1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/ext/openssl/ossl_digest.c
emboss 3c25546ba2 * ext/openssl/ossl_digest.c: Explain DSS and DSS1 in documentation.
git-svn-id: svn+ssh://ci.ruby-lang.org/ruby/trunk@31679 b2dd03c8-39d4-4d8f-98ff-823fe69b080e
2011-05-21 22:55:48 +00:00

414 lines
11 KiB
C

/*
* $Id$
* 'OpenSSL for Ruby' project
* Copyright (C) 2001-2002 Michal Rokos <m.rokos@sh.cvut.cz>
* All rights reserved.
*/
/*
* This program is licenced under the same licence as Ruby.
* (See the file 'LICENCE'.)
*/
#include "ossl.h"
#define GetDigest(obj, ctx) do { \
Data_Get_Struct((obj), EVP_MD_CTX, (ctx)); \
if (!(ctx)) { \
ossl_raise(rb_eRuntimeError, "Digest CTX wasn't initialized!"); \
} \
} while (0)
#define SafeGetDigest(obj, ctx) do { \
OSSL_Check_Kind((obj), cDigest); \
GetDigest((obj), (ctx)); \
} while (0)
/*
* Classes
*/
VALUE cDigest;
VALUE eDigestError;
static VALUE ossl_digest_alloc(VALUE klass);
/*
* Public
*/
const EVP_MD *
GetDigestPtr(VALUE obj)
{
const EVP_MD *md;
if (TYPE(obj) == T_STRING) {
const char *name = StringValueCStr(obj);
md = EVP_get_digestbyname(name);
if (!md)
ossl_raise(rb_eRuntimeError, "Unsupported digest algorithm (%s).", name);
} else {
EVP_MD_CTX *ctx;
SafeGetDigest(obj, ctx);
md = EVP_MD_CTX_md(ctx);
}
return md;
}
VALUE
ossl_digest_new(const EVP_MD *md)
{
VALUE ret;
EVP_MD_CTX *ctx;
ret = ossl_digest_alloc(cDigest);
GetDigest(ret, ctx);
EVP_DigestInit_ex(ctx, md, NULL);
return ret;
}
/*
* Private
*/
static VALUE
ossl_digest_alloc(VALUE klass)
{
EVP_MD_CTX *ctx;
VALUE obj;
ctx = EVP_MD_CTX_create();
if (ctx == NULL)
ossl_raise(rb_eRuntimeError, "EVP_MD_CTX_create() failed");
obj = Data_Wrap_Struct(klass, 0, EVP_MD_CTX_destroy, ctx);
return obj;
}
VALUE ossl_digest_update(VALUE, VALUE);
/*
* call-seq:
* Digest.new(string [, data]) -> Digest
*
* Creates a Digest instance based on +string+, which is either the ln
* (long name) or sn (short name) of a supported digest algorithm.
* If +data+ (a +String+) is given, it is used as the initial input to the
* Digest instance, i.e.
* digest = OpenSSL::Digest.new('sha256', 'digestdata')
* is equal to
* digest = OpenSSL::Digest.new('sha256')
* digest.update('digestdata')
*
* === Example
* digest = OpenSSL::Digest.new('sha1')
*
*
*/
static VALUE
ossl_digest_initialize(int argc, VALUE *argv, VALUE self)
{
EVP_MD_CTX *ctx;
const EVP_MD *md;
VALUE type, data;
rb_scan_args(argc, argv, "11", &type, &data);
md = GetDigestPtr(type);
if (!NIL_P(data)) StringValue(data);
GetDigest(self, ctx);
EVP_DigestInit_ex(ctx, md, NULL);
if (!NIL_P(data)) return ossl_digest_update(self, data);
return self;
}
static VALUE
ossl_digest_copy(VALUE self, VALUE other)
{
EVP_MD_CTX *ctx1, *ctx2;
rb_check_frozen(self);
if (self == other) return self;
GetDigest(self, ctx1);
SafeGetDigest(other, ctx2);
if (!EVP_MD_CTX_copy(ctx1, ctx2)) {
ossl_raise(eDigestError, NULL);
}
return self;
}
/*
* call-seq:
* digest.reset -> self
*
* Resets the Digest in the sense that any Digest#update that has been
* performed is abandoned and the Digest is set to its initial state again.
