1
0
Fork 0
mirror of https://github.com/ruby/ruby.git synced 2022-11-09 12:17:21 -05:00
ruby--ruby/ractor.c
2020-09-18 14:17:49 +09:00

1898 lines
48 KiB
C

// Ractor implementation
#include "ruby/ruby.h"
#include "ruby/thread.h"
#include "ruby/thread_native.h"
#include "vm_core.h"
#include "vm_sync.h"
#include "ractor.h"
#include "internal/error.h"
static VALUE rb_cRactor;
static VALUE rb_eRactorError;
static VALUE rb_eRactorRemoteError;
static VALUE rb_eRactorMovedError;
static VALUE rb_eRactorClosedError;
static VALUE rb_cRactorMovedObject;
RUBY_SYMBOL_EXPORT_BEGIN
// to share with MJIT
bool ruby_multi_ractor;
RUBY_SYMBOL_EXPORT_END
static void vm_ractor_blocking_cnt_inc(rb_vm_t *vm, rb_ractor_t *r, const char *file, int line);
static void
ASSERT_ractor_unlocking(rb_ractor_t *r)
{
#if RACTOR_CHECK_MODE > 0
if (r->locked_by == GET_RACTOR()->self) {
rb_bug("recursive ractor locking");
}
#endif
}
static void
ASSERT_ractor_locking(rb_ractor_t *r)
{
#if RACTOR_CHECK_MODE > 0
if (r->locked_by != GET_RACTOR()->self) {
rp(r->locked_by);
rb_bug("ractor lock is not acquired.");
}
#endif
}
static void
ractor_lock(rb_ractor_t *r, const char *file, int line)
{
RUBY_DEBUG_LOG2(file, line, "locking r:%u%s", r->id, GET_RACTOR() == r ? " (self)" : "");
ASSERT_ractor_unlocking(r);
rb_native_mutex_lock(&r->lock);
#if RACTOR_CHECK_MODE > 0
r->locked_by = GET_RACTOR()->self;
#endif
RUBY_DEBUG_LOG2(file, line, "locked r:%u%s", r->id, GET_RACTOR() == r ? " (self)" : "");
}
static void
ractor_lock_self(rb_ractor_t *cr, const char *file, int line)
{
VM_ASSERT(cr == GET_RACTOR());
VM_ASSERT(cr->locked_by != cr->self);
ractor_lock(cr, file, line);
}
static void
ractor_unlock(rb_ractor_t *r, const char *file, int line)
{
ASSERT_ractor_locking(r);
#if RACTOR_CHECK_MODE > 0
r->locked_by = Qnil;
#endif
rb_native_mutex_unlock(&r->lock);
RUBY_DEBUG_LOG2(file, line, "r:%u%s", r->id, GET_RACTOR() == r ? " (self)" : "");
}
static void
ractor_unlock_self(rb_ractor_t *cr, const char *file, int line)
{
VM_ASSERT(cr == GET_RACTOR());
VM_ASSERT(cr->locked_by == cr->self);
ractor_unlock(cr, file, line);
}
#define RACTOR_LOCK(r) ractor_lock(r, __FILE__, __LINE__)
#define RACTOR_UNLOCK(r) ractor_unlock(r, __FILE__, __LINE__)
#define RACTOR_LOCK_SELF(r) ractor_lock_self(r, __FILE__, __LINE__)
#define RACTOR_UNLOCK_SELF(r) ractor_unlock_self(r, __FILE__, __LINE__)
static void
ractor_cond_wait(rb_ractor_t *r)
{
#if RACTOR_CHECK_MODE > 0
VALUE locked_by = r->locked_by;
r->locked_by = Qnil;
#endif
rb_native_cond_wait(&r->wait.cond, &r->lock);
#if RACTOR_CHECK_MODE > 0
r->locked_by = locked_by;
#endif
}
static const char *
ractor_status_str(enum ractor_status status)
{
switch (status) {
case ractor_created: return "created";
case ractor_running: return "running";
case ractor_blocking: return "blocking";
case ractor_terminated: return "terminated";
}
rb_bug("unreachable");
}
static void
ractor_status_set(rb_ractor_t *r, enum ractor_status status)
{
RUBY_DEBUG_LOG("r:%u [%s]->[%s]", r->id, ractor_status_str(r->status_), ractor_status_str(status));
// check 1
if (r->status_ != ractor_created) {
VM_ASSERT(r == GET_RACTOR()); // only self-modification is allowed.
ASSERT_vm_locking();
}
// check2: transition check. assume it will be vanished on non-debug build.
switch (r->status_) {
case ractor_created:
VM_ASSERT(status == ractor_blocking);
break;
case ractor_running:
VM_ASSERT(status == ractor_blocking||
status == ractor_terminated);
break;
case ractor_blocking:
VM_ASSERT(status == ractor_running);
break;
case ractor_terminated:
VM_ASSERT(0); // unreachable
break;
}
r->status_ = status;
}
static bool
ractor_status_p(rb_ractor_t *r, enum ractor_status status)
{
return rb_ractor_status_p(r, status);
}
static void
ractor_queue_mark(struct rb_ractor_queue *rq)
{
for (int i=0; i<rq->cnt; i++) {
rb_gc_mark(rq->baskets[i].v);
rb_gc_mark(rq->baskets[i].sender);
}
}
static void
ractor_mark(void *ptr)
{
rb_ractor_t *r = (rb_ractor_t *)ptr;
ractor_queue_mark(&r->incoming_queue);
rb_gc_mark(r->wait.taken_basket.v);
rb_gc_mark(r->wait.taken_basket.sender);
rb_gc_mark(r->wait.yielded_basket.v);
rb_gc_mark(r->wait.yielded_basket.sender);
rb_gc_mark(r->loc);
rb_gc_mark(r->name);
rb_gc_mark(r->r_stdin);
rb_gc_mark(r->r_stdout);
rb_gc_mark(r->r_stderr);
if (r->threads.cnt > 0) {
rb_thread_t *th = 0;
list_for_each(&r->threads.set, th, lt_node) {
VM_ASSERT(th != NULL);
rb_gc_mark(th->self);
}
}
}
static void
ractor_queue_free(struct rb_ractor_queue *rq)
{
free(rq->baskets);
}
static void
ractor_waiting_list_free(struct rb_ractor_waiting_list *wl)
{
free(wl->ractors);
}
static void
ractor_free(void *ptr)
{
rb_ractor_t *r = (rb_ractor_t *)ptr;
rb_native_mutex_destroy(&r->lock);
rb_native_cond_destroy(&r->wait.cond);
ractor_queue_free(&r->incoming_queue);
ractor_waiting_list_free(&r->taking_ractors);
ruby_xfree(r);
}
static size_t
ractor_queue_memsize(const struct rb_ractor_queue *rq)
{
return sizeof(struct rb_ractor_basket) * rq->size;
