1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/ext/openssl/ossl_pkey.c

1087 lines
29 KiB
C

/*
* 'OpenSSL for Ruby' project
* Copyright (C) 2001-2002 Michal Rokos <m.rokos@sh.cvut.cz>
* All rights reserved.
*/
/*
* This program is licensed under the same licence as Ruby.
* (See the file 'LICENCE'.)
*/
#include "ossl.h"
/*
* Classes
*/
VALUE mPKey;
VALUE cPKey;
VALUE ePKeyError;
static ID id_private_q;
/*
* callback for generating keys
*/
static VALUE
call_check_ints0(VALUE arg)
{
rb_thread_check_ints();
return Qnil;
}
static void *
call_check_ints(void *arg)
{
int state;
rb_protect(call_check_ints0, Qnil, &state);
return (void *)(VALUE)state;
}
int
ossl_generate_cb_2(int p, int n, BN_GENCB *cb)
{
VALUE ary;
struct ossl_generate_cb_arg *arg;
int state;
arg = (struct ossl_generate_cb_arg *)BN_GENCB_get_arg(cb);
if (arg->yield) {
ary = rb_ary_new2(2);
rb_ary_store(ary, 0, INT2NUM(p));
rb_ary_store(ary, 1, INT2NUM(n));
/*
* can be break by raising exception or 'break'
*/
rb_protect(rb_yield, ary, &state);
if (state) {
arg->state = state;
return 0;
}
}
if (arg->interrupted) {
arg->interrupted = 0;
state = (int)(VALUE)rb_thread_call_with_gvl(call_check_ints, NULL);
if (state) {
arg->state = state;
return 0;
}
}
return 1;
}
void
ossl_generate_cb_stop(void *ptr)
{
struct ossl_generate_cb_arg *arg = (struct ossl_generate_cb_arg *)ptr;
arg->interrupted = 1;
}
static void
ossl_evp_pkey_free(void *ptr)
{
EVP_PKEY_free(ptr);
}
/*
* Public
*/
const rb_data_type_t ossl_evp_pkey_type = {
"OpenSSL/EVP_PKEY",
{
0, ossl_evp_pkey_free,
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY,
};
static VALUE
pkey_new0(EVP_PKEY *pkey)
{
VALUE klass, obj;
int type;
if (!pkey || (type = EVP_PKEY_base_id(pkey)) == EVP_PKEY_NONE)
ossl_raise(rb_eRuntimeError, "pkey is empty");
switch (type) {
#if !defined(OPENSSL_NO_RSA)
case EVP_PKEY_RSA: klass = cRSA; break;
#endif
#if !defined(OPENSSL_NO_DSA)
case EVP_PKEY_DSA: klass = cDSA; break;
#endif
#if !defined(OPENSSL_NO_DH)
case EVP_PKEY_DH: klass = cDH; break;
#endif
#if !defined(OPENSSL_NO_EC)
case EVP_PKEY_EC: klass = cEC; break;
#endif
default: klass = cPKey; break;
}
obj = NewPKey(klass);
SetPKey(obj, pkey);
return obj;
}
VALUE
ossl_pkey_new(EVP_PKEY *pkey)
{
VALUE obj;
int status;
obj = rb_protect((VALUE (*)(VALUE))pkey_new0, (VALUE)pkey, &status);
if (status) {
EVP_PKEY_free(pkey);
rb_jump_tag(status);
}
return obj;
}
EVP_PKEY *
ossl_pkey_read_generic(BIO *bio, VALUE pass)
{
void *ppass = (void *)pass;
EVP_PKEY *pkey;
if ((pkey = d2i_PrivateKey_bio(bio, NULL)))
goto out;
OSSL_BIO_reset(bio);
if ((pkey = d2i_PKCS8PrivateKey_bio(bio, NULL, ossl_pem_passwd_cb, ppass)))
goto out;
OSSL_BIO_reset(bio);
if ((pkey = d2i_PUBKEY_bio(bio, NULL)))
goto out;
OSSL_BIO_reset(bio);
/* PEM_read_bio_PrivateKey() also parses PKCS #8 formats */
if ((pkey = PEM_read_bio_PrivateKey(bio, NULL, ossl_pem_passwd_cb, ppass)))
goto out;
OSSL_BIO_reset(bio);
if ((pkey = PEM_read_bio_PUBKEY(bio, NULL, NULL, NULL)))
goto out;
OSSL_BIO_reset(bio);
if ((pkey = PEM_read_bio_Parameters(bio, NULL)))
goto out;
out:
return pkey;
}
/*
* call-seq:
* OpenSSL::PKey.read(string [, pwd ]) -> PKey
* OpenSSL::PKey.read(io [, pwd ]) -> PKey
*
* Reads a DER or PEM encoded string from _string_ or _io_ and returns an
* instance of the appropriate PKey class.
