mirror of
				https://github.com/ruby/ruby.git
				synced 2022-11-09 12:17:21 -05:00 
			
		
		
		
	 b6a2d63eb3
			
		
	
	
		b6a2d63eb3
		
	
	
	
	
		
			
			These functions take variadic arguments so no automatic type promotion is expected. You have to do it by hand. git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@61542 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
		
			
				
	
	
		
			1990 lines
		
	
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1990 lines
		
	
	
	
		
			51 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**********************************************************************
 | |
| 
 | |
|   cont.c -
 | |
| 
 | |
|   $Author$
 | |
|   created at: Thu May 23 09:03:43 2007
 | |
| 
 | |
|   Copyright (C) 2007 Koichi Sasada
 | |
| 
 | |
| **********************************************************************/
 | |
| 
 | |
| #include "internal.h"
 | |
| #include "vm_core.h"
 | |
| #include "gc.h"
 | |
| #include "eval_intern.h"
 | |
| 
 | |
| /* FIBER_USE_NATIVE enables Fiber performance improvement using system
 | |
|  * dependent method such as make/setcontext on POSIX system or
 | |
|  * CreateFiber() API on Windows.
 | |
|  * This hack make Fiber context switch faster (x2 or more).
 | |
|  * However, it decrease maximum number of Fiber.  For example, on the
 | |
|  * 32bit POSIX OS, ten or twenty thousands Fiber can be created.
 | |
|  *
 | |
|  * Details is reported in the paper "A Fast Fiber Implementation for Ruby 1.9"
 | |
|  * in Proc. of 51th Programming Symposium, pp.21--28 (2010) (in Japanese).
 | |
|  */
 | |
| 
 | |
| #if !defined(FIBER_USE_NATIVE)
 | |
| # if defined(HAVE_GETCONTEXT) && defined(HAVE_SETCONTEXT)
 | |
| #   if 0
 | |
| #   elif defined(__NetBSD__)
 | |
| /* On our experience, NetBSD doesn't support using setcontext() and pthread
 | |
|  * simultaneously.  This is because pthread_self(), TLS and other information
 | |
|  * are represented by stack pointer (higher bits of stack pointer).
 | |
|  * TODO: check such constraint on configure.
 | |
|  */
 | |
| #     define FIBER_USE_NATIVE 0
 | |
| #   elif defined(__sun)
 | |
| /* On Solaris because resuming any Fiber caused SEGV, for some reason.
 | |
|  */
 | |
| #     define FIBER_USE_NATIVE 0
 | |
| #   elif defined(__ia64)
 | |
| /* At least, Linux/ia64's getcontext(3) doesn't save register window.
 | |
|  */
 | |
| #     define FIBER_USE_NATIVE 0
 | |
| #   elif defined(__GNU__)
 | |
| /* GNU/Hurd doesn't fully support getcontext, setcontext, makecontext
 | |
|  * and swapcontext functions. Disabling their usage till support is
 | |
|  * implemented. More info at
 | |
|  * http://darnassus.sceen.net/~hurd-web/open_issues/glibc/#getcontext
 | |
|  */
 | |
| #     define FIBER_USE_NATIVE 0
 | |
| #   else
 | |
| #     define FIBER_USE_NATIVE 1
 | |
| #   endif
 | |
| # elif defined(_WIN32)
 | |
| #  define FIBER_USE_NATIVE 1
 | |
| # endif
 | |
| #endif
 | |
| #if !defined(FIBER_USE_NATIVE)
 | |
| #define FIBER_USE_NATIVE 0
 | |
| #endif
 | |
| 
 | |
| #if FIBER_USE_NATIVE
 | |
| #ifndef _WIN32
 | |
| #include <unistd.h>
 | |
| #include <sys/mman.h>
 | |
| #include <ucontext.h>
 | |
| #endif
 | |
| #define RB_PAGE_SIZE (pagesize)
 | |
| #define RB_PAGE_MASK (~(RB_PAGE_SIZE - 1))
 | |
| static long pagesize;
 | |
| #endif /*FIBER_USE_NATIVE*/
 | |
| 
 | |
| #define CAPTURE_JUST_VALID_VM_STACK 1
 | |
| 
 | |
| enum context_type {
 | |
|     CONTINUATION_CONTEXT = 0,
 | |
|     FIBER_CONTEXT = 1,
 | |
|     ROOT_FIBER_CONTEXT = 2
 | |
| };
 | |
| 
 | |
| struct cont_saved_vm_stack {
 | |
|     VALUE *ptr;
 | |
| #ifdef CAPTURE_JUST_VALID_VM_STACK
 | |
|     size_t slen;  /* length of stack (head of ec->vm_stack) */
 | |
|     size_t clen;  /* length of control frames (tail of ec->vm_stack) */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| typedef struct rb_context_struct {
 | |
|     enum context_type type;
 | |
|     int argc;
 | |
|     VALUE self;
 | |
|     VALUE value;
 | |
| 
 | |
|     struct cont_saved_vm_stack saved_vm_stack;
 | |
| 
 | |
|     struct {
 | |
| 	VALUE *stack;
 | |
| 	VALUE *stack_src;
 | |
| 	size_t stack_size;
 | |
| #ifdef __ia64
 | |
| 	VALUE *register_stack;
 | |
| 	VALUE *register_stack_src;
 | |
| 	int register_stack_size;
 | |
| #endif
 | |
|     } machine;
 | |
|     rb_execution_context_t saved_ec;
 | |
|     rb_jmpbuf_t jmpbuf;
 | |
|     rb_ensure_entry_t *ensure_array;
 | |
|     rb_ensure_list_t *ensure_list;
 | |
| } rb_context_t;
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Fiber status:
 | |
|  *    [Fiber.new] ------> FIBER_CREATED
 | |
|  *                        | [Fiber#resume]
 | |
|  *                        v
 | |
|  *                   +--> FIBER_RESUMED ----+
 | |
|  *    [Fiber#resume] |    | [Fiber.yield]   |
 | |
|  *                   |    v                 |
 | |
|  *                   +-- FIBER_SUSPENDED    | [Terminate]
 | |
|  *                                          |
 | |
|  *                       FIBER_TERMINATED <-+
 | |
|  */
 | |
| enum fiber_status {
 | |
|     FIBER_CREATED,
 | |
|     FIBER_RESUMED,
 | |
|     FIBER_SUSPENDED,
 | |
|     FIBER_TERMINATED
 | |
| };
 | |
| 
 | |
| #define FIBER_CREATED_P(fib)    ((fib)->status == FIBER_CREATED)
 | |
| #define FIBER_RESUMED_P(fib)    ((fib)->status == FIBER_RESUMED)
 | |
| #define FIBER_SUSPENDED_P(fib)  ((fib)->status == FIBER_SUSPENDED)
 | |
| #define FIBER_TERMINATED_P(fib) ((fib)->status == FIBER_TERMINATED)
 | |
| #define FIBER_RUNNABLE_P(fib)   (FIBER_CREATED_P(fib) || FIBER_SUSPENDED_P(fib))
 | |
| 
 | |
| #if FIBER_USE_NATIVE && !defined(_WIN32)
 | |
| #define MAX_MACHINE_STACK_CACHE  10
 | |
| static int machine_stack_cache_index = 0;
 | |
| typedef struct machine_stack_cache_struct {
 | |
|     void *ptr;
 | |
|     size_t size;
 | |
| } machine_stack_cache_t;
 | |
| static machine_stack_cache_t machine_stack_cache[MAX_MACHINE_STACK_CACHE];
 | |
| static machine_stack_cache_t terminated_machine_stack;
 | |
| #endif
 | |
| 
 | |
| struct rb_fiber_struct {
 | |
|     rb_context_t cont;
 | |
|     VALUE first_proc;
 | |
|     struct rb_fiber_struct *prev;
 | |
|     const enum fiber_status status;
 | |
|     /* If a fiber invokes "transfer",
 | |
|      * then this fiber can't "resume" any more after that.
 | |
|      * You shouldn't mix "transfer" and "resume".
 | |
|      */
 | |
|     int transferred;
 | |
| 
 | |
| #if FIBER_USE_NATIVE
 | |
| #ifdef _WIN32
 | |
|     void *fib_handle;
 | |
| #else
 | |
|     ucontext_t context;
 | |
|     /* Because context.uc_stack.ss_sp and context.uc_stack.ss_size
 | |
|      * are not necessarily valid after makecontext() or swapcontext(),
 | |
|      * they are saved in these variables for later use.
 | |
|      */
 | |
|     void *ss_sp;
 | |
|     size_t ss_size;
 | |
| #endif
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static const char *
 | |
| fiber_status_name(enum fiber_status s)
 | |
| {
 | |
|     switch (s) {
 | |
|       case FIBER_CREATED: return "created";
 | |
|       case FIBER_RESUMED: return "resumed";
 | |
|       case FIBER_SUSPENDED: return "suspended";
 | |
|       case FIBER_TERMINATED: return "terminated";
 | |
|     }
 | |
|     VM_UNREACHABLE(fiber_status_name);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| fiber_verify(const rb_fiber_t *fib)
 | |
| {
 | |
| #if VM_CHECK_MODE > 0
 | |
|     VM_ASSERT(fib->cont.saved_ec.fiber_ptr == fib);
 | |
| 
 | |
|     switch (fib->status) {
 | |
|       case FIBER_RESUMED:
 | |
| 	VM_ASSERT(fib->cont.saved_ec.vm_stack != NULL);
 | |
| 	break;
 | |
|       case FIBER_SUSPENDED:
 | |
| 	VM_ASSERT(fib->cont.saved_ec.vm_stack != NULL);
 | |
| 	break;
 | |
|       case FIBER_CREATED:
 | |
|       case FIBER_TERMINATED:
 | |
| 	/* TODO */
 | |
| 	break;
 | |
|       default:
 | |
| 	VM_UNREACHABLE(fiber_verify);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if VM_CHECK_MODE > 0
 | |
| void
 | |
| rb_ec_verify(const rb_execution_context_t *ec)
 | |
| {
 | |
|     /* TODO */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| fiber_status_set(const rb_fiber_t *fib, enum fiber_status s)
 | |
| {
 | |
|     if (0) fprintf(stderr, "fib: %p, status: %s -> %s\n", (void *)fib, fiber_status_name(fib->status), fiber_status_name(s));
 | |
|     VM_ASSERT(!FIBER_TERMINATED_P(fib));
 | |
|     VM_ASSERT(fib->status != s);
 | |
|     fiber_verify(fib);
 | |