}
static size_t
ractor_waiting_list_memsize(const struct rb_ractor_waiting_list *wl)
{
return sizeof(rb_ractor_t *) * wl->size;
}
static size_t
ractor_memsize(const void *ptr)
{
rb_ractor_t *r = (rb_ractor_t *)ptr;
// TODO
return sizeof(rb_ractor_t) +
ractor_queue_memsize(&r->incoming_queue) +
ractor_waiting_list_memsize(&r->taking_ractors);
}
static const rb_data_type_t ractor_data_type = {
"ractor",
{
ractor_mark,
ractor_free,
ractor_memsize,
NULL, // update
},
0, 0, RUBY_TYPED_FREE_IMMEDIATELY /* | RUBY_TYPED_WB_PROTECTED */
};
bool
rb_ractor_p(VALUE gv)
{
if (rb_typeddata_is_kind_of(gv, &ractor_data_type)) {
return true;
}
else {
return false;
}
}
static inline rb_ractor_t *
RACTOR_PTR(VALUE self)
{
VM_ASSERT(rb_ractor_p(self));
rb_ractor_t *r = DATA_PTR(self);
// TODO: check
return r;
}
uint32_t
rb_ractor_id(const rb_ractor_t *g)
{
return g->id;
}
static uint32_t ractor_last_id;
#if RACTOR_CHECK_MODE > 0
MJIT_FUNC_EXPORTED uint32_t
rb_ractor_current_id(void)
{
if (GET_THREAD()->ractor == NULL) {
return 1; // main ractor
}
else {
return GET_RACTOR()->id;
}
}
#endif
static void
ractor_queue_setup(struct rb_ractor_queue *rq)
{
rq->size = 2;
rq->cnt = 0;
rq->baskets = malloc(sizeof(struct rb_ractor_basket) * rq->size);
}
static bool
ractor_queue_empty_p(rb_ractor_t *r, struct rb_ractor_queue *rq)
{
ASSERT_ractor_locking(r);
return rq->cnt == 0;
}
static bool
ractor_queue_deq(rb_ractor_t *r, struct rb_ractor_queue *rq, struct rb_ractor_basket *basket)
{
bool b;
RACTOR_LOCK(r);
{
if (!ractor_queue_empty_p(r, rq)) {
// TODO: use good Queue data structure
*basket = rq->baskets[0];
rq->cnt--;
for (int i=0; i<rq->cnt; i++) {
rq->baskets[i] = rq->baskets[i+1];
}
b = true;
}
else {
b = false;
}
}
RACTOR_UNLOCK(r);
return b;
}
static void
ractor_queue_enq(rb_ractor_t *r, struct rb_ractor_queue *rq, struct rb_ractor_basket *basket)
{
ASSERT_ractor_locking(r);
if (rq->size <= rq->cnt) {
rq->size *= 2;
rq->baskets = realloc(rq->baskets, sizeof(struct rb_ractor_basket) * rq->size);
}
rq->baskets[rq->cnt++] = *basket;
// fprintf(stderr, "%s %p->cnt:%d\n", __func__, rq, rq->cnt);
}
VALUE rb_newobj_with(VALUE src); // gc.c
static VALUE
ractor_moving_new(VALUE obj)
{
// create moving object
VALUE v = rb_newobj_with(obj);
// invalidate src object
struct RVALUE {
VALUE flags;
VALUE klass;
VALUE v1;
VALUE v2;
VALUE v3;
} *rv = (void *)obj;
rv->klass = rb_cRactorMovedObject;
rv->v1 = 0;
rv->v2 = 0;
rv->v3 = 0;
// TODO: record moved location
// TODO: check flags for each data types
return v;
}
static VALUE
ractor_move_shallow_copy(VALUE obj)
{
if (rb_ractor_shareable_p(obj)) {
return obj;
}
else {
switch (BUILTIN_TYPE(obj)) {
case T_STRING:
case T_FILE:
if (!FL_TEST_RAW(obj, RUBY_FL_EXIVAR)) {
return ractor_moving_new(obj);
}
break;
case T_ARRAY:
if (!FL_TEST_RAW(obj, RUBY_FL_EXIVAR)) {
VALUE ary = ractor_moving_new(obj);
long len = RARRAY_LEN(ary);
for (long i=0; i<len; i++) {
VALUE e = RARRAY_AREF(ary, i);
RARRAY_ASET(ary, i, ractor_move_shallow_copy(e)); // confirm WB
}
return ary;
}
break;
default:
break;
}
rb_raise(rb_eRactorError, "can't move this this kind of object:%"PRIsVALUE, obj);
}
}
static VALUE
ractor_moved_setup(VALUE obj)
{
#if RACTOR_CHECK_MODE
switch (BUILTIN_TYPE(obj)) {
case T_STRING:
case T_FILE:
rb_ractor_setup_belonging(obj);
break;
case T_ARRAY:
rb_ractor_setup_belonging(obj);
long len = RARRAY_LEN(obj);
for (long i=0; i<len; i++) {
VALUE e = RARRAY_AREF(obj, i);
if (!rb_ractor_shareable_p(e)) {
ractor_moved_setup(e);
}
}
break;
default:
rb_bug("unreachable");
}
#endif
return obj;
}
static void
ractor_move_setup(struct rb_ractor_basket *b, VALUE obj)
{
if (rb_ractor_shareable_p(obj)) {
b->type = basket_type_shareable;
b->v = obj;
}
else {
b->type = basket_type_move;
b->v = ractor_move_shallow_copy(obj);
return;
}
}
static void
ractor_basket_clear(struct rb_ractor_basket *b)
{
b->type = basket_type_none;
b->v = Qfalse;
b->sender = Qfalse;
}
static VALUE
ractor_basket_accept(struct rb_ractor_basket *b)
{
VALUE v;
switch (b->type) {
case basket_type_shareable:
VM_ASSERT(rb_ractor_shareable_p(b->v));
v = b->v;
break;
case basket_type_copy_marshal:
v = rb_marshal_load(b->v);
break;
case basket_type_exception:
{
VALUE cause = rb_marshal_load(b->v);
VALUE err = rb_exc_new_cstr(rb_eRactorRemoteError, "thrown by remote Ractor.");
rb_ivar_set(err, rb_intern("@ractor"), b->sender);
ractor_basket_clear(b);
rb_ec_setup_exception(NULL, err, cause);
rb_exc_raise(err);
}
// unreachable
case basket_type_move:
v = ractor_moved_setup(b->v);
break;
default:
rb_bug("unreachable");
}
ractor_basket_clear(b);
return v;
}
static void
ractor_copy_setup(struct rb_ractor_basket *b, VALUE obj)
{
if (rb_ractor_shareable_p(obj)) {
b->type = basket_type_shareable;
b->v = obj;
}
else {
#if 0
// TODO: consider custom copy protocol
switch (BUILTIN_TYPE(obj)) {
}
#endif
b->v = rb_marshal_dump(obj, Qnil);
b->type = basket_type_copy_marshal;
}
}
static VALUE
ractor_try_recv(rb_execution_context_t *ec, rb_ractor_t *r)