*
* === Parameters
* * _string_ is a DER- or PEM-encoded string containing an arbitrary private
* or public key.
* * _io_ is an instance of IO containing a DER- or PEM-encoded
* arbitrary private or public key.
* * _pwd_ is an optional password in case _string_ or _io_ is an encrypted
* PEM resource.
*/
static VALUE
ossl_pkey_new_from_data(int argc, VALUE *argv, VALUE self)
{
EVP_PKEY *pkey;
BIO *bio;
VALUE data, pass;
rb_scan_args(argc, argv, "11", &data, &pass);
bio = ossl_obj2bio(&data);
pkey = ossl_pkey_read_generic(bio, ossl_pem_passwd_value(pass));
BIO_free(bio);
if (!pkey)
ossl_raise(ePKeyError, "Could not parse PKey");
return ossl_pkey_new(pkey);
}
static VALUE
pkey_gen_apply_options_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ctx_v))
{
VALUE key = rb_ary_entry(i, 0), value = rb_ary_entry(i, 1);
EVP_PKEY_CTX *ctx = (EVP_PKEY_CTX *)ctx_v;
if (SYMBOL_P(key))
key = rb_sym2str(key);
value = rb_String(value);
if (EVP_PKEY_CTX_ctrl_str(ctx, StringValueCStr(key), StringValueCStr(value)) <= 0)
ossl_raise(ePKeyError, "EVP_PKEY_CTX_ctrl_str(ctx, %+"PRIsVALUE", %+"PRIsVALUE")",
key, value);
return Qnil;
}
static VALUE
pkey_gen_apply_options0(VALUE args_v)
{
VALUE *args = (VALUE *)args_v;
rb_block_call(args[1], rb_intern("each"), 0, NULL,
pkey_gen_apply_options_i, args[0]);
return Qnil;
}
struct pkey_blocking_generate_arg {
EVP_PKEY_CTX *ctx;
EVP_PKEY *pkey;
int state;
int yield: 1;
int genparam: 1;
int stop: 1;
};
static VALUE
pkey_gen_cb_yield(VALUE ctx_v)
{
EVP_PKEY_CTX *ctx = (void *)ctx_v;
int i, info_num;
VALUE *argv;
info_num = EVP_PKEY_CTX_get_keygen_info(ctx, -1);
argv = ALLOCA_N(VALUE, info_num);
for (i = 0; i < info_num; i++)
argv[i] = INT2NUM(EVP_PKEY_CTX_get_keygen_info(ctx, i));
return rb_yield_values2(info_num, argv);
}
static int
pkey_gen_cb(EVP_PKEY_CTX *ctx)
{
struct pkey_blocking_generate_arg *arg = EVP_PKEY_CTX_get_app_data(ctx);
if (arg->yield) {
int state;
rb_protect(pkey_gen_cb_yield, (VALUE)ctx, &state);
if (state) {
arg->stop = 1;
arg->state = state;
}
}
return !arg->stop;
}
static void
pkey_blocking_gen_stop(void *ptr)
{
struct pkey_blocking_generate_arg *arg = ptr;
arg->stop = 1;
}
static void *
pkey_blocking_gen(void *ptr)
{
struct pkey_blocking_generate_arg *arg = ptr;
if (arg->genparam && EVP_PKEY_paramgen(arg->ctx, &arg->pkey) <= 0)
return NULL;
if (!arg->genparam && EVP_PKEY_keygen(arg->ctx, &arg->pkey) <= 0)
return NULL;
return arg->pkey;
}
static VALUE
pkey_generate(int argc, VALUE *argv, VALUE self, int genparam)
{
EVP_PKEY_CTX *ctx;
VALUE alg, options;
struct pkey_blocking_generate_arg gen_arg = { 0 };
int state;
rb_scan_args(argc, argv, "11", &alg, &options);
if (rb_obj_is_kind_of(alg, cPKey)) {
EVP_PKEY *base_pkey;
GetPKey(alg, base_pkey);
ctx = EVP_PKEY_CTX_new(base_pkey, NULL/* engine */);
if (!ctx)
ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
}
else {
const EVP_PKEY_ASN1_METHOD *ameth;
ENGINE *tmpeng;
int pkey_id;
StringValue(alg);
ameth = EVP_PKEY_asn1_find_str(&tmpeng, RSTRING_PTR(alg),
RSTRING_LENINT(alg));