*
*/
static VALUE
ossl_digest_reset(VALUE self)
{
EVP_MD_CTX *ctx;
GetDigest(self, ctx);
EVP_DigestInit_ex(ctx, EVP_MD_CTX_md(ctx), NULL);
return self;
}
/*
* call-seq:
* digest.update(string) -> aString
*
* Not every message digest can be computed in one single pass. If a message
* digest is to be computed from several subsequent sources, then each may
* be passed individually to the Digest instance.
*
* === Example
* digest = OpenSSL::Digest::SHA256.new
* digest.update('First input')
* digest << 'Second input' # equivalent to digest.update('Second input')
* result = digest.digest
*
*/
VALUE
ossl_digest_update(VALUE self, VALUE data)
{
EVP_MD_CTX *ctx;
StringValue(data);
GetDigest(self, ctx);
EVP_DigestUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data));
return self;
}
/*
* call-seq:
* digest.finish -> aString
*
*/
static VALUE
ossl_digest_finish(int argc, VALUE *argv, VALUE self)
{
EVP_MD_CTX *ctx;
VALUE str;
rb_scan_args(argc, argv, "01", &str);
GetDigest(self, ctx);
if (NIL_P(str)) {
str = rb_str_new(NULL, EVP_MD_CTX_size(ctx));
} else {
StringValue(str);
rb_str_resize(str, EVP_MD_CTX_size(ctx));
}
EVP_DigestFinal_ex(ctx, (unsigned char *)RSTRING_PTR(str), NULL);
return str;
}
/*
* call-seq:
* digest.name -> string
*
* Returns the sn of this Digest instance.
*
* === Example
* digest = OpenSSL::Digest::SHA512.new
* puts digest.name # => SHA512
*
*/
static VALUE
ossl_digest_name(VALUE self)
{
EVP_MD_CTX *ctx;
GetDigest(self, ctx);
return rb_str_new2(EVP_MD_name(EVP_MD_CTX_md(ctx)));
}
/*
* call-seq:
* digest.digest_length -> integer
*
* Returns the output size of the digest, i.e. the length in bytes of the
* final message digest result.
*
* === Example
* digest = OpenSSL::Digest::SHA1.new
* puts digest.digest_length # => 20
*
*/
static VALUE
ossl_digest_size(VALUE self)
{
EVP_MD_CTX *ctx;
GetDigest(self, ctx);
return INT2NUM(EVP_MD_CTX_size(ctx));
}
/*
* call-seq:
* digest.block_length -> integer
*
* Returns the block length of the digest algorithm, i.e. the length in bytes
* of an individual block. Most modern partition a message to be digested into
* a sequence of fix-sized blocks that are processed consecutively.
*
* === Example
* digest = OpenSSL::Digest::SHA1.new
* puts digest.block_length # => 64
*/
static VALUE
ossl_digest_block_length(VALUE self)
{
EVP_MD_CTX *ctx;
GetDigest(self, ctx);
return INT2NUM(EVP_MD_CTX_block_size(ctx));
}
/*
* INIT
*/
void
Init_ossl_digest()
{
rb_require("digest");
#if 0
mOSSL = rb_define_module("OpenSSL"); /* let rdoc know about mOSSL */
#endif
/* Document-class: OpenSSL::Digest
*
* OpenSSL::Digest allows you to compute message digests (sometimes
* interchangeably called "hashes") of arbitrary data that are
* cryptographically secure, i.e. a Digest implements a secure one-way
* function.
*
* One-way functions offer some useful properties. E.g. given two
* distinct inputs the probability that both yield the same output
* is highly unlikely. Combined with the fact that every message digest
* algorithm has a fixed-length output of just a few bytes, digests are
* often used to create unique identifiers for arbitrary data. A common
* example is the creation of a unique id for binary documents that are
* stored in a database.