{
struct rb_ractor_queue *rq = &r->incoming_queue;
struct rb_ractor_basket basket;
if (ractor_queue_deq(r, rq, &basket) == false) {
if (r->incoming_port_closed) {
rb_raise(rb_eRactorClosedError, "The incoming port is already closed");
}
else {
return Qundef;
}
}
return ractor_basket_accept(&basket);
}
static void *
ractor_sleep_wo_gvl(void *ptr)
{
rb_ractor_t *cr = ptr;
RACTOR_LOCK_SELF(cr);
VM_ASSERT(cr->wait.status != wait_none);
if (cr->wait.wakeup_status == wakeup_none) {
ractor_cond_wait(cr);
}
cr->wait.status = wait_none;
RACTOR_UNLOCK_SELF(cr);
return NULL;
}
static void
ractor_sleep_interrupt(void *ptr)
{
rb_ractor_t *r = ptr;
RACTOR_LOCK(r);
if (r->wait.wakeup_status == wakeup_none) {
r->wait.wakeup_status = wakeup_by_interrupt;
rb_native_cond_signal(&r->wait.cond);
}
RACTOR_UNLOCK(r);
}
#if USE_RUBY_DEBUG_LOG
static const char *
wait_status_str(enum ractor_wait_status wait_status)
{
switch ((int)wait_status) {
case wait_none: return "none";
case wait_recving: return "recving";
case wait_taking: return "taking";
case wait_yielding: return "yielding";
case wait_recving|wait_taking: return "recving|taking";
case wait_recving|wait_yielding: return "recving|yielding";
case wait_taking|wait_yielding: return "taking|yielding";
case wait_recving|wait_taking|wait_yielding: return "recving|taking|yielding";
}
rb_bug("unrechable");
}
static const char *
wakeup_status_str(enum ractor_wakeup_status wakeup_status)
{
switch (wakeup_status) {
case wakeup_none: return "none";
case wakeup_by_send: return "by_send";
case wakeup_by_yield: return "by_yield";
case wakeup_by_take: return "by_take";
case wakeup_by_close: return "by_close";
case wakeup_by_interrupt: return "by_interrupt";
case wakeup_by_retry: return "by_retry";
}
rb_bug("unrechable");
}
#endif // USE_RUBY_DEBUG_LOG
static void
ractor_sleep(rb_execution_context_t *ec, rb_ractor_t *cr)
{
VM_ASSERT(GET_RACTOR() == cr);
VM_ASSERT(cr->wait.status != wait_none);
// fprintf(stderr, "%s r:%p status:%s, wakeup_status:%s\n", __func__, cr,
// wait_status_str(cr->wait.status), wakeup_status_str(cr->wait.wakeup_status));
RACTOR_UNLOCK(cr);
rb_nogvl(ractor_sleep_wo_gvl, cr,
ractor_sleep_interrupt, cr,
RB_NOGVL_UBF_ASYNC_SAFE);
RACTOR_LOCK(cr);
}
static bool
ractor_sleeping_by(const rb_ractor_t *r, enum ractor_wait_status wait_status)
{
return (r->wait.status & wait_status) && r->wait.wakeup_status == wakeup_none;
}
static bool
ractor_wakeup(rb_ractor_t *r, enum ractor_wait_status wait_status, enum ractor_wakeup_status wakeup_status)
{
ASSERT_ractor_locking(r);
// fprintf(stderr, "%s r:%p status:%s/%s wakeup_status:%s/%s\n", __func__, r,
// wait_status_str(r->wait.status), wait_status_str(wait_status),
// wakeup_status_str(r->wait.wakeup_status), wakeup_status_str(wakeup_status));
if (ractor_sleeping_by(r, wait_status)) {
r->wait.wakeup_status = wakeup_status;
rb_native_cond_signal(&r->wait.cond);
return true;
}
else {
return false;
}
}
static void
ractor_register_taking(rb_ractor_t *r, rb_ractor_t *cr)
{
VM_ASSERT(cr == GET_RACTOR());
bool retry_try = false;
RACTOR_LOCK(r);
{
if (ractor_sleeping_by(r, wait_yielding)) {
// already waiting for yielding. retry try_take.
retry_try = true;
}
else {
// insert cr into taking list
struct rb_ractor_waiting_list *wl = &r->taking_ractors;
for (int i=0; i<wl->cnt; i++) {
if (wl->ractors[i] == cr) {
// TODO: make it clean code.
rb_native_mutex_unlock(&r->lock);
rb_raise(rb_eRuntimeError, "Already another thread of same ractor is waiting.");
}
}
if (wl->size == 0) {
wl->size = 1;
wl->ractors = malloc(sizeof(rb_ractor_t *) * wl->size);
if (wl->ractors == NULL) rb_bug("can't allocate buffer");
}
else if (wl->size <= wl->cnt + 1) {
wl->size *= 2;
wl->ractors = realloc(wl->ractors, sizeof(rb_ractor_t *) * wl->size);
if (wl->ractors == NULL) rb_bug("can't re-allocate buffer");
}
wl->ractors[wl->cnt++] = cr;
}
}
RACTOR_UNLOCK(r);
if (retry_try) {
RACTOR_LOCK(cr);
{
if (cr->wait.wakeup_status == wakeup_none) {
VM_ASSERT(cr->wait.status != wait_none);
cr->wait.wakeup_status = wakeup_by_retry;
cr->wait.status = wait_none;
}
}
RACTOR_UNLOCK(cr);
}
}
static void
ractor_waiting_list_del(rb_ractor_t *r, struct rb_ractor_waiting_list *wl, rb_ractor_t *wr)
{
RACTOR_LOCK(r);
{
int pos = -1;
for (int i=0; i<wl->cnt; i++) {
if (wl->ractors[i] == wr) {
pos = i;
break;
}
}
if (pos >= 0) { // found
wl->cnt--;
for (int i=pos; i<wl->cnt; i++) {
wl->ractors[i] = wl->ractors[i+1];
}
}
}
RACTOR_UNLOCK(r);
}
static rb_ractor_t *
ractor_waiting_list_shift(rb_ractor_t *r, struct rb_ractor_waiting_list *wl)
{
ASSERT_ractor_locking(r);
VM_ASSERT(&r->taking_ractors == wl);
if (wl->cnt > 0) {
rb_ractor_t *tr = wl->ractors[0];
for (int i=1; i<wl->cnt; i++) {
wl->ractors[i-1] = wl->ractors[i];
}
wl->cnt--;
return tr;
}
else {
return NULL;
}
}
static VALUE
ractor_recv(rb_execution_context_t *ec, rb_ractor_t *r)
{
VM_ASSERT(r == rb_ec_ractor_ptr(ec));
VALUE v;
while ((v = ractor_try_recv(ec, r)) == Qundef) {