if (!ameth)
ossl_raise(ePKeyError, "algorithm %"PRIsVALUE" not found", alg);
EVP_PKEY_asn1_get0_info(&pkey_id, NULL, NULL, NULL, NULL, ameth);
#if !defined(OPENSSL_NO_ENGINE)
if (tmpeng)
ENGINE_finish(tmpeng);
#endif
ctx = EVP_PKEY_CTX_new_id(pkey_id, NULL/* engine */);
if (!ctx)
ossl_raise(ePKeyError, "EVP_PKEY_CTX_new_id");
}
if (genparam && EVP_PKEY_paramgen_init(ctx) <= 0) {
EVP_PKEY_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_PKEY_paramgen_init");
}
if (!genparam && EVP_PKEY_keygen_init(ctx) <= 0) {
EVP_PKEY_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_PKEY_keygen_init");
}
if (!NIL_P(options)) {
VALUE args[2];
args[0] = (VALUE)ctx;
args[1] = options;
rb_protect(pkey_gen_apply_options0, (VALUE)args, &state);
if (state) {
EVP_PKEY_CTX_free(ctx);
rb_jump_tag(state);
}
}
gen_arg.genparam = genparam;
gen_arg.ctx = ctx;
gen_arg.yield = rb_block_given_p();
EVP_PKEY_CTX_set_app_data(ctx, &gen_arg);
EVP_PKEY_CTX_set_cb(ctx, pkey_gen_cb);
if (gen_arg.yield)
pkey_blocking_gen(&gen_arg);
else
rb_thread_call_without_gvl(pkey_blocking_gen, &gen_arg,
pkey_blocking_gen_stop, &gen_arg);
EVP_PKEY_CTX_free(ctx);
if (!gen_arg.pkey) {
if (gen_arg.state) {
ossl_clear_error();
rb_jump_tag(gen_arg.state);
}
else {
ossl_raise(ePKeyError, genparam ? "EVP_PKEY_paramgen" : "EVP_PKEY_keygen");
}
}
return ossl_pkey_new(gen_arg.pkey);
}
/*
* call-seq:
* OpenSSL::PKey.generate_parameters(algo_name [, options]) -> pkey
*
* Generates new parameters for the algorithm. _algo_name_ is a String that
* represents the algorithm. The optional argument _options_ is a Hash that
* specifies the options specific to the algorithm. The order of the options
* can be important.
*
* A block can be passed optionally. The meaning of the arguments passed to
* the block varies depending on the implementation of the algorithm. The block
* may be called once or multiple times, or may not even be called.
*
* For the supported options, see the documentation for the 'openssl genpkey'
* utility command.
*
* == Example
* pkey = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048)
* p pkey.p.num_bits #=> 2048
*/
static VALUE
ossl_pkey_s_generate_parameters(int argc, VALUE *argv, VALUE self)
{
return pkey_generate(argc, argv, self, 1);
}
/*
* call-seq:
* OpenSSL::PKey.generate_key(algo_name [, options]) -> pkey
* OpenSSL::PKey.generate_key(pkey [, options]) -> pkey
*
* Generates a new key (pair).
*
* If a String is given as the first argument, it generates a new random key
* for the algorithm specified by the name just as ::generate_parameters does.
* If an OpenSSL::PKey::PKey is given instead, it generates a new random key
* for the same algorithm as the key, using the parameters the key contains.
*
* See ::generate_parameters for the details of _options_ and the given block.
*
* == Example
* pkey_params = OpenSSL::PKey.generate_parameters("DSA", "dsa_paramgen_bits" => 2048)
* pkey_params.priv_key #=> nil
* pkey = OpenSSL::PKey.generate_key(pkey_params)
* pkey.priv_key #=> #<OpenSSL::BN 6277...