|     *((enum fiber_status *)&fib->status) = s;
 | |
| }
 | |
| 
 | |
| void
 | |
| ec_set_vm_stack(rb_execution_context_t *ec, VALUE *stack, size_t size)
 | |
| {
 | |
|     *(VALUE **)(&ec->vm_stack) = stack;
 | |
|     *(size_t *)(&ec->vm_stack_size) = size;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| ec_switch(rb_thread_t *th, rb_fiber_t *fib)
 | |
| {
 | |
|     rb_execution_context_t *ec = &fib->cont.saved_ec;
 | |
|     ruby_current_execution_context_ptr = th->ec = ec;
 | |
|     VM_ASSERT(ec->fiber_ptr->cont.self == 0 || ec->vm_stack != NULL);
 | |
| }
 | |
| 
 | |
| static const rb_data_type_t cont_data_type, fiber_data_type;
 | |
| static VALUE rb_cContinuation;
 | |
| static VALUE rb_cFiber;
 | |
| static VALUE rb_eFiberError;
 | |
| 
 | |
| #define GetContPtr(obj, ptr)  \
 | |
|     TypedData_Get_Struct((obj), rb_context_t, &cont_data_type, (ptr))
 | |
| 
 | |
| #define GetFiberPtr(obj, ptr)  do {\
 | |
|     TypedData_Get_Struct((obj), rb_fiber_t, &fiber_data_type, (ptr)); \
 | |
|     if (!(ptr)) rb_raise(rb_eFiberError, "uninitialized fiber"); \
 | |
| } while (0)
 | |
| 
 | |
| NOINLINE(static VALUE cont_capture(volatile int *volatile stat));
 | |
| 
 | |
| #define THREAD_MUST_BE_RUNNING(th) do { \
 | |
| 	if (!(th)->ec->tag) rb_raise(rb_eThreadError, "not running thread");	\
 | |
|     } while (0)
 | |
| 
 | |
| static VALUE
 | |
| cont_thread_value(const rb_context_t *cont)
 | |
| {
 | |
|     return cont->saved_ec.thread_ptr->self;
 | |
| }
 | |
| 
 | |
| static void
 | |
| cont_mark(void *ptr)
 | |
| {
 | |
|     rb_context_t *cont = ptr;
 | |
| 
 | |
|     RUBY_MARK_ENTER("cont");
 | |
|     rb_gc_mark(cont->value);
 | |
| 
 | |
|     rb_execution_context_mark(&cont->saved_ec);
 | |
|     rb_gc_mark(cont_thread_value(cont));
 | |
| 
 | |
|     if (cont->saved_vm_stack.ptr) {
 | |
| #ifdef CAPTURE_JUST_VALID_VM_STACK
 | |
| 	rb_gc_mark_locations(cont->saved_vm_stack.ptr,
 | |
| 			     cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
 | |
| #else
 | |
| 	rb_gc_mark_locations(cont->saved_vm_stack.ptr,
 | |
| 			     cont->saved_vm_stack.ptr, cont->saved_ec.stack_size);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if (cont->machine.stack) {
 | |
| 	if (cont->type == CONTINUATION_CONTEXT) {
 | |
| 	    /* cont */
 | |
| 	    rb_gc_mark_locations(cont->machine.stack,
 | |
| 				 cont->machine.stack + cont->machine.stack_size);
 | |
| 	}
 | |
| 	else {
 | |
| 	    /* fiber */
 | |
| 	    const rb_fiber_t *fib = (rb_fiber_t*)cont;
 | |
| 
 | |
| 	    if (!FIBER_TERMINATED_P(fib)) {
 | |
| 		rb_gc_mark_locations(cont->machine.stack,
 | |
| 				     cont->machine.stack + cont->machine.stack_size);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| #ifdef __ia64
 | |
|     if (cont->machine.register_stack) {
 | |
| 	rb_gc_mark_locations(cont->machine.register_stack,
 | |
| 			     cont->machine.register_stack + cont->machine.register_stack_size);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     RUBY_MARK_LEAVE("cont");
 | |
| }
 | |
| 
 | |
| static void
 | |
| cont_free(void *ptr)
 | |
| {
 | |
|     rb_context_t *cont = ptr;
 | |
| 
 | |
|     RUBY_FREE_ENTER("cont");
 | |
|     ruby_xfree(cont->saved_ec.vm_stack);
 | |
| 
 | |
| #if FIBER_USE_NATIVE
 | |
|     if (cont->type == CONTINUATION_CONTEXT) {
 | |
| 	/* cont */
 | |
| 	ruby_xfree(cont->ensure_array);
 | |
| 	RUBY_FREE_UNLESS_NULL(cont->machine.stack);
 | |
|     }
 | |
|     else {
 | |
| 	/* fiber */
 | |
| 	const rb_fiber_t *fib = (rb_fiber_t*)cont;
 | |
| #ifdef _WIN32
 | |
| 	if (cont->type != ROOT_FIBER_CONTEXT) {
 | |
| 	    /* don't delete root fiber handle */
 | |
| 	    if (fib->fib_handle) {
 | |
| 		DeleteFiber(fib->fib_handle);
 | |
| 	    }
 | |
| 	}
 | |
| #else /* not WIN32 */
 | |
| 	if (fib->ss_sp != NULL) {
 | |
| 	    if (cont->type == ROOT_FIBER_CONTEXT) {
 | |
| 		rb_bug("Illegal root fiber parameter");
 | |
| 	    }
 | |
| 	    munmap((void*)fib->ss_sp, fib->ss_size);
 | |
| 	}
 | |
| 	else {
 | |
| 	    /* It may reached here when finalize */
 | |
| 	    /* TODO examine whether it is a bug */
 | |
| 	    /* rb_bug("cont_free: release self"); */
 | |
| 	}
 | |
| #endif
 | |
|     }
 | |
| #else /* not FIBER_USE_NATIVE */
 | |
|     ruby_xfree(cont->ensure_array);
 | |
|     RUBY_FREE_UNLESS_NULL(cont->machine.stack);
 | |
| #endif
 | |
| #ifdef __ia64
 | |
|     RUBY_FREE_UNLESS_NULL(cont->machine.register_stack);
 | |
| #endif
 | |
|     RUBY_FREE_UNLESS_NULL(cont->saved_vm_stack.ptr);
 | |
| 
 | |
|     /* free rb_cont_t or rb_fiber_t */
 | |
|     ruby_xfree(ptr);
 | |
|     RUBY_FREE_LEAVE("cont");
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| cont_memsize(const void *ptr)
 | |
| {
 | |
|     const rb_context_t *cont = ptr;
 | |
|     size_t size = 0;
 | |
| 
 | |
|     size = sizeof(*cont);
 | |
|     if (cont->saved_vm_stack.ptr) {
 | |
| #ifdef CAPTURE_JUST_VALID_VM_STACK
 | |
| 	size_t n = (cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
 | |
| #else
 | |
| 	size_t n = cont->saved_ec.vm_stack_size;
 | |
| #endif
 | |
| 	size += n * sizeof(*cont->saved_vm_stack.ptr);
 | |
|     }
 | |
| 
 | |
|     if (cont->machine.stack) {
 | |
| 	size += cont->machine.stack_size * sizeof(*cont->machine.stack);
 | |
|     }
 | |
| #ifdef __ia64
 | |
|     if (cont->machine.register_stack) {
 | |
| 	size += cont->machine.register_stack_size * sizeof(*cont->machine.register_stack);
 | |
|     }
 | |
| #endif
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_fiber_mark_self(const rb_fiber_t *fib)
 | |
| {
 | |
|     if (fib->cont.self) {
 | |
| 	rb_gc_mark(fib->cont.self);
 | |
|     }
 | |
|     else {
 | |
| 	rb_execution_context_mark(&fib->cont.saved_ec);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| fiber_mark(void *ptr)
 | |
| {
 | |
|     rb_fiber_t *fib = ptr;
 | |
|     RUBY_MARK_ENTER("cont");
 | |
|     fiber_verify(fib);
 | |
|     rb_gc_mark(fib->first_proc);
 | |
|     if (fib->prev) rb_fiber_mark_self(fib->prev);
 | |
| 
 | |
| #if !FIBER_USE_NATIVE
 | |
|     if (fib->status == FIBER_TERMINATED) {
 | |
| 	/* FIBER_TERMINATED fiber should not mark machine stack */
 | |
| 	if (fib->cont.saved_ec.machine.stack_end != NULL) {
 | |
| 	    fib->cont.saved_ec.machine.stack_end = NULL;
 | |
| 	}
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     cont_mark(&fib->cont);
 | |
|     RUBY_MARK_LEAVE("cont");
 | |
| }
 | |
| 
 | |
| static void
 | |
| fiber_free(void *ptr)
 | |
| {
 | |
|     rb_fiber_t *fib = ptr;
 | |
|     RUBY_FREE_ENTER("fiber");
 | |
| 
 | |
|     if (fib->cont.saved_ec.local_storage) {
 | |
| 	st_free_table(fib->cont.saved_ec.local_storage);
 | |
|     }
 | |
| 
 | |
|     cont_free(&fib->cont);
 | |
|     RUBY_FREE_LEAVE("fiber");
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| fiber_memsize(const void *ptr)
 | |
| {
 | |
|     const rb_fiber_t *fib = ptr;
 | |
|     size_t size = 0;
 | |
| 
 | |
|     size = sizeof(*fib);
 | |
|     if (fib->cont.type != ROOT_FIBER_CONTEXT &&
 | |
| 	fib->cont.saved_ec.local_storage != NULL) {
 | |
| 	size += st_memsize(fib->cont.saved_ec.local_storage);
 | |
|     }
 | |
|     size += cont_memsize(&fib->cont);
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_obj_is_fiber(VALUE obj)
 | |
| {
 | |
|     if (rb_typeddata_is_kind_of(obj, &fiber_data_type)) {
 | |
| 	return Qtrue;
 | |
|     }
 | |
|     else {
 | |
| 	return Qfalse;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| cont_save_machine_stack(rb_thread_t *th, rb_context_t *cont)
 | |
| {
 | |
|     size_t size;
 | |
| 
 | |
|     SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
 | |
| #ifdef __ia64
 | |
|     th->machine.register_stack_end = rb_ia64_bsp();
 | |
| #endif
 | |
| 
 | |
|     if (th->ec->machine.stack_start > th->ec->machine.stack_end) {
 | |
| 	size = cont->machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
 | |
| 	cont->machine.stack_src = th->ec->machine.stack_end;
 | |
|     }
 | |
|     else {
 | |
| 	size = cont->machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
 | |
| 	cont->machine.stack_src = th->ec->machine.stack_start;
 | |
|     }
 | |
| 
 | |
|     if (cont->machine.stack) {
 | |
| 	REALLOC_N(cont->machine.stack, VALUE, size);
 | |
|     }
 | |
|     else {
 | |
| 	cont->machine.stack = ALLOC_N(VALUE, size);
 | |
|     }
 | |
| 
 | |
|     FLUSH_REGISTER_WINDOWS;
 | |