RACTOR_LOCK(r);
{
if (ractor_queue_empty_p(r, &r->incoming_queue)) {
VM_ASSERT(r->wait.status == wait_none);
VM_ASSERT(r->wait.wakeup_status == wakeup_none);
r->wait.status = wait_recving;
ractor_sleep(ec, r);
r->wait.wakeup_status = wakeup_none;
}
}
RACTOR_UNLOCK(r);
}
return v;
}
static void
ractor_send_basket(rb_execution_context_t *ec, rb_ractor_t *r, struct rb_ractor_basket *b)
{
bool closed = false;
struct rb_ractor_queue *rq = &r->incoming_queue;
RACTOR_LOCK(r);
{
if (r->incoming_port_closed) {
closed = true;
}
else {
ractor_queue_enq(r, rq, b);
if (ractor_wakeup(r, wait_recving, wakeup_by_send)) {
RUBY_DEBUG_LOG("wakeup", 0);
}
}
}
RACTOR_UNLOCK(r);
if (closed) {
rb_raise(rb_eRactorClosedError, "The incoming-port is already closed");
}
}
static void
ractor_basket_setup(rb_execution_context_t *ec, struct rb_ractor_basket *basket, VALUE obj, VALUE move, bool exc)
{
basket->sender = rb_ec_ractor_ptr(ec)->self;
if (!RTEST(move)) {
ractor_copy_setup(basket, obj);
}
else {
ractor_move_setup(basket, obj);
}
if (exc) {
basket->type = basket_type_exception;
}
}
static VALUE
ractor_send(rb_execution_context_t *ec, rb_ractor_t *r, VALUE obj, VALUE move)
{
struct rb_ractor_basket basket;
ractor_basket_setup(ec, &basket, obj, move, false);
ractor_send_basket(ec, r, &basket);
return r->self;
}
static VALUE
ractor_try_take(rb_execution_context_t *ec, rb_ractor_t *r)
{
struct rb_ractor_basket basket = {
.type = basket_type_none,
};
bool closed = false;
RACTOR_LOCK(r);
{
if (ractor_wakeup(r, wait_yielding, wakeup_by_take)) {
VM_ASSERT(r->wait.yielded_basket.type != basket_type_none);
basket = r->wait.yielded_basket;
ractor_basket_clear(&r->wait.yielded_basket);
}
else if (r->outgoing_port_closed) {
closed = true;
}
else {
// not reached.
}
}
RACTOR_UNLOCK(r);
if (basket.type == basket_type_none) {
if (closed) {
rb_raise(rb_eRactorClosedError, "The outgoing-port is already closed");
}
else {
return Qundef;
}
}
else {
return ractor_basket_accept(&basket);
}
}
static bool
ractor_try_yield(rb_execution_context_t *ec, rb_ractor_t *cr, struct rb_ractor_basket *basket)
{
ASSERT_ractor_unlocking(cr);
VM_ASSERT(basket->type != basket_type_none);
rb_ractor_t *r;
retry_shift:
RACTOR_LOCK(cr);
{
r = ractor_waiting_list_shift(cr, &cr->taking_ractors);
}
RACTOR_UNLOCK(cr);
if (r) {
bool retry_shift = false;
RACTOR_LOCK(r);
{
if (ractor_wakeup(r, wait_taking, wakeup_by_yield)) {
VM_ASSERT(r->wait.taken_basket.type == basket_type_none);
r->wait.taken_basket = *basket;
}
else {
retry_shift = true;
}
}
RACTOR_UNLOCK(r);
if (retry_shift) {
// get candidate take-waiting ractor, but already woke up by another reason.
// retry to check another ractor.
goto retry_shift;
}
else {
return true;
}
}
else {
return false;
}
}
// select(r1, r2, r3, receive: true, yield: obj)
static VALUE
ractor_select(rb_execution_context_t *ec, const VALUE *rs, int alen, VALUE yielded_value, bool move, VALUE *ret_r)
{
rb_ractor_t *cr = rb_ec_ractor_ptr(ec);
VALUE crv = cr->self;
VALUE ret = Qundef;
int i;
bool interrupted = false;
enum ractor_wait_status wait_status = 0;
bool yield_p = (yielded_value != Qundef) ? true : false;
struct ractor_select_action {
enum ractor_select_action_type {
ractor_select_action_take,
ractor_select_action_recv,
ractor_select_action_yield,
} type;
VALUE v;
} *actions = ALLOCA_N(struct ractor_select_action, alen + (yield_p ? 1 : 0));
VM_ASSERT(cr->wait.status == wait_none);
VM_ASSERT(cr->wait.wakeup_status == wakeup_none);
VM_ASSERT(cr->wait.taken_basket.type == basket_type_none);
VM_ASSERT(cr->wait.yielded_basket.type == basket_type_none);
// setup actions
for (i=0; i<alen; i++) {
VALUE v = rs[i];
if (v == crv) {
actions[i].type = ractor_select_action_recv;
actions[i].v = Qnil;
wait_status |= wait_recving;
}
else if (rb_ractor_p(v)) {
actions[i].type = ractor_select_action_take;
actions[i].v = v;
wait_status |= wait_taking;
}
else {
rb_raise(rb_eArgError, "It should be ractor objects");
}
}
rs = NULL;
restart:
if (yield_p) {
actions[i].type = ractor_select_action_yield;
actions[i].v = Qundef;
wait_status |= wait_yielding;
alen++;
ractor_basket_setup(ec, &cr->wait.yielded_basket, yielded_value, move, false);
}
// TODO: shuffle actions
while (1) {
RUBY_DEBUG_LOG("try actions (%s)", wait_status_str(wait_status));
for (i=0; i<alen; i++) {
VALUE v, rv;
switch (actions[i].type) {
case ractor_select_action_take:
rv = actions[i].v;
v = ractor_try_take(ec, RACTOR_PTR(rv));
if (v != Qundef) {
*ret_r = rv;
ret = v;
goto cleanup;
}
break;
case ractor_select_action_recv:
v = ractor_try_recv(ec, cr);
if (v != Qundef) {
*ret_r = ID2SYM(rb_intern("recv"));
ret = v;
goto cleanup;
}
break;
case ractor_select_action_yield:
{
if (ractor_try_yield(ec, cr, &cr->wait.yielded_basket)) {
*ret_r = ID2SYM(rb_intern("yield"));
ret = Qnil;
goto cleanup;
}
}
break;
}
}
RUBY_DEBUG_LOG("wait actions (%s)", wait_status_str(wait_status));
RACTOR_LOCK(cr);
{
VM_ASSERT(cr->wait.status == wait_none);