*/
static VALUE
ossl_pkey_s_generate_key(int argc, VALUE *argv, VALUE self)
{
return pkey_generate(argc, argv, self, 0);
}
void
ossl_pkey_check_public_key(const EVP_PKEY *pkey)
{
void *ptr;
const BIGNUM *n, *e, *pubkey;
if (EVP_PKEY_missing_parameters(pkey))
ossl_raise(ePKeyError, "parameters missing");
/* OpenSSL < 1.1.0 takes non-const pointer */
ptr = EVP_PKEY_get0((EVP_PKEY *)pkey);
switch (EVP_PKEY_base_id(pkey)) {
case EVP_PKEY_RSA:
RSA_get0_key(ptr, &n, &e, NULL);
if (n && e)
return;
break;
case EVP_PKEY_DSA:
DSA_get0_key(ptr, &pubkey, NULL);
if (pubkey)
return;
break;
case EVP_PKEY_DH:
DH_get0_key(ptr, &pubkey, NULL);
if (pubkey)
return;
break;
#if !defined(OPENSSL_NO_EC)
case EVP_PKEY_EC:
if (EC_KEY_get0_public_key(ptr))
return;
break;
#endif
default:
/* unsupported type; assuming ok */
return;
}
ossl_raise(ePKeyError, "public key missing");
}
EVP_PKEY *
GetPKeyPtr(VALUE obj)
{
EVP_PKEY *pkey;
GetPKey(obj, pkey);
return pkey;
}
EVP_PKEY *
GetPrivPKeyPtr(VALUE obj)
{
EVP_PKEY *pkey;
GetPKey(obj, pkey);
if (OSSL_PKEY_IS_PRIVATE(obj))
return pkey;
/*
* The EVP API does not provide a way to check if the EVP_PKEY has private
* components. Assuming it does...
*/
if (!rb_respond_to(obj, id_private_q))
return pkey;
if (RTEST(rb_funcallv(obj, id_private_q, 0, NULL)))
return pkey;
rb_raise(rb_eArgError, "private key is needed");
}
EVP_PKEY *
DupPKeyPtr(VALUE obj)
{
EVP_PKEY *pkey;
GetPKey(obj, pkey);
EVP_PKEY_up_ref(pkey);
return pkey;
}
/*
* Private
*/
static VALUE
ossl_pkey_alloc(VALUE klass)
{
EVP_PKEY *pkey;
VALUE obj;
obj = NewPKey(klass);
if (!(pkey = EVP_PKEY_new())) {
ossl_raise(ePKeyError, NULL);
}
SetPKey(obj, pkey);
return obj;
}
/*
* call-seq:
* PKeyClass.new -> self
*
* Because PKey is an abstract class, actually calling this method explicitly
* will raise a NotImplementedError.
*/
static VALUE
ossl_pkey_initialize(VALUE self)
{
if (rb_obj_is_instance_of(self, cPKey)) {
ossl_raise(rb_eTypeError, "OpenSSL::PKey::PKey can't be instantiated directly");
}
return self;
}
/*
* call-seq:
* pkey.oid -> string
*
* Returns the short name of the OID associated with _pkey_.
*/
static VALUE
ossl_pkey_oid(VALUE self)
{
EVP_PKEY *pkey;
int nid;
GetPKey(self, pkey);
nid = EVP_PKEY_id(pkey);
return rb_str_new_cstr(OBJ_nid2sn(nid));
}
/*
* call-seq:
* pkey.inspect -> string
*
* Returns a string describing the PKey object.
*/
static VALUE
ossl_pkey_inspect(VALUE self)
{
EVP_PKEY *pkey;
int nid;
GetPKey(self, pkey);
nid = EVP_PKEY_id(pkey);
return rb_sprintf("#<%"PRIsVALUE":%p oid=%s>",
rb_class_name(CLASS_OF(self)), (void *)self,
OBJ_nid2sn(nid));
}
VALUE
ossl_pkey_export_traditional(int argc, VALUE *argv, VALUE self, int to_der)
{
EVP_PKEY *pkey;
VALUE cipher, pass;
const EVP_CIPHER *enc = NULL;
BIO *bio;
GetPKey(self, pkey);
rb_scan_args(argc, argv, "02", &cipher, &pass);
if (!NIL_P(cipher)) {
enc = ossl_evp_get_cipherbyname(cipher);
pass = ossl_pem_passwd_value(pass);
}
bio = BIO_new(BIO_s_mem());
if (!bio)
ossl_raise(ePKeyError, "BIO_new");
if (to_der) {
if (!i2d_PrivateKey_bio(bio, pkey)) {
BIO_free(bio);
ossl_raise(ePKeyError, "i2d_PrivateKey_bio");
}
}
else {
#if OPENSSL_VERSION_NUMBER >= 0x10100000 && !defined(LIBRESSL_VERSION_NUMBER)
if (!PEM_write_bio_PrivateKey_traditional(bio, pkey, enc, NULL, 0,
ossl_pem_passwd_cb,
(void *)pass)) {
#else
char pem_str[80];
const char *aname;
EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL, &aname, pkey->ameth);
snprintf(pem_str, sizeof(pem_str), "%s PRIVATE KEY", aname);
if (!PEM_ASN1_write_bio((i2d_of_void *)i2d_PrivateKey, pem_str, bio,
pkey, enc, NULL, 0, ossl_pem_passwd_cb,
(void *)pass)) {
#endif
BIO_free(bio);
ossl_raise(ePKeyError, "PEM_write_bio_PrivateKey_traditional");
}
}
return ossl_membio2str(bio);
}
static VALUE
do_pkcs8_export(int argc, VALUE *argv, VALUE self, int to_der)
{
EVP_PKEY *pkey;
VALUE cipher, pass;
const EVP_CIPHER *enc = NULL;
BIO *bio;
GetPKey(self, pkey);
rb_scan_args(argc, argv, "02", &cipher, &pass);
if (argc > 0) {
/*
* TODO: EncryptedPrivateKeyInfo actually has more options.