|     MEMCPY(cont->machine.stack, cont->machine.stack_src, VALUE, size);
 | |
| 
 | |
| #ifdef __ia64
 | |
|     rb_ia64_flushrs();
 | |
|     size = cont->machine.register_stack_size = th->machine.register_stack_end - th->machine.register_stack_start;
 | |
|     cont->machine.register_stack_src = th->machine.register_stack_start;
 | |
|     if (cont->machine.register_stack) {
 | |
| 	REALLOC_N(cont->machine.register_stack, VALUE, size);
 | |
|     }
 | |
|     else {
 | |
| 	cont->machine.register_stack = ALLOC_N(VALUE, size);
 | |
|     }
 | |
| 
 | |
|     MEMCPY(cont->machine.register_stack, cont->machine.register_stack_src, VALUE, size);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static const rb_data_type_t cont_data_type = {
 | |
|     "continuation",
 | |
|     {cont_mark, cont_free, cont_memsize,},
 | |
|     0, 0, RUBY_TYPED_FREE_IMMEDIATELY
 | |
| };
 | |
| 
 | |
| static inline void
 | |
| cont_save_thread(rb_context_t *cont, rb_thread_t *th)
 | |
| {
 | |
|     rb_execution_context_t *sec = &cont->saved_ec;
 | |
| 
 | |
|     VM_ASSERT(th->status == THREAD_RUNNABLE);
 | |
| 
 | |
|     /* save thread context */
 | |
|     *sec = *th->ec;
 | |
| 
 | |
|     /* saved_ec->machine.stack_end should be NULL */
 | |
|     /* because it may happen GC afterward */
 | |
|     sec->machine.stack_end = NULL;
 | |
| 
 | |
| #ifdef __ia64
 | |
|     sec->machine.register_stack_start = NULL;
 | |
|     sec->machine.register_stack_end = NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| cont_init(rb_context_t *cont, rb_thread_t *th)
 | |
| {
 | |
|     /* save thread context */
 | |
|     cont_save_thread(cont, th);
 | |
|     cont->saved_ec.thread_ptr = th;
 | |
|     cont->saved_ec.local_storage = NULL;
 | |
|     cont->saved_ec.local_storage_recursive_hash = Qnil;
 | |
|     cont->saved_ec.local_storage_recursive_hash_for_trace = Qnil;
 | |
| }
 | |
| 
 | |
| static rb_context_t *
 | |
| cont_new(VALUE klass)
 | |
| {
 | |
|     rb_context_t *cont;
 | |
|     volatile VALUE contval;
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
| 
 | |
|     THREAD_MUST_BE_RUNNING(th);
 | |
|     contval = TypedData_Make_Struct(klass, rb_context_t, &cont_data_type, cont);
 | |
|     cont->self = contval;
 | |
|     cont_init(cont, th);
 | |
|     return cont;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| void
 | |
| show_vm_stack(const rb_execution_context_t *ec)
 | |
| {
 | |
|     VALUE *p = ec->vm_stack;
 | |
|     while (p < ec->cfp->sp) {
 | |
| 	fprintf(stderr, "%3d ", (int)(p - ec->vm_stack));
 | |
| 	rb_obj_info_dump(*p);
 | |
| 	p++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| show_vm_pcs(const rb_control_frame_t *cfp,
 | |
| 	    const rb_control_frame_t *end_of_cfp)
 | |
| {
 | |
|     int i=0;
 | |
|     while (cfp != end_of_cfp) {
 | |
| 	int pc = 0;
 | |
| 	if (cfp->iseq) {
 | |
| 	    pc = cfp->pc - cfp->iseq->body->iseq_encoded;
 | |
| 	}
 | |
| 	fprintf(stderr, "%2d pc: %d\n", i++, pc);
 | |
| 	cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Wduplicate-decl-specifier"
 | |
| #endif
 | |
| static VALUE
 | |
| cont_capture(volatile int *volatile stat)
 | |
| {
 | |
|     rb_context_t *volatile cont;
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
|     volatile VALUE contval;
 | |
|     const rb_execution_context_t *ec = th->ec;
 | |
| 
 | |
|     THREAD_MUST_BE_RUNNING(th);
 | |
|     rb_vm_stack_to_heap(th->ec);
 | |
|     cont = cont_new(rb_cContinuation);
 | |
|     contval = cont->self;
 | |
| 
 | |
| #ifdef CAPTURE_JUST_VALID_VM_STACK
 | |
|     cont->saved_vm_stack.slen = ec->cfp->sp - ec->vm_stack;
 | |
|     cont->saved_vm_stack.clen = ec->vm_stack + ec->vm_stack_size - (VALUE*)ec->cfp;
 | |
|     cont->saved_vm_stack.ptr = ALLOC_N(VALUE, cont->saved_vm_stack.slen + cont->saved_vm_stack.clen);
 | |
|     MEMCPY(cont->saved_vm_stack.ptr,
 | |
| 	   ec->vm_stack,
 | |
| 	   VALUE, cont->saved_vm_stack.slen);
 | |
|     MEMCPY(cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
 | |
| 	   (VALUE*)ec->cfp,
 | |
| 	   VALUE,
 | |
| 	   cont->saved_vm_stack.clen);
 | |
| #else
 | |
|     cont->saved_vm_stack.ptr = ALLOC_N(VALUE, ec->vm_stack_size);
 | |
|     MEMCPY(cont->saved_vm_stack.ptr, ec->vm_stack, VALUE, ec->vm_stack_size);
 | |
| #endif
 | |
|     ec_set_vm_stack(&cont->saved_ec, NULL, 0);
 | |
|     cont_save_machine_stack(th, cont);
 | |
| 
 | |
|     /* backup ensure_list to array for search in another context */
 | |
|     {
 | |
| 	rb_ensure_list_t *p;
 | |
| 	int size = 0;
 | |
| 	rb_ensure_entry_t *entry;
 | |
| 	for (p=th->ec->ensure_list; p; p=p->next)
 | |
| 	    size++;
 | |
| 	entry = cont->ensure_array = ALLOC_N(rb_ensure_entry_t,size+1);
 | |
| 	for (p=th->ec->ensure_list; p; p=p->next) {
 | |
| 	    if (!p->entry.marker)
 | |
| 		p->entry.marker = rb_ary_tmp_new(0); /* dummy object */
 | |
| 	    *entry++ = p->entry;
 | |
| 	}
 | |
| 	entry->marker = 0;
 | |
|     }
 | |
| 
 | |
|     if (ruby_setjmp(cont->jmpbuf)) {
 | |
| 	VALUE value;
 | |
| 
 | |
| 	VAR_INITIALIZED(cont);
 | |
| 	value = cont->value;
 | |
| 	if (cont->argc == -1) rb_exc_raise(value);
 | |
| 	cont->value = Qnil;
 | |
| 	*stat = 1;
 | |
| 	return value;
 | |
|     }
 | |
|     else {
 | |
| 	*stat = 0;
 | |
| 	return contval;
 | |
|     }
 | |
| }
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| 
 | |
| static inline void
 | |
| fiber_restore_thread(rb_thread_t *th, rb_fiber_t *fib)
 | |
| {
 | |
|     ec_switch(th, fib);
 | |
|     VM_ASSERT(th->ec->fiber_ptr == fib);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| cont_restore_thread(rb_context_t *cont)
 | |
| {
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
| 
 | |
|     /* restore thread context */
 | |
|     if (cont->type == CONTINUATION_CONTEXT) {
 | |
| 	/* continuation */
 | |
| 	rb_execution_context_t *sec = &cont->saved_ec;
 | |
| 	rb_fiber_t *fib = NULL;
 | |
| 
 | |
| 	if (sec->fiber_ptr != NULL) {
 | |
| 	    fib = sec->fiber_ptr;
 | |
| 	}
 | |
| 	else if (th->root_fiber) {
 | |
| 	    fib = th->root_fiber;
 | |
| 	}
 | |
| 
 | |
| 	if (fib && th->ec != &fib->cont.saved_ec) {
 | |
| 	    ec_switch(th, fib);
 | |
| 	}
 | |
| 
 | |
| 	/* copy vm stack */
 | |
| #ifdef CAPTURE_JUST_VALID_VM_STACK
 | |
| 	MEMCPY(th->ec->vm_stack,
 | |
| 	       cont->saved_vm_stack.ptr,
 | |
| 	       VALUE, cont->saved_vm_stack.slen);
 | |
| 	MEMCPY(th->ec->vm_stack + th->ec->vm_stack_size - cont->saved_vm_stack.clen,
 | |
| 	       cont->saved_vm_stack.ptr + cont->saved_vm_stack.slen,
 | |
| 	       VALUE, cont->saved_vm_stack.clen);
 | |
| #else
 | |
| 	MEMCPY(th->ec->vm_stack, cont->saved_vm_stack.ptr, VALUE, sec->vm_stack_size);
 | |
| #endif
 | |
| 	/* other members of ec */
 | |
| 
 | |
| 	th->ec->cfp = sec->cfp;
 | |
| 	th->ec->raised_flag = sec->raised_flag;
 | |
| 	th->ec->tag = sec->tag;
 | |
| 	th->ec->protect_tag = sec->protect_tag;
 | |
| 	th->ec->root_lep = sec->root_lep;
 | |
| 	th->ec->root_svar = sec->root_svar;
 | |
| 	th->ec->ensure_list = sec->ensure_list;
 | |
| 	th->ec->errinfo = sec->errinfo;
 | |
| 
 | |
| 	/* trace on -> trace off */
 | |
| 	if (th->ec->trace_arg != NULL && sec->trace_arg == NULL) {
 | |
| 	    GET_VM()->trace_running--;
 | |
| 	}
 | |
| 	/* trace off -> trace on */
 | |
| 	else if (th->ec->trace_arg == NULL && sec->trace_arg != NULL) {
 | |
| 	    GET_VM()->trace_running++;
 | |
| 	}
 | |
| 	th->ec->trace_arg = sec->trace_arg;
 | |
| 
 | |
| 	VM_ASSERT(th->ec->vm_stack != NULL);
 | |
|     }
 | |
|     else {
 | |
| 	/* fiber */
 | |
| 	fiber_restore_thread(th, (rb_fiber_t*)cont);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if FIBER_USE_NATIVE
 | |
| #ifdef _WIN32
 | |
| static void
 | |
| fiber_set_stack_location(void)
 | |
| {
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
|     VALUE *ptr;
 | |
| 
 | |
|     SET_MACHINE_STACK_END(&ptr);
 | |
|     th->ec->machine.stack_start = (void*)(((VALUE)ptr & RB_PAGE_MASK) + STACK_UPPER((void *)&ptr, 0, RB_PAGE_SIZE));
 | |
| }
 | |
| 
 | |
| static VOID CALLBACK
 | |
| fiber_entry(void *arg)
 | |
| {
 | |
|     fiber_set_stack_location();
 | |
|     rb_fiber_start();
 | |
| }
 | |
| #else /* _WIN32 */
 | |
| 
 | |
| /*
 | |
|  * FreeBSD require a first (i.e. addr) argument of mmap(2) is not NULL
 | |
|  * if MAP_STACK is passed.
 | |
|  * http://www.FreeBSD.org/cgi/query-pr.cgi?pr=158755
 | |
|  */
 | |
| #if defined(MAP_STACK) && !defined(__FreeBSD__) && !defined(__FreeBSD_kernel__)
