));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_LIVE_OBJECTS")), SIZET2NUM(record->heap_live_objects));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HEAP_FREE_OBJECTS")), SIZET2NUM(record->heap_free_objects));
|
|
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("REMOVING_OBJECTS")), SIZET2NUM(record->removing_objects));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("EMPTY_OBJECTS")), SIZET2NUM(record->empty_objects));
|
|
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("HAVE_FINALIZE")), (record->flags & GPR_FLAG_HAVE_FINALIZE) ? Qtrue : Qfalse);
|
|
#endif
|
|
|
|
#if RGENGC_PROFILE > 0
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("OLD_OBJECTS")), SIZET2NUM(record->old_objects));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBED_NORMAL_OBJECTS")), SIZET2NUM(record->remembered_normal_objects));
|
|
rb_hash_aset(prof, ID2SYM(rb_intern("REMEMBED_SHADY_OBJECTS")), SIZET2NUM(record->remembered_shady_objects));
|
|
#endif
|
|
rb_ary_push(gc_profile, prof);
|
|
}
|
|
|
|
return gc_profile;
|
|
}
|
|
|
|
static void
|
|
gc_profile_dump_on(VALUE out, VALUE (*append)(VALUE, VALUE))
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
size_t count = objspace->profile.next_index;
|
|
|
|
if (objspace->profile.run && count /* > 1 */) {
|
|
size_t i;
|
|
const gc_profile_record *record;
|
|
|
|
append(out, rb_sprintf("GC %"PRIuSIZE" invokes.\n", objspace->profile.count));
|
|
append(out, rb_str_new_cstr("Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC Time(ms)\n"));
|
|
|
|
for (i = 0; i < count; i++) {
|
|
record = &objspace->profile.records[i];
|
|
append(out, rb_sprintf("%5"PRIdSIZE" %19.3f %20"PRIuSIZE" %20"PRIuSIZE" %20"PRIuSIZE" %30.20f\n",
|
|
i+1, record->gc_invoke_time, record->heap_use_size,
|
|
record->heap_total_size, record->heap_total_objects, record->gc_time*1000));
|
|
}
|
|
|
|
#if GC_PROFILE_MORE_DETAIL
|
|
append(out, rb_str_new_cstr("\n\n" \
|
|
"More detail.\n" \
|
|
"Prepare Time = Previously GC's rest sweep time\n"
|
|
"Index Flags Allocate Inc. Allocate Limit"
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
" Allocated Size"
|
|
#endif
|
|
" Use Page Mark Time(ms) Sweep Time(ms) Prepare Time(ms) LivingObj FreeObj RemovedObj EmptyObj"
|
|
#if RGENGC_PROFILE
|
|
" OldgenObj RemNormObj RemShadObj"
|
|
#endif
|
|
#if GC_PROFILE_DETAIL_MEMORY
|
|
" MaxRSS(KB) MinorFLT MajorFLT"
|
|
#endif
|
|
"\n"));
|
|
|
|
for (i = 0; i < count; i++) {
|
|
record = &objspace->profile.records[i];
|
|
append(out, rb_sprintf("%5"PRIdSIZE" %c/%c/%6s%c %13"PRIuSIZE" %15"PRIuSIZE
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
" %15"PRIuSIZE
|
|
#endif
|
|
" %9"PRIuSIZE" %17.12f %17.12f %17.12f %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
|
|
#if RGENGC_PROFILE
|
|
"%10"PRIuSIZE" %10"PRIuSIZE" %10"PRIuSIZE
|
|
#endif
|
|
#if GC_PROFILE_DETAIL_MEMORY
|
|
"%11ld %8ld %8ld"
|
|
#endif
|
|
|
|
"\n",
|
|
i+1,
|
|
"-+O3S567R9abcdef!"[record->flags & GPR_FLAG_MAJOR_MASK], /* Stress,Rescan,Shady,Oldgen,NoFree */
|
|
(record->flags & GPR_FLAG_HAVE_FINALIZE) ? 'F' : '.',
|
|