VM_ASSERT(cr->wait.wakeup_status == wakeup_none);
cr->wait.status = wait_status;
}
RACTOR_UNLOCK(cr);
// prepare waiting
for (i=0; i<alen; i++) {
rb_ractor_t *r;
switch (actions[i].type) {
case ractor_select_action_take:
r = RACTOR_PTR(actions[i].v);
ractor_register_taking(r, cr);
break;
case ractor_select_action_yield:
case ractor_select_action_recv:
break;
}
}
// wait
RACTOR_LOCK(cr);
{
if (cr->wait.wakeup_status == wakeup_none) {
for (i=0; i<alen; i++) {
rb_ractor_t *r;
switch (actions[i].type) {
case ractor_select_action_take:
r = RACTOR_PTR(actions[i].v);
if (ractor_sleeping_by(r, wait_yielding)) {
RUBY_DEBUG_LOG("wakeup_none, but r:%u is waiting for yielding", r->id);
cr->wait.wakeup_status = wakeup_by_retry;
goto skip_sleep;
}
break;
case ractor_select_action_recv:
if (cr->incoming_queue.cnt > 0) {
RUBY_DEBUG_LOG("wakeup_none, but incoming_queue has %u messages", cr->incoming_queue.cnt);
cr->wait.wakeup_status = wakeup_by_retry;
goto skip_sleep;
}
break;
case ractor_select_action_yield:
if (cr->taking_ractors.cnt > 0) {
RUBY_DEBUG_LOG("wakeup_none, but %u taking_ractors are waiting", cr->taking_ractors.cnt);
cr->wait.wakeup_status = wakeup_by_retry;
goto skip_sleep;
}
break;
}
}
RUBY_DEBUG_LOG("sleep %s", wait_status_str(cr->wait.status));
ractor_sleep(ec, cr);
RUBY_DEBUG_LOG("awaken %s", wakeup_status_str(cr->wait.wakeup_status));
}
else {
skip_sleep:
RUBY_DEBUG_LOG("no need to sleep %s->%s",
wait_status_str(cr->wait.status),
wakeup_status_str(cr->wait.wakeup_status));
cr->wait.status = wait_none;
}
}
RACTOR_UNLOCK(cr);
// cleanup waiting
for (i=0; i<alen; i++) {
rb_ractor_t *r;
switch (actions[i].type) {
case ractor_select_action_take:
r = RACTOR_PTR(actions[i].v);
ractor_waiting_list_del(r, &r->taking_ractors, cr);
break;
case ractor_select_action_recv:
case ractor_select_action_yield:
break;
}
}
// check results
enum ractor_wakeup_status wakeup_status = cr->wait.wakeup_status;
cr->wait.wakeup_status = wakeup_none;
switch (wakeup_status) {
case wakeup_none:
// OK. something happens.
// retry loop.
break;
case wakeup_by_retry:
// Retry request.
break;
case wakeup_by_send:
// OK.
// retry loop and try_recv will succss.
break;
case wakeup_by_yield:
// take was succeeded!
// cr.wait.taken_basket contains passed block
VM_ASSERT(cr->wait.taken_basket.type != basket_type_none);
*ret_r = cr->wait.taken_basket.sender;
VM_ASSERT(rb_ractor_p(*ret_r));
ret = ractor_basket_accept(&cr->wait.taken_basket);
goto cleanup;
case wakeup_by_take:
*ret_r = ID2SYM(rb_intern("yield"));
ret = Qnil;
goto cleanup;
case wakeup_by_close:
// OK.
// retry loop and will get CloseError.
break;
case wakeup_by_interrupt:
ret = Qundef;
interrupted = true;
goto cleanup;
}
}
cleanup:
RUBY_DEBUG_LOG("cleanup actions (%s)", wait_status_str(wait_status));
if (cr->wait.yielded_basket.type != basket_type_none) {
ractor_basket_clear(&cr->wait.yielded_basket);
}
VM_ASSERT(cr->wait.status == wait_none);
VM_ASSERT(cr->wait.wakeup_status == wakeup_none);
VM_ASSERT(cr->wait.taken_basket.type == basket_type_none);
VM_ASSERT(cr->wait.yielded_basket.type == basket_type_none);
if (interrupted) {
rb_vm_check_ints_blocking(ec);
interrupted = false;
goto restart;
}
VM_ASSERT(ret != Qundef);
return ret;
}
static VALUE
ractor_yield(rb_execution_context_t *ec, rb_ractor_t *r, VALUE obj, VALUE move)
{
VALUE ret_r;
ractor_select(ec, NULL, 0, obj, RTEST(move) ? true : false, &ret_r);
return Qnil;
}
static VALUE
ractor_take(rb_execution_context_t *ec, rb_ractor_t *r)
{
VALUE ret_r;
VALUE v = ractor_select(ec, &r->self, 1, Qundef, false, &ret_r);
return v;
}
static VALUE
ractor_close_incoming(rb_execution_context_t *ec, rb_ractor_t *r)
{
VALUE prev;
RACTOR_LOCK(r);
{
if (!r->incoming_port_closed) {
prev = Qfalse;
r->incoming_port_closed = true;
if (ractor_wakeup(r, wait_recving, wakeup_by_close)) {
VM_ASSERT(r->incoming_queue.cnt == 0);
}
}
else {
prev = Qtrue;
}
}
RACTOR_UNLOCK(r);
return prev;
}
static VALUE
ractor_close_outgoing(rb_execution_context_t *ec, rb_ractor_t *cr)
{
VALUE prev;
RACTOR_LOCK(cr);
{
if (!cr->outgoing_port_closed) {
prev = Qfalse;
cr->outgoing_port_closed = true;
}
else {
prev = Qtrue;
}
// wakeup all taking ractors
rb_ractor_t *taking_ractor;
while ((taking_ractor = ractor_waiting_list_shift(cr, &cr->taking_ractors)) != NULL) {
RACTOR_LOCK(taking_ractor);
ractor_wakeup(taking_ractor, wait_taking, wakeup_by_close);
RACTOR_UNLOCK(taking_ractor);
}
}
RACTOR_UNLOCK(cr);
return prev;
}
// creation/termination
static uint32_t
ractor_next_id(void)
{
uint32_t id;
RB_VM_LOCK();
{
id = ++ractor_last_id;
}
RB_VM_UNLOCK();
return id;
}
static void
vm_insert_ractor0(rb_vm_t *vm, rb_ractor_t *r)
{
RUBY_DEBUG_LOG("r:%u ractor.cnt:%u++", r->id, vm->ractor.cnt);
VM_ASSERT(!rb_multi_ractor_p() || RB_VM_LOCKED_P());
list_add_tail(&vm->ractor.set, &r->vmlr_node);
vm->ractor.cnt++;
}
static void
vm_insert_ractor(rb_vm_t *vm, rb_ractor_t *r)
{
VM_ASSERT(ractor_status_p(r, ractor_created));
if (rb_multi_ractor_p()) {