 | |
| #define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON | MAP_STACK)
 | |
| #else
 | |
| #define FIBER_STACK_FLAGS (MAP_PRIVATE | MAP_ANON)
 | |
| #endif
 | |
| 
 | |
| static char*
 | |
| fiber_machine_stack_alloc(size_t size)
 | |
| {
 | |
|     char *ptr;
 | |
| 
 | |
|     if (machine_stack_cache_index > 0) {
 | |
| 	if (machine_stack_cache[machine_stack_cache_index - 1].size == (size / sizeof(VALUE))) {
 | |
| 	    ptr = machine_stack_cache[machine_stack_cache_index - 1].ptr;
 | |
| 	    machine_stack_cache_index--;
 | |
| 	    machine_stack_cache[machine_stack_cache_index].ptr = NULL;
 | |
| 	    machine_stack_cache[machine_stack_cache_index].size = 0;
 | |
| 	}
 | |
| 	else{
 | |
|             /* TODO handle multiple machine stack size */
 | |
| 	    rb_bug("machine_stack_cache size is not canonicalized");
 | |
| 	}
 | |
|     }
 | |
|     else {
 | |
| 	void *page;
 | |
| 	STACK_GROW_DIR_DETECTION;
 | |
| 
 | |
| 	errno = 0;
 | |
| 	ptr = mmap(NULL, size, PROT_READ | PROT_WRITE, FIBER_STACK_FLAGS, -1, 0);
 | |
| 	if (ptr == MAP_FAILED) {
 | |
| 	    rb_raise(rb_eFiberError, "can't alloc machine stack to fiber: %s", strerror(errno));
 | |
| 	}
 | |
| 
 | |
| 	/* guard page setup */
 | |
| 	page = ptr + STACK_DIR_UPPER(size - RB_PAGE_SIZE, 0);
 | |
| 	if (mprotect(page, RB_PAGE_SIZE, PROT_NONE) < 0) {
 | |
| 	    rb_raise(rb_eFiberError, "mprotect failed");
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return ptr;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| fiber_initialize_machine_stack_context(rb_fiber_t *fib, size_t size)
 | |
| {
 | |
|     rb_execution_context_t *sec = &fib->cont.saved_ec;
 | |
| 
 | |
| #ifdef _WIN32
 | |
| # if defined(_MSC_VER) && _MSC_VER <= 1200
 | |
| #   define CreateFiberEx(cs, stacksize, flags, entry, param) \
 | |
|     CreateFiber((stacksize), (entry), (param))
 | |
| # endif
 | |
|     fib->fib_handle = CreateFiberEx(size - 1, size, 0, fiber_entry, NULL);
 | |
|     if (!fib->fib_handle) {
 | |
| 	/* try to release unnecessary fibers & retry to create */
 | |
| 	rb_gc();
 | |
| 	fib->fib_handle = CreateFiberEx(size - 1, size, 0, fiber_entry, NULL);
 | |
| 	if (!fib->fib_handle) {
 | |
| 	    rb_raise(rb_eFiberError, "can't create fiber");
 | |
| 	}
 | |
|     }
 | |
|     sec->machine.stack_maxsize = size;
 | |
| #else /* not WIN32 */
 | |
|     ucontext_t *context = &fib->context;
 | |
|     char *ptr;
 | |
|     STACK_GROW_DIR_DETECTION;
 | |
| 
 | |
|     getcontext(context);
 | |
|     ptr = fiber_machine_stack_alloc(size);
 | |
|     context->uc_link = NULL;
 | |
|     context->uc_stack.ss_sp = ptr;
 | |
|     context->uc_stack.ss_size = size;
 | |
|     fib->ss_sp = ptr;
 | |
|     fib->ss_size = size;
 | |
|     makecontext(context, rb_fiber_start, 0);
 | |
|     sec->machine.stack_start = (VALUE*)(ptr + STACK_DIR_UPPER(0, size));
 | |
|     sec->machine.stack_maxsize = size - RB_PAGE_SIZE;
 | |
| #endif
 | |
| #ifdef __ia64
 | |
|     sth->machine.register_stack_maxsize = sth->machine.stack_maxsize;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| NOINLINE(static void fiber_setcontext(rb_fiber_t *newfib, rb_fiber_t *oldfib));
 | |
| 
 | |
| static void
 | |
| fiber_setcontext(rb_fiber_t *newfib, rb_fiber_t *oldfib)
 | |
| {
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
| 
 | |
|     /* save oldfib's machine stack / TODO: is it needed? */
 | |
|     if (!FIBER_TERMINATED_P(oldfib)) {
 | |
| 	STACK_GROW_DIR_DETECTION;
 | |
| 	SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
 | |
| 	if (STACK_DIR_UPPER(0, 1)) {
 | |
| 	    oldfib->cont.machine.stack_size = th->ec->machine.stack_start - th->ec->machine.stack_end;
 | |
| 	    oldfib->cont.machine.stack = th->ec->machine.stack_end;
 | |
| 	}
 | |
| 	else {
 | |
| 	    oldfib->cont.machine.stack_size = th->ec->machine.stack_end - th->ec->machine.stack_start;
 | |
| 	    oldfib->cont.machine.stack = th->ec->machine.stack_start;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     /* exchange machine_stack_start between oldfib and newfib */
 | |
|     oldfib->cont.saved_ec.machine.stack_start = th->ec->machine.stack_start;
 | |
| 
 | |
|     /* oldfib->machine.stack_end should be NULL */
 | |
|     oldfib->cont.saved_ec.machine.stack_end = NULL;
 | |
| 
 | |
|     /* restore thread context */
 | |
|     fiber_restore_thread(th, newfib);
 | |
| 
 | |
| #ifndef _WIN32
 | |
|     if (!newfib->context.uc_stack.ss_sp && th->root_fiber != newfib) {
 | |
| 	rb_bug("non_root_fiber->context.uc_stac.ss_sp should not be NULL");
 | |
|     }
 | |
| #endif
 | |
|     /* swap machine context */
 | |
| #ifdef _WIN32
 | |
|     SwitchToFiber(newfib->fib_handle);
 | |
| #else
 | |
|     swapcontext(&oldfib->context, &newfib->context);
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| NOINLINE(NORETURN(static void cont_restore_1(rb_context_t *)));
 | |
| 
 | |
| static void
 | |
| cont_restore_1(rb_context_t *cont)
 | |
| {
 | |
|     cont_restore_thread(cont);
 | |
| 
 | |
|     /* restore machine stack */
 | |
| #ifdef _M_AMD64
 | |
|     {
 | |
| 	/* workaround for x64 SEH */
 | |
| 	jmp_buf buf;
 | |
| 	setjmp(buf);
 | |
| 	((_JUMP_BUFFER*)(&cont->jmpbuf))->Frame =
 | |
| 	    ((_JUMP_BUFFER*)(&buf))->Frame;
 | |
|     }
 | |
| #endif
 | |
|     if (cont->machine.stack_src) {
 | |
| 	FLUSH_REGISTER_WINDOWS;
 | |
| 	MEMCPY(cont->machine.stack_src, cont->machine.stack,
 | |
| 		VALUE, cont->machine.stack_size);
 | |
|     }
 | |
| 
 | |
| #ifdef __ia64
 | |
|     if (cont->machine.register_stack_src) {
 | |
| 	MEMCPY(cont->machine.register_stack_src, cont->machine.register_stack,
 | |
| 	       VALUE, cont->machine.register_stack_size);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     ruby_longjmp(cont->jmpbuf, 1);
 | |
| }
 | |
| 
 | |
| NORETURN(NOINLINE(static void cont_restore_0(rb_context_t *, VALUE *)));
 | |
| 
 | |
| #ifdef __ia64
 | |
| #define C(a) rse_##a##0, rse_##a##1, rse_##a##2, rse_##a##3, rse_##a##4
 | |
| #define E(a) rse_##a##0= rse_##a##1= rse_##a##2= rse_##a##3= rse_##a##4
 | |
| static volatile int C(a), C(b), C(c), C(d), C(e);
 | |
| static volatile int C(f), C(g), C(h), C(i), C(j);
 | |
| static volatile int C(k), C(l), C(m), C(n), C(o);
 | |
| static volatile int C(p), C(q), C(r), C(s), C(t);
 | |
| #if 0
 | |
| {/* the above lines make cc-mode.el confused so much */}
 | |
| #endif
 | |
| int rb_dummy_false = 0;
 | |
| NORETURN(NOINLINE(static void register_stack_extend(rb_context_t *, VALUE *, VALUE *)));
 | |
| static void
 | |
| register_stack_extend(rb_context_t *cont, VALUE *vp, VALUE *curr_bsp)
 | |
| {
 | |
|     if (rb_dummy_false) {
 | |
|         /* use registers as much as possible */
 | |
|         E(a) = E(b) = E(c) = E(d) = E(e) =
 | |
|         E(f) = E(g) = E(h) = E(i) = E(j) =
 | |
|         E(k) = E(l) = E(m) = E(n) = E(o) =
 | |
|         E(p) = E(q) = E(r) = E(s) = E(t) = 0;
 | |
|         E(a) = E(b) = E(c) = E(d) = E(e) =
 | |
|         E(f) = E(g) = E(h) = E(i) = E(j) =
 | |
|         E(k) = E(l) = E(m) = E(n) = E(o) =
 | |
|         E(p) = E(q) = E(r) = E(s) = E(t) = 0;
 | |
|     }
 | |
|     if (curr_bsp < cont->machine.register_stack_src+cont->machine.register_stack_size) {
 | |
|         register_stack_extend(cont, vp, (VALUE*)rb_ia64_bsp());
 | |
|     }
 | |
|     cont_restore_0(cont, vp);
 | |
| }
 | |
| #undef C
 | |
| #undef E
 | |
| #endif
 | |
| 
 | |
| static void
 | |
| cont_restore_0(rb_context_t *cont, VALUE *addr_in_prev_frame)
 | |
| {
 | |
|     if (cont->machine.stack_src) {
 | |
| #ifdef HAVE_ALLOCA
 | |
| #define STACK_PAD_SIZE 1
 | |
| #else
 | |
| #define STACK_PAD_SIZE 1024
 | |
| #endif
 | |
| 	VALUE space[STACK_PAD_SIZE];
 | |
| 
 | |
| #if !STACK_GROW_DIRECTION
 | |
| 	if (addr_in_prev_frame > &space[0]) {
 | |
| 	    /* Stack grows downward */
 | |
| #endif
 | |
| #if STACK_GROW_DIRECTION <= 0
 | |
| 	    volatile VALUE *const end = cont->machine.stack_src;
 | |
| 	    if (&space[0] > end) {
 | |
| # ifdef HAVE_ALLOCA
 | |
| 		volatile VALUE *sp = ALLOCA_N(VALUE, &space[0] - end);
 | |
| 		space[0] = *sp;
 | |
| # else
 | |
| 		cont_restore_0(cont, &space[0]);
 | |
| # endif
 | |
| 	    }
 | |
| #endif
 | |
| #if !STACK_GROW_DIRECTION
 | |
| 	}
 | |
| 	else {
 | |
| 	    /* Stack grows upward */
 | |
| #endif
 | |
| #if STACK_GROW_DIRECTION >= 0
 | |