(record->flags & GPR_FLAG_NEWOBJ) ? "NEWOBJ" :
|
|
(record->flags & GPR_FLAG_MALLOC) ? "MALLOC" :
|
|
(record->flags & GPR_FLAG_METHOD) ? "METHOD" :
|
|
(record->flags & GPR_FLAG_CAPI) ? "CAPI__" : "??????",
|
|
(record->flags & GPR_FLAG_STRESS) ? '!' : ' ',
|
|
record->allocate_increase, record->allocate_limit,
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
record->allocated_size,
|
|
#endif
|
|
record->heap_use_pages,
|
|
record->gc_mark_time*1000,
|
|
record->gc_sweep_time*1000,
|
|
record->prepare_time*1000,
|
|
|
|
record->heap_live_objects,
|
|
record->heap_free_objects,
|
|
record->removing_objects,
|
|
record->empty_objects
|
|
#if RGENGC_PROFILE
|
|
,
|
|
record->old_objects,
|
|
record->remembered_normal_objects,
|
|
record->remembered_shady_objects
|
|
#endif
|
|
#if GC_PROFILE_DETAIL_MEMORY
|
|
,
|
|
record->maxrss / 1024,
|
|
record->minflt,
|
|
record->majflt
|
|
#endif
|
|
|
|
));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.result -> String
|
|
*
|
|
* Returns a profile data report such as:
|
|
*
|
|
* GC 1 invokes.
|
|
* Index Invoke Time(sec) Use Size(byte) Total Size(byte) Total Object GC time(ms)
|
|
* 1 0.012 159240 212940 10647 0.00000000000001530000
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_result(void)
|
|
{
|
|
VALUE str = rb_str_buf_new(0);
|
|
gc_profile_dump_on(str, rb_str_buf_append);
|
|
return str;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.report
|
|
* GC::Profiler.report(io)
|
|
*
|
|
* Writes the GC::Profiler.result to <tt>$stdout</tt> or the given IO object.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_report(int argc, VALUE *argv, VALUE self)
|
|
{
|
|
VALUE out;
|
|
|
|
if (argc == 0) {
|
|
out = rb_stdout;
|
|
}
|
|
else {
|
|
rb_scan_args(argc, argv, "01", &out);
|
|
}
|
|
gc_profile_dump_on(out, rb_io_write);
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.total_time -> float
|
|
*
|
|
* The total time used for garbage collection in seconds
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_total_time(VALUE self)
|
|
{
|
|
double time = 0;
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
if (objspace->profile.run && objspace->profile.next_index > 0) {
|
|
size_t i;
|
|
size_t count = objspace->profile.next_index;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
time += objspace->profile.records[i].gc_time;
|
|
}
|
|
}
|
|
return DBL2NUM(time);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.enabled? -> true or false
|
|
*
|
|
* The current status of GC profile mode.
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_enable_get(VALUE self)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
return objspace->profile.run ? Qtrue : Qfalse;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.enable -> nil
|
|
*
|
|
* Starts the GC profiler.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_enable(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
gc_rest_sweep(objspace);
|
|
objspace->profile.run = TRUE;
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* GC::Profiler.disable -> nil
|
|
*
|
|
* Stops the GC profiler.