RB_VM_LOCK();
{
vm_insert_ractor0(vm, r);
vm_ractor_blocking_cnt_inc(vm, r, __FILE__, __LINE__);
}
RB_VM_UNLOCK();
}
else {
vm_insert_ractor0(vm, r);
if (vm->ractor.cnt == 1) {
// main ractor
ractor_status_set(r, ractor_blocking);
ractor_status_set(r, ractor_running);
}
else {
vm_ractor_blocking_cnt_inc(vm, r, __FILE__, __LINE__);
RUBY_DEBUG_LOG("ruby_multi_ractor=true", 0);
// enable multi-ractor mode
ruby_multi_ractor = true;
if (rb_warning_category_enabled_p(RB_WARN_CATEGORY_EXPERIMENTAL)) {
rb_warn("Ractor is experimental, and the behavior may change in future versions of Ruby! Also there are many implementation issues.");
}
}
}
}
static void
vm_remove_ractor(rb_vm_t *vm, rb_ractor_t *cr)
{
VM_ASSERT(ractor_status_p(cr, ractor_running));
VM_ASSERT(vm->ractor.cnt > 1);
VM_ASSERT(cr->threads.cnt == 1);
RB_VM_LOCK();
{
RUBY_DEBUG_LOG("ractor.cnt:%u-- terminate_waiting:%d",
vm->ractor.cnt, vm->ractor.sync.terminate_waiting);
VM_ASSERT(vm->ractor.cnt > 0);
list_del(&cr->vmlr_node);
if (vm->ractor.cnt <= 2 && vm->ractor.sync.terminate_waiting) {
rb_native_cond_signal(&vm->ractor.sync.terminate_cond);
}
vm->ractor.cnt--;
ractor_status_set(cr, ractor_terminated);
}
RB_VM_UNLOCK();
}
static VALUE
ractor_alloc(VALUE klass)
{
rb_ractor_t *r;
VALUE rv = TypedData_Make_Struct(klass, rb_ractor_t, &ractor_data_type, r);
FL_SET_RAW(rv, RUBY_FL_SHAREABLE);
r->self = rv;
VM_ASSERT(ractor_status_p(r, ractor_created));
return rv;
}
rb_ractor_t *
rb_ractor_main_alloc(void)
{
rb_ractor_t *r = ruby_mimmalloc(sizeof(rb_ractor_t));
if (r == NULL) {
fprintf(stderr, "[FATAL] failed to allocate memory for main ractor\n");
exit(EXIT_FAILURE);
}
MEMZERO(r, rb_ractor_t, 1);
r->id = ++ractor_last_id;
r->loc = Qnil;
r->name = Qnil;
return r;
}
void rb_gvl_init(rb_global_vm_lock_t *gvl);
void
rb_ractor_living_threads_init(rb_ractor_t *r)
{
list_head_init(&r->threads.set);
r->threads.cnt = 0;
r->threads.blocking_cnt = 0;
}
static void
ractor_init(rb_ractor_t *r, VALUE name, VALUE loc)
{
ractor_queue_setup(&r->incoming_queue);
rb_native_mutex_initialize(&r->lock);
rb_native_cond_initialize(&r->wait.cond);
rb_native_cond_initialize(&r->barrier_wait_cond);
// thread management
rb_gvl_init(&r->threads.gvl);
rb_ractor_living_threads_init(r);
// naming
r->name = name;
r->loc = loc;
}
void
rb_ractor_main_setup(rb_vm_t *vm, rb_ractor_t *r, rb_thread_t *th)
{
r->self = TypedData_Wrap_Struct(rb_cRactor, &ractor_data_type, r);
FL_SET_RAW(r->self, RUBY_FL_SHAREABLE);
ractor_init(r, Qnil, Qnil);
r->threads.main = th;
rb_ractor_living_threads_insert(r, th);
}
// io.c
VALUE rb_io_prep_stdin(void);
VALUE rb_io_prep_stdout(void);
VALUE rb_io_prep_stderr(void);
static VALUE
ractor_create(rb_execution_context_t *ec, VALUE self, VALUE loc, VALUE name, VALUE args, VALUE block)
{
VALUE rv = ractor_alloc(self);
rb_ractor_t *r = RACTOR_PTR(rv);
ractor_init(r, name, loc);
// can block here
r->id = ractor_next_id();
RUBY_DEBUG_LOG("r:%u", r->id);
r->r_stdin = rb_io_prep_stdin();
r->r_stdout = rb_io_prep_stdout();
r->r_stderr = rb_io_prep_stderr();
rb_thread_create_ractor(r, args, block);
RB_GC_GUARD(rv);
return rv;
}
static void
ractor_atexit_yield(rb_execution_context_t *ec, rb_ractor_t *cr, VALUE v, bool exc)
{
ASSERT_ractor_unlocking(cr);
struct rb_ractor_basket basket;
ractor_basket_setup(ec, &basket, v, Qfalse, exc);
retry:
if (ractor_try_yield(ec, cr, &basket)) {
// OK.
}
else {
bool retry = false;
RACTOR_LOCK(cr);
{
if (cr->taking_ractors.cnt == 0) {
cr->wait.yielded_basket = basket;
VM_ASSERT(cr->wait.status == wait_none);
cr->wait.status = wait_yielding;
}
else {
retry = true; // another ractor is waiting for the yield.
}
}
RACTOR_UNLOCK(cr);
if (retry) goto retry;
}
}
void
rb_ractor_teardown(rb_execution_context_t *ec)
{
rb_ractor_t *cr = rb_ec_ractor_ptr(ec);
ractor_close_incoming(ec, cr);
ractor_close_outgoing(ec, cr);
// sync with rb_ractor_terminate_interrupt_main_thread()
RB_VM_LOCK_ENTER();
{
VM_ASSERT(cr->threads.main != NULL);
cr->threads.main = NULL;
}
RB_VM_LOCK_LEAVE();
}
void
rb_ractor_atexit(rb_execution_context_t *ec, VALUE result)
{
rb_ractor_t *cr = rb_ec_ractor_ptr(ec);
ractor_atexit_yield(ec, cr, result, false);
}
void
rb_ractor_atexit_exception(rb_execution_context_t *ec)
{
rb_ractor_t *cr = rb_ec_ractor_ptr(ec);
ractor_atexit_yield(ec, cr, ec->errinfo, true);
}
void
rb_ractor_recv_parameters(rb_execution_context_t *ec, rb_ractor_t *r, int len, VALUE *ptr)
{
for (int i=0; i<len; i++) {
ptr[i] = ractor_recv(ec, r);
}
}
void
rb_ractor_send_parameters(rb_execution_context_t *ec, rb_ractor_t *r, VALUE args)
{
int len = RARRAY_LENINT(args);
for (int i=0; i<len; i++) {
ractor_send(ec, r, RARRAY_AREF(args, i), false);
}
}
VALUE
rb_ractor_self(const rb_ractor_t *r)
{
return r->self;
}
MJIT_FUNC_EXPORTED bool
rb_ractor_main_p_(void)
{
VM_ASSERT(rb_multi_ractor_p());
rb_execution_context_t *ec = GET_EC();
return rb_ec_ractor_ptr(ec) == rb_ec_vm_ptr(ec)->ractor.main_ractor;
}
bool