| 	    volatile VALUE *const end = cont->machine.stack_src + cont->machine.stack_size;
 | |
| 	    if (&space[STACK_PAD_SIZE] < end) {
 | |
| # ifdef HAVE_ALLOCA
 | |
| 		volatile VALUE *sp = ALLOCA_N(VALUE, end - &space[STACK_PAD_SIZE]);
 | |
| 		space[0] = *sp;
 | |
| # else
 | |
| 		cont_restore_0(cont, &space[STACK_PAD_SIZE-1]);
 | |
| # endif
 | |
| 	    }
 | |
| #endif
 | |
| #if !STACK_GROW_DIRECTION
 | |
| 	}
 | |
| #endif
 | |
|     }
 | |
|     cont_restore_1(cont);
 | |
| }
 | |
| #ifdef __ia64
 | |
| #define cont_restore_0(cont, vp) register_stack_extend((cont), (vp), (VALUE*)rb_ia64_bsp())
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *  Document-class: Continuation
 | |
|  *
 | |
|  *  Continuation objects are generated by Kernel#callcc,
 | |
|  *  after having +require+d <i>continuation</i>. They hold
 | |
|  *  a return address and execution context, allowing a nonlocal return
 | |
|  *  to the end of the <code>callcc</code> block from anywhere within a
 | |
|  *  program. Continuations are somewhat analogous to a structured
 | |
|  *  version of C's <code>setjmp/longjmp</code> (although they contain
 | |
|  *  more state, so you might consider them closer to threads).
 | |
|  *
 | |
|  *  For instance:
 | |
|  *
 | |
|  *     require "continuation"
 | |
|  *     arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
 | |
|  *     callcc{|cc| $cc = cc}
 | |
|  *     puts(message = arr.shift)
 | |
|  *     $cc.call unless message =~ /Max/
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     Freddie
 | |
|  *     Herbie
 | |
|  *     Ron
 | |
|  *     Max
 | |
|  *
 | |
|  *  Also you can call callcc in other methods:
 | |
|  *
 | |
|  *     require "continuation"
 | |
|  *
 | |
|  *     def g
 | |
|  *       arr = [ "Freddie", "Herbie", "Ron", "Max", "Ringo" ]
 | |
|  *       cc = callcc { |cc| cc }
 | |
|  *       puts arr.shift
 | |
|  *       return cc, arr.size
 | |
|  *     end
 | |
|  *
 | |
|  *     def f
 | |
|  *       c, size = g
 | |
|  *       c.call(c) if size > 1
 | |
|  *     end
 | |
|  *
 | |
|  *     f
 | |
|  *
 | |
|  *  This (somewhat contrived) example allows the inner loop to abandon
 | |
|  *  processing early:
 | |
|  *
 | |
|  *     require "continuation"
 | |
|  *     callcc {|cont|
 | |
|  *       for i in 0..4
 | |
|  *         print "\n#{i}: "
 | |
|  *         for j in i*5...(i+1)*5
 | |
|  *           cont.call() if j == 17
 | |
|  *           printf "%3d", j
 | |
|  *         end
 | |
|  *       end
 | |
|  *     }
 | |
|  *     puts
 | |
|  *
 | |
|  *  <em>produces:</em>
 | |
|  *
 | |
|  *     0:   0  1  2  3  4
 | |
|  *     1:   5  6  7  8  9
 | |
|  *     2:  10 11 12 13 14
 | |
|  *     3:  15 16
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     callcc {|cont| block }   ->  obj
 | |
|  *
 | |
|  *  Generates a Continuation object, which it passes to
 | |
|  *  the associated block. You need to <code>require
 | |
|  *  'continuation'</code> before using this method. Performing a
 | |
|  *  <em>cont</em><code>.call</code> will cause the #callcc
 | |
|  *  to return (as will falling through the end of the block). The
 | |
|  *  value returned by the #callcc is the value of the
 | |
|  *  block, or the value passed to <em>cont</em><code>.call</code>. See
 | |
|  *  class Continuation for more details. Also see
 | |
|  *  Kernel#throw for an alternative mechanism for
 | |
|  *  unwinding a call stack.
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_callcc(VALUE self)
 | |
| {
 | |
|     volatile int called;
 | |
|     volatile VALUE val = cont_capture(&called);
 | |
| 
 | |
|     if (called) {
 | |
| 	return val;
 | |
|     }
 | |
|     else {
 | |
| 	return rb_yield(val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static VALUE
 | |
| make_passing_arg(int argc, const VALUE *argv)
 | |
| {
 | |
|     switch (argc) {
 | |
|       case 0:
 | |
| 	return Qnil;
 | |
|       case 1:
 | |
| 	return argv[0];
 | |
|       default:
 | |
| 	return rb_ary_new4(argc, argv);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* CAUTION!! : Currently, error in rollback_func is not supported  */
 | |
| /* same as rb_protect if set rollback_func to NULL */
 | |
| void
 | |
| ruby_register_rollback_func_for_ensure(VALUE (*ensure_func)(ANYARGS), VALUE (*rollback_func)(ANYARGS))
 | |
| {
 | |
|     st_table **table_p = &GET_VM()->ensure_rollback_table;
 | |
|     if (UNLIKELY(*table_p == NULL)) {
 | |
| 	*table_p = st_init_numtable();
 | |
|     }
 | |
|     st_insert(*table_p, (st_data_t)ensure_func, (st_data_t)rollback_func);
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| lookup_rollback_func(VALUE (*ensure_func)(ANYARGS))
 | |
| {
 | |
|     st_table *table = GET_VM()->ensure_rollback_table;
 | |
|     st_data_t val;
 | |
|     if (table && st_lookup(table, (st_data_t)ensure_func, &val))
 | |
| 	return (VALUE) val;
 | |
|     return Qundef;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void
 | |
| rollback_ensure_stack(VALUE self,rb_ensure_list_t *current,rb_ensure_entry_t *target)
 | |
| {
 | |
|     rb_ensure_list_t *p;
 | |
|     rb_ensure_entry_t *entry;
 | |
|     size_t i;
 | |
|     size_t cur_size;
 | |
|     size_t target_size;
 | |
|     size_t base_point;
 | |
|     VALUE (*func)(ANYARGS);
 | |
| 
 | |
|     cur_size = 0;
 | |
|     for (p=current; p; p=p->next)
 | |
| 	cur_size++;
 | |
|     target_size = 0;
 | |
|     for (entry=target; entry->marker; entry++)
 | |
| 	target_size++;
 | |
| 
 | |
|     /* search common stack point */
 | |
|     p = current;
 | |
|     base_point = cur_size;
 | |
|     while (base_point) {
 | |
| 	if (target_size >= base_point &&
 | |
| 	    p->entry.marker == target[target_size - base_point].marker)
 | |
| 	    break;
 | |
| 	base_point --;
 | |
| 	p = p->next;
 | |
|     }
 | |
| 
 | |
|     /* rollback function check */
 | |
|     for (i=0; i < target_size - base_point; i++) {
 | |
| 	if (!lookup_rollback_func(target[i].e_proc)) {
 | |
| 	    rb_raise(rb_eRuntimeError, "continuation called from out of critical rb_ensure scope");
 | |
| 	}
 | |
|     }
 | |
|     /* pop ensure stack */
 | |
|     while (cur_size > base_point) {
 | |
| 	/* escape from ensure block */
 | |
| 	(*current->entry.e_proc)(current->entry.data2);
 | |
| 	current = current->next;
 | |
| 	cur_size--;
 | |
|     }
 | |
|     /* push ensure stack */
 | |
|     while (i--) {
 | |
| 	func = (VALUE (*)(ANYARGS)) lookup_rollback_func(target[i].e_proc);
 | |
| 	if ((VALUE)func != Qundef) {
 | |
| 	    (*func)(target[i].data2);
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     cont.call(args, ...)
 | |
|  *     cont[args, ...]
 | |
|  *
 | |
|  *  Invokes the continuation. The program continues from the end of the
 | |
|  *  <code>callcc</code> block. If no arguments are given, the original
 | |
|  *  <code>callcc</code> returns <code>nil</code>. If one argument is
 | |
|  *  given, <code>callcc</code> returns it. Otherwise, an array
 | |
|  *  containing <i>args</i> is returned.
 | |
|  *
 | |
|  *     callcc {|cont|  cont.call }           #=> nil
 | |
|  *     callcc {|cont|  cont.call 1 }         #=> 1
 | |
|  *     callcc {|cont|  cont.call 1, 2, 3 }   #=> [1, 2, 3]
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| rb_cont_call(int argc, VALUE *argv, VALUE contval)
 | |
| {
 | |
|     rb_context_t *cont;
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
|     GetContPtr(contval, cont);
 | |
| 
 | |
|     if (cont_thread_value(cont) != th->self) {
 | |
| 	rb_raise(rb_eRuntimeError, "continuation called across threads");
 | |
|     }
 | |
|     if (cont->saved_ec.protect_tag != th->ec->protect_tag) {
 | |
| 	rb_raise(rb_eRuntimeError, "continuation called across stack rewinding barrier");
 | |
|     }
 | |
|     if (cont->saved_ec.fiber_ptr) {
 | |
| 	if (th->ec->fiber_ptr != cont->saved_ec.fiber_ptr) {
 | |
| 	    rb_raise(rb_eRuntimeError, "continuation called across fiber");
 | |
| 	}
 | |
|     }
 | |
|     rollback_ensure_stack(contval, th->ec->ensure_list, cont->ensure_array);
 | |
| 
 | |
|     cont->argc = argc;
 | |
|     cont->value = make_passing_arg(argc, argv);
 | |
| 
 | |
|     cont_restore_0(cont, &contval);
 | |
|     return Qnil; /* unreachable */
 | |
| }
 | |
| 
 | |
| /*********/
 | |
| /* fiber */
 | |
| /*********/
 | |
| 
 | |
| /*
 | |
|  *  Document-class: Fiber
 | |
|  *
 | |
|  *  Fibers are primitives for implementing light weight cooperative