*
* Another useful characteristic of one-way functions (and thus the name)
* is that given a digest there is no indication about the original
* data that produced it, i.e. the only way to identify the original input
* is to "brute-force" through every possible combination of inputs.
*
* These characteristics make one-way functions also ideal companions
* for public key signature algorithms: instead of signing an entire
* document, first a hash of the document is produced with a considerably
* faster message digest algorithm and only the few bytes of its output
* need to be signed using the slower public key algorithm. To validate
* the integrity of a signed document, it suffices to re-compute the hash
* and verify that it is equal to that in the signature.
*
* Among the supported message digest algorithms are:
* * SHA, SHA1, SHA224, SHA256, SHA384 and SHA512
* * MD2, MD4, MDC2 and MD5
* * RIPEMD160
* * DSS, DSS1 (Pseudo algorithms to be used for DSA signatures. DSS is
* equal to SHA and DSS1 is equal to SHA1)
*
* For each of these algorithms, there is a sub-class of Digest that
* can be instantiated as simply as e.g.
*
* digest = OpenSSL::Digest::SHA1.new
*
* === Mapping between Digest class and sn/ln
*
* The sn (short names) and ln (long names) are defined in
* <openssl/object.h> and <openssl/obj_mac.h>. They are textual
* representations of ASN.1 OBJECT IDENTIFIERs. Each supported digest
* algorithm has an OBJECT IDENTIFIER associated to it and those again
* have short/long names assigned to them.
* E.g. the OBJECT IDENTIFIER for SHA-1 is 1.3.14.3.2.26 and its
* sn is "SHA1" and its ln is "sha1".
* ==== MD2
* * sn: MD2
* * ln: md2
* ==== MD4
* * sn: MD4
* * ln: md4
* ==== MD5
* * sn: MD5
* * ln: md5
* ==== SHA
* * sn: SHA
* * ln: SHA
* ==== SHA-1
* * sn: SHA1
* * ln: sha1
* ==== SHA-224
* * sn: SHA224
* * ln: sha224
* ==== SHA-256
* * sn: SHA256
* * ln: sha256
* ==== SHA-384
* * sn: SHA384
* * ln: sha384
* ==== SHA-512
* * sn: SHA512
* * ln: sha512
*
* "Breaking" a message digest algorithm means defying its one-way
* function characteristics, i.e. producing a collision or finding a way
* to get to the original data by means that are more efficient than
* brute-forcing etc. Most of the supported digest algorithms can be
* considered broken in this sense, even the very popular MD5 and SHA1
* algorithms. Should security be your highest concern, then you should
* probably rely on SHA224, SHA256, SHA384 or SHA512.
*
* === Hashing a file
*
* data = File.read('document')
* sha256 = OpenSSL::Digest::SHA256.new
* digest = sha256.digest(data)
*
* === Hashing several pieces of data at once
*
* data1 = File.read('file1')
* data2 = File.read('file2')
* data3 = File.read('file3')
* sha256 = OpenSSL::Digest::SHA256.new
* sha256 << data1
* sha256 << data2
* sha256 << data3
* digest = sha256.digest
*/
cDigest = rb_define_class_under(mOSSL, "Digest", rb_path2class("Digest::Class"));
/* Document-class: OpenSSL::Digest::DigestError
*
* Generic Exception class that is raised if an error occurs during a
* Digest operation.
*/
eDigestError = rb_define_class_under(cDigest, "DigestError", eOSSLError);
rb_define_alloc_func(cDigest, ossl_digest_alloc);
rb_define_method(cDigest, "initialize", ossl_digest_initialize, -1);
rb_define_copy_func(cDigest, ossl_digest_copy);
rb_define_method(cDigest, "reset", ossl_digest_reset, 0);
rb_define_method(cDigest, "update", ossl_digest_update, 1);
rb_define_alias(cDigest, "<<", "update");
rb_define_private_method(cDigest, "finish", ossl_digest_finish, -1);
rb_define_method(cDigest, "digest_length", ossl_digest_size, 0);
rb_define_method(cDigest, "block_length", ossl_digest_block_length, 0);
rb_define_method(cDigest, "name", ossl_digest_name, 0);
}