rb_obj_is_main_ractor(VALUE gv)
{
if (!rb_ractor_p(gv)) return false;
rb_ractor_t *r = DATA_PTR(gv);
return r == GET_VM()->ractor.main_ractor;
}
rb_global_vm_lock_t *
rb_ractor_gvl(rb_ractor_t *r)
{
return &r->threads.gvl;
}
int
rb_ractor_living_thread_num(const rb_ractor_t *r)
{
return r->threads.cnt;
}
VALUE
rb_ractor_thread_list(rb_ractor_t *r)
{
VALUE ary = rb_ary_new();
rb_thread_t *th = 0;
RACTOR_LOCK(r);
list_for_each(&r->threads.set, th, lt_node) {
switch (th->status) {
case THREAD_RUNNABLE:
case THREAD_STOPPED:
case THREAD_STOPPED_FOREVER:
rb_ary_push(ary, th->self);
default:
break;
}
}
RACTOR_UNLOCK(r);
return ary;
}
void
rb_ractor_living_threads_insert(rb_ractor_t *r, rb_thread_t *th)
{
VM_ASSERT(th != NULL);
RACTOR_LOCK(r);
{
RUBY_DEBUG_LOG("r(%d)->threads.cnt:%d++", r->id, r->threads.cnt);
list_add_tail(&r->threads.set, &th->lt_node);
r->threads.cnt++;
}
RACTOR_UNLOCK(r);
// first thread for a ractor
if (r->threads.cnt == 1) {
VM_ASSERT(ractor_status_p(r, ractor_created));
vm_insert_ractor(th->vm, r);
}
}
static void
vm_ractor_blocking_cnt_inc(rb_vm_t *vm, rb_ractor_t *r, const char *file, int line)
{
ractor_status_set(r, ractor_blocking);
RUBY_DEBUG_LOG2(file, line, "vm->ractor.blocking_cnt:%d++", vm->ractor.blocking_cnt);
vm->ractor.blocking_cnt++;
VM_ASSERT(vm->ractor.blocking_cnt <= vm->ractor.cnt);
}
void
rb_vm_ractor_blocking_cnt_inc(rb_vm_t *vm, rb_ractor_t *cr, const char *file, int line)
{
ASSERT_vm_locking();
VM_ASSERT(GET_RACTOR() == cr);
vm_ractor_blocking_cnt_inc(vm, cr, file, line);
}
void
rb_vm_ractor_blocking_cnt_dec(rb_vm_t *vm, rb_ractor_t *cr, const char *file, int line)
{
ASSERT_vm_locking();
VM_ASSERT(GET_RACTOR() == cr);
RUBY_DEBUG_LOG2(file, line, "vm->ractor.blocking_cnt:%d--", vm->ractor.blocking_cnt);
VM_ASSERT(vm->ractor.blocking_cnt > 0);
vm->ractor.blocking_cnt--;
ractor_status_set(cr, ractor_running);
}
static void
ractor_check_blocking(rb_ractor_t *cr, unsigned int remained_thread_cnt, const char *file, int line)
{
VM_ASSERT(cr == GET_RACTOR());
RUBY_DEBUG_LOG2(file, line,
"cr->threads.cnt:%u cr->threads.blocking_cnt:%u vm->ractor.cnt:%u vm->ractor.blocking_cnt:%u",
cr->threads.cnt, cr->threads.blocking_cnt,
GET_VM()->ractor.cnt, GET_VM()->ractor.blocking_cnt);
VM_ASSERT(cr->threads.cnt >= cr->threads.blocking_cnt + 1);
if (remained_thread_cnt > 0 &&
// will be block
cr->threads.cnt == cr->threads.blocking_cnt + 1) {
// change ractor status: running -> blocking
rb_vm_t *vm = GET_VM();
ASSERT_vm_unlocking();
RB_VM_LOCK();
{
rb_vm_ractor_blocking_cnt_inc(vm, cr, file, line);
}
RB_VM_UNLOCK();
}
}
void
rb_ractor_living_threads_remove(rb_ractor_t *cr, rb_thread_t *th)
{
VM_ASSERT(cr == GET_RACTOR());
RUBY_DEBUG_LOG("r->threads.cnt:%d--", cr->threads.cnt);
ractor_check_blocking(cr, cr->threads.cnt - 1, __FILE__, __LINE__);
if (cr->threads.cnt == 1) {
vm_remove_ractor(th->vm, cr);
}
else {
RACTOR_LOCK(cr);
{
list_del(&th->lt_node);
cr->threads.cnt--;
}
RACTOR_UNLOCK(cr);
}
}
void
rb_ractor_blocking_threads_inc(rb_ractor_t *cr, const char *file, int line)
{
RUBY_DEBUG_LOG2(file, line, "cr->threads.blocking_cnt:%d++", cr->threads.blocking_cnt);
VM_ASSERT(cr->threads.cnt > 0);
VM_ASSERT(cr == GET_RACTOR());
ractor_check_blocking(cr, cr->threads.cnt, __FILE__, __LINE__);
cr->threads.blocking_cnt++;
}
void
rb_ractor_blocking_threads_dec(rb_ractor_t *cr, const char *file, int line)
{
RUBY_DEBUG_LOG2(file, line,
"r->threads.blocking_cnt:%d--, r->threads.cnt:%u",
cr->threads.blocking_cnt, cr->threads.cnt);
VM_ASSERT(cr == GET_RACTOR());
if (cr->threads.cnt == cr->threads.blocking_cnt) {
rb_vm_t *vm = GET_VM();
RB_VM_LOCK_ENTER();
{
rb_vm_ractor_blocking_cnt_dec(vm, cr, __FILE__, __LINE__);
}
RB_VM_LOCK_LEAVE();
}
cr->threads.blocking_cnt--;
}
void
rb_ractor_vm_barrier_interrupt_running_thread(rb_ractor_t *r)
{
VM_ASSERT(r != GET_RACTOR());
ASSERT_ractor_unlocking(r);
ASSERT_vm_locking();
RACTOR_LOCK(r);
{
if (ractor_status_p(r, ractor_running)) {
rb_execution_context_t *ec = r->threads.running_ec;
if (ec) {
RUBY_VM_SET_VM_BARRIER_INTERRUPT(ec);
}
}
}
RACTOR_UNLOCK(r);
}
void
rb_ractor_terminate_interrupt_main_thread(rb_ractor_t *r)
{
VM_ASSERT(r != GET_RACTOR());
ASSERT_ractor_unlocking(r);
ASSERT_vm_locking();
rb_thread_t *main_th = r->threads.main;
if (main_th) {
if (main_th->status != THREAD_KILLED) {
RUBY_VM_SET_TERMINATE_INTERRUPT(main_th->ec);
rb_threadptr_interrupt(main_th);
}
else {
RUBY_DEBUG_LOG("killed (%p)", main_th);
}
}
}
void rb_thread_terminate_all(void); // thread.c
static void
ractor_terminal_interrupt_all(rb_vm_t *vm)
{
if (vm->ractor.cnt > 1) {
// send terminate notification to all ractors
rb_ractor_t *r = 0;
list_for_each(&vm->ractor.set, r, vmlr_node) {
if (r != vm->ractor.main_ractor) {
rb_ractor_terminate_interrupt_main_thread(r);
}
}
}
}
void
rb_ractor_terminate_all(void)
{
rb_vm_t *vm = GET_VM();
rb_ractor_t *cr = vm->ractor.main_ractor;
VM_ASSERT(cr == GET_RACTOR()); // only main-ractor's main-thread should kick it.