 | |
|  *  concurrency in Ruby. Basically they are a means of creating code blocks
 | |
|  *  that can be paused and resumed, much like threads. The main difference
 | |
|  *  is that they are never preempted and that the scheduling must be done by
 | |
|  *  the programmer and not the VM.
 | |
|  *
 | |
|  *  As opposed to other stackless light weight concurrency models, each fiber
 | |
|  *  comes with a stack.  This enables the fiber to be paused from deeply
 | |
|  *  nested function calls within the fiber block.  See the ruby(1)
 | |
|  *  manpage to configure the size of the fiber stack(s).
 | |
|  *
 | |
|  *  When a fiber is created it will not run automatically. Rather it must
 | |
|  *  be explicitly asked to run using the <code>Fiber#resume</code> method.
 | |
|  *  The code running inside the fiber can give up control by calling
 | |
|  *  <code>Fiber.yield</code> in which case it yields control back to caller
 | |
|  *  (the caller of the <code>Fiber#resume</code>).
 | |
|  *
 | |
|  *  Upon yielding or termination the Fiber returns the value of the last
 | |
|  *  executed expression
 | |
|  *
 | |
|  *  For instance:
 | |
|  *
 | |
|  *    fiber = Fiber.new do
 | |
|  *      Fiber.yield 1
 | |
|  *      2
 | |
|  *    end
 | |
|  *
 | |
|  *    puts fiber.resume
 | |
|  *    puts fiber.resume
 | |
|  *    puts fiber.resume
 | |
|  *
 | |
|  *  <em>produces</em>
 | |
|  *
 | |
|  *    1
 | |
|  *    2
 | |
|  *    FiberError: dead fiber called
 | |
|  *
 | |
|  *  The <code>Fiber#resume</code> method accepts an arbitrary number of
 | |
|  *  parameters, if it is the first call to <code>resume</code> then they
 | |
|  *  will be passed as block arguments. Otherwise they will be the return
 | |
|  *  value of the call to <code>Fiber.yield</code>
 | |
|  *
 | |
|  *  Example:
 | |
|  *
 | |
|  *    fiber = Fiber.new do |first|
 | |
|  *      second = Fiber.yield first + 2
 | |
|  *    end
 | |
|  *
 | |
|  *    puts fiber.resume 10
 | |
|  *    puts fiber.resume 14
 | |
|  *    puts fiber.resume 18
 | |
|  *
 | |
|  *  <em>produces</em>
 | |
|  *
 | |
|  *    12
 | |
|  *    14
 | |
|  *    FiberError: dead fiber called
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static const rb_data_type_t fiber_data_type = {
 | |
|     "fiber",
 | |
|     {fiber_mark, fiber_free, fiber_memsize,},
 | |
|     0, 0, RUBY_TYPED_FREE_IMMEDIATELY
 | |
| };
 | |
| 
 | |
| static VALUE
 | |
| fiber_alloc(VALUE klass)
 | |
| {
 | |
|     return TypedData_Wrap_Struct(klass, &fiber_data_type, 0);
 | |
| }
 | |
| 
 | |
| static rb_fiber_t*
 | |
| fiber_t_alloc(VALUE fibval)
 | |
| {
 | |
|     rb_fiber_t *fib;
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
| 
 | |
|     if (DATA_PTR(fibval) != 0) {
 | |
| 	rb_raise(rb_eRuntimeError, "cannot initialize twice");
 | |
|     }
 | |
| 
 | |
|     THREAD_MUST_BE_RUNNING(th);
 | |
|     fib = ZALLOC(rb_fiber_t);
 | |
|     fib->cont.self = fibval;
 | |
|     fib->cont.type = FIBER_CONTEXT;
 | |
|     cont_init(&fib->cont, th);
 | |
|     fib->cont.saved_ec.fiber_ptr = fib;
 | |
|     fib->prev = NULL;
 | |
| 
 | |
|     /* fib->status == 0 == CREATED
 | |
|      * So that we don't need to set status: fiber_status_set(fib, FIBER_CREATED); */
 | |
|     VM_ASSERT(FIBER_CREATED_P(fib));
 | |
| 
 | |
|     DATA_PTR(fibval) = fib;
 | |
| 
 | |
|     return fib;
 | |
| }
 | |
| 
 | |
| rb_control_frame_t *
 | |
| rb_vm_push_frame(rb_execution_context_t *sec,
 | |
| 		 const rb_iseq_t *iseq,
 | |
| 		 VALUE type,
 | |
| 		 VALUE self,
 | |
| 		 VALUE specval,
 | |
| 		 VALUE cref_or_me,
 | |
| 		 const VALUE *pc,
 | |
| 		 VALUE *sp,
 | |
| 		 int local_size,
 | |
| 		 int stack_max);
 | |
| 
 | |
| static VALUE
 | |
| fiber_init(VALUE fibval, VALUE proc)
 | |
| {
 | |
|     rb_fiber_t *fib = fiber_t_alloc(fibval);
 | |
|     rb_context_t *cont = &fib->cont;
 | |
|     rb_execution_context_t *sec = &cont->saved_ec;
 | |
|     rb_thread_t *cth = GET_THREAD();
 | |
|     size_t fib_stack_size = cth->vm->default_params.fiber_vm_stack_size / sizeof(VALUE);
 | |
| 
 | |
|     /* initialize cont */
 | |
|     cont->saved_vm_stack.ptr = NULL;
 | |
|     ec_set_vm_stack(sec, NULL, 0);
 | |
| 
 | |
|     ec_set_vm_stack(sec, ALLOC_N(VALUE, fib_stack_size), fib_stack_size);
 | |
|     sec->cfp = (void *)(sec->vm_stack + sec->vm_stack_size);
 | |
| 
 | |
|     rb_vm_push_frame(sec,
 | |
| 		     NULL,
 | |
| 		     VM_FRAME_MAGIC_DUMMY | VM_ENV_FLAG_LOCAL | VM_FRAME_FLAG_FINISH | VM_FRAME_FLAG_CFRAME,
 | |
| 		     Qnil, /* self */
 | |
| 		     VM_BLOCK_HANDLER_NONE,
 | |
| 		     0, /* specval */
 | |
| 		     NULL, /* pc */
 | |
| 		     sec->vm_stack, /* sp */
 | |
| 		     0, /* local_size */
 | |
| 		     0);
 | |
| 
 | |
|     sec->tag = NULL;
 | |
|     sec->local_storage = NULL;
 | |
|     sec->local_storage_recursive_hash = Qnil;
 | |
|     sec->local_storage_recursive_hash_for_trace = Qnil;
 | |
| 
 | |
|     fib->first_proc = proc;
 | |
| 
 | |
| #if !FIBER_USE_NATIVE
 | |
|     MEMCPY(&cont->jmpbuf, &cth->root_jmpbuf, rb_jmpbuf_t, 1);
 | |
| #endif
 | |
| 
 | |
|     return fibval;
 | |
| }
 | |
| 
 | |
| /* :nodoc: */
 | |
| static VALUE
 | |
| rb_fiber_init(VALUE fibval)
 | |
| {
 | |
|     return fiber_init(fibval, rb_block_proc());
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_fiber_new(VALUE (*func)(ANYARGS), VALUE obj)
 | |
| {
 | |
|     return fiber_init(fiber_alloc(rb_cFiber), rb_proc_new(func, obj));
 | |
| }
 | |
| 
 | |
| static void rb_fiber_terminate(rb_fiber_t *fib, int need_interrupt);
 | |
| 
 | |
| void
 | |
| rb_fiber_start(void)
 | |
| {
 | |
|     rb_thread_t * volatile th = GET_THREAD();
 | |
|     rb_fiber_t *fib = th->ec->fiber_ptr;
 | |
|     rb_proc_t *proc;
 | |
|     enum ruby_tag_type state;
 | |
|     int need_interrupt = TRUE;
 | |
| 
 | |
|     VM_ASSERT(th->ec == ruby_current_execution_context_ptr);
 | |
|     VM_ASSERT(FIBER_RESUMED_P(fib));
 | |
| 
 | |
|     EC_PUSH_TAG(th->ec);
 | |
|     if ((state = EC_EXEC_TAG()) == TAG_NONE) {
 | |
| 	rb_context_t *cont = &VAR_FROM_MEMORY(fib)->cont;
 | |
| 	int argc;
 | |
| 	const VALUE *argv, args = cont->value;
 | |
| 	GetProcPtr(fib->first_proc, proc);
 | |
| 	argv = (argc = cont->argc) > 1 ? RARRAY_CONST_PTR(args) : &args;
 | |
| 	cont->value = Qnil;
 | |
| 	th->ec->errinfo = Qnil;
 | |
| 	th->ec->root_lep = rb_vm_proc_local_ep(fib->first_proc);
 | |
| 	th->ec->root_svar = Qfalse;
 | |
| 
 | |
| 	EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
 | |
| 	cont->value = rb_vm_invoke_proc(th->ec, proc, argc, argv, VM_BLOCK_HANDLER_NONE);
 | |
|     }
 | |
|     EC_POP_TAG();
 | |
| 
 | |
|     if (state) {
 | |
| 	VALUE err = th->ec->errinfo;
 | |
| 	VM_ASSERT(FIBER_RESUMED_P(fib));
 | |
| 
 | |
| 	if (state == TAG_RAISE || state == TAG_FATAL) {
 | |
| 	    rb_threadptr_pending_interrupt_enque(th, err);
 | |
| 	}
 | |
| 	else {
 | |
| 	    err = rb_vm_make_jump_tag_but_local_jump(state, err);
 | |
| 	    if (!NIL_P(err)) {
 | |
| 		rb_threadptr_pending_interrupt_enque(th, err);
 | |
| 	    }
 | |
| 	}
 | |
| 	need_interrupt = TRUE;
 | |
|     }
 | |
| 
 | |
|     rb_fiber_terminate(fib, need_interrupt);
 | |
|     VM_UNREACHABLE(rb_fiber_start);
 | |
| }
 | |
| 
 | |
| static rb_fiber_t *
 | |
| root_fiber_alloc(rb_thread_t *th)
 | |
| {
 | |
|     VALUE fibval = fiber_alloc(rb_cFiber);
 | |
|     rb_fiber_t *fib = th->ec->fiber_ptr;
 | |
| 
 | |
|     VM_ASSERT(DATA_PTR(fibval) == NULL);
 | |
|     VM_ASSERT(fib->cont.type == ROOT_FIBER_CONTEXT);
 | |
|     VM_ASSERT(fib->status == FIBER_RESUMED);
 | |
| 
 | |
|     th->root_fiber = fib;
 | |
|     DATA_PTR(fibval) = fib;
 | |
|     fib->cont.self = fibval;
 | |
| #if FIBER_USE_NATIVE
 | |
| #ifdef _WIN32
 | |
|     if (fib->fib_handle == 0) {
 | |
| 	fib->fib_handle = ConvertThreadToFiber(0);
 | |
|     }
 | |
| #endif
 | |
| #endif
 | |
|     return fib;
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_threadptr_root_fiber_setup(rb_thread_t *th)
 | |
| {
 | |
|     rb_fiber_t *fib = ruby_mimmalloc(sizeof(rb_fiber_t));
 | |
|     MEMZERO(fib, rb_fiber_t, 1);
 | |
|     fib->cont.type = ROOT_FIBER_CONTEXT;
 | |
|     fib->cont.saved_ec.fiber_ptr = fib;
 | |
|     fib->cont.saved_ec.thread_ptr = th;
 | |
|     fiber_status_set(fib, FIBER_RESUMED); /* skip CREATED */
 | |
|     th->ec = &fib->cont.saved_ec;
 | |