|
|
*
|
|
*/
|
|
|
|
static VALUE
|
|
gc_profile_disable(void)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
objspace->profile.run = FALSE;
|
|
objspace->profile.current_record = 0;
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
------------------------------ DEBUG ------------------------------
|
|
*/
|
|
|
|
static const char *
|
|
type_name(int type, VALUE obj)
|
|
{
|
|
switch (type) {
|
|
#define TYPE_NAME(t) case (t): return #t;
|
|
TYPE_NAME(T_NONE);
|
|
TYPE_NAME(T_OBJECT);
|
|
TYPE_NAME(T_CLASS);
|
|
TYPE_NAME(T_MODULE);
|
|
TYPE_NAME(T_FLOAT);
|
|
TYPE_NAME(T_STRING);
|
|
TYPE_NAME(T_REGEXP);
|
|
TYPE_NAME(T_ARRAY);
|
|
TYPE_NAME(T_HASH);
|
|
TYPE_NAME(T_STRUCT);
|
|
TYPE_NAME(T_BIGNUM);
|
|
TYPE_NAME(T_FILE);
|
|
TYPE_NAME(T_MATCH);
|
|
TYPE_NAME(T_COMPLEX);
|
|
TYPE_NAME(T_RATIONAL);
|
|
TYPE_NAME(T_NIL);
|
|
TYPE_NAME(T_TRUE);
|
|
TYPE_NAME(T_FALSE);
|
|
TYPE_NAME(T_SYMBOL);
|
|
TYPE_NAME(T_FIXNUM);
|
|
TYPE_NAME(T_UNDEF);
|
|
TYPE_NAME(T_NODE);
|
|
TYPE_NAME(T_ICLASS);
|
|
TYPE_NAME(T_ZOMBIE);
|
|
case T_DATA:
|
|
if (obj && rb_objspace_data_type_name(obj)) {
|
|
return rb_objspace_data_type_name(obj);
|
|
}
|
|
return "T_DATA";
|
|
#undef TYPE_NAME
|
|
}
|
|
return "unknown";
|
|
}
|
|
|
|
static const char *
|
|
obj_type_name(VALUE obj)
|
|
{
|
|
return type_name(TYPE(obj), obj);
|
|
}
|
|
|
|
#if GC_DEBUG
|
|
|
|
void
|
|
rb_gcdebug_print_obj_condition(VALUE obj)
|
|
{
|
|
rb_objspace_t *objspace = &rb_objspace;
|
|
|
|
fprintf(stderr, "created at: %s:%d\n", RSTRING_PTR(RANY(obj)->file), FIX2INT(RANY(obj)->line));
|
|
|
|
if (is_pointer_to_heap(objspace, (void *)obj)) {
|
|
fprintf(stderr, "pointer to heap?: true\n");
|
|
}
|
|
else {
|
|
fprintf(stderr, "pointer to heap?: false\n");
|
|
return;
|
|
}
|
|
|
|
fprintf(stderr, "marked? : %s\n", MARKED_IN_BITMAP(GET_HEAP_MARK_BITS(obj), obj) ? "true" : "false");
|
|
#if USE_RGENGC
|
|
#if RGENGC_THREEGEN
|
|
fprintf(stderr, "young? : %s\n", RVALUE_YOUNG_P(obj) ? "true" : "false");
|
|
#endif
|
|
fprintf(stderr, "old? : %s\n", RVALUE_OLD_P(obj) ? "true" : "false");
|
|
fprintf(stderr, "shady? : %s\n", RVALUE_SHADY(obj) ? "true" : "false");
|
|
fprintf(stderr, "remembered?: %s\n", MARKED_IN_BITMAP(GET_HEAP_REMEMBERSET_BITS(obj), obj) ? "true" : "false");
|
|
#endif
|
|
|
|
if (is_lazy_sweeping(heap_eden)) {
|
|
fprintf(stderr, "lazy sweeping?: true\n");
|
|
fprintf(stderr, "swept?: %s\n", is_swept_object(objspace, obj) ? "done" : "not yet");
|
|
}
|
|
else {
|
|
fprintf(stderr, "lazy sweeping?: false\n");
|
|
}
|
|
}
|
|
|
|
static VALUE
|
|
gcdebug_sential(VALUE obj, VALUE name)
|
|
{
|
|
fprintf(stderr, "WARNING: object %s(%p) is inadvertently collected\n", (char *)name, (void *)obj);
|
|
return Qnil;
|
|
}
|
|
|
|
void
|
|
rb_gcdebug_sentinel(VALUE obj, const char *name)
|
|
{
|
|
rb_define_finalizer(obj, rb_proc_new(gcdebug_sential, (VALUE)name));
|
|
}
|
|
#endif /* GC_DEBUG */
|
|
|
|
/*
|
|
* Document-module: ObjectSpace
|
|
*
|
|
* The ObjectSpace module contains a number of routines
|
|
* that interact with the garbage collection facility and allow you to
|
|
* traverse all living objects with an iterator.