if (vm->ractor.cnt > 1) {
RB_VM_LOCK();
ractor_terminal_interrupt_all(vm); // kill all ractors
RB_VM_UNLOCK();
}
rb_thread_terminate_all(); // kill other threads in main-ractor and wait
RB_VM_LOCK();
{
while (vm->ractor.cnt > 1) {
RUBY_DEBUG_LOG("terminate_waiting:%d", vm->ractor.sync.terminate_waiting);
vm->ractor.sync.terminate_waiting = true;
// wait for 1sec
rb_vm_ractor_blocking_cnt_inc(vm, cr, __FILE__, __LINE__);
rb_vm_cond_timedwait(vm, &vm->ractor.sync.terminate_cond, 1000 /* ms */);
rb_vm_ractor_blocking_cnt_dec(vm, cr, __FILE__, __LINE__);
ractor_terminal_interrupt_all(vm);
}
}
RB_VM_UNLOCK();
}
rb_execution_context_t *
rb_vm_main_ractor_ec(rb_vm_t *vm)
{
return vm->ractor.main_ractor->threads.running_ec;
}
#include "ractor.rbinc"
static VALUE
ractor_moved_missing(int argc, VALUE *argv, VALUE self)
{
rb_raise(rb_eRactorMovedError, "can not send any methods to a moved object");
}
void
Init_Ractor(void)
{
rb_cRactor = rb_define_class("Ractor", rb_cObject);
rb_eRactorError = rb_define_class_under(rb_cRactor, "Error", rb_eRuntimeError);
rb_eRactorRemoteError = rb_define_class_under(rb_cRactor, "RemoteError", rb_eRactorError);
rb_eRactorMovedError = rb_define_class_under(rb_cRactor, "MovedError", rb_eRactorError);
rb_eRactorClosedError = rb_define_class_under(rb_cRactor, "ClosedError", rb_eStopIteration);
rb_cRactorMovedObject = rb_define_class_under(rb_cRactor, "MovedObject", rb_cBasicObject);
rb_undef_alloc_func(rb_cRactorMovedObject);
rb_define_method(rb_cRactorMovedObject, "method_missing", ractor_moved_missing, -1);
// override methods defined in BasicObject
rb_define_method(rb_cRactorMovedObject, "__send__", ractor_moved_missing, -1);
rb_define_method(rb_cRactorMovedObject, "!", ractor_moved_missing, -1);
rb_define_method(rb_cRactorMovedObject, "==", ractor_moved_missing, -1);
rb_define_method(rb_cRactorMovedObject, "!=", ractor_moved_missing, -1);
rb_define_method(rb_cRactorMovedObject, "__id__", ractor_moved_missing, -1);
rb_define_method(rb_cRactorMovedObject, "equal?", ractor_moved_missing, -1);
rb_define_method(rb_cRactorMovedObject, "instance_eval", ractor_moved_missing, -1);
rb_define_method(rb_cRactorMovedObject, "instance_exec", ractor_moved_missing, -1);
rb_obj_freeze(rb_cRactorMovedObject);
}
static int
rb_ractor_shareable_p_hash_i(VALUE key, VALUE value, VALUE arg)
{
// TODO: should we need to avoid recursion to prevent stack overflow?
if (!rb_ractor_shareable_p(key) || !rb_ractor_shareable_p(value)) {
bool *shareable = (bool*)arg;
*shareable = false;
return ST_STOP;
}
return ST_CONTINUE;
}
MJIT_FUNC_EXPORTED bool
rb_ractor_shareable_p_continue(VALUE obj)
{
switch (BUILTIN_TYPE(obj)) {
case T_CLASS:
case T_MODULE:
case T_ICLASS:
goto shareable;
case T_FLOAT:
case T_COMPLEX:
case T_RATIONAL:
case T_BIGNUM:
case T_SYMBOL:
VM_ASSERT(RB_OBJ_FROZEN_RAW(obj));
goto shareable;
case T_STRING:
case T_REGEXP:
if (RB_OBJ_FROZEN_RAW(obj) &&
!FL_TEST_RAW(obj, RUBY_FL_EXIVAR)) {
goto shareable;
}
return false;
case T_ARRAY:
if (!RB_OBJ_FROZEN_RAW(obj) ||
FL_TEST_RAW(obj, RUBY_FL_EXIVAR)) {
return false;
}
else {
for (int i = 0; i < RARRAY_LEN(obj); i++) {
if (!rb_ractor_shareable_p(rb_ary_entry(obj, i))) return false;
}
goto shareable;
}
case T_HASH:
if (!RB_OBJ_FROZEN_RAW(obj) ||
FL_TEST_RAW(obj, RUBY_FL_EXIVAR)) {
return false;
}
else {
bool shareable = true;
rb_hash_foreach(obj, rb_ractor_shareable_p_hash_i, (VALUE)&shareable);
if (shareable) {
goto shareable;
}
else {
return false;
}
}
default:
return false;
}
shareable:
FL_SET_RAW(obj, RUBY_FL_SHAREABLE);
return true;
}
void
rb_ractor_dump(void)
{
rb_vm_t *vm = GET_VM();
rb_ractor_t *r = 0;
list_for_each(&vm->ractor.set, r, vmlr_node) {
if (r != vm->ractor.main_ractor) {
fprintf(stderr, "r:%u (%s)\n", r->id, ractor_status_str(r->status_));
}
}
}
VALUE
rb_ractor_stdin(void)
{
if (rb_ractor_main_p()) {
return rb_stdin;
}
else {
rb_ractor_t *cr = GET_RACTOR();
return cr->r_stdin;
}
}
VALUE
rb_ractor_stdout(void)
{
if (rb_ractor_main_p()) {
return rb_stdout;
}
else {
rb_ractor_t *cr = GET_RACTOR();
return cr->r_stdout;
}
}
VALUE
rb_ractor_stderr(void)
{
if (rb_ractor_main_p()) {
return rb_stderr;
}
else {
rb_ractor_t *cr = GET_RACTOR();
return cr->r_stderr;
}
}
void
rb_ractor_stdin_set(VALUE in)
{
if (rb_ractor_main_p()) {
rb_stdin = in;
}
else {
rb_ractor_t *cr = GET_RACTOR();
RB_OBJ_WRITE(cr->self, &cr->r_stdin, in);
}
}
void
rb_ractor_stdout_set(VALUE out)
{
if (rb_ractor_main_p()) {
rb_stdout = out;
}
else {
rb_ractor_t *cr = GET_RACTOR();
RB_OBJ_WRITE(cr->self, &cr->r_stdout, out);
}
}
void
rb_ractor_stderr_set(VALUE err)
{
if (rb_ractor_main_p()) {
rb_stderr = err;
}
else {
rb_ractor_t *cr = GET_RACTOR();
RB_OBJ_WRITE(cr->self, &cr->r_stderr, err);
}
}