* Should they be exposed?
*/
enc = ossl_evp_get_cipherbyname(cipher);
pass = ossl_pem_passwd_value(pass);
}
bio = BIO_new(BIO_s_mem());
if (!bio)
ossl_raise(ePKeyError, "BIO_new");
if (to_der) {
if (!i2d_PKCS8PrivateKey_bio(bio, pkey, enc, NULL, 0,
ossl_pem_passwd_cb, (void *)pass)) {
BIO_free(bio);
ossl_raise(ePKeyError, "i2d_PKCS8PrivateKey_bio");
}
}
else {
if (!PEM_write_bio_PKCS8PrivateKey(bio, pkey, enc, NULL, 0,
ossl_pem_passwd_cb, (void *)pass)) {
BIO_free(bio);
ossl_raise(ePKeyError, "PEM_write_bio_PKCS8PrivateKey");
}
}
return ossl_membio2str(bio);
}
/*
* call-seq:
* pkey.private_to_der -> string
* pkey.private_to_der(cipher, password) -> string
*
* Serializes the private key to DER-encoded PKCS #8 format. If called without
* arguments, unencrypted PKCS #8 PrivateKeyInfo format is used. If called with
* a cipher name and a password, PKCS #8 EncryptedPrivateKeyInfo format with
* PBES2 encryption scheme is used.
*/
static VALUE
ossl_pkey_private_to_der(int argc, VALUE *argv, VALUE self)
{
return do_pkcs8_export(argc, argv, self, 1);
}
/*
* call-seq:
* pkey.private_to_pem -> string
* pkey.private_to_pem(cipher, password) -> string
*
* Serializes the private key to PEM-encoded PKCS #8 format. See #private_to_der
* for more details.
*/
static VALUE
ossl_pkey_private_to_pem(int argc, VALUE *argv, VALUE self)
{
return do_pkcs8_export(argc, argv, self, 0);
}
VALUE
ossl_pkey_export_spki(VALUE self, int to_der)
{
EVP_PKEY *pkey;
BIO *bio;
GetPKey(self, pkey);
bio = BIO_new(BIO_s_mem());
if (!bio)
ossl_raise(ePKeyError, "BIO_new");
if (to_der) {
if (!i2d_PUBKEY_bio(bio, pkey)) {
BIO_free(bio);
ossl_raise(ePKeyError, "i2d_PUBKEY_bio");
}
}
else {
if (!PEM_write_bio_PUBKEY(bio, pkey)) {
BIO_free(bio);
ossl_raise(ePKeyError, "PEM_write_bio_PUBKEY");
}
}
return ossl_membio2str(bio);
}
/*
* call-seq:
* pkey.public_to_der -> string
*
* Serializes the public key to DER-encoded X.509 SubjectPublicKeyInfo format.
*/
static VALUE
ossl_pkey_public_to_der(VALUE self)
{
return ossl_pkey_export_spki(self, 1);
}
/*
* call-seq:
* pkey.public_to_pem -> string
*
* Serializes the public key to PEM-encoded X.509 SubjectPublicKeyInfo format.
*/
static VALUE
ossl_pkey_public_to_pem(VALUE self)
{
return ossl_pkey_export_spki(self, 0);
}
/*
* call-seq:
* pkey.compare?(another_pkey) -> true | false
*
* Used primarily to check if an OpenSSL::X509::Certificate#public_key compares to its private key.