|
|
*
|
|
* ObjectSpace also provides support for object finalizers, procs that will be
|
|
* called when a specific object is about to be destroyed by garbage
|
|
* collection.
|
|
*
|
|
* a = "A"
|
|
* b = "B"
|
|
*
|
|
* ObjectSpace.define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })
|
|
* ObjectSpace.define_finalizer(b, proc {|id| puts "Finalizer two on #{id}" })
|
|
*
|
|
* _produces:_
|
|
*
|
|
* Finalizer two on 537763470
|
|
* Finalizer one on 537763480
|
|
*/
|
|
|
|
/*
|
|
* Document-class: ObjectSpace::WeakMap
|
|
*
|
|
* An ObjectSpace::WeakMap object holds references to
|
|
* any objects, but those objects can get garbage collected.
|
|
*
|
|
* This class is mostly used internally by WeakRef, please use
|
|
* +lib/weakref.rb+ for the public interface.
|
|
*/
|
|
|
|
/* Document-class: GC::Profiler
|
|
*
|
|
* The GC profiler provides access to information on GC runs including time,
|
|
* length and object space size.
|
|
*
|
|
* Example:
|
|
*
|
|
* GC::Profiler.enable
|
|
*
|
|
* require 'rdoc/rdoc'
|
|
*
|
|
* GC::Profiler.report
|
|
*
|
|
* GC::Profiler.disable
|
|
*
|
|
* See also GC.count, GC.malloc_allocated_size and GC.malloc_allocations
|
|
*/
|
|
|
|
/*
|
|
* The GC module provides an interface to Ruby's mark and
|
|
* sweep garbage collection mechanism.
|
|
*
|
|
* Some of the underlying methods are also available via the ObjectSpace
|
|
* module.
|
|
*
|
|
* You may obtain information about the operation of the GC through
|
|
* GC::Profiler.
|
|
*/
|
|
|
|
void
|
|
Init_GC(void)
|
|
{
|
|
VALUE rb_mObjSpace;
|
|
VALUE rb_mProfiler;
|
|
|
|
rb_mGC = rb_define_module("GC");
|
|
rb_define_singleton_method(rb_mGC, "start", rb_gc_start, 0);
|
|
rb_define_singleton_method(rb_mGC, "enable", rb_gc_enable, 0);
|
|
rb_define_singleton_method(rb_mGC, "disable", rb_gc_disable, 0);
|
|
rb_define_singleton_method(rb_mGC, "stress", gc_stress_get, 0);
|
|
rb_define_singleton_method(rb_mGC, "stress=", gc_stress_set, 1);
|
|
rb_define_singleton_method(rb_mGC, "count", gc_count, 0);
|
|
rb_define_singleton_method(rb_mGC, "stat", gc_stat, -1);
|
|
rb_define_method(rb_mGC, "garbage_collect", rb_gc_start, 0);
|
|
|
|
rb_mProfiler = rb_define_module_under(rb_mGC, "Profiler");
|
|
rb_define_singleton_method(rb_mProfiler, "enabled?", gc_profile_enable_get, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "enable", gc_profile_enable, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "raw_data", gc_profile_record_get, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "disable", gc_profile_disable, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "clear", gc_profile_clear, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "result", gc_profile_result, 0);
|
|
rb_define_singleton_method(rb_mProfiler, "report", gc_profile_report, -1);