| #if FIBER_USE_NATIVE
 | |
| #ifdef _WIN32
 | |
|     if (fib->fib_handle == 0) {
 | |
| 	fib->fib_handle = ConvertThreadToFiber(0);
 | |
|     }
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_threadptr_root_fiber_release(rb_thread_t *th)
 | |
| {
 | |
|     if (th->root_fiber) {
 | |
| 	/* ignore. A root fiber object will free th->ec */
 | |
|     }
 | |
|     else {
 | |
| 	VM_ASSERT(th->ec->fiber_ptr->cont.type == ROOT_FIBER_CONTEXT);
 | |
| 	VM_ASSERT(th->ec->fiber_ptr->cont.self == 0);
 | |
| 	fiber_free(th->ec->fiber_ptr);
 | |
| 
 | |
| 	if (th->ec == ruby_current_execution_context_ptr) {
 | |
| 	    ruby_current_execution_context_ptr = NULL;
 | |
| 	}
 | |
| 	th->ec = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline rb_fiber_t*
 | |
| fiber_current(void)
 | |
| {
 | |
|     rb_execution_context_t *ec = GET_EC();
 | |
|     if (ec->fiber_ptr->cont.self == 0) {
 | |
| 	root_fiber_alloc(rb_ec_thread_ptr(ec));
 | |
|     }
 | |
|     return ec->fiber_ptr;
 | |
| }
 | |
| 
 | |
| static inline rb_fiber_t*
 | |
| return_fiber(void)
 | |
| {
 | |
|     rb_fiber_t *fib = fiber_current();
 | |
|     rb_fiber_t *prev = fib->prev;
 | |
| 
 | |
|     if (!prev) {
 | |
| 	rb_thread_t *th = GET_THREAD();
 | |
| 	rb_fiber_t *root_fiber = th->root_fiber;
 | |
| 
 | |
| 	VM_ASSERT(root_fiber != NULL);
 | |
| 
 | |
| 	if (root_fiber == fib) {
 | |
| 	    rb_raise(rb_eFiberError, "can't yield from root fiber");
 | |
| 	}
 | |
| 	return root_fiber;
 | |
|     }
 | |
|     else {
 | |
| 	fib->prev = NULL;
 | |
| 	return prev;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_fiber_current(void)
 | |
| {
 | |
|     return fiber_current()->cont.self;
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| fiber_store(rb_fiber_t *next_fib, rb_thread_t *th)
 | |
| {
 | |
|     rb_fiber_t *fib;
 | |
| 
 | |
|     if (th->ec->fiber_ptr != NULL) {
 | |
| 	fib = th->ec->fiber_ptr;
 | |
|     }
 | |
|     else {
 | |
| 	/* create root fiber */
 | |
| 	fib = root_fiber_alloc(th);
 | |
|     }
 | |
| 
 | |
|     VM_ASSERT(FIBER_RESUMED_P(fib) || FIBER_TERMINATED_P(fib));
 | |
|     VM_ASSERT(FIBER_RUNNABLE_P(next_fib));
 | |
| 
 | |
| #if FIBER_USE_NATIVE
 | |
|     if (FIBER_CREATED_P(next_fib)) {
 | |
| 	fiber_initialize_machine_stack_context(next_fib, th->vm->default_params.fiber_machine_stack_size);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (FIBER_RESUMED_P(fib)) fiber_status_set(fib, FIBER_SUSPENDED);
 | |
| 
 | |
| #if FIBER_USE_NATIVE == 0
 | |
|     /* should (re-)allocate stack are before fib->status change to pass fiber_verify() */
 | |
|     cont_save_machine_stack(th, &fib->cont);
 | |
| #endif
 | |
| 
 | |
|     fiber_status_set(next_fib, FIBER_RESUMED);
 | |
| 
 | |
| #if FIBER_USE_NATIVE
 | |
|     fiber_setcontext(next_fib, fib);
 | |
|     /* restored */
 | |
| #ifndef _WIN32
 | |
|     if (terminated_machine_stack.ptr) {
 | |
| 	if (machine_stack_cache_index < MAX_MACHINE_STACK_CACHE) {
 | |
| 	    machine_stack_cache[machine_stack_cache_index].ptr = terminated_machine_stack.ptr;
 | |
| 	    machine_stack_cache[machine_stack_cache_index].size = terminated_machine_stack.size;
 | |
| 	    machine_stack_cache_index++;
 | |
| 	}
 | |
| 	else {
 | |
| 	    if (terminated_machine_stack.ptr != fib->cont.machine.stack) {
 | |
| 		munmap((void*)terminated_machine_stack.ptr, terminated_machine_stack.size * sizeof(VALUE));
 | |
| 	    }
 | |
| 	    else {
 | |
| 		rb_bug("terminated fiber resumed");
 | |
| 	    }
 | |
| 	}
 | |
| 	terminated_machine_stack.ptr = NULL;
 | |
| 	terminated_machine_stack.size = 0;
 | |
|     }
 | |
| #endif /* not _WIN32 */
 | |
|     fib = th->ec->fiber_ptr;
 | |
|     if (fib->cont.argc == -1) rb_exc_raise(fib->cont.value);
 | |
|     return fib->cont.value;
 | |
| 
 | |
| #else /* FIBER_USE_NATIVE */
 | |
|     if (ruby_setjmp(fib->cont.jmpbuf)) {
 | |
| 	/* restored */
 | |
| 	fib = th->ec->fiber_ptr;
 | |
| 	if (fib->cont.argc == -1) rb_exc_raise(fib->cont.value);
 | |
| 	if (next_fib->cont.value == Qundef) {
 | |
| 	    cont_restore_0(&next_fib->cont, &next_fib->cont.value);
 | |
| 	    VM_UNREACHABLE(fiber_store);
 | |
| 	}
 | |
| 	return fib->cont.value;
 | |
|     }
 | |
|     else {
 | |
| 	VALUE undef = Qundef;
 | |
| 	cont_restore_0(&next_fib->cont, &undef);
 | |
| 	VM_UNREACHABLE(fiber_store);
 | |
|     }
 | |
| #endif /* FIBER_USE_NATIVE */
 | |
| }
 | |
| 
 | |
| static inline VALUE
 | |
| fiber_switch(rb_fiber_t *fib, int argc, const VALUE *argv, int is_resume)
 | |
| {
 | |
|     VALUE value;
 | |
|     rb_context_t *cont = &fib->cont;
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
| 
 | |
|     /* make sure the root_fiber object is available */
 | |
|     if (th->root_fiber == NULL) root_fiber_alloc(th);
 | |
| 
 | |
|     if (th->ec->fiber_ptr == fib) {
 | |
| 	/* ignore fiber context switch
 | |
|          * because destination fiber is same as current fiber
 | |
| 	 */
 | |
| 	return make_passing_arg(argc, argv);
 | |
|     }
 | |
| 
 | |
|     if (cont_thread_value(cont) != th->self) {
 | |
| 	rb_raise(rb_eFiberError, "fiber called across threads");
 | |
|     }
 | |
|     else if (cont->saved_ec.protect_tag != th->ec->protect_tag) {
 | |
| 	rb_raise(rb_eFiberError, "fiber called across stack rewinding barrier");
 | |
|     }
 | |
|     else if (FIBER_TERMINATED_P(fib)) {
 | |
| 	value = rb_exc_new2(rb_eFiberError, "dead fiber called");
 | |
| 
 | |
| 	if (!FIBER_TERMINATED_P(th->ec->fiber_ptr)) {
 | |
| 	    rb_exc_raise(value);
 | |
| 	    VM_UNREACHABLE(fiber_switch);
 | |
| 	}
 | |
| 	else {
 | |
| 	    /* th->ec->fiber_ptr is also dead => switch to root fiber */
 | |
| 	    /* (this means we're being called from rb_fiber_terminate, */
 | |
| 	    /* and the terminated fiber's return_fiber() is already dead) */
 | |
| 	    VM_ASSERT(FIBER_SUSPENDED_P(th->root_fiber));
 | |
| 
 | |
| 	    cont = &th->root_fiber->cont;
 | |
| 	    cont->argc = -1;
 | |
| 	    cont->value = value;
 | |
| #if FIBER_USE_NATIVE
 | |
| 	    fiber_setcontext(th->root_fiber, th->ec->fiber_ptr);
 | |
| #else
 | |
| 	    cont_restore_0(cont, &value);
 | |
| #endif
 | |
| 	    VM_UNREACHABLE(fiber_switch);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (is_resume) {
 | |
| 	fib->prev = fiber_current();
 | |
|     }
 | |
| 
 | |
|     VM_ASSERT(FIBER_RUNNABLE_P(fib));
 | |
| 
 | |
|     cont->argc = argc;
 | |
|     cont->value = make_passing_arg(argc, argv);
 | |
|     value = fiber_store(fib, th);
 | |
|     RUBY_VM_CHECK_INTS(th->ec);
 | |
| 
 | |
|     EXEC_EVENT_HOOK(th->ec, RUBY_EVENT_FIBER_SWITCH, th->self, 0, 0, 0, Qnil);
 | |
| 
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_fiber_transfer(VALUE fibval, int argc, const VALUE *argv)
 | |
| {
 | |
|     rb_fiber_t *fib;
 | |
|     GetFiberPtr(fibval, fib);
 | |
|     return fiber_switch(fib, argc, argv, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_fiber_close(rb_fiber_t *fib)
 | |
| {
 | |
|     VALUE *vm_stack = fib->cont.saved_ec.vm_stack;
 | |
|     fiber_status_set(fib, FIBER_TERMINATED);
 | |
|     if (fib->cont.type == ROOT_FIBER_CONTEXT) {
 | |
| 	rb_thread_recycle_stack_release(vm_stack);
 | |
|     }
 | |
|     else {
 | |
| 	ruby_xfree(vm_stack);
 | |
|     }
 | |
|     ec_set_vm_stack(&fib->cont.saved_ec, NULL, 0);
 | |
| 
 | |
| #if !FIBER_USE_NATIVE
 | |
|     /* should not mark machine stack any more */
 | |
|     fib->cont.saved_ec.machine.stack_end = NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void
 | |
| rb_fiber_terminate(rb_fiber_t *fib, int need_interrupt)
 | |
| {
 | |
|     VALUE value = fib->cont.value;
 | |
|     rb_fiber_t *ret_fib;
 | |
| 
 | |
|     VM_ASSERT(FIBER_RESUMED_P(fib));
 | |
|     rb_fiber_close(fib);
 | |
| 
 | |
| #if FIBER_USE_NATIVE && !defined(_WIN32)
 | |
|     /* Ruby must not switch to other thread until storing terminated_machine_stack */
 | |
|     terminated_machine_stack.ptr = fib->ss_sp;
 | |
|     terminated_machine_stack.size = fib->ss_size / sizeof(VALUE);
 | |
|     fib->ss_sp = NULL;
 | |
|     fib->context.uc_stack.ss_sp = NULL;
 | |
|     fib->cont.machine.stack = NULL;
 | |
|     fib->cont.machine.stack_size = 0;
 | |
| #endif
 | |
| 
 | |
|     ret_fib = return_fiber();
 | |
|     if (need_interrupt) RUBY_VM_SET_INTERRUPT(&ret_fib->cont.saved_ec);
 | |
|     fiber_switch(ret_fib, 1, &value, 0);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_fiber_resume(VALUE fibval, int argc, const VALUE *argv)