*
* == Example
* x509 = OpenSSL::X509::Certificate.new(pem_encoded_certificate)
* rsa_key = OpenSSL::PKey::RSA.new(pem_encoded_private_key)
*
* rsa_key.compare?(x509.public_key) => true | false
*/
static VALUE
ossl_pkey_compare(VALUE self, VALUE other)
{
int ret;
EVP_PKEY *selfPKey;
EVP_PKEY *otherPKey;
GetPKey(self, selfPKey);
GetPKey(other, otherPKey);
/* Explicitly check the key type given EVP_PKEY_ASN1_METHOD(3)
* docs param_cmp could return any negative number.
*/
if (EVP_PKEY_id(selfPKey) != EVP_PKEY_id(otherPKey))
ossl_raise(rb_eTypeError, "cannot match different PKey types");
ret = EVP_PKEY_cmp(selfPKey, otherPKey);
if (ret == 0)
return Qfalse;
else if (ret == 1)
return Qtrue;
else
ossl_raise(ePKeyError, "EVP_PKEY_cmp");
}
/*
* call-seq:
* pkey.sign(digest, data) -> String
*
* To sign the String _data_, _digest_, an instance of OpenSSL::Digest, must
* be provided. The return value is again a String containing the signature.
* A PKeyError is raised should errors occur.
* Any previous state of the Digest instance is irrelevant to the signature
* outcome, the digest instance is reset to its initial state during the
* operation.
*
* == Example
* data = 'Sign me!'
* digest = OpenSSL::Digest.new('SHA256')
* pkey = OpenSSL::PKey::RSA.new(2048)
* signature = pkey.sign(digest, data)
*/
static VALUE
ossl_pkey_sign(VALUE self, VALUE digest, VALUE data)
{
EVP_PKEY *pkey;
const EVP_MD *md = NULL;
EVP_MD_CTX *ctx;
size_t siglen;
int state;
VALUE sig;
pkey = GetPrivPKeyPtr(self);
if (!NIL_P(digest))
md = ossl_evp_get_digestbyname(digest);
StringValue(data);
ctx = EVP_MD_CTX_new();
if (!ctx)
ossl_raise(ePKeyError, "EVP_MD_CTX_new");
if (EVP_DigestSignInit(ctx, NULL, md, /* engine */NULL, pkey) < 1) {
EVP_MD_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_DigestSignInit");
}
#if OPENSSL_VERSION_NUMBER >= 0x10101000 && !defined(LIBRESSL_VERSION_NUMBER)
if (EVP_DigestSign(ctx, NULL, &siglen, (unsigned char *)RSTRING_PTR(data),
RSTRING_LEN(data)) < 1) {
EVP_MD_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_DigestSign");
}
if (siglen > LONG_MAX)
rb_raise(ePKeyError, "signature would be too large");
sig = ossl_str_new(NULL, (long)siglen, &state);
if (state) {
EVP_MD_CTX_free(ctx);
rb_jump_tag(state);
}
if (EVP_DigestSign(ctx, (unsigned char *)RSTRING_PTR(sig), &siglen,
(unsigned char *)RSTRING_PTR(data),
RSTRING_LEN(data)) < 1) {
EVP_MD_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_DigestSign");
}
#else
if (EVP_DigestSignUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data)) < 1) {
EVP_MD_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_DigestSignUpdate");
}
if (EVP_DigestSignFinal(ctx, NULL, &siglen) < 1) {
EVP_MD_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_DigestSignFinal");
}
if (siglen > LONG_MAX)
rb_raise(ePKeyError, "signature would be too large");
sig = ossl_str_new(NULL, (long)siglen, &state);
if (state) {
EVP_MD_CTX_free(ctx);
rb_jump_tag(state);
}
if (EVP_DigestSignFinal(ctx, (unsigned char *)RSTRING_PTR(sig),
&siglen) < 1) {
EVP_MD_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_DigestSignFinal");
}
#endif
EVP_MD_CTX_free(ctx);
rb_str_set_len(sig, siglen);
return sig;
}
/*
* call-seq:
* pkey.verify(digest, signature, data) -> String
*
* To verify the String _signature_, _digest_, an instance of
* OpenSSL::Digest, must be provided to re-compute the message digest of the
* original _data_, also a String. The return value is +true+ if the
* signature is valid, +false+ otherwise. A PKeyError is raised should errors
* occur.