|
|
rb_define_singleton_method(rb_mProfiler, "total_time", gc_profile_total_time, 0);
|
|
|
|
rb_mObjSpace = rb_define_module("ObjectSpace");
|
|
rb_define_module_function(rb_mObjSpace, "each_object", os_each_obj, -1);
|
|
rb_define_module_function(rb_mObjSpace, "garbage_collect", rb_gc_start, 0);
|
|
|
|
rb_define_module_function(rb_mObjSpace, "define_finalizer", define_final, -1);
|
|
rb_define_module_function(rb_mObjSpace, "undefine_finalizer", undefine_final, 1);
|
|
|
|
rb_define_module_function(rb_mObjSpace, "_id2ref", id2ref, 1);
|
|
|
|
nomem_error = rb_exc_new3(rb_eNoMemError,
|
|
rb_obj_freeze(rb_str_new2("failed to allocate memory")));
|
|
OBJ_TAINT(nomem_error);
|
|
OBJ_FREEZE(nomem_error);
|
|
|
|
rb_define_method(rb_cBasicObject, "__id__", rb_obj_id, 0);
|
|
rb_define_method(rb_mKernel, "object_id", rb_obj_id, 0);
|
|
|
|
rb_define_module_function(rb_mObjSpace, "count_objects", count_objects, -1);
|
|
|
|
{
|
|
VALUE rb_cWeakMap = rb_define_class_under(rb_mObjSpace, "WeakMap", rb_cObject);
|
|
rb_define_alloc_func(rb_cWeakMap, wmap_allocate);
|
|
rb_define_method(rb_cWeakMap, "[]=", wmap_aset, 2);
|
|
rb_define_method(rb_cWeakMap, "[]", wmap_aref, 1);
|
|
rb_define_method(rb_cWeakMap, "include?", wmap_has_key, 1);
|
|
rb_define_method(rb_cWeakMap, "member?", wmap_has_key, 1);
|
|
rb_define_method(rb_cWeakMap, "key?", wmap_has_key, 1);
|
|
rb_define_method(rb_cWeakMap, "inspect", wmap_inspect, 0);
|
|
rb_define_method(rb_cWeakMap, "each", wmap_each, 0);
|
|
rb_define_method(rb_cWeakMap, "each_pair", wmap_each, 0);
|
|
rb_define_method(rb_cWeakMap, "each_key", wmap_each_key, 0);
|
|
rb_define_method(rb_cWeakMap, "each_value", wmap_each_value, 0);
|
|
rb_define_method(rb_cWeakMap, "keys", wmap_keys, 0);
|
|
rb_define_method(rb_cWeakMap, "values", wmap_values, 0);
|
|
rb_define_private_method(rb_cWeakMap, "finalize", wmap_finalize, 1);
|
|
rb_include_module(rb_cWeakMap, rb_mEnumerable);
|
|
}
|
|
|
|
#if CALC_EXACT_MALLOC_SIZE
|
|
rb_define_singleton_method(rb_mGC, "malloc_allocated_size", gc_malloc_allocated_size, 0);
|
|
rb_define_singleton_method(rb_mGC, "malloc_allocations", gc_malloc_allocations, 0);
|
|
#endif
|
|
|
|
/* ::GC::OPTS, which shows GC build options */
|
|
{
|
|
VALUE opts;
|
|
rb_define_const(rb_mGC, "OPTS", opts = rb_ary_new());
|
|
#define OPT(o) if (o) rb_ary_push(opts, rb_str_new2(#o))
|
|
OPT(GC_DEBUG);
|
|
OPT(USE_RGENGC);
|
|
OPT(RGENGC_DEBUG);
|
|
OPT(RGENGC_CHECK_MODE);
|
|
OPT(RGENGC_PROFILE);
|
|
OPT(RGENGC_THREEGEN);
|
|
OPT(RGENGC_ESTIMATE_OLDSPACE);
|
|
OPT(GC_PROFILE_MORE_DETAIL);
|
|
OPT(GC_ENABLE_LAZY_SWEEP);
|
|
OPT(CALC_EXACT_MALLOC_SIZE);
|
|
OPT(CALC_EXACT_MALLOC_SIZE_CHECK_OLD_SIZE);
|
|
OPT(GC_PROFILE_DETAIL_MEMORY);
|
|
#undef OPT
|
|
}
|
|
}
|