 | |
| {
 | |
|     rb_fiber_t *fib;
 | |
|     GetFiberPtr(fibval, fib);
 | |
| 
 | |
|     if (fib->prev != 0 || fib->cont.type == ROOT_FIBER_CONTEXT) {
 | |
| 	rb_raise(rb_eFiberError, "double resume");
 | |
|     }
 | |
|     if (fib->transferred != 0) {
 | |
| 	rb_raise(rb_eFiberError, "cannot resume transferred Fiber");
 | |
|     }
 | |
| 
 | |
|     return fiber_switch(fib, argc, argv, 1);
 | |
| }
 | |
| 
 | |
| VALUE
 | |
| rb_fiber_yield(int argc, const VALUE *argv)
 | |
| {
 | |
|     return fiber_switch(return_fiber(), argc, argv, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| rb_fiber_reset_root_local_storage(VALUE thval)
 | |
| {
 | |
|     rb_thread_t *th = rb_thread_ptr(thval);
 | |
| 
 | |
|     if (th->root_fiber && th->root_fiber != th->ec->fiber_ptr) {
 | |
| 	th->ec->local_storage = th->root_fiber->cont.saved_ec.local_storage;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fiber.alive? -> true or false
 | |
|  *
 | |
|  *  Returns true if the fiber can still be resumed (or transferred
 | |
|  *  to). After finishing execution of the fiber block this method will
 | |
|  *  always return false. You need to <code>require 'fiber'</code>
 | |
|  *  before using this method.
 | |
|  */
 | |
| VALUE
 | |
| rb_fiber_alive_p(VALUE fibval)
 | |
| {
 | |
|     const rb_fiber_t *fib;
 | |
|     GetFiberPtr(fibval, fib);
 | |
|     return FIBER_TERMINATED_P(fib) ? Qfalse : Qtrue;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fiber.resume(args, ...) -> obj
 | |
|  *
 | |
|  *  Resumes the fiber from the point at which the last <code>Fiber.yield</code>
 | |
|  *  was called, or starts running it if it is the first call to
 | |
|  *  <code>resume</code>. Arguments passed to resume will be the value of
 | |
|  *  the <code>Fiber.yield</code> expression or will be passed as block
 | |
|  *  parameters to the fiber's block if this is the first <code>resume</code>.
 | |
|  *
 | |
|  *  Alternatively, when resume is called it evaluates to the arguments passed
 | |
|  *  to the next <code>Fiber.yield</code> statement inside the fiber's block
 | |
|  *  or to the block value if it runs to completion without any
 | |
|  *  <code>Fiber.yield</code>
 | |
|  */
 | |
| static VALUE
 | |
| rb_fiber_m_resume(int argc, VALUE *argv, VALUE fib)
 | |
| {
 | |
|     return rb_fiber_resume(fib, argc, argv);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     fiber.transfer(args, ...) -> obj
 | |
|  *
 | |
|  *  Transfer control to another fiber, resuming it from where it last
 | |
|  *  stopped or starting it if it was not resumed before. The calling
 | |
|  *  fiber will be suspended much like in a call to
 | |
|  *  <code>Fiber.yield</code>. You need to <code>require 'fiber'</code>
 | |
|  *  before using this method.
 | |
|  *
 | |
|  *  The fiber which receives the transfer call is treats it much like
 | |
|  *  a resume call. Arguments passed to transfer are treated like those
 | |
|  *  passed to resume.
 | |
|  *
 | |
|  *  You cannot resume a fiber that transferred control to another one.
 | |
|  *  This will cause a double resume error. You need to transfer control
 | |
|  *  back to this fiber before it can yield and resume.
 | |
|  *
 | |
|  *  Example:
 | |
|  *
 | |
|  *    fiber1 = Fiber.new do
 | |
|  *      puts "In Fiber 1"
 | |
|  *      Fiber.yield
 | |
|  *    end
 | |
|  *
 | |
|  *    fiber2 = Fiber.new do
 | |
|  *      puts "In Fiber 2"
 | |
|  *      fiber1.transfer
 | |
|  *      puts "Never see this message"
 | |
|  *    end
 | |
|  *
 | |
|  *    fiber3 = Fiber.new do
 | |
|  *      puts "In Fiber 3"
 | |
|  *    end
 | |
|  *
 | |
|  *    fiber2.resume
 | |
|  *    fiber3.resume
 | |
|  *
 | |
|  *  <em>produces</em>
 | |
|  *
 | |
|  *    In fiber 2
 | |
|  *    In fiber 1
 | |
|  *    In fiber 3
 | |
|  *
 | |
|  */
 | |
| static VALUE
 | |
| rb_fiber_m_transfer(int argc, VALUE *argv, VALUE fibval)
 | |
| {
 | |
|     rb_fiber_t *fib;
 | |
|     GetFiberPtr(fibval, fib);
 | |
|     fib->transferred = 1;
 | |
|     return fiber_switch(fib, argc, argv, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     Fiber.yield(args, ...) -> obj
 | |
|  *
 | |
|  *  Yields control back to the context that resumed the fiber, passing
 | |
|  *  along any arguments that were passed to it. The fiber will resume
 | |
|  *  processing at this point when <code>resume</code> is called next.
 | |
|  *  Any arguments passed to the next <code>resume</code> will be the
 | |
|  *  value that this <code>Fiber.yield</code> expression evaluates to.
 | |
|  */
 | |
| static VALUE
 | |
| rb_fiber_s_yield(int argc, VALUE *argv, VALUE klass)
 | |
| {
 | |
|     return rb_fiber_yield(argc, argv);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  call-seq:
 | |
|  *     Fiber.current() -> fiber
 | |
|  *
 | |
|  *  Returns the current fiber. You need to <code>require 'fiber'</code>
 | |
|  *  before using this method. If you are not running in the context of
 | |
|  *  a fiber this method will return the root fiber.
 | |
|  */
 | |
| static VALUE
 | |
| rb_fiber_s_current(VALUE klass)
 | |
| {
 | |
|     return rb_fiber_current();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * call-seq:
 | |
|  *   fiber.to_s   -> string
 | |
|  *
 | |
|  * Returns fiber information string.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static VALUE
 | |
| fiber_to_s(VALUE fibval)
 | |
| {
 | |
|     const rb_fiber_t *fib;
 | |
|     const rb_proc_t *proc;
 | |
|     char status_info[0x10];
 | |
| 
 | |
|     GetFiberPtr(fibval, fib);
 | |
|     snprintf(status_info, 0x10, " (%s)", fiber_status_name(fib->status));
 | |
|     if (!rb_obj_is_proc(fib->first_proc)) {
 | |
| 	VALUE str = rb_any_to_s(fibval);
 | |
| 	strlcat(status_info, ">", sizeof(status_info));
 | |
| 	rb_str_set_len(str, RSTRING_LEN(str)-1);
 | |
| 	rb_str_cat_cstr(str, status_info);
 | |
| 	return str;
 | |
|     }
 | |
|     GetProcPtr(fib->first_proc, proc);
 | |
|     return rb_block_to_s(fibval, &proc->block, status_info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Document-class: FiberError
 | |
|  *
 | |
|  *  Raised when an invalid operation is attempted on a Fiber, in
 | |
|  *  particular when attempting to call/resume a dead fiber,
 | |
|  *  attempting to yield from the root fiber, or calling a fiber across
 | |
|  *  threads.
 | |
|  *
 | |
|  *     fiber = Fiber.new{}
 | |
|  *     fiber.resume #=> nil
 | |
|  *     fiber.resume #=> FiberError: dead fiber called
 | |
|  */
 | |
| 
 | |
| void
 | |
| Init_Cont(void)
 | |
| {
 | |
| #if FIBER_USE_NATIVE
 | |
|     rb_thread_t *th = GET_THREAD();
 | |
| 
 | |
| #ifdef _WIN32
 | |
|     SYSTEM_INFO info;
 | |
|     GetSystemInfo(&info);
 | |
|     pagesize = info.dwPageSize;
 | |
| #else /* not WIN32 */
 | |
|     pagesize = sysconf(_SC_PAGESIZE);
 | |
| #endif
 | |
|     SET_MACHINE_STACK_END(&th->ec->machine.stack_end);
 | |
| #endif
 | |
| 
 | |
|     rb_cFiber = rb_define_class("Fiber", rb_cObject);
 | |
|     rb_define_alloc_func(rb_cFiber, fiber_alloc);
 | |
|     rb_eFiberError = rb_define_class("FiberError", rb_eStandardError);
 | |
|     rb_define_singleton_method(rb_cFiber, "yield", rb_fiber_s_yield, -1);
 | |
|     rb_define_method(rb_cFiber, "initialize", rb_fiber_init, 0);
 | |
|     rb_define_method(rb_cFiber, "resume", rb_fiber_m_resume, -1);
 | |
|     rb_define_method(rb_cFiber, "to_s", fiber_to_s, 0);
 | |
|     rb_define_alias(rb_cFiber, "inspect", "to_s");
 | |
| }
 | |
| 
 | |
| RUBY_SYMBOL_EXPORT_BEGIN
 | |
| 
 | |
| void
 | |
| ruby_Init_Continuation_body(void)
 | |
| {
 | |
|     rb_cContinuation = rb_define_class("Continuation", rb_cObject);
 | |
|     rb_undef_alloc_func(rb_cContinuation);
 | |
|     rb_undef_method(CLASS_OF(rb_cContinuation), "new");
 | |
|     rb_define_method(rb_cContinuation, "call", rb_cont_call, -1);
 | |
|     rb_define_method(rb_cContinuation, "[]", rb_cont_call, -1);
 | |
|     rb_define_global_function("callcc", rb_callcc, 0);
 | |
| }
 | |
| 
 | |
| void
 | |
| ruby_Init_Fiber_as_Coroutine(void)
 | |
| {
 | |
|     rb_define_method(rb_cFiber, "transfer", rb_fiber_m_transfer, -1);
 | |
|     rb_define_method(rb_cFiber, "alive?", rb_fiber_alive_p, 0);
 | |
|     rb_define_singleton_method(rb_cFiber, "current", rb_fiber_s_current, 0);
 | |
| }
 | |
| 
 | |
| RUBY_SYMBOL_EXPORT_END
 |