* Any previous state of the Digest instance is irrelevant to the validation
* outcome, the digest instance is reset to its initial state during the
* operation.
*
* == Example
* data = 'Sign me!'
* digest = OpenSSL::Digest.new('SHA256')
* pkey = OpenSSL::PKey::RSA.new(2048)
* signature = pkey.sign(digest, data)
* pub_key = pkey.public_key
* puts pub_key.verify(digest, signature, data) # => true
*/
static VALUE
ossl_pkey_verify(VALUE self, VALUE digest, VALUE sig, VALUE data)
{
EVP_PKEY *pkey;
const EVP_MD *md = NULL;
EVP_MD_CTX *ctx;
int ret;
GetPKey(self, pkey);
ossl_pkey_check_public_key(pkey);
if (!NIL_P(digest))
md = ossl_evp_get_digestbyname(digest);
StringValue(sig);
StringValue(data);
ctx = EVP_MD_CTX_new();
if (!ctx)
ossl_raise(ePKeyError, "EVP_MD_CTX_new");
if (EVP_DigestVerifyInit(ctx, NULL, md, /* engine */NULL, pkey) < 1) {
EVP_MD_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_DigestVerifyInit");
}
#if OPENSSL_VERSION_NUMBER >= 0x10101000 && !defined(LIBRESSL_VERSION_NUMBER)
ret = EVP_DigestVerify(ctx, (unsigned char *)RSTRING_PTR(sig),
RSTRING_LEN(sig), (unsigned char *)RSTRING_PTR(data),
RSTRING_LEN(data));
EVP_MD_CTX_free(ctx);
if (ret < 0)
ossl_raise(ePKeyError, "EVP_DigestVerify");
#else
if (EVP_DigestVerifyUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data)) < 1) {
EVP_MD_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_DigestVerifyUpdate");
}
ret = EVP_DigestVerifyFinal(ctx, (unsigned char *)RSTRING_PTR(sig),
RSTRING_LEN(sig));
EVP_MD_CTX_free(ctx);
if (ret < 0)
ossl_raise(ePKeyError, "EVP_DigestVerifyFinal");
#endif
if (ret)
return Qtrue;
else {
ossl_clear_error();
return Qfalse;
}
}
/*
* call-seq:
* pkey.derive(peer_pkey) -> string
*
* Derives a shared secret from _pkey_ and _peer_pkey_. _pkey_ must contain
* the private components, _peer_pkey_ must contain the public components.
*/
static VALUE
ossl_pkey_derive(int argc, VALUE *argv, VALUE self)
{
EVP_PKEY *pkey, *peer_pkey;
EVP_PKEY_CTX *ctx;
VALUE peer_pkey_obj, str;
size_t keylen;
int state;
GetPKey(self, pkey);
rb_scan_args(argc, argv, "1", &peer_pkey_obj);
GetPKey(peer_pkey_obj, peer_pkey);
ctx = EVP_PKEY_CTX_new(pkey, /* engine */NULL);
if (!ctx)
ossl_raise(ePKeyError, "EVP_PKEY_CTX_new");
if (EVP_PKEY_derive_init(ctx) <= 0) {
EVP_PKEY_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_PKEY_derive_init");
}
if (EVP_PKEY_derive_set_peer(ctx, peer_pkey) <= 0) {
EVP_PKEY_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_PKEY_derive_set_peer");
}
if (EVP_PKEY_derive(ctx, NULL, &keylen) <= 0) {
EVP_PKEY_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_PKEY_derive");
}
if (keylen > LONG_MAX)
rb_raise(ePKeyError, "derived key would be too large");
str = ossl_str_new(NULL, (long)keylen, &state);
if (state) {
EVP_PKEY_CTX_free(ctx);
rb_jump_tag(state);
}
if (EVP_PKEY_derive(ctx, (unsigned char *)RSTRING_PTR(str), &keylen) <= 0) {
EVP_PKEY_CTX_free(ctx);
ossl_raise(ePKeyError, "EVP_PKEY_derive");
}
EVP_PKEY_CTX_free(ctx);
rb_str_set_len(str, keylen);
return str;
}
/*
* INIT
*/
void
Init_ossl_pkey(void)
{
#undef rb_intern
#if 0
mOSSL = rb_define_module("OpenSSL");
eOSSLError = rb_define_class_under(mOSSL, "OpenSSLError", rb_eStandardError);
#endif
/* Document-module: OpenSSL::PKey
*
* == Asymmetric Public Key Algorithms
*
* Asymmetric public key algorithms solve the problem of establishing and
* sharing secret keys to en-/decrypt messages. The key in such an
* algorithm consists of two parts: a public key that may be distributed
* to others and a private key that needs to remain secret.
*
* Messages encrypted with a public key can only be decrypted by
* recipients that are in possession of the associated private key.
* Since public key algorithms are considerably slower than symmetric
* key algorithms (cf. OpenSSL::Cipher) they are often used to establish
* a symmetric key shared between two parties that are in possession of
* each other's public key.
*
* Asymmetric algorithms offer a lot of nice features that are used in a
* lot of different areas. A very common application is the creation and
* validation of digital signatures. To sign a document, the signatory
* generally uses a message digest algorithm (cf. OpenSSL::Digest) to
* compute a digest of the document that is then encrypted (i.e. signed)
* using the private key. Anyone in possession of the public key may then
* verify the signature by computing the message digest of the original
* document on their own, decrypting the signature using the signatory's
* public key and comparing the result to the message digest they
* previously computed. The signature is valid if and only if the
* decrypted signature is equal to this message digest.
*
* The PKey module offers support for three popular public/private key
* algorithms:
* * RSA (OpenSSL::PKey::RSA)
* * DSA (OpenSSL::PKey::DSA)
* * Elliptic Curve Cryptography (OpenSSL::PKey::EC)
* Each of these implementations is in fact a sub-class of the abstract
* PKey class which offers the interface for supporting digital signatures
* in the form of PKey#sign and PKey#verify.
*
* == Diffie-Hellman Key Exchange
*
* Finally PKey also features OpenSSL::PKey::DH, an implementation of
* the Diffie-Hellman key exchange protocol based on discrete logarithms
* in finite fields, the same basis that DSA is built on.
* The Diffie-Hellman protocol can be used to exchange (symmetric) keys
* over insecure channels without needing any prior joint knowledge
* between the participating parties. As the security of DH demands
* relatively long "public keys" (i.e. the part that is overtly
* transmitted between participants) DH tends to be quite slow. If
* security or speed is your primary concern, OpenSSL::PKey::EC offers
* another implementation of the Diffie-Hellman protocol.
*
*/
mPKey = rb_define_module_under(mOSSL, "PKey");
/* Document-class: OpenSSL::PKey::PKeyError
*
*Raised when errors occur during PKey#sign or PKey#verify.
*/
ePKeyError = rb_define_class_under(mPKey, "PKeyError", eOSSLError);
/* Document-class: OpenSSL::PKey::PKey
*
* An abstract class that bundles signature creation (PKey#sign) and
* validation (PKey#verify) that is common to all implementations except
* OpenSSL::PKey::DH
* * OpenSSL::PKey::RSA
* * OpenSSL::PKey::DSA
* * OpenSSL::PKey::EC
*/
cPKey = rb_define_class_under(mPKey, "PKey", rb_cObject);
rb_define_module_function(mPKey, "read", ossl_pkey_new_from_data, -1);
rb_define_module_function(mPKey, "generate_parameters", ossl_pkey_s_generate_parameters, -1);
rb_define_module_function(mPKey, "generate_key", ossl_pkey_s_generate_key, -1);
rb_define_alloc_func(cPKey, ossl_pkey_alloc);
rb_define_method(cPKey, "initialize", ossl_pkey_initialize, 0);
rb_define_method(cPKey, "oid", ossl_pkey_oid, 0);
rb_define_method(cPKey, "inspect", ossl_pkey_inspect, 0);
rb_define_method(cPKey, "private_to_der", ossl_pkey_private_to_der, -1);
rb_define_method(cPKey, "private_to_pem", ossl_pkey_private_to_pem, -1);
rb_define_method(cPKey, "public_to_der", ossl_pkey_public_to_der, 0);
rb_define_method(cPKey, "public_to_pem", ossl_pkey_public_to_pem, 0);
rb_define_method(cPKey, "compare?", ossl_pkey_compare, 1);
rb_define_method(cPKey, "sign", ossl_pkey_sign, 2);
rb_define_method(cPKey, "verify", ossl_pkey_verify, 3);
rb_define_method(cPKey, "derive", ossl_pkey_derive, -1);
id_private_q = rb_intern("private?");
/*
* INIT rsa, dsa, dh, ec
*/
Init_ossl_rsa();
Init_ossl_dsa();
Init_ossl_dh();
Init_ossl_ec();
}